JP2012241994A - Fluidized bed drying device - Google Patents

Fluidized bed drying device Download PDF

Info

Publication number
JP2012241994A
JP2012241994A JP2011113333A JP2011113333A JP2012241994A JP 2012241994 A JP2012241994 A JP 2012241994A JP 2011113333 A JP2011113333 A JP 2011113333A JP 2011113333 A JP2011113333 A JP 2011113333A JP 2012241994 A JP2012241994 A JP 2012241994A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
coal
exhaust gas
cyclone dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011113333A
Other languages
Japanese (ja)
Inventor
Ryuhei Takashima
竜平 高島
Isao Torii
鳥居  功
Kenichi Arima
謙一 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011113333A priority Critical patent/JP2012241994A/en
Publication of JP2012241994A publication Critical patent/JP2012241994A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluidized bed drying device capable of suppressing the mixing of a foreign matter from a dust collector while putting dust-collected brown coal back to a fluidized bed.SOLUTION: The fluidized bed drying device includes a drying furnace 5 which forms a fluidized bed 3 inside by fluidizing brown coal with fluidizing gas, and a dust collector 34 which is provided in the drying furnace 5, and collects brown coal contained in exhaust gas discharged from the drying furnace 5. The dust collector 34 includes a suction port 51 for sucking the exhaust gas, a cyclone dust collection part 46 which separates the brown coal from the sucked exhaust gas, a fuel discharge port 52 which discharges the brown coal separated by the cyclone dust collection part 46 toward the fluidized layer 3, and a gas exhaust port 53 which exhaust the exhaust gas having the brown coal separated by the cyclone dust collection part 46.

Description

本発明は、褐炭等の湿潤燃料を流動させながら乾燥させる流動層乾燥装置に関するものである。   The present invention relates to a fluidized bed drying apparatus that dries wet fuel such as lignite while flowing.

従来、このような流動層乾燥装置として、底部が多数の開孔を有する通気可能な分散板である乾燥室と、乾燥室下部に位置する風室とを備えた流動乾燥機が知られている(例えば、特許文献1参照)。この流動乾燥機は、流動化ガス(乾燥用気体)を風室から分散板を介して乾燥室に供給することによって被乾燥物を流動させながら乾燥させており、乾燥室内に供給された流動化ガスは、被乾燥物から発生した蒸気と共に、乾燥室の上部に形成された排気口から排出される。   Conventionally, as such a fluidized bed drying apparatus, a fluidized dryer having a drying chamber which is a dispersible plate having a plurality of openings at the bottom and an air chamber located at the lower portion of the drying chamber is known. (For example, refer to Patent Document 1). This fluid dryer dries while flowing the material to be dried by supplying fluidizing gas (drying gas) from the wind chamber to the drying chamber through the dispersion plate, and the fluidization gas supplied to the drying chamber The gas is discharged from an exhaust port formed in the upper part of the drying chamber together with the vapor generated from the material to be dried.

特開2008−89243号公報JP 2008-89243 A

このような、従来の流動層乾燥装置において、排気口を介して排出されるガス中には、乾燥室内において乾燥された塵状の被乾燥物が含まれている。このため、流動層乾燥装置の排気口には、通常、集塵機が接続されている。流動層乾燥装置の外部に集塵機を設けた場合、集塵された被乾燥物を取扱うための構成を別途付帯させる必要があり、複雑な構成となる。   In such a conventional fluidized bed drying apparatus, the gas discharged through the exhaust port contains dust-like material to be dried that has been dried in the drying chamber. For this reason, a dust collector is usually connected to the exhaust port of the fluidized bed drying apparatus. When a dust collector is provided outside the fluidized bed drying apparatus, it is necessary to separately add a configuration for handling the collected material to be dried, which is a complicated configuration.

このため、乾燥室内の排気口周りにフィルタ等を用いた集塵装置を設けることが考えられている。この場合、フィルタには、被乾燥物が蓄積するため、蓄積した被乾燥物を除去すべく、逆洗浄を行う必要がある。しかしながら、逆洗浄を行うと、フィルタが破損することにより、破損片等の異物が乾燥室内へ混入する虞がある。   For this reason, it is considered to provide a dust collector using a filter or the like around the exhaust port in the drying chamber. In this case, since the material to be dried accumulates in the filter, it is necessary to perform reverse cleaning in order to remove the accumulated material to be dried. However, if reverse cleaning is performed, the filter may be damaged, and foreign matter such as broken pieces may be mixed into the drying chamber.

そこで、本発明は、集塵された湿潤燃料を流動層へ戻しつつ、集塵手段からの異物の混入を抑制可能な流動層乾燥装置を提供することを課題とする。   Then, this invention makes it a subject to provide the fluidized bed drying apparatus which can suppress mixing of the foreign material from a dust collecting means, returning the collected wet fuel to a fluidized bed.

本発明の流動層乾燥装置は、湿潤燃料を流動化ガスにより流動させることで、内部に流動層を形成する乾燥炉と、乾燥炉内に設けられ、乾燥炉から排出される排出ガスに含まれる湿潤燃料を集塵可能な集塵手段と、を備え、集塵手段は、排出ガスを吸入する吸引口と、吸引した排出ガスから湿潤燃料を分離させるサイクロン集塵部と、サイクロン集塵部において分離された湿潤燃料を流動層へ向けて排出する燃料排出口と、サイクロン集塵部において湿潤燃料が分離された排出ガスを排出するガス排出口と、を有することを特徴とする。   The fluidized bed drying apparatus of the present invention includes a drying furnace that forms a fluidized bed inside by flowing wet fuel with a fluidized gas, and an exhaust gas that is provided in the drying furnace and discharged from the drying furnace. A dust collecting means capable of collecting wet fuel, the dust collecting means comprising: a suction port for sucking exhaust gas; a cyclone dust collecting part for separating wet fuel from the sucked exhaust gas; and a cyclone dust collecting part A fuel discharge port for discharging the separated wet fuel toward the fluidized bed, and a gas discharge port for discharging the exhaust gas from which the wet fuel is separated in the cyclone dust collecting unit.

この構成によれば、フィルタ等を用いることなく、排出ガスに含まれる湿潤燃料を分離し、分離後の湿潤燃料を流動層へ向けて排出できる一方で、湿潤燃料が分離された排出ガスを乾燥炉から排出することができる。これにより、フィルタを設けることがないことから、逆洗浄を行う必要もないため、フィルタの破損による異物の混入を抑制することができる。   According to this configuration, the wet fuel contained in the exhaust gas can be separated without using a filter, and the wet fuel after separation can be discharged toward the fluidized bed, while the exhaust gas from which the wet fuel has been separated is dried. It can be discharged from the furnace. Thereby, since no filter is provided, it is not necessary to perform back washing, and thus contamination by foreign matters due to breakage of the filter can be suppressed.

この場合、燃料排出口は、流動層の内部に達していることが好ましい。   In this case, it is preferable that the fuel discharge port reaches the inside of the fluidized bed.

この構成によれば、分離された湿潤燃料は流動層の内部に排出される。このため、排出された湿潤燃料が乾燥炉内に飛散して、再度、集塵手段に吸入されることを抑制することができ、集塵効率の低下を抑制することができる。   According to this configuration, the separated wet fuel is discharged into the fluidized bed. For this reason, it is possible to suppress the discharged wet fuel from being scattered in the drying furnace and being sucked into the dust collecting means again, and it is possible to suppress a decrease in dust collection efficiency.

