JP2012243748A - Control electrode body for moving and attracting radioactive material floating in air and seawater to cathode - Google Patents

Control electrode body for moving and attracting radioactive material floating in air and seawater to cathode Download PDF

Info

Publication number
JP2012243748A
JP2012243748A JP2011123807A JP2011123807A JP2012243748A JP 2012243748 A JP2012243748 A JP 2012243748A JP 2011123807 A JP2011123807 A JP 2011123807A JP 2011123807 A JP2011123807 A JP 2011123807A JP 2012243748 A JP2012243748 A JP 2012243748A
Authority
JP
Japan
Prior art keywords
electrode
cloth
electrode body
metal
control electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011123807A
Other languages
Japanese (ja)
Other versions
JP5557804B2 (en
JP2012243748A5 (en
Inventor
Kazuhiro Hayashi
和弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011123807A priority Critical patent/JP5557804B2/en
Publication of JP2012243748A publication Critical patent/JP2012243748A/en
Publication of JP2012243748A5 publication Critical patent/JP2012243748A5/ja
Application granted granted Critical
Publication of JP5557804B2 publication Critical patent/JP5557804B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that workers expose themselves to radiation of high concentration, suffer from health disorder, are difficult to perform recovery work and cannot perform work because there is no effective means for attracting radioactive material flying and floating in air, water and seawater about the radioactive material of high concentration resulting from an accident of a nuclear reactor.SOLUTION: Between electrodes including two or more kinds of metals of an electrochemical potential string having different electromotive force firmly fixed to or separated from cloth, resin or coal cloth with electrode potential difference, a control electrode body including resin or coal cloth forms a plus electrode and a minus electrode, makes an electron flow from the minus electrode toward the plus electrode and generates direct current static electricity due to electrochemical reaction by the potential difference. The control electrode body generates electric power for 24 hours due to electric field formation and static electricity generation by being soaked into air, water or seawater, and radioactive material is moved and attracted to the minus pole (cathode) to remove contaminant. The electrode body controls the flow of material.

Description

本発明は、高温条件、低温条件の空気中、煙、水蒸気、水、海水の中に浮遊する放射性物質、金属イオン、遊物質、微生物と血液成分を陰極に移動し、吸引することを特徴とする物質の流れを制御するに関する。  The present invention is characterized in that radioactive materials floating in air, smoke, water vapor, water, seawater, metal ions, migratory materials, microorganisms and blood components are moved to the cathode and sucked in high temperature and low temperature conditions. It relates to controlling the flow of substances.

空気中の汚染された物質を除去するために清浄フィルターとイオン発生装置を備えた空気清浄器で空気の清浄、消臭及びイオンの発生等の清浄装置がある。  In order to remove polluted substances in the air, there are cleaning devices such as air purifier, deodorant and ion generator in an air purifier equipped with a cleaning filter and an ion generator.

放射性物質を処理するために放射性廃液を減圧下で加湿蒸留して濃縮減容して処理、又フィルターで濾過する処理の方法がある。  In order to treat radioactive substances, there are methods of treating radioactive waste liquid by humidification under reduced pressure, concentrating and reducing the volume, and filtering with a filter.

放射能の微粒子を捕集するために空気入口と空気出口を備えたケーシングの、ファンで空気を通過させて、空気中に散在する微粒子を高電圧の印加でイオン化する、イオン化部、電気捕集部と放射線強さ検出する放射線検出器を備えた放射能測定器付微粒子補集装置が公開されている。  An ionization unit, which collects radioactive particulates by applying a high voltage by passing air with a fan in a casing equipped with an air inlet and air outlet to collect radioactive particulates. A particle collecting apparatus with a radioactivity measuring instrument equipped with a radiation detector for detecting radiation intensity is disclosed.

公開特許公報 平3−2528公報  Published Patent Publication No. Hei 3-2528

しかしながら特許文献1の技術では、放射能の微粒子を捕集するために空気をファンで流すために大がかりの装置が必要、この装置では放射性物質で汚染された高温ガス、煙、水、海水から汚染物質の回収が困難、さらに装置を稼働させる運転用燃料、電気エネルギーを必要としている。  However, in the technique of Patent Document 1, a large-scale device is required to flow air with a fan in order to collect radioactive fine particles. In this device, contamination from high-temperature gas, smoke, water, and seawater contaminated with radioactive materials is required. It is difficult to recover materials, and it requires operating fuel and electrical energy to operate the equipment.

本発明は、かかる従来技術の問題点に鑑みてなされたものであり、装置を稼働させる運転用燃料、電気エネルギーを必要とせず、高温条件、又低温条件で太陽光、水蒸気の存在の空気中、水蒸気、煙水、湯、海水、雪の中、氷の中で24時間作動、直流電気を発電することを発揮、物質を移動、吸引し、流れを制御する電極体を提供することを目的とする。  The present invention has been made in view of the problems of the prior art, and does not require operating fuel for operating the apparatus and electrical energy, and is in the presence of sunlight and water vapor under high temperature conditions and low temperature conditions. It is intended to provide an electrode body that operates for 24 hours in water, smoke, hot water, sea water, snow and ice, generates direct current electricity, moves and sucks substances, and controls flow. And

本発明の制御電極体は、電気化学ポテンシャル列の異なる起電力レベルを持つ少なくとも2種類の金属を離間し配置、太陽光、水蒸気の存在のもとに(空気中)接触、煙、海水、水、高温条件、湯、低温条件、雪、氷が浮かぶ海水、凍結した氷の中に浸漬することにより、電極電位差は電気化学反応を起こす原動力で、並びに水、又水蒸気がある限り発電し続ける発電機機能と燃料電池機能を有し、マイナス電極からプラス電極へ電子の流れが発生により、直流の静電気を絶えず発生、物質を陰極へ移動し、吸引するため、電気化学反応、電極表面における電着現象、めっき現象を利用することを特徴とする物質の流れを制御する電極体。  In the control electrode body of the present invention, at least two kinds of metals having different electromotive force levels in the electrochemical potential sequence are arranged apart from each other, contact (in the air) in the presence of sunlight and water vapor, smoke, seawater, water , High temperature conditions, hot water, low temperature conditions, snow, floating seawater, frozen electrode ice, electrode potential difference is a driving force for electrochemical reaction, and power generation continues as long as there is water or water vapor It has a mechanical function and a fuel cell function, and the flow of electrons from the negative electrode to the positive electrode generates DC static electricity constantly. The substance moves to the cathode and is sucked, so that electrochemical reaction, electrodeposition on the electrode surface. An electrode body that controls the flow of a substance characterized by utilizing a phenomenon and a plating phenomenon.

本発明の制御電極体は、電気化学ポテンシャル列の異なる起電力レベルを持つ少なくとも2種類以上の金属電極を離間して配置、水蒸気の存在のもとに(空気中)接触、太陽光、風、煙、水蒸気又は海水、水、高温条件、湯、低温条件、水、氷の浮かぶ海水、凍結した氷の中に浸漬することにより発電を発揮することを発見した。電気化学ポテンシャル列(electrochemical series)の異なる種類の金属で起電力(electromotive force)レベル持った金属は、陽極的材料(電気化学ポテンシャル列上より正の側)と陰極的材料(電気化学ポテンシャル列下より負の側)の電極電位差をつける組み合わせで、電極電位差は電気化学反応を起こす原動力として、マイナス(陰極)電極からプラス(陽極)電極に向けて絶えず電子の流れが生じ、直流の静電気を発生、直流発電機とし、電気化学反応、電極表面における電着現象、めっき現象で陰極へ放射性物質、金属イオン、浮遊物、微生物、血液成分を移動、吸引する。  In the control electrode body of the present invention, at least two kinds of metal electrodes having different electromotive force levels in the electrochemical potential sequence are arranged apart from each other, contact (in the air) in the presence of water vapor, sunlight, wind, It has been discovered that power generation can be achieved by immersing it in smoke, water vapor or seawater, water, high temperature conditions, hot water, low temperature conditions, water, seawater with ice floating, and frozen ice. Different types of metals in the electrochemical potential series (electrochemical forces) with an electromotive force level are classified into an anodic material (positive side from the electrochemical potential series) and a cathodic material (under the electrochemical potential series). The combination of the electrode potential difference on the more negative side, and as the driving force for the electrochemical reaction, the electrode potential difference constantly generates a flow of electrons from the negative (cathode) electrode to the positive (anode) electrode, generating direct current static electricity. A DC generator is used to move and suck radioactive materials, metal ions, suspended solids, microorganisms, and blood components to the cathode by electrochemical reaction, electrodeposition phenomenon on the electrode surface, and plating phenomenon.

本発明願の電極体は異なる起電力レベルの金属の組み合わせにより電位が保たれ、静電気が流れ、電場形成、陰極は金属イオン、微生物を電極表面に吸引し、すき間腐食と放電現象の電気的殺菌、電気化学的殺菌で滅菌、並びに空気中、電解質溶液に浮遊する放射性物質、微粒子金属、金属イオン、化学物質、浮遊物質、微生物、血液成分を陰極へ一方向へ移動、吸引する。  In the electrode body of the present invention, the potential is maintained by the combination of metals of different electromotive force levels, static electricity flows, electric field formation, the cathode attracts metal ions and microorganisms to the electrode surface, crevice corrosion and electrical sterilization of discharge phenomenon Sterilize by electrochemical sterilization, and move and suck radioactive substances, particulate metals, metal ions, chemical substances, suspended substances, microorganisms and blood components suspended in the electrolyte solution in the air in one direction to the cathode.

電気化学ポテンシャル列の異なる種類の金属としては表1に記載されたものがあるが異なる起電力(electromotive force)レベルを持つ金属を水蒸気の存在のもとで接触、又水中に浸漬すると、これらの一方向は陽極、他方は陰極となり(アノード、カソード)、両者間に電位差が生じ、かかる電気化学反応により発電効果を発揮するのである。起電力レベルの差が大きいほど、電場形成、直流の静電気を発生、電圧、電流等は大きい値を生じる反応の電気化学反応、電極表面における電着現象、めっき現象を応用する。  Different types of metals with different electrochemical potential sequences are listed in Table 1, but when metals with different electromotive force levels are contacted or immersed in water in the presence of water vapor, these One direction is an anode and the other is a cathode (anode, cathode), and a potential difference is generated between the two, and this electrochemical reaction exerts a power generation effect. The larger the difference in electromotive force level, the more the electric field formation, the generation of direct current static electricity, the electrochemical reaction of the reaction in which the voltage, current, etc. have larger values, the electrodeposition phenomenon on the electrode surface, and the plating phenomenon are applied.

前記金属は、カリウム、ナトリウム、マグネシウム、マグネシウム合金、酸化チタン、硫黄、アルミニュウム、アルミニウム/マンガン合金、カドミウムめっき鋼、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼、トタン、亜鉛、亜鉛合金、クロム、鉄、軟鉄または鋼鉄、軟鉄または鋼、錫、真鍮、ジュラルミン、鉛、クロムめっき鋼、軟質半田、ニッケル下地クロムめっき鋼、錫めっき鋼、高クロムステンレス鋼、12%クロムステンレス鋼、銅、銅合金、銀半田、銅合金、ニッケルめっき鋼、銀、ロジウム下地めっき銅、銀/金合金、炭、活性炭、パラジゥム、白金、金のうちの異なる種類の金属であることが好ましい。  The metal is potassium, sodium, magnesium, magnesium alloy, titanium oxide, sulfur, aluminum, aluminum / manganese alloy, cadmium plated steel, 80 tin / 20 tin plated steel, galvanized iron / steel, tin, zinc, zinc alloy, Chrome, iron, soft iron or steel, soft iron or steel, tin, brass, duralumin, lead, chrome plated steel, soft solder, nickel base chrome plated steel, tin plated steel, high chrome stainless steel, 12% chromium stainless steel, copper, It is preferable that they are different types of metals among copper alloy, silver solder, copper alloy, nickel-plated steel, silver, rhodium-plated copper, silver / gold alloy, charcoal, activated carbon, palladium, platinum, and gold.

3年間かけて前記金属を組み替えて次の実験を実施、異なる種類の金属を組み替え、布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布、樹脂又は炭クロスを挿入し金属を積層に重ねて、さらに大きい布、樹脂又は炭クロスに固着し、水中に浸漬することにより水電池になり、水がある限り放電、充電を繰り返す発電機能があり、又静電気を発生、直流電流を流し続け、電場形成、発電機、燃料電池であることを確認する。  The following experiment was carried out by rearranging the above metals for 3 years, rearranging different types of metals, fixing at least two different types of metals on the surface of cloth, resin or charcoal cloth, and fixing them in parallel. Separate a different kind of metal, insert a cloth, resin or charcoal cloth between the metals, stack the metal on the laminate, adhere to a larger cloth, resin or charcoal cloth, and immerse in water to make a water battery. As long as there is water, it has a power generation function that repeats discharging and charging, and generates static electricity and keeps direct current flowing, confirming that it is an electric field formation, generator, and fuel cell.

上記実験で発生する電圧、電流、抵抗値は常に変化し、前記金属が少なくとも2種類以上の異なる種類の金属の電極電位差が少ない場合は発生する電圧、電流が小さく、又電極電位差が大きい場合は大きい電圧、電流値が生じ、同時に静電気が生じることを確認、微生物の発育阻止、滅菌、又発育、増殖の微生物制御に利用する。  The voltage, current, and resistance values generated in the above experiment always change. When the metal has a small electrode potential difference between at least two different types of metals, the generated voltage and current are small, and when the electrode potential difference is large. It is confirmed that a large voltage and current value are generated, and at the same time, static electricity is generated. It is used for microorganism control of microorganism growth inhibition, sterilization, and growth and proliferation.

電気化学ポテンシャル列の異なる起電力が低い前記金属の一方の面積は、前記金属の他方の面積より大きいと好ましい。  The area of one of the metals having a low electromotive force with a different electrochemical potential sequence is preferably larger than the other area of the metal.

前記金属の一方は、布、樹脂又は炭クロスの一方の面に配置され、前記金属の他方は、前記布、樹脂又は炭クロスの他方の面に配置されていると好ましい。  One of the metals is preferably disposed on one surface of a cloth, resin or charcoal cloth, and the other of the metals is preferably disposed on the other surface of the cloth, resin or charcoal cloth.