この場合、乾燥炉の内壁の一部は、サイクロン集塵部の一部を構成していることが好ましい。   In this case, it is preferable that a part of the inner wall of the drying furnace constitutes a part of the cyclone dust collecting part.

この構成によれば、サイクロン集塵部の一部を、乾燥炉の内壁と共用する分、集塵手段で使用される材料を削減することができ、製造コストを低減することができる。   According to this configuration, since a part of the cyclone dust collecting part is shared with the inner wall of the drying furnace, the material used in the dust collecting means can be reduced, and the manufacturing cost can be reduced.

本発明の流動層乾燥装置によれば、乾燥炉内に、サイクロン式の集塵手段を設けることにより、フィルタを用いることなく、排出ガス中に含まれる湿潤燃料を分離することができるため、集塵された湿潤燃料を流動層へ戻しつつ、フィルタの破損による異物の混入を抑制することができる。   According to the fluidized bed drying apparatus of the present invention, since the cyclone type dust collecting means is provided in the drying furnace, the wet fuel contained in the exhaust gas can be separated without using a filter. While returning the dusted wet fuel to the fluidized bed, it is possible to suppress contamination by foreign matters due to breakage of the filter.

図1は、実施例1に係る流動層乾燥装置を適用した石炭ガス化複合発電設備の概略構成図である。FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to a first embodiment is applied. 図2は、実施例1に係る流動層乾燥装置を模式的に表した概略構成図である。FIG. 2 is a schematic configuration diagram schematically illustrating the fluidized bed drying apparatus according to the first embodiment. 図3は、実施例1に係る流動層乾燥装置の集塵装置を模式的に表した上面図である。FIG. 3 is a top view schematically illustrating the dust collector of the fluidized bed drying apparatus according to the first embodiment. 図4は、実施例2に係る流動層乾燥装置を模式的に表した概略構成図である。FIG. 4 is a schematic configuration diagram schematically illustrating the fluidized bed drying apparatus according to the second embodiment. 図5は、実施例2に係る流動層乾燥装置の集塵装置を模式的に表した上面図である。FIG. 5 is a top view schematically showing the dust collector of the fluidized bed drying apparatus according to the second embodiment.

以下、添付した図面を参照して、本発明に係る流動層乾燥装置について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。   Hereinafter, a fluidized bed drying apparatus according to the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the following examples. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、実施例1に係る流動層乾燥装置を適用した石炭ガス化複合発電設備の概略構成図である。実施例1の流動層乾燥装置1が適用された石炭ガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)100は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。すなわち、実施例1の石炭ガス化複合発電設備100は、空気燃焼方式(空気吹き)の発電設備である。この場合、ガス化炉に供給する湿潤原料として褐炭を使用している。   FIG. 1 is a schematic configuration diagram of a coal gasification combined power generation facility to which a fluidized bed drying apparatus according to a first embodiment is applied. An integrated coal gasification combined cycle (IGCC) 100 to which the fluidized bed drying apparatus 1 of Example 1 is applied employs an air combustion system that generates coal gas in a gasification furnace using air as an oxidant. The coal gas refined by the gas purifier is supplied as fuel gas to the gas turbine equipment for power generation. That is, the combined coal gasification combined power generation facility 100 according to the first embodiment is an air combustion type (air blowing) power generation facility. In this case, lignite is used as a wet raw material supplied to the gasifier.

なお、実施例1では、湿潤原料として褐炭を適用したが、水分含量の高いものであれば、亜瀝青炭等を含む低品位炭や、スラッジ等の泥炭を適用してもよく、また、高品位炭であっても適用可能である。また、湿潤原料として、褐炭等の石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。   In Example 1, lignite was applied as a wet raw material, but low-grade coal including subbituminous coal or the like, peat such as sludge, etc. may be applied as long as the moisture content is high. Even charcoal is applicable. In addition, the wet raw material is not limited to coal such as lignite, but may be biomass used as organic resources derived from renewable organisms. For example, thinned wood, waste wood, driftwood, grass, waste, It is also possible to use sludge, tires, and recycled fuel (pellets and chips) made from these raw materials.

実施例1において、図1に示すように、石炭ガス化複合発電設備100は、給炭装置111、流動層乾燥装置1、微粉炭機(ミル)113、石炭ガス化炉114、チャー回収装置115、ガス精製装置116、ガスタービン設備117、蒸気タービン設備118、発電機119、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)120を有している。   In Example 1, as shown in FIG. 1, the coal gasification combined power generation facility 100 includes a coal supply device 111, a fluidized bed drying device 1, a pulverized coal machine (mill) 113, a coal gasification furnace 114, and a char recovery device 115. , Gas refiner 116, gas turbine facility 117, steam turbine facility 118, generator 119, and exhaust heat recovery steam generator (HRSG) 120.

給炭装置111は、原炭バンカ121と、石炭供給機122と、クラッシャ123とを有している。原炭バンカ121は、褐炭を貯留可能であって、所定量の褐炭を石炭供給機122に投下する。石炭供給機122は、原炭バンカ121から投下された褐炭をコンベアなどにより搬送し、クラッシャ123に投下する。このクラッシャ123は、投下された褐炭を細かく破砕して細粒化する。   The coal feeder 111 includes a raw coal bunker 121, a coal feeder 122, and a crusher 123. The raw coal bunker 121 can store lignite, and drops a predetermined amount of lignite into the coal feeder 122. The coal feeder 122 transports the brown coal dropped from the raw coal bunker 121 by a conveyor or the like and drops it on the crusher 123. The crusher 123 finely pulverizes the dropped lignite into fine particles.

流動層乾燥装置1は、給炭装置111により投入された褐炭に対して過熱蒸気等の乾燥用蒸気を供給することで、褐炭を流動させながら加熱乾燥し、褐炭が含有する水分を除去するものである。この流動層乾燥装置1は、下部から取り出された乾燥済の褐炭(乾燥炭)を冷却する冷却器131が設けられ、乾燥冷却済の乾燥炭が乾燥炭バンカ132に貯留される。また、流動層乾燥装置1は、上部から取り出された蒸気から乾燥炭の粒子を分離する乾燥炭電気集塵機134が設けられ、蒸気から分離された乾燥炭の粒子が乾燥炭バンカ132に貯留される。なお、乾燥炭電気集塵機134で乾燥炭が分離された蒸気は、蒸気圧縮機135で圧縮されてから流動層乾燥装置1に乾燥用蒸気として供給される。   The fluidized bed drying apparatus 1 supplies drying steam such as superheated steam to the lignite charged by the coal feeder 111, thereby heating and drying the lignite while flowing, thereby removing moisture contained in the lignite. It is. The fluidized bed drying apparatus 1 is provided with a cooler 131 that cools dried lignite (dry coal) taken out from the lower portion, and the dried and cooled dried coal is stored in the dried coal bunker 132. In addition, the fluidized bed drying apparatus 1 is provided with a dry coal electrostatic precipitator 134 that separates dry coal particles from steam taken out from above, and the dry coal particles separated from the steam are stored in the dry coal bunker 132. . The steam from which the dry coal is separated by the dry coal electrostatic precipitator 134 is compressed by the steam compressor 135 and then supplied to the fluidized bed drying apparatus 1 as drying steam.

微粉炭機113は、石炭粉砕機であって、流動層乾燥装置1により乾燥された褐炭(乾燥炭)を細かい粒子状に粉砕して微粉炭を製造するものである。すなわち、微粉炭機113は、乾燥炭バンカ132に貯留された乾燥炭が石炭供給機136により投下されると、この乾燥炭を所定粒径以下の微粉炭とする。そして、微粉炭機113で粉砕後の微粉炭は、微粉炭バグフィルタ137a,137bにより搬送用ガスから分離され、微粉炭供給ホッパ138a,138bに貯留される。   The pulverized coal machine 113 is a coal pulverizer, and pulverized coal (dried coal) dried by the fluidized bed drying apparatus 1 is pulverized into fine particles to produce pulverized coal. In other words, when the dry coal stored in the dry coal bunker 132 is dropped by the coal feeder 136, the pulverized coal machine 113 converts the dry coal into pulverized coal having a predetermined particle size or less. The pulverized coal after being pulverized by the pulverized coal machine 113 is separated from the conveying gas by the pulverized coal bag filters 137a and 137b and stored in the pulverized coal supply hoppers 138a and 138b.

石炭ガス化炉114は、微粉炭機113で処理された微粉炭が供給されると共に、チャー回収装置115で回収されたチャー(石炭の未燃分)が供給される。   The coal gasifier 114 is supplied with pulverized coal processed by the pulverized coal machine 113 and supplied with char (unburned coal) recovered by the char recovery device 115.

石炭ガス化炉114は、ガスタービン設備117(圧縮機161)から圧縮空気供給ライン141が接続されており、このガスタービン設備117で圧縮された圧縮空気が供給可能となっている。空気分離装置142は、大気中の空気から窒素と酸素を分離生成するものであり、第1窒素供給ライン143が石炭ガス化炉114に接続され、この第1窒素供給ライン143に微粉炭供給ホッパ138a,138bからの給炭ライン144a,144bが接続されている。また、第2窒素供給ライン145も石炭ガス化炉114に接続され、この第2窒素供給ライン145にチャー回収装置115からのチャー戻しライン146が接続されている。更に、酸素供給ライン147は、圧縮空気供給ライン141に接続されている。この場合、窒素は、石炭やチャーの搬送用ガスとして利用され、酸素は、酸化剤として利用される。   The coal gasification furnace 114 is connected to a compressed air supply line 141 from a gas turbine facility 117 (compressor 161), and can supply compressed air compressed by the gas turbine facility 117. The air separation device 142 separates and generates nitrogen and oxygen from air in the atmosphere. A first nitrogen supply line 143 is connected to the coal gasifier 114, and a pulverized coal supply hopper is connected to the first nitrogen supply line 143. Charging lines 144a and 144b from 138a and 138b are connected. The second nitrogen supply line 145 is also connected to the coal gasifier 114, and the char return line 146 from the char recovery device 115 is connected to the second nitrogen supply line 145. Further, the oxygen supply line 147 is connected to the compressed air supply line 141. In this case, nitrogen is used as a carrier gas for coal and char, and oxygen is used as an oxidant.

石炭ガス化炉114は、例えば、噴流床形式のガス化炉であって、内部に供給された石炭、チャー、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、二酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)が発生し、この可燃性ガスをガス化剤としてガス化反応が起こる。なお、石炭ガス化炉114は、微粉炭の混入した異物を除去する異物除去装置148が設けられている。この場合、石炭ガス化炉114は噴流床ガス化炉に限らず、流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉114は、チャー回収装置115に向けて可燃性ガスのガス生成ライン149が設けられており、チャーを含む可燃性ガスが排出可能となっている。この場合、ガス生成ライン149にガス冷却器を設けることで、可燃性ガスを所定温度まで冷却してからチャー回収装置115に供給するとよい。   The coal gasification furnace 114 is, for example, a spouted bed type gasification furnace, which combusts and gasifies coal, char, air (oxygen) supplied therein, or water vapor as a gasifying agent, and produces carbon dioxide. A combustible gas (product gas, coal gas) containing carbon as a main component is generated, and a gasification reaction takes place using this combustible gas as a gasifying agent. Note that the coal gasification furnace 114 is provided with a foreign matter removing device 148 that removes foreign matter mixed with pulverized coal. In this case, the coal gasification furnace 114 is not limited to the spouted bed gasification furnace, and may be a fluidized bed gasification furnace or a fixed bed gasification furnace. The coal gasification furnace 114 is provided with a gas generation line 149 for combustible gas toward the char recovery device 115, and can discharge combustible gas containing char. In this case, by providing a gas cooler in the gas generation line 149, the combustible gas may be cooled to a predetermined temperature and then supplied to the char recovery device 115.

チャー回収装置115は、集塵装置151と供給ホッパ152とを有している。この場合、集塵装置151は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉114で生成された可燃性ガスに含有するチャーを分離することができる。そして、チャーが分離された可燃性ガスは、ガス排出ライン153を通してガス精製装置116に送られる。ホッパ152は、集塵装置151で可燃性ガスから分離されたチャーを貯留するものである。なお、集塵装置151と供給ホッパ152との間にビンを配置し、このビンに複数の供給ホッパ152を接続するように構成してもよい。そして、供給ホッパ152からのチャー戻しライン146が第2窒素供給ライン145に接続されている。   The char recovery device 115 includes a dust collector 151 and a supply hopper 152. In this case, the dust collector 151 is constituted by one or a plurality of bag filters or cyclones, and can separate the char contained in the combustible gas generated in the coal gasification furnace 114. The combustible gas from which the char has been separated is sent to the gas purifier 116 through the gas discharge line 153. The hopper 152 stores the char separated from the combustible gas by the dust collector 151. A bin may be disposed between the dust collector 151 and the supply hopper 152, and a plurality of supply hoppers 152 may be connected to the bin. A char return line 146 from the supply hopper 152 is connected to the second nitrogen supply line 145.

ガス精製装置116は、チャー回収装置115によりチャーが分離された可燃性ガスに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置116は、可燃性ガスを精製して燃料ガスを製造し、これをガスタービン設備117に供給する。なお、このガス精製装置116では、チャーが分離された可燃性ガス中にはまだ硫黄分(HS)が含まれているため、アミン吸収液によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。 The gas purification device 116 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas from which the char has been separated by the char recovery device 115. The gas purifier 116 purifies the combustible gas to produce fuel gas, and supplies it to the gas turbine equipment 117. In this gas purifier 116, since the combustible gas from which the char is separated still contains sulfur (H 2 S), the sulfur is finally removed by removing it with the amine absorbent. Is recovered as gypsum and used effectively.

ガスタービン設備117は、圧縮機161、燃焼器162、タービン163を有しており、圧縮機161とタービン163は、回転軸164により連結されている。燃焼器162は、圧縮機161から圧縮空気供給ライン165が接続されると共に、ガス精製装置116から燃料ガス供給ライン166が接続され、タービン163に燃焼ガス供給ライン167が接続されている。また、ガスタービン設備117は、圧縮機161から石炭ガス化炉114に延びる圧縮空気供給ライン141が設けられており、圧縮空気供給ライン141に昇圧機168が介設されている。従って、燃焼器162では、圧縮機161から供給された圧縮空気とガス精製装置116から供給された燃料ガスとを混合して燃焼し、タービン163にて、発生した燃焼ガスにより回転軸164を回転することで発電機119を駆動することができる。   The gas turbine equipment 117 includes a compressor 161, a combustor 162, and a turbine 163, and the compressor 161 and the turbine 163 are connected by a rotating shaft 164. The combustor 162 has a compressed air supply line 165 connected from the compressor 161, a fuel gas supply line 166 connected from the gas purification device 116, and a combustion gas supply line 167 connected to the turbine 163. Further, the gas turbine equipment 117 is provided with a compressed air supply line 141 extending from the compressor 161 to the coal gasification furnace 114, and a booster 168 is interposed in the compressed air supply line 141. Therefore, in the combustor 162, the compressed air supplied from the compressor 161 and the fuel gas supplied from the gas purifier 116 are mixed and burned, and the rotating shaft 164 is rotated by the generated combustion gas in the turbine 163. By doing so, the generator 119 can be driven.