前記金属の少なくとも一方は、前記布、樹脂又は炭クロスの面に格子状、網状又は渦巻き状に形成されると好ましい。  It is preferable that at least one of the metals is formed in a lattice shape, a net shape, or a spiral shape on the surface of the cloth, resin, or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に取り囲まれるように配置されていると好ましい。  It is preferable that one side of the metal is arranged so as to be surrounded by the other side of the metal on one side of the cloth, resin or charcoal cloth.

布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に並べて配置されていると好ましい。  On one side of the cloth, resin or charcoal cloth, one of the metals is preferably arranged side by side on the other side of the metal.

前記金属を形成した布、樹脂又は炭クロスを積層、又は平行にしていると好ましい。  It is preferable that the cloth, resin or charcoal cloth on which the metal is formed are laminated or parallel.

前記金属を形成した布、樹脂又は炭クロスを筒状、又四角に形成していると好ましい。  The cloth, resin, or charcoal cloth on which the metal is formed is preferably formed in a cylindrical shape or a square shape.

尚、上記金属は塗料、シリコン樹脂、樹脂、セラミック、接着剤、うるしなどに両面に形成されていても良い。    The metal may be formed on both surfaces of paint, silicon resin, resin, ceramic, adhesive, and seam.

ここで、「布、樹脂」とは、布、紙、合成繊維、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂等からなる板状体を広く含む概念であり、乾燥状態で絶縁機能を有するものが好ましく、水蒸気の存在のもとに布、紙、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂、接着剤、うるしが接触しているとき、又電解質溶液(水、海水、湯)で布、樹脂、紙、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂、接着剤、うるしの材料が湿った状態で布、樹脂の端と端の間で電気抵抗を有する材料を利用する。  Here, “cloth, resin” is a concept that widely includes a plate-like body made of cloth, paper, synthetic fiber, non-woven fabric, rubber, silicone resin, resin, synthetic resin, etc., and has an insulating function in a dry state. In the presence of water vapor, when cloth, paper, non-woven fabric, rubber, silicone resin, resin, synthetic resin, adhesive, or sushi are in contact with the electrolyte solution (water, seawater, hot water), Resin, paper, non-woven fabric, rubber, silicone resin, resin, synthetic resin, adhesive, cloth, and material having electrical resistance between the ends of the resin are used in a wet state.

「炭クロス」とは、炭の両面を布又は樹脂で挟んだものであり、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブを布で両面から挟み固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解質溶液(水、海水、湯、氷)で湿ったときわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ材料が湿り、材料の端と端の間で電気抵抗が生じる材料を利用する。  "Charcoal cloth" is a charcoal cloth with both sides of charcoal sandwiched between cloth and resin. Charcoal with sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotubes sandwiched from both sides with cloth. When cloth is in contact with water vapor, or when wet with electrolyte solution (water, seawater, hot water, ice), Japanese paper, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotube A material is used in which the material becomes wet and an electrical resistance is generated between the ends of the material.

炭の片面を布又は樹脂に固着した炭クロスは、わし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブを布の片面に固着した炭クロスは水蒸気の存在のもと接触しているとき、又電解溶液で湿ったときは、わし(和紙)炭、竹炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ材料が湿り、材料の端と端の間で電気抵抗が有する材料を利用する。  Charcoal cloth with one side of charcoal fixed to cloth or resin is charcoal cloth with sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine activated carbon, carbon black, carbon nanotubes fixed to one side of cloth. When in contact or when wet with electrolytic solution, sushi (Japanese paper) charcoal, bamboo charcoal, activated carbon, fine particle activated carbon, carbon black, carbon nanotube material gets wet, and there is an electric resistance between the ends of the material Is used.

炭、活性炭の利用として、電気化学ポテンシャル列の異なる金属(電極)で、起電力レベルを持つ電極で電極電位差をつけて組み合わせ、電極と電解質溶液をつなげた系の電気化学反応で発生する電気エネルギー、電解質の正負両イオンが電圧を加える充電によって、電極表面に吸収され、電極内の正負電荷と対を作り、電気を貯蔵、そして電気二重層が消滅によって電気エネルギーを充電、放電する貯蔵する電気二重キャパシシタにわし(和紙)炭、竹炭、木炭、活性炭、微粒子活性炭、カーボンブラック、カーボンナノチューブ炭を利用する。  Charcoal and activated carbon are used as metals (electrodes) with different electrochemical potential sequences, combined with an electrode potential difference with an electrode having an electromotive force level, and electric energy generated by an electrochemical reaction in which the electrode and electrolyte solution are connected Electrolyte, both positive and negative ions of the electrolyte are absorbed by the electrode surface by charging, paired with positive and negative charges in the electrode, store electricity, and the electric double layer stores and discharges electric energy by extinction Use double-capacitor sardine (Japanese paper) charcoal, bamboo charcoal, charcoal, activated carbon, fine particle activated carbon, carbon black, carbon nanotube charcoal.

本発明は、生物、又微生物(細菌、カビ、酵母、ウイルス)を滅菌する電気的殺菌、又電気化学的殺菌、並びに発電は電気化学ポテンシャル列の異なる種類の金属(電極)で、起電力レベルを持つ電極を離間し組み合わせ、電極電位差(起電力)をつけて布、又炭クロスに固着、電極と電解質溶液をつなげた系において湿った電極、布、樹脂又炭クロスは接触し、電極内の電子と電解液の界面で電子がやりとりされる電気二重層の電気化学系反応の反応性は電極電位差により電気化学反応を起こす原動力とすることを特徴とする。  The present invention relates to electrosterilization for sterilizing organisms and microorganisms (bacteria, molds, yeasts, viruses), as well as electrochemical sterilization, and power generation using different types of metals (electrodes) in the electrochemical potential sequence, and the electromotive force level. Electrodes with electrode potential difference (electromotive force) are attached and fixed to the cloth or charcoal cloth. In the system where the electrode and electrolyte solution are connected, the wet electrode, cloth, resin or charcoal cloth is in contact with each other. The reactivity of the electrochemical reaction of the electric double layer in which electrons are exchanged at the interface between the electrons and the electrolyte is a driving force for causing an electrochemical reaction due to an electrode potential difference.

電極電位差をつけた電極は多数個を離間し組み込み、布、樹脂(布、不織布、ゴム、シリコン樹脂、樹脂、合成樹脂、接着剤、うるし)、又炭クロス(和紙炭、活性炭を布に固着)に固着、電極は水蒸気の存在のもとに接触し、又電解質溶液の存在のもとに接触するとき電極と電極、電極と布、樹脂と電極、又電極と炭クロス間は電気抵抗が生じ、電極が接触しているとき起こる電食作用、電解腐食作用は一つの金属から他の金属へ電流が流れるために電極間は電気抵抗があり、さらに電極は電導性をおびる布、樹脂又炭クロスに固着することを特徴とする。  A large number of electrodes with an electrode potential difference are separated and incorporated, and cloth, resin (cloth, non-woven fabric, rubber, silicon resin, resin, synthetic resin, adhesive, sushi), and charcoal cloth (Japanese paper charcoal, activated carbon are fixed to the cloth) ), The electrode contacts in the presence of water vapor, and when in contact with the presence of the electrolyte solution, there is an electrical resistance between the electrode and electrode, electrode and cloth, resin and electrode, or between the electrode and charcoal cloth. Electrolytic corrosion and electrolytic corrosion that occur when the electrodes are in contact with each other have electrical resistance between the electrodes because current flows from one metal to the other, and the electrodes are electrically conductive cloth, resin or It is characterized by adhering to charcoal cloth.

金属イオンは微生物の細胞質膜、細胞壁の表面に付着、細胞質の電子伝達系とイオ伝導が影響をうけ腐食における局部電池機構と類似の機構、すき間腐食の反応が進行し滅菌するため、電極と電解液の界面で電気二重層の電気化学系反応で、放電による水の電気分解、電池反応、着電、めっきを起こす反応エネルギーは電気エネルギーに変換され、金属イオンの生成を特徴とする。  Metal ions adhere to the surface of microbial cytoplasmic membranes and cell walls, and are affected by the cytoplasmic electron transport system and ionic conduction. In the electrochemical reaction of the electric double layer at the interface of the liquid, the reaction energy causing electrolysis of water by discharge, battery reaction, charging and plating is converted into electric energy, which is characterized by the generation of metal ions.

電気化学反応によるイオン生成は不対電子をもった物質がフリーラジカルになり、他の分子から電子を奪い微生物の膜の脂肪質層は細胞膜破壊を起こし細胞や組織の機能を低下させ死滅させるため、電極と電解質溶液において、電解質溶液は電気化学系反応における電子放出、電子のやりとりで電子を奪われ、酸化還元電位(ORP)がマイナスへ下がる降順(還元)、又上がる昇順(酸化)を繰り返し、酸化、還元、フリーラジカル作用を特徴とする。  Ion production by electrochemical reaction is because the substance with unpaired electrons becomes free radicals, steals electrons from other molecules, and the fat layer of the microbial membrane causes cell membrane destruction and kills cells and tissues by reducing their functions In the electrode and the electrolyte solution, the electrolyte solution is repeatedly released in the descending order (reduction) in which the redox potential (ORP) decreases to negative, and the increasing order in order to increase (oxidation). It is characterized by oxidation, reduction and free radical action.

微生物の細胞膜、細胞の壁は電場形成、静電気発生、放電の電流破壊、電圧破壊、コロナ放電で破壊され滅菌する反応性を起こすため、面積が有る導体性の電極は電極と電極が離間し布、樹脂又炭クロスを平行に挿入して固着、平行キャパシタとし、電解液で接触した導体性の電極と電解液をつなげた系の界面で電子がやりとりする、電気二重層キャパシタは布、樹脂又炭クロスの活性炭電極が、電気エネルギーを貯蔵する蓄電池機能を持ち、電極と溶解液の正負両イオンがそれぞれ負極と正極に物理的に吸着および脱着による充電、放電を繰り返す電池を特徴とする。  Microbial cell membranes and cell walls cause electric field formation, generation of static electricity, discharge current destruction, voltage destruction, corona discharge destruction and sterilization reactivity. A resin or charcoal cloth is inserted and fixed in parallel to form a parallel capacitor.Electrons are exchanged at the interface between the conductive electrode in contact with the electrolyte and the electrolyte. The charcoal cloth activated carbon electrode has a storage battery function of storing electrical energy, and the battery is characterized by a battery in which positive and negative ions of the electrode and the solution are repeatedly charged and discharged by physical adsorption and desorption on the negative electrode and the positive electrode, respectively.

少なくとも2種類の異なる導体性の有る電極板は面積が有り、電極板を離間して配置、離間を設けた電極板の間に布、樹脂又は炭、活性炭の誘電体を挿入、電極板を平行に配置し大きい布、樹脂又炭クロスに固着、電極が平行板になり金属板の内部に電荷が集中し強い電場が作られ、電極電位差により電気化学反応が発生し電気エネルギーを充電、放電できる電気二重層キャパシタの蓄電機能を持った、平行キャパシタにする。  At least two types of electrode plates with different conductive properties have an area. The electrode plates are spaced apart, and a cloth, resin, charcoal or activated carbon dielectric is inserted between the spaced electrode plates, and the electrode plates are placed in parallel. It is fixed to a large cloth, resin or charcoal cloth, the electrodes are parallel plates, and electric charges are concentrated inside the metal plate to create a strong electric field. Electrochemical reaction occurs due to the electrode potential difference, and electric energy can be charged and discharged. A parallel capacitor with the storage function of a multilayer capacitor is used.

電気化学系反応の反応性は陽極的材料の電極(電気化学ポテンシャル列上より正の側)の面積を小さくし、腐食により陽極へ電子供給量を多くする陰極的材料の電極(電気化学ポテンシャル列下より負の側)の面積を大きくし、陽極的材料と陰極的材料(アソード、カソード)を離間し布、樹脂又炭クロスを固着、又間隔を設け、さらに動作電極、基準電極、又補助電極を1から多数個を離間し組み合わせて電極電位差を大きくつけた電極は多数個を離間し組み込むことを特徴とする。  The reactivity of the electrochemical reaction reduces the area of the anode material electrode (on the positive side of the electrochemical potential sequence) and increases the amount of electrons supplied to the anode due to corrosion (electrochemical potential sequence) Increase the area of the negative side from the bottom), separate the anode material and cathode material (asode, cathode), fix the cloth, resin or charcoal cloth, and provide the space, and also the working electrode, reference electrode, and auxiliary An electrode having a large electrode potential difference by separating and combining a large number of electrodes from 1 is characterized in that a large number of electrodes are separated and incorporated.

電極形状は平形、丸形、球形、渦巻き形、線形、格子形、網形、六角形、山形、波形U形、W形とし、又金属固体、活性炭を微粒子状に加工、さらにカーボンブラック、ナノチューブを利用、静電気の帯電を高め、静電気放電、イオン生成、コロナ放電、フリーラジカル作用の電気化学的反応で滅菌するため、静電気を多く帯電する電極は総表面積を大きくし、又金属固体は微粒子に加工し、さらに電極は積層、又は平行に並べることを特徴とする。  The electrode shape is flat, round, spherical, spiral, linear, lattice, mesh, hexagon, chevron, corrugated U, W, metal solid, activated carbon is processed into fine particles, carbon black, nanotubes To increase the electrostatic charge, and sterilize by electrochemical reaction of electrostatic discharge, ion generation, corona discharge, free radical action, so that the electrostatically charged electrode increases the total surface area and the metal solid into fine particles Further, the electrodes are stacked or arranged in parallel.

発電電極体は酸化チタン、硫黄の細かい紛体、又微粒子を電気化学ポテンシャル列の異なる種類の金属で起電力レベルを持つ電極に付加し発電効果、一方向への流れ制御効果が高まる。  The power generation electrode body is made of titanium oxide, fine powder of sulfur, or fine particles added to an electrode having an electromotive force level made of different types of metals having different electrochemical potential sequences, thereby enhancing the power generation effect and the flow control effect in one direction.