蒸気タービン設備118は、ガスタービン設備117における回転軸164に連結されるタービン169を有しており、発電機119は、この回転軸164の基端部に連結されている。排熱回収ボイラ120は、ガスタービン設備117(タービン163)からの排ガスライン170に設けられており、空気と高温の排ガスとの間で熱交換を行うことで、蒸気を生成するものである。そのため、排熱回収ボイラ120は、蒸気タービン設備118のタービン169との間に蒸気供給ライン171が設けられると共に、蒸気回収ライン172が設けられ、蒸気回収ライン172に復水器173が設けられている。従って、蒸気タービン設備118では、排熱回収ボイラ120から供給された蒸気によりタービン169が駆動し、回転軸164を回転することで発電機119を駆動することができる。   The steam turbine equipment 118 has a turbine 169 connected to the rotating shaft 164 in the gas turbine equipment 117, and the generator 119 is connected to the base end portion of the rotating shaft 164. The exhaust heat recovery boiler 120 is provided in the exhaust gas line 170 from the gas turbine equipment 117 (the turbine 163), and generates steam by exchanging heat between air and high-temperature exhaust gas. Therefore, the exhaust heat recovery boiler 120 is provided with a steam supply line 171 and a steam recovery line 172 between the turbine 169 of the steam turbine equipment 118, and a condenser 173 is provided in the steam recovery line 172. Yes. Therefore, in the steam turbine equipment 118, the turbine 169 is driven by the steam supplied from the exhaust heat recovery boiler 120, and the generator 119 can be driven by rotating the rotating shaft 164.

そして、排熱回収ボイラ120で熱が回収された排ガスは、ガス浄化装置174により有害物質を除去され、浄化された排ガスは、煙突175から大気へ放出される。   The exhaust gas from which heat has been recovered by the exhaust heat recovery boiler 120 is removed of harmful substances by the gas purification device 174, and the purified exhaust gas is discharged from the chimney 175 to the atmosphere.

ここで、実施例1の石炭ガス化複合発電設備100の作動について説明する。   Here, the action | operation of the coal gasification combined cycle power generation equipment 100 of Example 1 is demonstrated.

実施例1の石炭ガス化複合発電設備100において、給炭装置111にて、原炭(褐炭)が原炭バンカ121に貯留されており、この原炭バンカ121の褐炭が石炭供給機122によりクラッシャ123に投下され、ここで所定の大きさに破砕される。そして、破砕された褐炭は、流動層乾燥装置1により加熱乾燥された後、冷却器131により冷却され、乾燥炭バンカ132に貯留される。また、流動層乾燥装置1の上部から取り出された蒸気は、乾燥炭電気集塵機134により乾燥炭の粒子が分離され、蒸気圧縮機135で圧縮されてから流動層乾燥装置1に乾燥用蒸気として戻される。一方、蒸気から分離された乾燥炭の粒子は、乾燥炭バンカ132に貯留される。   In the combined coal gasification combined power generation facility 100 of the first embodiment, raw coal (brown coal) is stored in the raw coal bunker 121 by the coal feeder 111, and the lignite in the raw coal bunker 121 is crushed by the coal feeder 122. It is dropped to 123, where it is crushed to a predetermined size. The crushed lignite is heated and dried by the fluidized bed drying apparatus 1, cooled by the cooler 131, and stored in the dry coal bunker 132. Further, the steam taken out from the upper part of the fluidized bed drying device 1 is separated into dry coal particles by the dry coal electrostatic precipitator 134 and compressed by the steam compressor 135 and then returned to the fluidized bed drying device 1 as drying steam. It is. On the other hand, dry coal particles separated from the steam are stored in the dry coal bunker 132.

乾燥炭バンカ132に貯留される乾燥炭は、石炭供給機136により微粉炭機113に投入され、ここで、細かい粒子状に粉砕されて微粉炭が製造され、微粉炭バグフィルタ137a,137bを介して微粉炭供給ホッパ138a,138bに貯留される。この微粉炭供給ホッパ138a,138bに貯留される微粉炭は、空気分離装置142から供給される窒素により第1窒素供給ライン143を通して石炭ガス化炉114に供給される。また、後述するチャー回収装置115で回収されたチャーが、空気分離装置142から供給される窒素により第2窒素供給ライン145を通して石炭ガス化炉114に供給される。更に、後述するガスタービン設備117から抽気された圧縮空気が昇圧機168で昇圧された後、空気分離装置142から供給される酸素と共に圧縮空気供給ライン141を通して石炭ガス化炉114に供給される。   The dry coal stored in the dry coal bunker 132 is supplied to the pulverized coal machine 113 by the coal feeder 136, where it is pulverized into fine particles to produce pulverized coal, and the pulverized coal bag filters 137a and 137b are used. And stored in pulverized coal supply hoppers 138a and 138b. The pulverized coal stored in the pulverized coal supply hoppers 138 a and 138 b is supplied to the coal gasification furnace 114 through the first nitrogen supply line 143 by nitrogen supplied from the air separation device 142. Further, the char recovered by the char recovery device 115 described later is supplied to the coal gasifier 114 through the second nitrogen supply line 145 by nitrogen supplied from the air separation device 142. Further, compressed air extracted from a gas turbine facility 117 described later is boosted by a booster 168 and then supplied to the coal gasifier 114 through the compressed air supply line 141 together with oxygen supplied from the air separation device 142.

石炭ガス化炉114では、供給された微粉炭及びチャーが圧縮空気(酸素)により燃焼し、微粉炭及びチャーがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)を生成することができる。そして、この可燃性ガスは、石炭ガス化炉114からガス生成ライン149を通して排出され、チャー回収装置115に送られる。   In the coal gasification furnace 114, the supplied pulverized coal and char are combusted by compressed air (oxygen), and the pulverized coal and char are gasified, so that combustible gas (coal gas) mainly containing carbon dioxide is obtained. Can be generated. This combustible gas is discharged from the coal gasifier 114 through the gas generation line 149 and sent to the char recovery device 115.

このチャー回収装置115にて、可燃性ガスは、まず、集塵装置151に供給され、集塵装置151は、可燃性ガスに含まれるチャーを分離する。そして、チャーが分離された可燃性ガスは、ガス排出ライン153を通してガス精製装置116に送られる。一方、可燃性ガスから分離した微粒チャーは、供給ホッパ152に堆積され、チャー戻しライン146を通して石炭ガス化炉114に戻されてリサイクルされる。   In the char recovery device 115, the combustible gas is first supplied to the dust collector 151, and the dust collector 151 separates the char contained in the combustible gas. The combustible gas from which the char has been separated is sent to the gas purifier 116 through the gas discharge line 153. On the other hand, the fine char separated from the combustible gas is deposited on the supply hopper 152, returned to the coal gasifier 114 through the char return line 146, and recycled.