150倍に拡大した亜鉛電極の組織画像である。It is a structure | tissue image of the zinc electrode expanded 150 times. 150倍に拡大した亜鉛電極の組織画像である。It is a structure | tissue image of the zinc electrode expanded 150 times. 試験液のORPの経時変化を示すグラフである。It is a graph which shows the time-dependent change of ORP of a test liquid. 亜鉛(トタン板)、銅、銀の間に炭クロスを挿入し大きい炭クロスに固着した3積層電極の亜鉛電極の斜視画像である。It is a perspective image of the zinc electrode of the three laminated electrodes which inserted the charcoal cloth between zinc (tongue board), copper, and silver, and was fixed to the big charcoal cloth. 銀、亜鉛(トタン)、銅の間に炭クロスを挿入、大きい炭クロスに固着した3積層電極の銀電極を示す斜視画像である。It is a perspective image which shows the silver electrode of the 3 laminated electrode which inserted the charcoal cloth between silver, zinc (totone), and copper, and was fixed to the big charcoal cloth. 本発明者が行った実験結果の制御電極体の放電現象を撮影した斜視画像である。It is the perspective image which image | photographed the discharge phenomenon of the control electrode body of the experimental result which this inventor performed. 亜鉛(トタン板)、銅板、銀板(T10004)の3積層電極の形状の制御電極体を示す斜視画像である。It is a perspective image which shows the control electrode body of the shape of the three laminated electrodes of zinc (titan plate), a copper plate, and a silver plate (T10004). 亜鉛材、ステンレス、アルミニウム、銀板(T10005)の4積層電極の形状の制御電極体を示す斜視画像である。It is a perspective image which shows the control electrode body of the shape of four laminated electrodes of a zinc material, stainless steel, aluminum, and a silver plate (T10005). 板状の布、樹脂又炭クロス6の表面電気化学ポテンシャル列の異なる種類の金属の起電力レベルを持った電極A1、又電極B2、電極C3、又電極D4、電極E5等をU字形、W字形に曲げ、離間し固着、電極は平行に配置、電気二重層キャパシタを形成、電極は線、ワィヤ−状で、電子を供給する陰極材料であるため、陽極材料より陰極面積を多くして配置、電極を電解質溶液23に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体a8を示す平面図である。The electrode A1, the electrode B2, the electrode C3, the electrode D4, the electrode E5 and the like having different electromotive force levels of different kinds of metal in the surface electrochemical potential row of the plate-like cloth, resin or charcoal cloth 6 are U-shaped, W Bent, spaced and fixed, electrodes arranged in parallel, forming an electric double layer capacitor, electrodes are wires and wires, and are cathode materials that supply electrons, so they are arranged with a larger cathode area than anode materials FIG. 5 is a plan view showing a control electrode body a8 that causes an electrochemical reaction with an electrode potential difference when an electrode is immersed in an electrolyte solution 23, generates static electricity, and moves a substance to a cathode. 板状の布、樹脂又炭クロス6の表面電気化学ポテンシャル列の異なる種類の金属の起電力レベルを持った電極A1、又電極B2、電極C3、又電極D4、電極E5等をU字形、W字形に曲げ、離間し固着、電極は平行に配置、電気二重層キャパシタを形成、電極は線、ワィヤ−状で、電子を供給する陰極材料であるため、陽極材料より陰極面積を多くして配置、電極を電解質溶液23に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体b9を示す平面図である。The electrode A1, the electrode B2, the electrode C3, the electrode D4, the electrode E5 and the like having different electromotive force levels of different kinds of metal in the surface electrochemical potential row of the plate-like cloth, resin or charcoal cloth 6 are U-shaped, W Bent, spaced and fixed, electrodes arranged in parallel, forming an electric double layer capacitor, electrodes are wires and wires, and are cathode materials that supply electrons, so they are arranged with a larger cathode area than anode materials FIG. 5 is a plan view showing a control electrode body b9 that causes an electrochemical reaction with an electrode potential difference when an electrode is immersed in an electrolyte solution 23, generates static electricity, and moves a substance to a cathode. 板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の起電力レベルを持った電極A1、又電極B2、2面側に電極C3、電極D4又金属電極E5等を離間し固着、電極は、平行、積層に配置、電気二重層キャパシタを形成、電極は線、ワィヤ−状で、格子状、網状とし、電子を供給する陰極材料であるため、陰極面積を多くして配置、電極を電解質溶液に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体c10を示す平面図である。An electrode A1 having an electromotive force level of a different kind of metal having an electrochemical potential row on the surface of a plate-like cloth, resin or charcoal cloth 6, electrode B2, electrode C3, electrode D4 or metal electrode E5 on the two sides Electrodes are arranged in parallel and stacked, forming an electric double layer capacitor. The electrodes are wires, wires, grids, meshes, and are cathode materials that supply electrons, so the cathode area is large. When the electrode is immersed in an electrolyte solution, the control electrode body c10 causes an electrochemical reaction due to an electrode potential difference, generates static electricity in the flow of electrons, and moves the substance to the cathode. 板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の線状、ワィヤー状の電極A1、又電極B2、2面側に電極C3、又電極D4、電極E5等を離間し横に並べて、渦巻き状、平行に配置し固着、異なった起電力レベルを持った金属を積層にし、電気二重層キャパシタを形成、電極は電解質溶液23に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体d11を示す平面図である。On the surface of a plate-like cloth, resin or charcoal cloth 6, a metal or wire electrode A1 having a different electrochemical potential sequence, an electrode B2, an electrode C3 on the two sides, an electrode D4, an electrode E5, etc. Are placed side by side, spirally arranged in parallel, fixed, and laminated with metals having different electromotive force levels to form an electric double layer capacitor. Electrodes react with the electrode potential difference when immersed in the electrolyte solution 23 FIG. 4 is a plan view showing a control electrode body d11 that causes an electron flow, generates static electricity, and moves a substance to a cathode. 板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の板状の電極A1、電極C3、又電極D4、電極B2等を離間し横に並べて、平行に配置し固着、2面側に電極B2、電極C3、電極A1、又電極D4を平行に配置、異なった起電力レベルを持った金属を積層にし、電気二重層キャパシタを形成、電極は電解質溶液23に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体e12を示す平面図である。A plate-like cloth, resin, or charcoal cloth 6 has different surface types of plate-like electrode A1, electrode C3, electrode D4, electrode B2, etc. with different electrochemical potential rows, arranged side by side, arranged in parallel, and fixed, Electrodes B2, C3, A1, and D4 are arranged in parallel on the two sides, and metals having different electromotive force levels are laminated to form an electric double layer capacitor. When the electrodes are immersed in the electrolyte solution 23, the electrodes It is a top view which shows the control electrode body e12 which raise | generates an electrostatic reaction by an electric potential difference, generates the static electricity of an electron flow, and moves a substance to a cathode. 板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の板状の電極A1、電極C3、電極B2、電極D4、電極E5等を離間し縦に並べて、平行に配置し固着、2面側に電極C3、電極B2、電極A1、電極D4を平行に配置、異なった起電力レベルを持った金属を積層にして電極は電解質溶液23に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体f13を示す平面図である。On the surface of the plate-like cloth, resin or charcoal cloth 6, plate-type electrode A1, electrode C3, electrode B2, electrode D4, electrode E5, etc. of different types having different electrochemical potential rows are arranged apart and vertically in parallel. Adhering, C3, Electrode B2, Electrode A1, Electrode D4 are arranged in parallel on the two sides, metal with different electromotive force levels are laminated, and the electrode is immersed in the electrolyte solution 23, the electrochemical reaction is caused by the electrode potential difference. It is a top view which shows the control electrode body f13 which raises, generates the static electricity of an electron flow, and moves a substance to a cathode. 布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の電極A1、電極B2、電極C3、電極D4、電極E5を離間し平行に並べ、電極の間にスペーサーの布、樹脂又炭クロス6を挿入、離間し電極板を平行キャパシタとし、電気二重層キャパシタを形成、電解質溶液、太陽光、風、煙、水、水蒸気、湯、海水を通過させて静電気を発生させ、又電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体g14を示す平面図である。On the surface of the cloth, resin or charcoal cloth 6, electrodes A1, B2, C3, D4, and E5 of different kinds of metals having different electrochemical potential rows are arranged in parallel and spaced apart, and a spacer cloth or resin is provided between the electrodes. Also, the charcoal cloth 6 is inserted and separated, the electrode plate is made into a parallel capacitor, and an electric double layer capacitor is formed. Electrolyte solution, sunlight, wind, smoke, water, steam, hot water and seawater are passed through to generate static electricity. It is a top view which shows the control electrode body g14 which raise | generates an electrostatic reaction by an electrode potential difference, generates the static electricity of an electron flow, and moves a substance to a cathode. 布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の電極A1、又電極B2を格子状、網状とし、面積のある18孔開き電極C3、又電極D4を離間し電極板を平行に並べ、電極間にスペーサーの布、樹脂又炭クロス6を挿入し大きい布、樹脂又炭クロス6に固着、電極を平行キャパシタとし、金属イオンの流れを良くし、電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体h15を示す傾視図である。On the surface of the cloth, resin or charcoal cloth 6, electrodes A1 and B2 of different kinds of electrochemical potential columns are formed in a grid or net, and the 18-hole electrode C3 or the electrode D4 having an area is separated from the electrode plate. Are arranged in parallel, and a spacer cloth, resin or charcoal cloth 6 is inserted between the electrodes and fixed to a large cloth, resin or charcoal cloth 6, the electrodes are parallel capacitors, the flow of metal ions is improved, and the electrochemical potential is determined by the electrode potential difference. FIG. 6 is a perspective view showing a control electrode body h15 that causes a reaction, generates static electricity, and moves a substance to a cathode in the flow of electrons. 円筒状を3層に重ね3層電極円筒とし円筒間にスペーサーの布、樹脂又炭クロス6を入れ離間し平行に並べ、外周に布、樹脂又炭クロス6を固着、電気化学ポテンシャル列の異なる種類の金属の電極B2、電極A1、電極C3、又電極D4を離間し電極円筒を平行に並べ、電極を平行キャパシタとし、電気二重層キャパシタを形成、湯、風、ガス、空気、圧縮空気、煙、水、海水を通過させ、静電気が発生、又電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体i16を示す平面図である。Three cylinders are stacked to form a three-layer electrode cylinder, and spacer cloth, resin or charcoal cloth 6 is placed between the cylinders and spaced apart and arranged in parallel. The cloth, resin or charcoal cloth 6 is fixed to the outer periphery, and the electrochemical potential sequence is different. Various types of metal electrode B2, electrode A1, electrode C3, and electrode D4 are spaced apart and the electrode cylinders are arranged in parallel, the electrodes are parallel capacitors, forming an electric double layer capacitor, hot water, wind, gas, air, compressed air, It is a top view which shows the control electrode body i16 which passes smoke, water, seawater, generate | occur | produces static electricity, causes an electrochemical reaction with an electrode potential difference, generates static electricity, and moves a substance to a cathode. 四角形状を3層に重ね、3層電極四角とし四角間にスペーサーの布、樹脂又炭クロス6を入れ離間し平行に並べ、外周に布、樹脂又炭クロス6を固着、電気化学ポテンシャル列の異なる種類の金属の電極A1、電極B2、電極C3、又電極D4を離間し電極四角形状を平行に並べ、電極を平行キャパシタとし、電気二重層キャパシタを形成、湯、風、ガス、空気、煙、圧縮空気、水、湯、海水を通過させ静電気が発生、又電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体j17を示す傾視面である。The quadrangular shape is stacked in three layers, and a three-layer electrode is formed into a square, and a spacer cloth, resin or charcoal cloth 6 is placed between the squares and arranged parallel to each other, and the cloth, resin or charcoal cloth 6 is fixed to the outer periphery. Different types of metal electrodes A1, B2, C3, and D4 are spaced apart and arranged in parallel, and the electrodes are parallel capacitors, forming an electric double layer capacitor, hot water, wind, gas, air, smoke Inclined surface showing control electrode body j17 that passes through compressed air, water, hot water, seawater, generates static electricity, causes an electrochemical reaction due to electrode potential difference, generates static electricity, and moves substance to cathode It is. 布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の電極を山形状、U形状にして接する面積を多くし静電気を多く帯電するため電極A1、電極C3、又電極D4、電極B2を積層に離間し、平行に並べ、スペーサーの布、樹脂又炭クロス6を挿入、電極を平行キャパシタとし、電気二重層キャパシタを形成、煙、風、太陽光、水、海水を通過させ静電気が発生、又電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体k18を示す傾視面である。Electrodes A1, C3, and D4 are formed on the surface of the cloth, resin, or charcoal cloth 6 to increase the area of contact between the electrodes of different types of electrochemical potential columns in a mountain shape or U shape to increase the amount of static electricity. Electrodes B2 are separated from each other and arranged in parallel, spacer cloth, resin or charcoal cloth 6 is inserted, electrodes are parallel capacitors, and electric double layer capacitors are formed, allowing smoke, wind, sunlight, water, and seawater to pass through. This is a perspective view showing the control electrode body k18 that generates static electricity, causes an electrochemical reaction due to an electrode potential difference, generates static electricity, and moves a substance to the cathode in the flow of electrons. 面積を持った異なる種類の金属の四角形の電気化学ポテンシャル列の異なる金属の電極A1、電極B2、電極C3、又電極D4を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、電気二重層キャパシタを形成、平行面、四角断面からの電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体L19を示す平面図である。Square electrodes of different types of metal with different areas Electrodes A1, B2, C3, and D4 of the metal having different electrochemical potential rows are separated from each other in the stack, the electrode plates are arranged in parallel, and a hole is formed in the center. Shown is a control electrode body L19 in which an electrode is a parallel capacitor, an electric double layer capacitor is formed, an electrochemical reaction is caused by an electrode potential difference from a parallel plane and a square cross section, an electron flows, generates static electricity, and moves a substance to a cathode It is a top view. 図20の3積層電極の右側面図である。FIG. 21 is a right side view of the three-layer electrode of FIG. 20. 面積を持った異なる種類の金属の六角形の電気化学ポテンシャル列の異なる金属の電極A1、電極B2、又電極C3、電極D4を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、電気二重層キャパシタを形成、平行面、六角断面からの電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体m20を示す平面図である。Hexagonal electrochemical potential trains of different types of metal with different areas A1 and B2, and electrodes C3 and D4 are spaced apart from each other in a stack, electrode plates are arranged in parallel, and a hole is formed in the center. A control electrode body m20 is formed, in which an electrode is a parallel capacitor, an electric double layer capacitor is formed, an electrochemical reaction is caused by an electrode potential difference from a parallel plane and a hexagonal cross section, an electron flow, static electricity is generated, and a substance is moved to a cathode. FIG. 図22の3積層電極の右側面図である。FIG. 23 is a right side view of the three-layer electrode of FIG. 22. 布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の微粒子電極A31、微粒子電極C33、又微粒子電極B32、微粒子電極D34、微粒子電極E35を固着、さらに微粒子電極の両面を塗料7で覆い、微粒子電極A31、微粒子電極C33、又微粒子電極B32、微粒子電極D34、微粒子電極E35等は、積層又は平行に並べて塗装7、微粒子電極を平行キャパシタとし、電気二重層キャパシタを形成、電解質溶液、海水、水、湯、空気、煙に浸漬すると電極電位差で電気化学反応を起こし、電子の流れ、静電気を発生、陰極へ物質を移動させる制御電極体n21を示す断面図である。The fine particle electrode A31, the fine particle electrode C33, the fine particle electrode B32, the fine particle electrode D34, and the fine particle electrode E35 of different kinds of electrochemical potential columns are fixed to the surface of the cloth, resin or charcoal cloth 6, and both surfaces of the fine particle electrode are coated. 7, the fine particle electrode A 31, the fine particle electrode C 33, the fine particle electrode B 32, the fine particle electrode D 34, the fine particle electrode E 35, etc. are laminated or arranged in parallel to form a coating 7, and the fine particle electrode is a parallel capacitor to form an electric double layer capacitor, electrolyte When immersed in a solution, seawater, water, hot water, air, or smoke, it is a cross-sectional view showing a control electrode body n21 that causes an electrochemical reaction due to an electrode potential difference, generates electrons, generates static electricity, and moves a substance to a cathode. 布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の微粒子電極体31、微粒子電極C33、又微粒子電極D34、微粒子電極E35を、積層又は平行に固着、両面を塗料7で覆い、更に微粒子電極B32を固着、表面を塗装7で覆い、微粒子電極A31、微粒子電極C33、微粒子電極B32を平行キャパシタとし、電気二重層キャパシタを形成、電解質溶液、海水、水、湯、空気、煙に浸漬すると電極電位差で電気化学反応を起こし、電子の流れの、静電気を発生、陰極へ物質を移動させる制御電極体no22を示す断面図である。A fine particle electrode body 31, a fine particle electrode C33, a fine particle electrode D34, and a fine particle electrode E35 of different types of metal having different electrochemical potential columns are fixed to each other on the surface of the cloth, resin, or charcoal cloth 6 in layers or in parallel. Further, the fine particle electrode B32 is fixed, the surface is covered with the coating 7, the fine particle electrode A31, the fine particle electrode C33, and the fine particle electrode B32 are parallel capacitors to form an electric double layer capacitor, electrolyte solution, seawater, water, hot water, air, It is sectional drawing which shows the control electrode body no22 which raise | generates an electrostatic reaction of the flow of an electron when it immerses in smoke, generates a static electricity, and moves a substance to a cathode. 大腸菌群の培養実験で浄化体が増殖阻止より死滅を示す図である。It is a figure which shows that a purification | cleaning body is killed rather than growth inhibition in the culture experiment of coliform bacteria. 大腸菌群の培養実験で発育、増殖を示す図である。It is a figure which shows growth and proliferation by the culture | cultivation experiment of coliform bacteria.