チャー回収装置115によりチャーが分離された可燃性ガスは、ガス精製装置116にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガスが製造される。そして、ガスタービン設備117では、圧縮機161が圧縮空気を生成して燃焼器162に供給すると、この燃焼器162は、圧縮機161から供給される圧縮空気と、ガス精製装置116から供給される燃料ガスとを混合し、燃焼することで燃焼ガスを生成し、この燃焼ガスによりタービン163を駆動することで、回転軸164を介して発電機119を駆動し、発電を行うことができる。   The combustible gas from which the char has been separated by the char recovery device 115 is gas purified by removing impurities such as sulfur compounds and nitrogen compounds by the gas purification device 116 to produce fuel gas. In the gas turbine equipment 117, when the compressor 161 generates compressed air and supplies the compressed air to the combustor 162, the combustor 162 is supplied from the compressed air supplied from the compressor 161 and the gas purifier 116. Combustion gas is generated by mixing with fuel gas and combusting, and the turbine 163 is driven by this combustion gas, so that the generator 119 is driven via the rotating shaft 164 to generate power.

そして、ガスタービン設備117におけるタービン163から排出された排気ガスは、排熱回収ボイラ120にて、空気と熱交換を行うことで蒸気を生成し、この生成した蒸気を蒸気タービン設備118に供給する。蒸気タービン設備118では、排熱回収ボイラ120から供給された蒸気によりタービン169を駆動することで、回転軸164を介して発電機119を駆動し、発電を行うことができる。   The exhaust gas discharged from the turbine 163 in the gas turbine facility 117 generates steam by exchanging heat with air in the exhaust heat recovery boiler 120, and supplies the generated steam to the steam turbine facility 118. . In the steam turbine equipment 118, the turbine 169 is driven by the steam supplied from the exhaust heat recovery boiler 120, whereby the generator 119 can be driven via the rotating shaft 164 to generate power.

その後、ガス浄化装置174では、排熱回収ボイラ120から排出された排気ガスの有害物質が除去され、浄化された排ガスが煙突175から大気へ放出される。   Thereafter, in the gas purification device 174, harmful substances in the exhaust gas discharged from the exhaust heat recovery boiler 120 are removed, and the purified exhaust gas is released from the chimney 175 to the atmosphere.

以下、上述した石炭ガス化複合発電設備100における流動層乾燥装置1について詳細に説明する。図2は、実施例1に係る流動層乾燥装置を模式的に表した概略構成図である。実施例1の流動層乾燥装置1は、水分含量が高い石炭である褐炭を、流動化ガスにより流動させながら、加熱乾燥させるものである。   Hereinafter, the fluidized bed drying apparatus 1 in the coal gasification combined power generation facility 100 described above will be described in detail. FIG. 2 is a schematic configuration diagram schematically illustrating the fluidized bed drying apparatus according to the first embodiment. The fluidized-bed drying apparatus 1 of Example 1 heat-drys the lignite which is coal with a high water content, making it flow with a fluidization gas.

図2に示すように、流動層乾燥装置1は、内部に褐炭が供給される乾燥炉5と、乾燥炉5の内部に設けられたガス分散板6と、を備えている。乾燥炉5は、長方体の箱状に形成されている。ガス分散板6は、乾燥炉5内部の空間を、鉛直方向下方側(図示下側)に位置するチャンバ室11と、鉛直方向上方側(図示上側)に位置する乾燥室12とに区分けしている。ガス分散板6には、多数の貫通孔が形成され、チャンバ室11には、蒸気等の流動化ガスが導入される。   As shown in FIG. 2, the fluidized bed drying apparatus 1 includes a drying furnace 5 in which lignite is supplied and a gas dispersion plate 6 provided inside the drying furnace 5. The drying furnace 5 is formed in a rectangular box shape. The gas distribution plate 6 divides the space inside the drying furnace 5 into a chamber chamber 11 located on the lower side in the vertical direction (lower side in the drawing) and a drying chamber 12 located on the upper side in the vertical direction (upper side in the drawing). Yes. A number of through holes are formed in the gas dispersion plate 6, and a fluidizing gas such as steam is introduced into the chamber chamber 11.

乾燥炉5の乾燥室12には、褐炭を投入する褐炭投入口31と、褐炭を加熱乾燥した乾燥炭を排出する乾燥炭排出口41と、褐炭を加熱する伝熱管33と、流動化ガスおよび発生蒸気からなる排出ガスに含まれる褐炭を分離する集塵装置34とが設けられている。   In the drying chamber 12 of the drying furnace 5, a lignite charging port 31 for charging lignite, a dry coal discharge port 41 for discharging dry coal obtained by heating and drying lignite, a heat transfer tube 33 for heating lignite, fluidized gas, and There is provided a dust collector 34 for separating lignite contained in the exhaust gas composed of generated steam.

褐炭投入口31は、乾燥室12の一端側(図示左側)に形成されている。褐炭投入口31には、上記したクラッシャ123が接続されており、細粒化された褐炭が、乾燥室12に供給される。   The brown coal inlet 31 is formed on one end side (the left side in the drawing) of the drying chamber 12. The crusher 123 described above is connected to the lignite charging port 31, and the pulverized lignite is supplied to the drying chamber 12.

乾燥炭排出口41は、乾燥室12の他端側(図示右側)の底部に形成されている。乾燥炭排出口41からは、乾燥室12において乾燥された褐炭が、乾燥炭として排出され、排出された乾燥炭は上記した冷却器131へ向けて供給される。   The dry coal discharge port 41 is formed at the bottom of the other end side (the right side in the drawing) of the drying chamber 12. The brown coal dried in the drying chamber 12 is discharged as dry coal from the dry coal discharge port 41, and the discharged dry coal is supplied toward the cooler 131 described above.

乾燥室12に供給された褐炭は、ガス分散板6を介して供給される流動化ガスにより流動することで、乾燥室12内に流動層3を形成する。また、形成された流動層3の上方には、フリーボード部Fが形成される。乾燥室12に形成される流動層3は、その流動方向が、乾燥室12の長手方向(図2の左右方向)となっている。乾燥室12に供給された流動化ガスは、褐炭を乾燥させることにより発生した蒸気と共に、集塵装置34へ向かう。   The lignite supplied to the drying chamber 12 flows by the fluidizing gas supplied via the gas dispersion plate 6, thereby forming the fluidized bed 3 in the drying chamber 12. A free board portion F is formed above the formed fluidized bed 3. The flow direction of the fluidized bed 3 formed in the drying chamber 12 is the longitudinal direction of the drying chamber 12 (the left-right direction in FIG. 2). The fluidized gas supplied to the drying chamber 12 goes to the dust collector 34 together with the steam generated by drying the lignite.

伝熱管33は、流動層3の内部に設けられている。伝熱管33は、その内部に乾燥用蒸気が供給され、流動層3の褐炭中の水分を除去している。よって、伝熱管33に乾燥用蒸気が供給されると、伝熱管33は、乾燥用蒸気の潜熱を利用して、乾燥室12内の褐炭を乾燥させる。この後、乾燥に利用された乾燥用蒸気は、乾燥室12の外部に排出される。   The heat transfer tube 33 is provided inside the fluidized bed 3. The heat transfer pipe 33 is supplied with drying steam therein to remove moisture in the brown coal of the fluidized bed 3. Therefore, when the drying steam is supplied to the heat transfer pipe 33, the heat transfer pipe 33 uses the latent heat of the drying steam to dry the lignite in the drying chamber 12. Thereafter, the drying steam used for drying is discharged to the outside of the drying chamber 12.

続いて、図2および図3を参照して、集塵装置34について説明する。図3は、実施例1に係る流動層乾燥装置の集塵装置を模式的に表した上面図である。図2および図3に示すように、集塵装置34は、サイクロン式の集塵装置であり、吸引ポート45と、吸引ポート45に接続されたサイクロン集塵部46と、サイクロン集塵部46の下方側に接続された燃料排出ポート47と、サイクロン集塵部46の上方側に接続されたガス排出ポート48とを有している。   Subsequently, the dust collector 34 will be described with reference to FIGS. 2 and 3. FIG. 3 is a top view schematically illustrating the dust collector of the fluidized bed drying apparatus according to the first embodiment. As shown in FIGS. 2 and 3, the dust collector 34 is a cyclone type dust collector, and includes a suction port 45, a cyclone dust collector 46 connected to the suction port 45, and a cyclone dust collector 46. A fuel discharge port 47 connected to the lower side and a gas discharge port 48 connected to the upper side of the cyclone dust collecting portion 46 are provided.

サイクロン集塵部46は、鉛直方向の上方側から下方側へ向けて先細りとなるテーパ形状に形成されている。このように構成されたサイクロン集塵部46の軸方向は鉛直方向となっている。このサイクロン集塵部46では、内部に流入した排出ガスに含まれる褐炭が分離される。つまり、流入した排出ガスは、サイクロン集塵部46の内部においてサイクロン流となり、排出ガス中の褐炭は、下方側の燃料排出ポート47に導かれる一方で、排出ガスはガス排出ポート48に導かれる。   The cyclone dust collecting part 46 is formed in a tapered shape that tapers from the upper side to the lower side in the vertical direction. The axial direction of the cyclone dust collection part 46 comprised in this way is a perpendicular direction. In this cyclone dust collection part 46, the brown coal contained in the exhaust gas which flowed into the inside is isolate | separated. That is, the inflowing exhaust gas becomes a cyclone flow inside the cyclone dust collecting portion 46, and the lignite in the exhaust gas is guided to the fuel discharge port 47 on the lower side, while the exhaust gas is guided to the gas exhaust port 48. .

吸引ポート45は、サイクロン集塵部46の上方側の外周における接線方向に延在して設けられている。吸引ポート45は、その一方の端部がサイクロン集塵部46に接続されており、その他方の端部が排出ガスを吸引する吸引口51となっている。そして、吸引ポート45は、吸引口51から吸引した排出ガスをサイクロン集塵部46へ向けて供給している。   The suction port 45 extends in the tangential direction on the outer periphery on the upper side of the cyclone dust collecting portion 46. The suction port 45 has one end connected to the cyclone dust collecting portion 46 and the other end serving as a suction port 51 for sucking exhaust gas. The suction port 45 supplies the exhaust gas sucked from the suction port 51 toward the cyclone dust collecting unit 46.

燃料排出ポート47は、サイクロン集塵部46の下方側における軸方向に延在して設けられている。燃料排出ポート47は、その上方側端部がサイクロン集塵部46に接続され、その下方側端部が排出ガスから分離された褐炭を排出する燃料排出口52となっている。このとき、燃料排出ポート47の下方側端部は、燃料排出口52が流動層3の内部に位置するように設けられている。そして、燃料排出ポート47は、サイクロン集塵部46において分離された褐炭を、燃料排出口52から流動層3の内部へ向けて排出している。   The fuel discharge port 47 extends in the axial direction on the lower side of the cyclone dust collecting portion 46. The upper end portion of the fuel discharge port 47 is connected to the cyclone dust collecting portion 46, and the lower end portion thereof serves as a fuel discharge port 52 for discharging brown coal separated from the exhaust gas. At this time, the lower end portion of the fuel discharge port 47 is provided so that the fuel discharge port 52 is positioned inside the fluidized bed 3. The fuel discharge port 47 discharges the lignite separated in the cyclone dust collecting section 46 from the fuel discharge port 52 toward the inside of the fluidized bed 3.

ガス排出ポート48は、サイクロン集塵部46の上方側における軸方向に延在して設けられている。ガス排出ポート48は、その上方側端部が乾燥炉5の外部にある上記の乾燥炭電気集塵機134に接続され、その下方側端部が褐炭分離後の排出ガスを排出するガス排出口53となっている。このとき、ガス排出ポート48の下方側端部は、サイクロン集塵部46の内部に位置するように設けられている。そして、ガス排出ポート48は、サイクロン集塵部46において褐炭が分離された排出ガスを、ガス排出口53から乾燥炭電気集塵機134へ向けて排出している。   The gas discharge port 48 is provided extending in the axial direction on the upper side of the cyclone dust collecting portion 46. The gas discharge port 48 has an upper end connected to the dry coal electrostatic precipitator 134 located outside the drying furnace 5, and a lower end connected to the gas discharge port 53 for discharging the exhaust gas after the lignite separation. It has become. At this time, the lower end portion of the gas discharge port 48 is provided so as to be located inside the cyclone dust collecting portion 46. The gas discharge port 48 discharges the exhaust gas from which the lignite has been separated in the cyclone dust collecting section 46 toward the dry coal electric dust collector 134 from the gas discharge port 53.

従って、褐炭投入口31から褐炭が乾燥室12へ供給されると、供給された褐炭は、ガス分散板6を介して供給される流動化ガスにより流動することで、流動層3を形成する。流動層3となった褐炭は、流動化ガスおよび伝熱管33に加熱されることで乾燥される。この後、流動化ガスは、褐炭から発生した発生蒸気と共に排出ガスとなって集塵装置34へ向かう。集塵装置34へ向かった排出ガスは、集塵装置34の吸引口51から吸引され、吸引ポート45を介してサイクロン集塵部46に供給される。   Therefore, when lignite is supplied from the lignite inlet 31 to the drying chamber 12, the supplied lignite flows by the fluidized gas supplied via the gas dispersion plate 6, thereby forming the fluidized bed 3. The lignite that has become the fluidized bed 3 is dried by being heated by the fluidizing gas and the heat transfer tube 33. Thereafter, the fluidized gas becomes exhaust gas together with the generated steam generated from the lignite and goes to the dust collector 34. Exhaust gas directed to the dust collector 34 is sucked from the suction port 51 of the dust collector 34 and supplied to the cyclone dust collector 46 through the suction port 45.

排出ガスがサイクロン集塵部46に供給されると、サイクロン集塵部46は、排出ガス中に含まれる褐炭を分離する。分離後の褐炭は、燃料排出ポート47へ向かった後、乾燥室12に形成された流動層3へ排出される。一方で、褐炭分離後の排出ガスは、ガス排出ポート48へ向かった後、乾燥炭電気集塵機134へ供給される。そして、乾燥室12で乾燥された褐炭は、乾燥炭排出口41から排出される。   When the exhaust gas is supplied to the cyclone dust collection unit 46, the cyclone dust collection unit 46 separates the lignite contained in the exhaust gas. The separated lignite is discharged to the fluidized bed 3 formed in the drying chamber 12 after going to the fuel discharge port 47. On the other hand, the exhaust gas after the lignite separation is supplied to the dry coal electric dust collector 134 after going to the gas discharge port 48. Then, the lignite dried in the drying chamber 12 is discharged from the dry coal discharge port 41.

以上のように、実施例1の構成によれば、サイクロン式の集塵装置34により、排出ガスに含まれる褐炭を分離し、分離後の褐炭を流動層3へ向けて排出できる一方で、褐炭が分離された排出ガスを乾燥炉5から排出することができる。これにより、フィルタを設ける必要がなく、逆洗浄を行う必要もないため、フィルタの破損による異物の混入を抑制することができる。   As described above, according to the configuration of the first embodiment, the cyclone type dust collector 34 can separate the lignite contained in the exhaust gas and discharge the separated lignite toward the fluidized bed 3, while the lignite The separated exhaust gas can be discharged from the drying furnace 5. Accordingly, it is not necessary to provide a filter, and it is not necessary to perform back washing, so that it is possible to suppress contamination by foreign matters due to damage to the filter.