3年間かけて前記金属を組み替えて次の実験を実施、異なる金属を組み替え布、樹脂又は炭クロスの表面に金属を少なくとも2種類以上の異なる金属を離間し平行に固着、又少なくとも2種類以上の異なる金属を離間し金属の間に布又は炭クロスを挿入し金属を積層に重ねて大きい布又は炭クロスに固着し、水中に浸漬すことにより水電池になり水がある限り放電、充電を繰り返し発電機能があり、又静電気を発生し続けている燃料電池であることを確認する。  The following experiment was carried out after recombination of the above metals over 3 years. At least two kinds of different metals were fixed on the surface of the cloth, resin or charcoal cloth separated from each other. Separate different metals, insert cloth or charcoal cloth between the metals, stack the metal on the laminate and fix it on a large cloth or charcoal cloth, soak in water to become a water battery, and discharge and charge repeatedly as long as there is water Confirm that the fuel cell has a power generation function and continues to generate static electricity.

本発明者は、実験で電圧、電流、抵抗を確認するため電気化学ポテンシャル列の異なる金属、トタン材、銅材、銀材、(T−7101)の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と溶解液(風呂の残り湯50ml)をプラスチック容器入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えその後又減少する「充電、放電」を水が有る限り長期に渡り繰り返す水電池になり、測定値は表2に示す通りであり、電極形状は図4に示す通りである。  In order to confirm the voltage, current, and resistance in the experiment, the present inventor inserts a charcoal cloth between the electrodes of different electrochemical potential sequences, a metal material, a tin material, a copper material, a silver material, and (T-7101) to make three layers. The stack was fixed to a large charcoal cloth, and three stacked electrodes and a solution (50 ml of remaining bath water) were placed in a plastic container, and the voltage, current, and resistance were measured for 3 days. The voltage, current, and resistance values are generated between different electrodes, and the voltage and current gradually increase and then decrease again. As long as water is present, the battery becomes a water battery, and the measured values are shown in Table 2. The electrode shape is as shown in FIG.

更に、トタン板、銅板、銀板の電極間に布を挿入し3積層電極とし(T−7102)3日間を測定すると水電池になり放電、充電を繰り返し続けて測定値は表3に示す取りである。  Furthermore, a cloth is inserted between the electrodes of the tin plate, copper plate, and silver plate to form a three-layer electrode (T-7102). When measured for 3 days, it becomes a water battery and discharge and charge are repeated, and the measured values are shown in Table 3. It is.

以上の実験結果の詳細を表4に示す。The details of the above experimental results are shown in Table 4.

供試した電解液を分析するとC、O、Si、Ca、Fe、Cu、Znが検出された。トタン板の亜鉛は糸状に溶出、酸化で黒く変色、水の電気分解の電気化学反応が起きる(表5参照)。  Analysis of the electrolyte solution tested revealed C, O, Si, Ca, Fe, Cu, and Zn. Zinc on the tin plate elutes in the form of threads, turns black when oxidized, and undergoes an electrochemical reaction of water electrolysis (see Table 5).

以上の実験結果の詳細を表6に示す。
The details of the above experimental results are shown in Table 6.

以上の亜鉛電極(トタン板)の表面は電気化学反応(酸化還元反応)で亜鉛が糸状に、100μm×11mm溶出している。(図1、2参照)、  On the surface of the above zinc electrode (tin plate), zinc is eluted in a thread form in an amount of 100 μm × 11 mm by an electrochemical reaction (redox reaction). (See Figures 1 and 2),

上述の金属イオン測定実験で、電極T−7102である、六角亜鉛板(トタン板)、銅板、銀板を離間し布を挿入し3積層電極を大きい布に固着し、電極と電解液50ml(風呂の残り湯)をプラスチック容器に入れ10日経過のイオンを測定した。亜鉛イオンは3.99ppm、銅イオンは0.11ppmに大幅に増え、銀イオンは微量に増を確認し、電気化学反応が起こった(表7参照)。  In the above-mentioned metal ion measurement experiment, the hexagonal zinc plate (tin plate), the copper plate, and the silver plate, which are the electrodes T-7102, were separated, the cloth was inserted, and the three laminated electrodes were fixed to the large cloth, and the electrode and the electrolyte 50 ml ( The remaining hot water of the bath was placed in a plastic container, and the ions after 10 days were measured. Zinc ions were significantly increased to 3.99 ppm, copper ions were significantly increased to 0.11 ppm, and silver ions were confirmed to increase slightly, and an electrochemical reaction occurred (see Table 7).

更に、炭クロスの表側に銀線、裏側に銅線を固着し(以下、浄化体という)、浴槽に浸漬して風呂を沸かし、その後浄化体を撤去して風呂を利用、6ケ月経過後の残り湯の金属イオンを測定し、測定値を比較した結果を表7に示す。  Furthermore, a silver wire is fixed to the front side of the charcoal cloth, and a copper wire is fixed to the back side (hereinafter referred to as “purified body”). The bath is immersed in a bathtub to boil, and then the purified body is removed and the bath is used. Table 7 shows the result of measuring the metal ions of the remaining hot water and comparing the measured values.

以上の実験結果の詳細を表8に示す。
The details of the above experimental results are shown in Table 8.

上記電極、亜鉛材(トタン板)、銅材、銀材の3積層電極と電解液(風呂の残り湯)をプラスチック容器に50ml入れ静電気容量を測ると電位は−1kv、乾燥状態で電極単体では−0.5kvの高静電気を帯電する(1時間経過測定)。測定器はスタティックロケーター、型式:Z−201、ホーザン株式会社製で測定する。  50ml of the above electrode, zinc material (tin plate), copper material, silver material and 50ml of electrolyte (residual hot water in a bath) are placed in a plastic container and the electrostatic capacity is measured. Charge high static electricity of -0.5 kv (measurement over 1 hour). The measuring device is a static locator, model: Z-201, manufactured by Hozan Co., Ltd.

電極の亜鉛材(トタン板)1枚を炭クロスに固着した1層電極と銀、亜鉛(トタン板)、銅を離間し炭クロスを挿入した3積層電極を大きい炭クロスに固着、各電極を電解液に入れ、金属イオンの発生量を比較すると金属イオンは3積層電極の方は1層電極より多く溶出、電食作用、腐食作用は異なる起電力レベルの電極電位差が大きい3積層電極は金属イオンが強く電気化学反応の反応性を加速する。  A single-layer electrode in which one zinc material (tin plate) is fixed to a charcoal cloth and a three-layer electrode in which silver, zinc (copper plate) and copper are separated and a charcoal cloth is inserted are fixed to a large charcoal cloth, and each electrode is Compared with the amount of metal ions generated in the electrolyte solution, metal ions are eluted more in the three-layer electrode than in the one-layer electrode, and the electrode potential difference at different electromotive force levels is different for the three-layer electrode. Ions are strong and accelerate the reactivity of electrochemical reactions.

金属電極の固体を細かい粉体、微粒子に分割加工すると総表面積は飛躍的に大きくなり、静電気は表面に多く帯電、又金属イオンを多く発生する。  When the metal electrode solid is divided and processed into fine powders and fine particles, the total surface area increases dramatically, and a large amount of static electricity is charged on the surface and many metal ions are generated.

更に、実験でアルミニウム線1.0mmと銀線0.3mmを炭クロスの上に離間し配置、培養液(100ml)を入れて浄化体を製作し、一般細菌(大腸菌)を入れ観察すると電気化学反応により細菌は陰極の銀側に引寄せられ、さらに単1形電池、1.5Vを接続、電流が流れ電気化学反応(酸化還元作用)で大腸菌は通電12時間後に滅菌し微生物の滅菌時間が短縮、滅菌効果が向上する。  Furthermore, in the experiment, an aluminum wire 1.0 mm and a silver wire 0.3 mm are placed apart from each other on a charcoal cloth, a culture solution (100 ml) is put in to produce a purified body, and general bacteria (E. coli) are put in and observed. Bacteria are attracted to the silver side of the cathode by the reaction, and a single battery is connected to 1.5V. The current flows, and the E. coli is sterilized 12 hours after energization by the electrochemical reaction (redox action). Shortening and sterilization effect are improved.

溶解液は布、又炭クロスにすぐに浸透しない、しかし布、炭クロスに電極A(銀材)と電極D(アルミニウム材)を固着、起電力の差が大きいと静電気、電流、電圧は発生し静電気作用、イオン作用で溶解液は短時間で布、又炭クロスに浸透する。  The solution does not penetrate the cloth or charcoal cloth immediately, but the electrode A (silver material) and the electrode D (aluminum material) are fixed to the cloth or charcoal cloth. If the difference in electromotive force is large, static electricity, current and voltage are generated. Then, the solution penetrates into cloth and charcoal cloth in a short time by electrostatic action and ion action.

更に実験で銀材、亜鉛材、銅材(T−8001)と銀材、アルミニウム、銅材(T−8003)の電極は抗菌効果が優れることを確認し、電極形状は図5に示す通りである。  Furthermore, it was confirmed by experiments that the silver, zinc, and copper (T-8001) and silver, aluminum, and copper (T-8003) electrodes have excellent antibacterial effects, and the electrode shape is as shown in FIG. is there.

大腸菌の滅菌実験は電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属、銀材、亜鉛材(トタン板)、銅材(T−8001)を離間し炭クロスを挿入した3積層電極は大きい炭クロスに固着、培養液100ml入れ、大腸菌を培養、35℃に保温、24時間で大腸菌の検体を1,000個/mlに倍希釈、生物汚染測定を3M社製ペトリフィルム、チッソ株式会社製サニ太くんで確認した。細菌の死滅を確認でき、大腸菌群のコロニーが青色〜うす緑色に変色せず、菌は検出せず完全に抗菌効果を検証できた。供試後の大腸菌群は死滅した図26を示す。  The sterilization experiment of E. coli is made of three kinds of metals with different electrochemical potential sequences. Three layers of metal, silver material, zinc material (tin plate), copper material (T-8001) with electromotive force level and charcoal cloth inserted. The electrode is fixed to a large charcoal cloth, 100 ml of culture solution is added, E. coli is cultured, incubated at 35 ° C., the E. coli specimen is doubled to 1,000 cells / ml in 24 hours, and biological contamination is measured by 3M Petri film, Chisso It was confirmed by Sani-ta-kun made by the corporation. Bacterial death could be confirmed, colonies of coliform bacteria did not change from blue to light green, no bacteria were detected, and the antibacterial effect could be completely verified. The coliform group after the test is shown in FIG.

コントロールとして浄化体を除去したイオン水100ml培養液に大腸菌を入れ培養、35℃に保温、24時間培養、大腸菌は検体を1,000個/mlに倍希釈、微生物汚染測定をチッソ株式会社製サニ太くんで確認した。細菌は死滅せず、大腸菌群のコロニーが青色〜緑色に発色し菌の検出を確認した。供試後の大腸菌群は発育、増殖した図27を示す。  As a control, Escherichia coli is placed in a 100 ml culture solution of ionized water from which the purified body has been removed, incubated at 35 ° C. and cultured for 24 hours, and the Escherichia coli is diluted to 1,000 specimens / ml. I confirmed it thick. The bacteria did not die, and colonies of the coliform group developed from blue to green, confirming the detection of the bacteria. The coliform group after the test is shown in FIG.

大腸菌の滅菌実験として電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属電極は銀材、亜鉛材(トタン板)、銅材(T−8001)と銀材、アルミニウム材、銅材(T−8003)の離間に炭クロスを挿入、3積層電極を大きい炭クロスに配置、培養液100ml入れた試験液とコントロール(イオン水390mV)の酸化還元電位は3、6、24、72時間経過を測定、72時間後、試験液T−8001は275mV、T−8003は283mVで酸化還元電位がマイナスに下り降順の還元、上がる昇順の酸化を繰り返すことがわかった(図3参照)。電極と試験液の間に不対電子が発生しフリーラジカルになると考えられる。表9に実験結果を示す。  As a sterilization experiment of Escherichia coli, the metal electrodes with different electromotive potential sequences have electromotive force levels of silver, zinc (tongue), copper (T-8001) and silver, aluminum, copper Insert the charcoal cloth into the space of (T-8003), place the three laminated electrodes on the large charcoal cloth, and the redox potential of the test solution containing 100 ml of the culture solution and the control (ion water 390 mV) is 3, 6, 24, 72 hours After 72 hours from the measurement, it was found that the test solution T-8001 was 275 mV, the T-8003 was 283 mV, the redox potential was negative, and the reduction in descending order and the ascending order of oxidation were repeated (see FIG. 3). It is thought that unpaired electrons are generated between the electrode and the test solution and become free radicals. Table 9 shows the experimental results.

実験を開始して72時間後の試験液の金属イオンの発生を調べるためパックテストを行った。株式会社共立理化学研究所製で測定、T−8001で亜鉛イオンが5mg/L(ppm)、銅イオン0.5mg/L(ppm)、T−8003で銅イオン1.0mg/L(ppm),アルミニウムイオン0.5mgAl/L(ppm)、銀イオン≒0近い微量の発生を確認した。電気化学反応(酸化還元反応)が起り、表7と同じ傾向の金属イオンが生成する。  A pack test was conducted to examine the generation of metal ions in the test solution 72 hours after the start of the experiment. Measured by Kyoritsu Riken Co., Ltd., zinc ion 5 mg / L (ppm) at T-8001, copper ion 0.5 mg / L (ppm), copper ion 1.0 mg / L (ppm) at T-8003, It was confirmed that trace amounts of aluminum ions 0.5 mg Al / L (ppm) and silver ions ≈ 0 were generated. An electrochemical reaction (redox reaction) occurs, and metal ions having the same tendency as in Table 7 are generated.

電極に銀材、アルミニウム材、銅材の離間に炭クロスを挿入、3積層電極を炭クロスに固着、電解液(イオン水)に入れると24〜72時間経過後、アルミニウムイオンが0.5mgAl/L(ppm)溶出る。(表10参照)  Inserting a charcoal cloth between the silver material, aluminum material and copper material on the electrode, fixing the three-layered electrode to the charcoal cloth, and putting it in the electrolyte (ionic water), after 24 to 72 hours, the aluminum ion is 0.5 mg Al / L (ppm) elutes. (See Table 10)

以上の実験結果の詳細を表11に示す。
The details of the above experimental results are shown in Table 11.

本発明者が行った実験で、撮影場所は全暗にしてカメラを設置、亜鉛板、銅板、銀板の3積層電極間に炭クロスを挿入、3積層電極を少し大きい炭クロスに固着、3積層電極はガラス容器(7l)に水道水(3.5l)を入れ透明の○30×50mm台に設置、電極を浸漬させると電場形成、静電気、電圧、電流が発生し、電圧、電流を電気二重層キャパシタに電気エネルギーを貯蔵、許容電圧を超えると放電する発光現象を写真に撮影図6、電極の形状は図7に示す通りである。カメラはキャノンEOS1、レンズはキャノンマクロ100mm、F2.8、バルブ(長時間露出)機能付き、フィルムはFUJIFILM ナチュラル1600、現像時点の感度は3200。以上の写真撮影の結果を図6に示す。  In an experiment conducted by the present inventor, a camera was installed with the shooting place completely dark, a charcoal cloth was inserted between three laminated electrodes of a zinc plate, a copper plate, and a silver plate, and the three laminated electrodes were fixed to a slightly larger charcoal cloth. Laminated electrodes are placed in a glass container (7 l) with tap water (3.5 l) and placed on a transparent circle of 30 x 50 mm. When the electrodes are immersed, electric field formation, static electricity, voltage and current are generated, and the voltage and current are A photoluminescence phenomenon is shown in FIG. 6 in which electric energy is stored in the double layer capacitor and discharged when the allowable voltage is exceeded. FIG. 7 shows the electrode shape. The camera is Canon EOS1, the lens is Canon Macro 100mm, F2.8, with bulb (long exposure) function, the film is FUJIFILM Natural 1600, and the sensitivity at the time of development is 3200. The results of the above photography are shown in FIG.

この実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10001)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と電解液(純水50ml)をプラスチック容器に入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えてその後又減少する「充電、放電」を純水が有る限り長期に渡り繰り返す亜鉛電池になり、測定値は表11に示す通りであり、電極形状は図7に示す通りである。In this experiment, a charcoal cloth is inserted between the electrodes of different types of metals, zinc materials, silver materials, copper materials, and (T-10011) electrodes having different electrochemical potential sequences, and is fixed to a large charcoal cloth in three layers. The laminated electrode and the electrolytic solution (pure water 50 ml) were placed in a plastic container, and the voltage, current, and resistance were measured for 3 days. Voltage, current, and resistance values are generated between different electrodes, and the voltage and current gradually increase and then decrease again. “Charge, discharge” becomes a zinc battery that repeats over a long period as long as pure water is present. The electrode shape is as shown in FIG.

更に、亜鉛板、銀板、銅板の電極間に布を挿入し3積層電極とし(T−10002)3日間を測定すると亜鉛電池になり放電、充電を繰り返し続けて測定値は表12に示す通りである。  Further, a cloth is inserted between electrodes of a zinc plate, a silver plate, and a copper plate to form a three-layer electrode (T-1202). When three days are measured, a zinc battery is formed and discharging and charging are repeated, and the measured values are as shown in Table 12. It is.

更に実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10003)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、遠赤外線を測定、測定波長は1.3μm〜14.5μm、有効波長が3.0μm〜14.5μmであり遠赤外線を亜鉛板から放射を確認、測定値は表21に示す通りであり、電極形状は図7に示す通りである。以上の実験結果の詳細を表13に示す。  Furthermore, in the experiment, a charcoal cloth was inserted between the electrodes of different kinds of metals, zinc materials, silver materials, copper materials, and (T-10003) of electrochemical potential trains, and three layers were stacked and fixed to a large charcoal cloth. Infrared measurement, measurement wavelength is 1.3 μm to 14.5 μm, effective wavelength is 3.0 μm to 14.5 μm, radiation of far infrared ray is confirmed from zinc plate, measured values are as shown in Table 21, electrode shape Is as shown in FIG. The details of the above experimental results are shown in Table 13.

以上の実験結果の詳細を表13に示す。
The details of the above experimental results are shown in Table 13.

実験で亜鉛板、ステンレス、アルミニウム板、銀板を4積層にし、その間に布又炭クロスを挿入、少し大きい布又炭クロスに固着した4積層電極は水蒸気が存在する状態(空気中)で電場形成、静電気、電圧、電流を発生、外部からの電気化学反応促進として太陽光を電極表面に当てると温度上昇、又電解質溶液、温水、海水、氷の浮かぶ海水に浸漬、又氷の中に電極を閉じ込めると電気化学的反応がさらに活発になり、電場形成し、静電気、電圧、電流値を大きく生じ、電極形状は図8に示す通りである。以上の実験結果の詳細を表14に示す。  In the experiment, zinc plates, stainless steel, aluminum plates, and silver plates were made into 4 layers, and a cloth or charcoal cloth was inserted between them, and the 4 layers electrode fixed to a slightly larger cloth or charcoal cloth had an electric field in the presence of water vapor (in the air). Formation, generation of static electricity, voltage, and current, as sunlight is applied to the electrode surface to promote an external electrochemical reaction, the temperature rises, and the electrolyte solution, hot water, seawater, ice is immersed in seawater, and the electrode is in ice When this is confined, the electrochemical reaction becomes more active, an electric field is formed, and static electricity, voltage, and current value are greatly generated, and the electrode shape is as shown in FIG. The details of the above experimental results are shown in Table 14.

実験で、起電力の異なる金属電極を2組以上組み合わせた浄化体を電解質溶液に浸漬すると電極電位差を原動力として電気化学反応(電気化学的腐食)が起こし、発生電圧、電流を布又炭クロスの電気二重層キャパシタに蓄積、水の電気分解を起こす電圧1.5V付近に達し放電で水の電気分解を起こし、陰極の金属表面に水素ガスの泡が発生、陽極の金属表面に酸素ガスが発生により酸化することを確認す。  In the experiment, when a purification body composed of two or more sets of metal electrodes with different electromotive forces is immersed in an electrolyte solution, an electrochemical reaction (electrochemical corrosion) occurs with the electrode potential difference as the driving force, and the generated voltage and current are Accumulated in the electric double layer capacitor, the voltage causing electrolysis of water reaches around 1.5V, causing electrolysis of water by discharge, generating hydrogen gas bubbles on the metal surface of the cathode, and oxygen gas on the metal surface of the anode Confirm that it oxidizes.

実験で、起電力の異なる金属電極の銀線とアルミニウム線を離間し炭クロスに固着、電解質溶液に浸漬すると電位差で電気化学反応が起こり、静電気が発生、電場形成、電解質溶液中に分散の大腸菌群は陰極の銀線に集菌、更に単一電池(1.5V)で銀線とアルミニウム線に印加すると、銀線電極の表面に集菌し12時間経過する大腸菌群は集積死滅し、検査で殺菌が検出されない。  In the experiment, the silver wire and the aluminum wire of the metal electrodes with different electromotive forces were separated and fixed to the charcoal cloth, and when immersed in the electrolyte solution, an electrochemical reaction occurred due to the potential difference, static electricity was generated, electric field formation, E. coli dispersed in the electrolyte solution If the group is collected on the silver wire of the cathode, and further applied to the silver wire and the aluminum wire with a single battery (1.5V), the bacteria are collected on the surface of the silver wire electrode, and the coliform group that has passed for 12 hours accumulates and is killed. No sterilization detected.

電極上で培養したHeLa細胞について、−0.2V〜+1.2V定電位を印加したときの細胞の形態および増殖に及ぼす電気効果を示す。細胞膜表面はマイナスに帯電しているため−0.2Vから+0.4Vで細胞は電位に応じて、本来の紡錘形から球状へと形態変化が観察されるものの死に至ることはない。+0.7Vでは徐々に死滅し、+1.2Vではすべての細胞が1時間以内で死滅する。
(非特許文献)財団法人電気化学会著、「電気化学便覧」丸善株式会社出版、2000年6月30日発行、細胞制御技術、P339
The electrical effect which acts on the morphology and proliferation of a cell when applying a -0.2V- + 1.2V constant potential about the HeLa cell cultured on the electrode is shown. Since the surface of the cell membrane is negatively charged, cells are observed to change in shape from an original spindle shape to a spherical shape depending on the potential at −0.2 V to +0.4 V, but do not die. At + 0.7V, gradually die and at + 1.2V all cells die within 1 hour.
(Non-Patent Document) The Electrochemical Society of Japan, “Electrochemical Handbook” published by Maruzen Co., Ltd., published on June 30, 2000, Cell Control Technology, P339

「電解圧以下の電圧でつくられる水の電気分解」水の分子は電場が加わっていない時でもHO→ ←H + OH で表せる平衡状態にあり、水は電場がかかっていない時でも、各イオンの反対符号の電極面に向かって移動し、電極間に電流が流れる。この場合の電気分解は図31のDより左の部分に当たり(電解圧以下の電圧)、負極面での水素ガスの発生はあっても、正極面における酸素ガスの発生はない。水素イオンHと水酸イオンOHは各々水分子と水和結合して、H(ヒドロニウムイオン)とH (ヒドロキシルイオン)になる。これらのイオンの水の中での移動は隣の水分子にHまたはOHだけを受け渡し、結果としてイオンが移動する、いわゆる「ホッピング・モデル」による。Hイオンの移動速度に比べて2倍程度早いのと、Hイオンの放電電位が低く、電極面で容易に放電してHになりガスとなって水から失われ、一方のOHイオンのほうは電極面での放電電位が大きいため電荷をもったイオンのまま水流の中に拡散される。
水の電気分解
O → ← H + OH
水 水素イオン 水酸イオン
+ HO → H[水素イオンの一部はHガス(水素ガス)になる]
水素イオン 水 ヒドロニウムイオン
OH + HO → H
水酸イオン 水 ヒドロキシルイオン
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P304
“Electrolysis of water produced at a voltage below the electrolysis pressure” Even when no electric field is applied, the water molecule is in an equilibrium state represented by H 2 O → ← H + + OH , and water is not subject to an electric field However, it moves toward the electrode surface of the opposite sign of each ion, and a current flows between the electrodes. The electrolysis in this case corresponds to the left portion of D in FIG. 31 (voltage below the electrolysis pressure), and even if hydrogen gas is generated on the negative electrode surface, oxygen gas is not generated on the positive electrode surface. Hydrogen ions H + and hydroxide ions OH are hydrated with water molecules, respectively, to become H 3 O + (hydronium ions) and H 3 O 2 (hydroxyl ions). The movement of these ions in water is due to the so-called “hopping model”, in which only H + or OH is passed to the adjacent water molecules, resulting in the movement of the ions. And the fast about twice as compared with the moving speed of the H + ions, low discharge potential of H + ions, become gases will readily discharge electrode surface in H 2 lost from the water, one of OH - Since ions have a higher discharge potential on the electrode surface, they are diffused into the water stream as charged ions.
Water electrolysis H 2 O → ← H + + OH
Water Hydrogen ion Hydroxide ion H + + H 2 O → H 3 O + [Part of the hydrogen ion becomes H 2 gas (hydrogen gas)]
Hydrogen ion Water Hydronium ion OH + H 2 O → H 3 O 2 +
Hydroxyl ion Water Hydroxyl ion (Non-patent literature) Kunihiko Watabuchi, supervised by Shoji Kubota, “New water science and utilization technology”, published by Scien Forum Co., Ltd., November 10, 1992, P304