また、実施例1の構成によれば、分離された褐炭は流動層3の内部に排出されるため、排出された褐炭が乾燥炉5内に再度飛散して、集塵装置34に吸入されることを抑制することができる。これにより、流動層乾燥装置1は、集塵装置34による集塵効率の低下を抑制することができる。   Moreover, according to the structure of Example 1, since the isolate | separated lignite is discharged | emitted in the inside of the fluidized bed 3, the discharged lignite is scattered again in the drying furnace 5, and is suck | inhaled by the dust collector 34. This can be suppressed. Thereby, the fluidized bed drying apparatus 1 can suppress a decrease in dust collection efficiency due to the dust collector 34.

次に、図4および図5を参照して、実施例2に係る流動層乾燥装置70について説明する。図4は、実施例2に係る流動層乾燥装置を模式的に表した概略構成図であり、図5は、実施例2に係る流動層乾燥装置の集塵装置を模式的に表した上面図である。なお、重複した記載を避けるべく、異なる部分について説明する。実施例2に係る流動層乾燥装置70は、乾燥炉5の内壁の一部が、集塵装置71のサイクロン集塵部76の一部を構成している。以下、図4および図5を参照して、集塵装置71について説明する。   Next, with reference to FIG. 4 and FIG. 5, the fluidized-bed drying apparatus 70 which concerns on Example 2 is demonstrated. 4 is a schematic configuration diagram schematically illustrating a fluidized bed drying apparatus according to a second embodiment, and FIG. 5 is a top view schematically illustrating a dust collecting apparatus of the fluidized bed drying apparatus according to the second embodiment. It is. Note that different parts will be described in order to avoid duplicate descriptions. In the fluidized bed drying apparatus 70 according to the second embodiment, a part of the inner wall of the drying furnace 5 constitutes a part of the cyclone dust collecting unit 76 of the dust collecting apparatus 71. Hereinafter, the dust collector 71 will be described with reference to FIGS. 4 and 5.

集塵装置71は、サイクロン式の集塵装置であり、吸引ポート75と、吸引ポート75に接続されたサイクロン集塵部76と、サイクロン集塵部76の下方側に接続された燃料排出ポート77と、サイクロン集塵部76の上方側に接続されたガス排出ポート78とを有している。   The dust collector 71 is a cyclone type dust collector, and includes a suction port 75, a cyclone dust collector 76 connected to the suction port 75, and a fuel discharge port 77 connected to the lower side of the cyclone dust collector 76. And a gas discharge port 78 connected to the upper side of the cyclone dust collecting portion 76.

サイクロン集塵部76は、その一部が、鉛直方向の上方側から下方側へ向けて先細りとなるテーパ形状に形成される一方で、他の一部が、乾燥炉5の内壁の一部で構成されている。つまり、サイクロン集塵部76は、乾燥炉5の内壁に、テーパ形状に形成された部材を取り付けることで構成されている。このように構成されたサイクロン集塵部76の軸方向は鉛直方向となっている。このサイクロン集塵部76では、内部に流入した排出ガスに含まれる褐炭が分離される。つまり、流入した排出ガスは、サイクロン集塵部76の内部においてサイクロン流となり、排出ガス中の褐炭は、下方側の燃料排出ポート77に導かれる一方で、排出ガスはガス排出ポート78に導かれる。   A part of the cyclone dust collecting portion 76 is formed in a tapered shape that tapers from the upper side to the lower side in the vertical direction, while the other part is a part of the inner wall of the drying furnace 5. It is configured. That is, the cyclone dust collecting unit 76 is configured by attaching a member formed in a tapered shape to the inner wall of the drying furnace 5. The axial direction of the cyclone dust collecting portion 76 configured in this way is a vertical direction. In this cyclone dust collection part 76, the brown coal contained in the exhaust gas which flowed into the inside is isolate | separated. That is, the inflowing exhaust gas becomes a cyclone flow inside the cyclone dust collecting section 76, and the lignite in the exhaust gas is guided to the lower fuel discharge port 77, while the exhaust gas is guided to the gas exhaust port 78. .

吸引ポート75は、サイクロン集塵部76の上方側の外周における接線方向に延在して設けられている。また、図5に示すように、吸引ポート75は、その一部が乾燥炉5の内壁の一部で構成されている。つまり、吸引ポート75は、乾燥炉5の内壁に、吸引ポート75の一部を構成する部材を取り付けることで構成されている。この吸引ポート75は、その一方の端部がサイクロン集塵部76に接続されており、その他方の端部が排出ガスを吸引する吸引口81となっている。そして、吸引ポート75は、吸引口81から吸引した排出ガスをサイクロン集塵部76へ向けて供給している。   The suction port 75 is provided so as to extend in the tangential direction on the outer periphery on the upper side of the cyclone dust collecting portion 76. As shown in FIG. 5, a part of the suction port 75 is constituted by a part of the inner wall of the drying furnace 5. That is, the suction port 75 is configured by attaching a member constituting a part of the suction port 75 to the inner wall of the drying furnace 5. The suction port 75 has one end connected to the cyclone dust collecting portion 76 and the other end serving as a suction port 81 for sucking exhaust gas. The suction port 75 supplies the exhaust gas sucked from the suction port 81 toward the cyclone dust collecting unit 76.

燃料排出ポート77は、サイクロン集塵部76の下方側における軸方向に延在して設けられている。また、図4に示すように、燃料排出ポート77は、その一部が乾燥炉5の内壁の一部で構成されている。つまり、燃料排出ポート77は、乾燥炉5の内壁に、燃料排出ポート77の一部を構成する部材を取り付けることで構成されている。この燃料排出ポート77は、その上方側端部がサイクロン集塵部76に接続され、その下方側端部が排出ガスから分離された褐炭を排出する燃料排出口82となっている。このとき、燃料排出ポート77の下方側端部は、燃料排出口82が流動層3の内部に位置するように設けられている。そして、燃料排出ポート77は、サイクロン集塵部76において分離された褐炭を、乾燥炉5の内壁に沿わせながら、燃料排出口82から流動層3の内部へ向けて排出している。   The fuel discharge port 77 is provided to extend in the axial direction on the lower side of the cyclone dust collecting portion 76. Further, as shown in FIG. 4, a part of the fuel discharge port 77 is constituted by a part of the inner wall of the drying furnace 5. That is, the fuel discharge port 77 is configured by attaching a member constituting a part of the fuel discharge port 77 to the inner wall of the drying furnace 5. The fuel discharge port 77 has an upper end connected to the cyclone dust collecting unit 76 and a lower end serving as a fuel discharge port 82 for discharging brown coal separated from the exhaust gas. At this time, the lower end portion of the fuel discharge port 77 is provided so that the fuel discharge port 82 is positioned inside the fluidized bed 3. The fuel discharge port 77 discharges the lignite separated in the cyclone dust collecting section 76 from the fuel discharge port 82 toward the inside of the fluidized bed 3 along the inner wall of the drying furnace 5.