電気石の永久電極のカソード(陰極)は、これと反対符号の電荷を持つ多くの金属イオンを吸引、電気的に中和して、電気表面に金属被膜を形成する。この電気石結晶の電極被膜における電着現象は、いわゆるメッキと同じ現象である。
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P308
The cathode (cathode) of the tourmaline permanent electrode attracts and electrically neutralizes a number of metal ions having the opposite sign to form a metal film on the electrical surface. The electrodeposition phenomenon of the tourmaline crystal electrode coating is the same phenomenon as so-called plating.
(Non-patent literature) Kunihiko Watanabe, supervised by Shoji Kubota, “New Water Science and Utilization Technology”, Scien Forum Publishing Co., Ltd., November 10, 1992, P308

用・排水中に含まれている重金属などの金属イオンが、電気石の電気極に電着、固定されることによってこれらの金属イオンを水から除去することができる。電着固定された金属は、強酸により、または友づりによる研磨によって再び使用することができる。原子力廃液などに含まれている放射性金属を電着により固定、濃縮分離することもできる。
(非特許文献)綿抜邦彦、久保田昌治監修、「新しい水の科学と利用技術」、株式会社サイエンフォーラム出版、1992年11月10日、P309
Metal ions such as heavy metals contained in the working / drainage can be removed from the water by electrodeposition and fixation on the electric electrode of the tourmaline. The electrodeposited metal can be used again by strong acid or by polishing with friends. Radioactive metals contained in nuclear waste liquids can be fixed and concentrated and separated by electrodeposition.
(Non-patent literature) Kunihiko Watanabe, supervised by Shoji Kubota, “New Water Science and Utilization Technology”, Scien Forum Publishing Co., Ltd., November 10, 1992, P309

有人火星探査計画の乗組員を太陽風などの有害な荷電粒子放射線から守るため、電気力線の電子の流れ、静電気の電場と磁力線の流れの磁場を形成し、宇宙船に入る荷電粒子放射線の侵入の向きを変え、乗組員の荷電粒子放射線の被曝量を軽減する。  In order to protect the crew of the manned Mars exploration program from harmful charged particle radiation such as the solar wind, the invasion of charged particle radiation entering the spacecraft by forming a magnetic field of electric field lines, static electric field and magnetic field lines To reduce the exposure of the crew to charged particle radiation.

電場が荷電粒子に及ぼす力は、荷電粒子の速度に依存しないが、磁場が荷電粒子に及ぼす力は、荷電粒子のエネルギーが高いほど強い力で向きを変えようとする。  The force that the electric field exerts on the charged particles does not depend on the velocity of the charged particles, but the force that the magnetic field exerts on the charged particles tends to change direction with a higher force as the charged particle energy increases.

荷電粒子放射線は、電場や磁場で進行方向を変えることができる。
(非特許文献)多田純一郎、「わかりやすい放射線物理学」、株式会社オーム社、平成20年2月25日、P50〜51
The traveling direction of charged particle radiation can be changed by an electric field or a magnetic field.
(Non-patent literature) Junichiro Tada, “Easy to understand radiation physics”, Ohm Co., Ltd., February 25, 2008, P50-51

電極A、微粒子電極Aは金、白金、バナジュウム、ロジュウム下地めっき銅、銀/金合金、銀材、炭、活性炭を利用する。  The electrode A and the fine particle electrode A use gold, platinum, vanadium, rhodium base copper, silver / gold alloy, silver material, charcoal, activated carbon.

電極B、微粒子電極Bはニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼を利用する。  Electrode B and fine particle electrode B use nickel-plated steel, silver solder, copper alloy, copper, high chromium stainless steel, and 12% chromium stainless steel.

電極C、微粒子電極Cはニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫を利用する。  Electrode C and fine particle electrode C use nickel base chromium-plated steel, chromium-plated steel, soft solder, lead, duralumin, brass and tin.

電極D、微粒子電極Dは鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウムを利用する。  Electrode D and fine particle electrode D use iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin plated steel, galvanized iron / steel (totan), cadmium plated steel, aluminum / manganese alloy, aluminum .

電極E、微粒子電極Eは酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、カリウムを利用する。  The electrode E and the fine particle electrode E use titanium oxide, sulfur, magnesium, magnesium alloy, sodium, and potassium.

塗料7は塗料、シリコン樹脂、接着剤、うるしを利用する。  The paint 7 uses a paint, a silicone resin, an adhesive, and a moisture.

布、樹脂又は炭クロス5は布(布、不織布、ゴム、樹脂、合成樹脂)、炭クロス(わし炭、竹炭、活性炭を布に固着)を利用する。  The cloth, resin, or charcoal cloth 5 uses cloth (cloth, non-woven fabric, rubber, resin, synthetic resin) or charcoal cloth (Wat charcoal, bamboo charcoal, activated carbon is fixed to the cloth).

微粒子活性炭は微粒子活性炭、カーボンブラック、カーボンナノチューブを利用する。  The fine particle activated carbon uses fine particle activated carbon, carbon black, and carbon nanotube.

以下、本発明の制御電極体の好適な態様を、図面を参照して説明する。
図9は、板状の布、樹脂又炭クロス6の表面電気化学ポテンシャル列の異なる種類の起電力レベルを持った電極A1、又電極B2、電極C3、又電極D4、電極E5等をU字形、W字形に曲げ、離間し固着、電極は平行に配置、電気二重層キャパシタを形成、陰極材と陽極材を平行に配置した制御電極体a8の変形図である。
Hereinafter, preferred embodiments of the control electrode body of the present invention will be described with reference to the drawings.
FIG. 9 shows a U-shaped electrode A1, electrode B2, electrode C3, electrode D4, electrode E5, etc. having different types of electromotive force levels in the surface electrochemical potential sequence of a plate-like cloth, resin or charcoal cloth 6. FIG. 8 is a modified view of the control electrode body a8 in which the electrode is arranged in parallel, the electrodes are arranged in parallel, the electric double layer capacitor is formed, and the cathode material and the anode material are arranged in parallel.

図10は、板状の布、樹脂又炭クロス6の表面電気化学ポテンシャル列の異なる種類の起電力レベルを持った電極A1、又電極B2、電極C3、又電極D4、電極E5等をU字形、W字形に曲げ、離間し固着、電極は平行に配置、電気二重層キャパシタを形成、電極は線、ワィヤ−状で、電子を供給する陰極材料であるため、陽極材料より陰極面積を多くして配置した、制御電極体b9の変形図を示す。  FIG. 10 shows a U-shaped electrode A1, electrode B2, electrode C3, electrode D4, electrode E5, etc. having different types of electromotive force levels in the surface electrochemical potential sequence of a sheet-like cloth, resin or charcoal cloth 6. , Bent into a W shape, spaced apart and fixed, electrodes arranged in parallel, forming an electric double layer capacitor, electrodes are wire, wire-like, cathode material that supplies electrons, so the cathode area is larger than anode material The modification of the control electrode body b9 arrange | positioned is shown.

図11は、板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の起電力レベルを持った電極A1、又電極B2、2面側に電極C3、電極D4、又金属電極E5等を離間し固着、電極は平行、積層に配置、電気二重層キャパシタを形成、電極は線、ワィヤ−状で、格子状、網状とし、電子を供給する陰極材料であるため、陽極材料より陰極面積を多くして配置、制御電極体c10の変形図を示す。FIG. 11 shows an electrode A1 having different types of electromotive force levels in the electrochemical potential row on the surface of a plate-like cloth, resin or charcoal cloth 6, electrode B2, and electrodes C3, D4 on the two sides and metal Electrode E5, etc. are spaced apart and fixed, electrodes are arranged in parallel and in layers, electric double layer capacitors are formed, electrodes are wires, wires, grids, meshes, and cathode materials that supply electrons, so anode materials A modified view of the control electrode assembly c10 is shown with a larger cathode area.

図12は、板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の線状、ワィヤー状の電極A1、又電極B2、2面側に電極C3、又電極D4、電極E5等を離間し横に並べて、渦巻き状、平行に配置し固着、異なった起電力レベルを持った金属を積層にし、電気二重層キャパシタを形成した、制御電極体d11の変形図を示す。FIG. 12 shows a plate-like cloth, resin or charcoal cloth 6 on the surface of different types of linear or wire-like electrodes A1 having an electrochemical potential row, electrode B2, electrode C3 on the two sides, electrode D4, electrode A modified view of the control electrode body d11 is shown in which an electric double layer capacitor is formed by laminating E5 and the like, arranged side by side, arranged in a spiral shape and in parallel, fixed, and laminated with metals having different electromotive force levels.

図13は、板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の板状の電極A1、電極C3、又電極D4、電極B2等を離間し横に並べて、平行に配置し固着、2面側に電極B2、電極C3、電極A1、又電極D4を平行に配置、異なった起電力レベルを持った金属を積層にし、電気二重層キャパシタを形成した、制御電極体e12の変形図を示す。FIG. 13 shows a plate-like cloth, resin or charcoal cloth 6 on the surface of plate-like electrode A1, electrode C3, electrode D4, electrode B2, etc. having different electrochemical potential columns spaced apart and arranged side by side in parallel. Arranged and fixed, electrode B2, electrode C3, electrode A1 and electrode D4 are arranged in parallel on the two sides, and metal having different electromotive force levels are laminated to form an electric double layer capacitor, control electrode body e12 FIG.

図14は、板状の布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の板状の電極A1、電極B2、電極C3、電極D4、電極E5等を離間し縦に並べて、平行に配置し固着、2面側に電極C3、電極B2、電極A1、電極D4を平行に配置、異なった起電力レベルを持った金属を積層にし、電気二重層キャパシタを形成した、制御電極体f13の変形図を示す。FIG. 14 shows a plate-like cloth, a resin or charcoal cloth 6 on which the plate-like electrode A1, electrode B2, electrode C3, electrode D4, electrode E5 and the like of different types of electrochemical potential columns are spaced apart and arranged vertically. Control electrode body in which electric double layer capacitor is formed by arranging and fixing in parallel, electrode C3, electrode B2, electrode A1, and electrode D4 arranged in parallel on the two sides, and laminating metals having different electromotive force levels A modification of f13 is shown.

図15は、布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の電極A1、電極B2、電極C3、電極D4、電極E5を離間し平行に並べ、電極の間にスペーサーの布、樹脂又炭クロス6を挿入、離間し電極板を平行キャパシタとし、電気二重層キャパシタを形成、電解質溶液、太陽光、煙、風、水、水蒸気、湯、海水を通して静電気を発生させる制御電極体g14の変形図を示す。FIG. 15 shows a cloth, resin, or charcoal cloth 6 on the surface of which electrodes A1, B2, C3, D4, and E5 of different types having different electrochemical potential columns are spaced apart and arranged in parallel, and a spacer cloth is provided between the electrodes. Control electrode assembly that inserts and separates resin or charcoal cloth 6 and separates the electrode plate into a parallel capacitor to form an electric double layer capacitor and generates static electricity through electrolyte solution, sunlight, smoke, wind, water, steam, hot water, seawater The deformation | transformation figure of g14 is shown.

図16は、布、樹脂又炭クロス6の表面に網形の電気化学ポテンシャル列の異なる種類の電極A1、又電極B2の格子状、網状と面積のある18孔開き電極C3、又電極D4を離間し電極板を平行に並べ、電極間にスペーサーの布、樹脂又炭クロス6を挿入し大きい布、樹脂又炭クロス6に固着、電極を平行キャパシタとし、電気二重層キャパシタを形成した、制御電極体h15の変形図を示す。FIG. 16 shows an electrode A1 of a different type of mesh-like electrochemical potential array on the surface of a cloth, resin or charcoal cloth 6, and a grid-like, net-like and area 18-holed electrode C3 or electrode D4 of an electrode B2. Spaced electrode plates are arranged in parallel, spacer cloth, resin or charcoal cloth 6 is inserted between the electrodes and fixed to a large cloth, resin or charcoal cloth 6, electrodes are used as parallel capacitors, and an electric double layer capacitor is formed. A modified view of the electrode body h15 is shown.

図17は、円筒状を3層に重ね3層電極円筒とし円筒間にスペーサーの布、樹脂又炭クロス6を入れ離間し平行に並べ、外周に布、樹脂又炭クロス6を固着、電気化学ポテンシャル列の異なる種類の金属の電極B2、電極A1、電極C3、又電極D4を離間し電極円筒を平行に並べ、電極を平行キャパシタとし、電気二重層キャパシタを形成、湯、風、ガス、空気、圧縮空気、煙、水、海水が通して、静電気を発生する制御電極体i16の変形図を示す。FIG. 17 is a three-layer electrode cylinder in which a cylindrical shape is stacked on three layers, and a spacer cloth, resin or charcoal cloth 6 is placed between the cylinders in parallel and spaced apart, and the cloth, resin or charcoal cloth 6 is fixed to the outer periphery, and electrochemical Electrodes B2, A1, C3, and D4 of different types of potential columns are spaced apart and electrode cylinders are arranged in parallel, and the electrodes are parallel capacitors to form an electric double layer capacitor. Hot water, wind, gas, air , A modified view of the control electrode body i16 that generates static electricity through compressed air, smoke, water, and seawater.

図18は、四角形状を3層に重ね、3層電極四角形状とし四角間にスペーサーの布、樹脂又炭クロス6を入れ離間し平行に並べ、外周に布、樹脂又炭クロス6を固着、電気化学ポテンシャル列の異なる種類の金属の電極A1、電極B2、電極C3、又電極D4を離間し電極四角形状を平行に並べ、電極を平行キャパシタとし、電気二重層キャパシタを形成、湯、風、ガス、空気、煙、圧縮空気、水、湯、海水が通過させ静電気が発生する制御電極体j17の変形図を示す。FIG. 18 shows a three-layered quadrangular shape, a three-layer electrode quadrangular shape, and a spacer cloth, resin or charcoal cloth 6 placed between the squares and arranged in parallel, and the cloth, resin or charcoal cloth 6 is fixed to the outer periphery. The electrodes A1, B2, C3, and D4 of different types of electrochemical potential columns are spaced apart and arranged in parallel with each other, and the electrodes are formed as parallel capacitors, forming an electric double layer capacitor, hot water, wind, A modified view of the control electrode body j17 through which gas, air, smoke, compressed air, water, hot water, seawater passes and static electricity is generated is shown.