ガス排出ポート78は、サイクロン集塵部76の上方側における軸方向に延在して設けられている。ガス排出ポート48は、実施例1と同様に、その上方側端部が乾燥炉5の外部にある上記の乾燥炭電気集塵機134に接続され、その下方側端部が褐炭分離後の排出ガスを排出するガス排出口83となっている。このとき、ガス排出口83は、サイクロン集塵部76の内部に位置するように設けられており、サイクロン集塵部76の中心に対して偏心して設けられている。そして、ガス排出ポート78は、サイクロン集塵部76において褐炭が分離された排出ガスを、ガス排出口83から乾燥炭電気集塵機134へ向けて排出している。   The gas discharge port 78 extends in the axial direction on the upper side of the cyclone dust collecting portion 76. As in the first embodiment, the gas discharge port 48 is connected to the dry coal electrostatic precipitator 134 whose upper end is outside the drying furnace 5, and whose lower end is the exhaust gas after separation of lignite. A gas discharge port 83 is formed. At this time, the gas discharge port 83 is provided so as to be located inside the cyclone dust collecting portion 76 and is provided eccentrically with respect to the center of the cyclone dust collecting portion 76. The gas discharge port 78 discharges the exhaust gas from which lignite has been separated in the cyclone dust collection section 76 toward the dry coal electric dust collector 134 from the gas discharge port 83.

以上のように、実施例2の構成においても、サイクロン式の集塵装置71により、排出ガスに含まれる褐炭を分離し、分離後の褐炭を流動層3へ向けて排出できる一方で、褐炭が分離された排出ガスを乾燥炉5から排出することができる。このとき、サイクロン集塵部76の一部を、乾燥炉5の内壁と共用できる分、集塵装置71で使用される材料を削減することができるため、製造コストを低減することができる。   As described above, also in the configuration of Example 2, the cyclone dust collector 71 can separate the lignite contained in the exhaust gas and discharge the separated lignite toward the fluidized bed 3, while the lignite is The separated exhaust gas can be discharged from the drying furnace 5. At this time, since a part of the cyclone dust collecting portion 76 can be shared with the inner wall of the drying furnace 5, the material used in the dust collecting device 71 can be reduced, and thus the manufacturing cost can be reduced.

1 流動層乾燥装置
3 流動層
5 乾燥炉
6 ガス分散板
11 チャンバ室
12 乾燥室
31 褐炭投入口
33 伝熱管
34 集塵装置
41 乾燥炭排出口
45 吸引ポート
46 サイクロン集塵部
47 燃料排出ポート
48 ガス排出ポート
51 吸引口
52 燃料排出口
53 ガス排出口
70 流動層乾燥装置(実施例2)
71 集塵装置(実施例2)
75 吸引ポート(実施例2)
76 サイクロン集塵部(実施例2)
77 燃料排出ポート(実施例2)
78 ガス排出ポート(実施例2)
81 吸引口(実施例2)
82 燃料排出口(実施例2)
83 ガス排出口(実施例2)
DESCRIPTION OF SYMBOLS 1 Fluidized bed drying apparatus 3 Fluidized bed 5 Drying furnace 6 Gas dispersion plate 11 Chamber room 12 Drying room 31 Brown coal input port 33 Heat transfer pipe 34 Dust collector 41 Dry coal discharge port 45 Suction port 46 Cyclone dust collection part 47 Fuel discharge port 48 Gas exhaust port 51 Suction port 52 Fuel exhaust port 53 Gas exhaust port 70 Fluidized bed dryer (Example 2)
71 Dust collector (Example 2)
75 Suction port (Example 2)
76 Cyclone dust collector (Example 2)
77 Fuel discharge port (Example 2)
78 Gas exhaust port (Example 2)
81 Suction port (Example 2)
82 Fuel outlet (Example 2)
83 Gas outlet (Example 2)

Claims (3)

湿潤燃料を流動化ガスにより流動させることで、内部に流動層を形成する乾燥炉と、
前記乾燥炉内に設けられ、前記乾燥炉から排出される排出ガスに含まれる前記湿潤燃料を集塵可能な集塵手段と、を備え、
前記集塵手段は、
前記排出ガスを吸入する吸引口と、
吸引した前記排出ガスから前記湿潤燃料を分離させるサイクロン集塵部と、
前記サイクロン集塵部において分離された前記湿潤燃料を前記流動層へ向けて排出する燃料排出口と、
前記サイクロン集塵部において前記湿潤燃料が分離された前記排出ガスを排出するガス排出口と、を有することを特徴とする流動層乾燥装置。
A drying furnace that forms a fluidized bed inside by flowing wet fuel with fluidized gas;
A dust collecting means provided in the drying furnace and capable of collecting the wet fuel contained in the exhaust gas discharged from the drying furnace,
The dust collecting means includes
A suction port for sucking the exhaust gas;
A cyclone dust collecting section for separating the wet fuel from the exhaust gas sucked;
A fuel discharge port for discharging the wet fuel separated in the cyclone dust collecting section toward the fluidized bed;
A fluidized bed drying apparatus comprising: a gas discharge port for discharging the exhaust gas from which the wet fuel is separated in the cyclone dust collecting unit.
前記燃料排出口は、前記流動層の内部に達していることを特徴とする請求項1に記載の流動層乾燥装置。   The fluidized bed drying apparatus according to claim 1, wherein the fuel discharge port reaches the inside of the fluidized bed. 前記乾燥炉の内壁の一部は、前記サイクロン集塵部の一部を構成していることを特徴とする請求項1または2に記載の流動層乾燥装置。   3. The fluidized bed drying apparatus according to claim 1, wherein a part of an inner wall of the drying furnace constitutes a part of the cyclone dust collecting unit.
JP2011113333A 2011-05-20 2011-05-20 Fluidized bed drying device Withdrawn JP2012241994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113333A JP2012241994A (en) 2011-05-20 2011-05-20 Fluidized bed drying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113333A JP2012241994A (en) 2011-05-20 2011-05-20 Fluidized bed drying device

Publications (1)

Publication Number Publication Date
JP2012241994A true JP2012241994A (en) 2012-12-10

Family

ID=47463895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113333A Withdrawn JP2012241994A (en) 2011-05-20 2011-05-20 Fluidized bed drying device

Country Status (1)

Country Link
JP (1) JP2012241994A (en)

Similar Documents

Publication Publication Date Title
JP5748559B2 (en) Fluidized bed dryer
WO2012147752A1 (en) Fluidized bed drying apparatus and integrated coal gasification combined cycle system
AU2012243826B2 (en) Fluidized bed drying apparatus
JP5851884B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5959879B2 (en) Drying system
JP2014173789A (en) Low-grade coal drying facility and gasification hybrid power system
JP5896821B2 (en) Gasification combined cycle system using fluidized bed drying equipment and coal
JP2012241992A (en) Drying system
JP5931505B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
WO2012133549A1 (en) Wet material supplying facility and gasification composite power generation system using wet material
JP5851883B2 (en) Non-condensable gas exhaust system and gasification combined power generation facility
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5777402B2 (en) Fluidized bed dryer
JP5916430B2 (en) Fluidized bed drying apparatus, combined gasification power generation facility, and method for supplying pulverized fuel
JP2012214578A (en) Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
JP2012241994A (en) Fluidized bed drying device
WO2012161130A1 (en) Fluidized bed drying device
JP5683380B2 (en) Fluidized bed dryer
JP2013210179A (en) Device for decompressing and drying wet fuel
JP2012241120A (en) Gasification system
JP5916426B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP2013044461A (en) Fluidized bed drying device
JP2012233634A (en) Fluidized bed drying apparatus, and gasification composite power generation system using coal
JP2012241993A (en) Fluidized bed drying device
JP2012233635A (en) Fluidized bed drying apparatus and gasification composite power generation system using coal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805