図19は、布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の金属の電極を山形状、U形状にして接する面積を多くし静電気を多く帯電するため電極A1、電極C3、又電極D4、電極B2を積層に離間し、平行に並べ、スペーサーの布、樹脂又炭クロス6を挿入、電極を平行キャパシタとし、電気二重層キャパシタを形成、煙、風、太陽光、水、海水を通過により静電気が発生、させる制御電極体k18の変形図を示す。FIG. 19 shows an electrode A 1, an electrode C 3, an electrode A 1, an electrode C 3, etc. in order to increase the area in contact with the surface of the cloth, resin or charcoal cloth 6 by making the electrodes of different kinds of electrochemical potential columns in a mountain shape or U shape to increase the static electricity. Also, the electrodes D4 and B2 are separated from each other and arranged in parallel, spacer cloth, resin or charcoal cloth 6 is inserted, the electrode is a parallel capacitor, and an electric double layer capacitor is formed, smoke, wind, sunlight, water, The deformation | transformation figure of the control electrode body k18 which makes static electricity generate | occur | produce by passing seawater is shown.

図20は、面積を持った異なる金属の四角形の電気化学ポテンシャル列の異なる種類の電極A1、電極B2、電極C3、又電極D4を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、電気二重層キャパシタを形成した、制御電極体L19の変形図を示す。FIG. 20 shows different types of electrodes A1, B2, C3, and D4 of different types of rectangular electrochemical potential columns with different areas, arranged in layers, electrode plates arranged in parallel, and holes in the center. The deformation | transformation figure of the control electrode body L19 which opened and set the electrode as the parallel capacitor and formed the electric double layer capacitor is shown.

図21は、図20の3積層電極の右側面図である。FIG. 21 is a right side view of the three-layered electrode of FIG.

図22は、面積を持った異なる金属の六角形の電気化学ポテンシャル列の異なる種類の金属の電極A1、電極B2、又電極C3、電極D4を積層に離間し電極板を平行に並べ、中央部に孔をあけ、電極を平行キャパシタとし、電気二重層キャパシタを形成した、制御電極体m20の変形図を示す。FIG. 22 shows a hexagonal electrochemical potential sequence of different metals having different areas, and electrodes A1, B2, and electrodes C3, D4 of different types are separated from each other in a stack and electrode plates are arranged in parallel. A modified view of the control electrode body m20 is shown in which holes are formed in the electrode, the electrodes are parallel capacitors, and an electric double layer capacitor is formed.

図23は、図22の3積層電極の右側面図である。FIG. 23 is a right side view of the three-layer electrode of FIG.

図24は、布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の微粒子電極A31、微粒子電極B33又微粒子電極C34を固着、さらに微粒子電極の両面を塗料7で覆い、又は微粒子電極A31、微粒子電極C33、又微粒子電極B32、微粒子電極D34、微粒子電極E35等を、積層又は平行に並べて塗装、微粒子電極を平行キャパシタとし、電気二重層キャパシタを形成、電解質溶液、海水、水、湯、空気、煙に浸漬すると、静電気を発生する制御電極体n21の変形図を示す。FIG. 24 shows that the fine particle electrode A31, the fine particle electrode B33 or the fine particle electrode C34 having different electrochemical potential columns are fixed to the surface of the cloth, resin or charcoal cloth 6, and both surfaces of the fine particle electrode are covered with the paint 7, or the fine particle electrode. A31, fine particle electrode C33, fine particle electrode B32, fine particle electrode D34, fine particle electrode E35, etc. are laminated or arranged in parallel, and the fine particle electrode is used as a parallel capacitor, forming an electric double layer capacitor, electrolyte solution, seawater, water, hot water The deformation | transformation figure of the control electrode body n21 which generate | occur | produces static electricity when immersed in air and smoke is shown.

図25は、布、樹脂又炭クロス6の表面に電気化学ポテンシャル列の異なる種類の微粒子電極体31、微粒子電極D33を、積層又は平行に固着、両面を塗料7で覆い、更に微粒子電極C32を固着、表面を塗装で覆い、微粒子電極A31、微粒子電極C33、微粒子電極D34、微粒子電極E35を平行キャパシタとし、電気二重層キャパシタを形成、電解溶液、海水、水、湯、空気に浸漬すると静電気を発生する制御電極体no22の変形図を示す。In FIG. 25, fine particle electrode bodies 31 and fine particle electrodes D33 of different kinds of electrochemical potential columns are laminated or fixed in parallel on the surface of cloth, resin or charcoal cloth 6, both surfaces are covered with paint 7, and fine particle electrode C32 is further covered. Adhering, covering the surface with paint, forming the electrode A31, particle electrode C33, particle electrode D34, and particle electrode E35 as parallel capacitors, forming an electric double layer capacitor, and when immersed in an electrolytic solution, seawater, water, hot water, air The deformation | transformation figure of the generated control electrode body no22 is shown.

1 電極A(金、白金、バナジュウム、ロジウム下地めっき銅、銀/金合金、銀、炭、活性炭)
2 電極B(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼)
3 電極C(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫)
4 電極D(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウム)
5 電極E(酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、カリウム)
6 布、樹脂、炭クロス
7 塗料(塗料、シリコン樹脂、接着剤、うるし)
8 制御電極体a
9 制御電極体b
10 制御電極体c
11 制御電極体d
12 制御電極体e
13 制御電極体f
14 制御電極体g
15 制御電極体h
16 制御電極体i
17 制御電極体j
18 制御電極体k
19 制御電極体L
20 制御電極体m
21 微粒子制御電極体n
22 微粒子制御電極体o
23 電解質溶液(電解質溶液、水、湯、海水、氷の浮かぶ海水、凍結の海水)
31 微粒子電極A
(金、白金、バナジウム、ロジウム下地めっき銅、銀/金合金、銀、炭、活性炭)
32 微粒子電極B
(ニッケルめっき鋼、銀半田、銅合金、銅、高クロムステンレス鋼、12%クロムステンレス鋼)
33 微粒子電極C
(ニッケル下地クロムめっき鋼、クロムめっき鋼、軟質半田、鉛、ジュラルミン、真鍮、錫)
34 微粒子電極D
(鉄、軟鉄または鋼、クロム、亜鉛、亜鉛合金、80錫/20錫めっき鋼、亜鉛めっき鉄/鋼(トタン)、カドミウムめっき鋼、アルミニウム/マンガン合金、アルミニウム)
35 微粒子電極E
(酸化チタン、硫黄、マグネシウム、マグネシウム合金、ナトリウム、カリウム)
1 Electrode A (gold, platinum, vanadium, rhodium-plated copper, silver / gold alloy, silver, charcoal, activated carbon)
2 Electrode B (Nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
3 Electrode C (nickel-undercoated chrome-plated steel, chrome-plated steel, soft solder, lead, duralumin, brass, tin)
4 Electrode D (Iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin-plated steel, galvanized iron / steel (titan), cadmium-plated steel, aluminum / manganese alloy, aluminum)
5 Electrode E (titanium oxide, sulfur, magnesium, magnesium alloy, sodium, potassium)
6 Cloth, resin, charcoal cloth 7 Paint (paint, silicone resin, adhesive, leach)
8 Control electrode body a
9 Control electrode body b
10 Control electrode body c
11 Control electrode body d
12 Control electrode body e
13 Control electrode body f
14 Control electrode body g
15 Control electrode body h
16 Control electrode body i
17 Control electrode body j
18 Control electrode body k
19 Control electrode body L
20 Control electrode body m
21 Fine particle control electrode body n
22 Fine Particle Control Electrode Body o
23 Electrolyte solution (electrolyte solution, water, hot water, seawater, floating seawater, frozen seawater)
31 Fine particle electrode A
(Gold, platinum, vanadium, rhodium-plated copper, silver / gold alloy, silver, charcoal, activated carbon)
32 Fine particle electrode B
(Nickel plated steel, silver solder, copper alloy, copper, high chromium stainless steel, 12% chromium stainless steel)
33 Fine Particle Electrode C
(Nickel base chrome plated steel, chrome plated steel, soft solder, lead, duralumin, brass, tin)
34 Fine Particle Electrode D
(Iron, soft iron or steel, chromium, zinc, zinc alloy, 80 tin / 20 tin-plated steel, galvanized iron / steel (titan), cadmium-plated steel, aluminum / manganese alloy, aluminum)
35 Fine Particle Electrode E
(Titanium oxide, sulfur, magnesium, magnesium alloy, sodium, potassium)

本発明は、高温条件、低温条件の空気中、煙、水蒸気、水、海水の中に浮遊する放射性物質、金属イオン、浮遊物質、微生物と血液成分を陰極に移動し、吸引することを特徴とする物質の流れを制御するに関する。 The present invention is characterized by moving radioactive materials, metal ions, suspended solids, microorganisms and blood components floating in high-temperature and low-temperature air, smoke, water vapor, water, seawater to the cathode and sucking them. It relates to controlling the flow of substances.

以上の実験結果の詳細を表4に示す。表4は、新潟県工業技術総合研究所発行の試験成績書(第21−0353号、(1)電流、電圧、抵抗の測定)である。
The details of the above experimental results are shown in Table 4. Table 4 is a test report (No. 21-0353, (1) Measurement of current, voltage and resistance) issued by Niigata Prefectural Industrial Technology Research Institute.

以上の実験結果の詳細を表6−1〜2に示す。表6−1〜2は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号、(1)X線マイクロアナライザ分析(定性分析))である。
The details of the above experimental results are shown in Tables 6-1 and 6-2 . Tables 6-1 and 2-2 are test results issued by Niigata Prefectural Industrial Technology Research Institute (No. 21-0367, (1) X-ray microanalyzer analysis (qualitative analysis)).

以上の実験結果の詳細を表8に示す。表8は、新潟県工業技術総合研究所発行の試験成績書(第21−0367号の2、(1)定量分析)である。
The details of the above experimental results are shown in Table 8. Table 8 is a test report issued by Niigata Prefectural Industrial Technology Research Institute (No. 21-0367-2, (1) Quantitative Analysis).

以上の実験結果の詳細を表11−1〜6に示す。
The details of the above experimental results are shown in Tables 11-1 to 11-6 .

この実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10001)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、3積層電極と電解液(純水50ml)をプラスチック容器に入れ、3日間電圧、電流、抵抗を測定した。異なる電極間に電圧、電流、抵抗値が発生し電圧、電流が徐々に増えてその後又減少する「充電、放電」を純水が有る限り長期に渡り繰り返す亜鉛電池になり、測定値は表12に示す通りであり、電極形状は図7に示す通りである。 In this experiment, a charcoal cloth is inserted between the electrodes of different types of metals, zinc materials, silver materials, copper materials, and (T-10011) electrodes having different electrochemical potential sequences, and is fixed to a large charcoal cloth in three layers. The laminated electrode and the electrolytic solution (pure water 50 ml) were placed in a plastic container, and the voltage, current, and resistance were measured for 3 days. Voltage between different electrode, current, voltage resistance is generated, the current gradually increases with decreasing thereafter also "charging, discharging" the will zinc battery repeated over a long period of time as long as the pure water is present, the measured value Table 12 The electrode shape is as shown in FIG.

更に、亜鉛板、銀板、銅板の電極間に布を挿入し3積層電極とし(T−10002)3日間を測定すると亜鉛電池になり放電、充電を繰り返し続けて測定値は表13に示す通りである。 Furthermore, a cloth is inserted between the electrodes of the zinc plate, silver plate, and copper plate to form a three-layer electrode (T-1202). When three days are measured, a zinc battery is formed and discharging and charging are repeated, and the measured values are as shown in Table 13. It is.

表14−1〜3は、新潟県工業技術総合研究所発行の試験成績書である(試験成績書第22−0016号、(1)電流、電圧、抵抗の測定、(2)遠赤外線放射量の測定)。更に実験で、電気化学ポテンシャル列の異なる種類の金属、亜鉛材、銀材,銅材、(T−10003)の電極の電極間に炭クロスを挿入、3積層に重ね大きい炭クロスに固着、遠赤外線を測定、測定波長は1.3μm〜14.5μm、有効波長が3.0μm〜14.5μmであり遠赤外線を亜鉛板から放射を確認、測定値は表14−1〜3に示す通りであり、電極形状は図2に示す通りである。以上の実験結果の詳細を表14−1〜3に示す。 Tables 14-1 to 3-3 are test results issued by Niigata Prefectural Industrial Technology Research Institute (test results 22-0016, (1) measurement of current, voltage and resistance, (2) far-infrared radiation amount. Measurement). Furthermore, in the experiment, a charcoal cloth was inserted between the electrodes of different kinds of metals, zinc materials, silver materials, copper materials, and (T-10003) of electrochemical potential trains, and three layers were stacked and fixed to a large charcoal cloth. Infrared was measured, the measurement wavelength was 1.3 μm to 14.5 μm, the effective wavelength was 3.0 μm to 14.5 μm, and the far infrared rays were confirmed to be emitted from the zinc plate. The measured values are as shown in Tables 14 to 1-3 The electrode shape is as shown in FIG. The details of the above experimental results are shown in Tables 14-3 .

実験で亜鉛板、ステンレス、アルミニウム板、銀板を4積層にし、その間に布又炭クロスを挿入、少し大きい布又炭クロスに固着した4積層電極は水蒸気が存在する状態(空気中)で電場形成、静電気、電圧、電流を発生、外部からの電気化学的腐食反応促進として太陽光を電極表面に当てると温度上昇し、電気化学反応が促進、又電解溶液、高温条件の温水、海水、低温条件の氷の浮かぶ海水に浸漬、又凍結条件の氷の中に電極を閉じ込めると電気化学的反応(電気化学的腐食反応)が更に活発になり、電場形成し、静電気、電圧、電流値を大きく生じ、電極形状は図8に示す通りである。以上の実験結果の詳細を表15に示す。 In the experiment, zinc plates, stainless steel, aluminum plates, and silver plates were made into 4 layers, and a cloth or charcoal cloth was inserted between them, and the 4 layers electrode fixed to a slightly larger cloth or charcoal cloth had an electric field in the presence of water vapor (in the air). Formation, generation of static electricity, voltage, current, and the application of sunlight to the electrode surface as acceleration of electrochemical corrosion reaction from the outside, the temperature rises and the electrochemical reaction is accelerated, and the electrolytic solution, hot water under high temperature conditions , seawater, low temperature When immersed in seawater with floating ice conditions or confined in frozen ice conditions, the electrochemical reaction (electrochemical corrosion reaction) becomes more active, forming an electric field, and increasing the static electricity, voltage, and current values. The electrode shape is as shown in FIG. Details of the above experimental results are shown in Table 15 .

Claims (17)

電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ金属で、少なくとも異なる2種類以上の金属は、電位差をつけた電極を離間し配置、さらに布、樹脂又は炭クロスに固着した電極体は、電位差を、電気化学反応を起こす原動力で、プラス電極とマイナス電極が生じ、マイナス電極からプラス電極へ電子が流れを形成、直流の静電気により陰極へ放射性物質、金属イオン、化学物質、浮遊物質、微生物、血液成分を一方向へ移動、吸引することを特徴とする、物質の流れを制御する制御電極体。  Electrodes with different types of electrochemical potentials, with electromotive force levels, and at least two different types of metals, electrodes with potential difference are arranged apart from each other, and are further fixed to cloth, resin or charcoal cloth Is a motive force that causes an electrochemical reaction with a potential difference, a positive electrode and a negative electrode are generated, electrons flow from the negative electrode to the positive electrode, and radioactive materials, metal ions, chemical substances, and floating substances are generated from the negative electrode to the cathode by direct current static electricity. A control electrode body for controlling the flow of a substance, characterized in that it moves and sucks microorganisms and blood components in one direction. 上記の制御電極体の陽極は放射性物質、金属イオン、化学物質、浮遊物質、微生物、血液成分を一方向の陽極から反発し、追いやり、放射性物質、金属イオン、化学物質、浮遊物質、微生物、血液成分を反発して、放電により、陽極より物質を反発、追いやることを特徴とする請求項1に記載の制御電極体。  The anode of the above control electrode body repels radioactive substances, metal ions, chemical substances, suspended substances, microorganisms, blood components from the anode in one direction, repels, radioactive substances, metal ions, chemical substances, suspended substances, microorganisms, blood 2. The control electrode body according to claim 1, wherein a component is repelled and a substance is repelled and driven from the anode by discharge. 上記の制御電極体は、陰極に移動、吸引された放射性物質、金属イオン、化学物質、浮遊物質、微生物、血液成分を陰極に電着し、金属被膜の形成を、防ぐため、電極の表面に樹脂フィルム、活性炭、フィルターを備えていることを特徴とする請求項1〜2に記載の制御電極体。  The above-mentioned control electrode body is electrodeposited on the surface of the electrode to prevent the formation of a metal coating by electrodepositing radioactive materials, metal ions, chemical substances, suspended substances, microorganisms, and blood components that have been moved and sucked into the cathode. The control electrode body according to claim 1, comprising a resin film, activated carbon, and a filter. 上記の制御電極体は電気化学ポテンシャル列上より正の側を陽極(プラス極)、電気化学ポテンシャル列下より負の側を陰極(マイナス極)とし電極の電位差により陽極と陰極を切り替えることを特徴とする請求項1〜3に記載の制御電極体。  The control electrode body described above is characterized in that the positive side above the electrochemical potential column is the anode (plus electrode) and the negative side below the electrochemical potential column is the cathode (minus electrode), and the anode and cathode are switched depending on the potential difference of the electrodes. The control electrode body according to claim 1. 上記に記載の制御電極体は電場の形成、静電気を生じ、並びに磁場を形成し、宇宙船に当たる太陽風などの荷電粒子放射線の被曝量を軽減、防げることを特徴とした請求項1〜4に記載の制御電極体。  The control electrode body described above forms an electric field, generates static electricity, forms a magnetic field, and reduces or prevents exposure to charged particle radiation such as solar wind hitting a spacecraft. Control electrode body. 上記に記載の制御電極体は電気二重層キャパシタ機能を持ち、直流発電機で発電した電気を蓄電、放電により水分に対し電気分解を起こし、水素ガスを発生する特徴を持った、請求項1〜5に記載の制御電極体。  The control electrode body described above has an electric double layer capacitor function, and stores electricity generated by a DC generator, electrolyzes moisture by discharge, and has a feature of generating hydrogen gas. 5. The control electrode body according to 5. 電気化学ポテンシャル列の異なる種類の金属で、起電力レベルを持つ少なくとも異なる2種類以上の金属を離間し配置、水蒸気の存在のもと(空気中)、太陽光、高温条件、熱、湯又水、海水、低温条件、海水に浮かぶ氷の中、凍結した氷の中に浸漬することにより、電位差で電気化学反応が促進され、電場形成、静電気発生、電極間に電流が流れることを発揮することを特徴とした発電機機能、燃料電池機能を持った請求項1〜6に記載の制御電極体。  At least two different kinds of metals with different electromotive potential levels, separated by at least two kinds of metals, in the presence of water vapor (in air), sunlight, high temperature conditions, heat, hot water or water Electrochemical reaction is promoted by potential difference by immersing in frozen ice in seawater, low temperature condition, ice floating in seawater, electric field formation, generation of static electricity, current flowing between electrodes The control electrode body according to claim 1, having a generator function and a fuel cell function. 前記金属はカリウム、ナトリウム、マグネシュウム、マグネシュウム合金、酸化チタン、硫黄、亜鉛、亜鉛合金、80錫/20亜鉛めっき鋼、亜鉛めっき鉄/鋼(トタン)、アルミニウム、カドミウムめっき鋼、アルミニウム/マンガン合金、軟鉄、ジュラルミン、錫、鉛、真鍮、クロムめっき鋼、軟質半田、ニッケル下地クロムめっき鋼、錫めっき鋼、12%クロムステンレス鋼、高クロムステンレス鋼、銅、銅合金、銀半田、オーステナィトステンレス鋼、ニッケルめっき銅、銀、ロジウム下地金めっき銅、銀/金合金、炭素、活性炭、バナジウム、白金、金のうちの異なる種類の金属、又は微粒子金属であることを特徴とした発電機機能、燃料電池機能を持った請求項1〜7に記載の制御電極体。  The metal is potassium, sodium, magnesium, magnesium alloy, titanium oxide, sulfur, zinc, zinc alloy, 80 tin / 20 galvanized steel, galvanized iron / steel (totan), aluminum, cadmium plated steel, aluminum / manganese alloy, Soft iron, duralumin, tin, lead, brass, chrome-plated steel, soft solder, nickel-undercoated chrome-plated steel, tin-plated steel, 12% chrome stainless steel, high chrome stainless steel, copper, copper alloy, silver solder, austenitic stainless steel , Nickel-plated copper, silver, rhodium-plated gold-plated copper, silver / gold alloy, carbon, activated carbon, vanadium, platinum, gold, a different type of metal, or a particulate metal The control electrode body according to claim 1 having a battery function. 上記電極は離間した電極間に布、樹脂又炭クロスを挿入し、積層電極、平行電極間に電気二重層キャパシタを形成、発電電極体から発生する電圧、電流を蓄電、放電できることを特徴とした発電機機能、燃料電池機能を持った請求項1〜8に記載の制御電極体。  The electrode is characterized in that a cloth, resin or charcoal cloth is inserted between the spaced electrodes, an electric double layer capacitor is formed between the laminated electrode and the parallel electrode, and the voltage and current generated from the power generating electrode body can be stored and discharged. The control electrode body according to claim 1 having a generator function and a fuel cell function. 電気化学ポテンシャル列の異なる起電力が低い前記金属の一方の面積は、前記金属の他方の面積より大きいことを特徴とする請求項1〜9のいずれかにに記載の制御電極体。  10. The control electrode body according to claim 1, wherein one area of the metal having a low electromotive force with a different electrochemical potential sequence is larger than the other area of the metal. 前記金属の一方は、布、樹脂又は炭クロスの一方の面に配置され、前記金属の他方は、前記布又は炭クロスの他方の面に配置されていることを特徴とする請求項1〜10のいずれかに記載の制御金属体。  11. One of the metals is disposed on one surface of a cloth, resin or charcoal cloth, and the other of the metals is disposed on the other surface of the cloth or charcoal cloth. The control metal body according to any one of the above. 前記金属の少なくとも一方は、前記布、樹脂又は炭クロスの面に格子状、網状又は渦巻き状に形成されることを特徴とする請求項1〜11に記載の制御金属体。  The control metal body according to claim 1, wherein at least one of the metals is formed in a lattice shape, a net shape, or a spiral shape on the surface of the cloth, resin, or charcoal cloth. 布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に取り囲まれるように配置されていることを特徴とする請求項1〜12のいずれかに記載の制御電極体。  The one side of the said metal is arrange | positioned so that the other side of the said metal may be surrounded on one surface of cloth, resin, or charcoal cloth, The control electrode body in any one of Claims 1-12 characterized by the above-mentioned. . 布、樹脂又は炭クロスの一方の面において、前記金属の一方が、前記金属の他方に並べて配置されていることを特徴とする請求項1〜13のいずれかに記載の制御電極体。  The control electrode body according to any one of claims 1 to 13, wherein one side of the metal is arranged side by side on the other side of the metal on one side of a cloth, resin, or charcoal cloth. 前記金属を形成した布、樹脂又は炭クロスを積層、又は平行にしたことを特徴とする請求項1〜14のいずれかに記載の制御電極体。  The control electrode body according to any one of claims 1 to 14, wherein a cloth, a resin, or a charcoal cloth on which the metal is formed are laminated or parallel. 前記金属を形成した布、樹脂又は炭クロスを、球状、筒状、四角状に形成したことを特徴とする請求項1〜15のいずれかに記載の制御電極体。  The control electrode body according to any one of claims 1 to 15, wherein the metal, cloth, resin, or charcoal cloth is formed in a spherical shape, a cylindrical shape, or a square shape. 前記金属の起電力の異なる種類の金属の微粒子金属を塗料に含有させて、異なる種類の金属の微粒子電極を積層、平行にして塗装、又塗料に微粒子電極、セラミックを混入にして塗装、電気二重層キャパシタを形成、電位差で電気化学反応を起こし、電場形成、静電気を発生する微粒子金属を利用することを特徴とした、請求項1〜16のいずれかに記載の制御電極体。  Fine metal particles of different types of metal electromotive force are contained in the paint, and the fine particle electrodes of different types of metal are laminated and coated in parallel, and the fine particle electrode and ceramic are mixed in the paint, and the paint The control electrode body according to any one of claims 1 to 16, wherein a fine layer metal is used which forms a multilayer capacitor, causes an electrochemical reaction by a potential difference, generates an electric field, and generates static electricity.
JP2011123807A 2011-05-16 2011-05-16 Electrode body Expired - Fee Related JP5557804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123807A JP5557804B2 (en) 2011-05-16 2011-05-16 Electrode body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123807A JP5557804B2 (en) 2011-05-16 2011-05-16 Electrode body

Publications (3)

Publication Number Publication Date
JP2012243748A true JP2012243748A (en) 2012-12-10
JP2012243748A5 JP2012243748A5 (en) 2013-10-10
JP5557804B2 JP5557804B2 (en) 2014-07-23

Family

ID=47465195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123807A Expired - Fee Related JP5557804B2 (en) 2011-05-16 2011-05-16 Electrode body

Country Status (1)

Country Link
JP (1) JP5557804B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
JP5687369B1 (en) * 2014-01-29 2015-03-18 保雄 寺谷 Air cleaner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997470B1 (en) * 2018-07-18 2019-10-02 (주)신우에프에이 Leak sensor using electromotive force between dissimilar metal electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof
JP2003314992A (en) * 2002-04-22 2003-11-06 Matsushita Electric Ind Co Ltd Heat exchanger and electric apparatus equipped therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181454A (en) * 2001-12-15 2003-07-02 Matsumoto Seisakusho:Kk Sterilization method of bath water and sterilization device thereof
JP2003314992A (en) * 2002-04-22 2003-11-06 Matsushita Electric Ind Co Ltd Heat exchanger and electric apparatus equipped therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127466A (en) * 2012-12-26 2014-07-07 Kazuhiro Hayashi Promoting step of material movement between electrodes in electrolyte by applying voltage
JP5687369B1 (en) * 2014-01-29 2015-03-18 保雄 寺谷 Air cleaner

Also Published As

Publication number Publication date
JP5557804B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5522798B2 (en) Ballast water purification method
Ieropoulos et al. Pee power urinal–microbial fuel cell technology field trials in the context of sanitation
Choi et al. Al-coated conductive fibrous filter with low pressure drop for efficient electrostatic capture of ultrafine particulate pollutants
TWI327558B (en) A total solution for water treatments
US20100135869A1 (en) Ozone generators
CN106006860A (en) High-salinity organic wastewater treatment device powered by solar energy
JP2005536639A5 (en)
CN101486499B (en) Apparatus for photoelectric catalytic oxidation of subaqueous organics by solar energy
EP2301894A1 (en) Sterilization method and sterilization device
Zhou et al. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system
CN107626207B (en) Method and device for enriching waste acid and synchronously recovering metal by using conductive ceramic membrane
JP5557804B2 (en) Electrode body
JP2009190016A (en) Method for preventing and removing biofilm in electrolytic capacitor for water purification
CN107098459A (en) A kind of electrochemical appliance and processing method for handling ammonia nitrogen in high density organic wastewater
CN106006929A (en) Method for all-weather sewage treatment through coupling of photoelectrocatalysis membrane and microbial fuel cell
US20120187054A1 (en) Regenerable filter device and method of driving the same
CN104630816B (en) Hydrogen production device and technology via photoelectric degradation of organic pollutant based on solar energy and sea water cell collaborative drive
RU2340564C2 (en) Electrolytic cell for contaminated water purification
JP5483464B2 (en) Power generation electrode body
JP2000140849A (en) Electrochemical water treating device and method
JP2016154106A (en) Anode for microbial fuel cell and microbial fuel cell
JP5622294B2 (en) Mass transfer process between electrodes in electrolyte is accelerated by voltage application
JP2011078958A5 (en)
WO2001090443A1 (en) Capacitive deionization cell structure for control of electrolysis
US20180105441A1 (en) Devices and methods for removing dissolved ions from water using composite resin electrodes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130827

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20131003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees