JP2012241822A - Dynamic damper for hollow shaft - Google Patents

Dynamic damper for hollow shaft Download PDF

Info

Publication number
JP2012241822A
JP2012241822A JP2011113462A JP2011113462A JP2012241822A JP 2012241822 A JP2012241822 A JP 2012241822A JP 2011113462 A JP2011113462 A JP 2011113462A JP 2011113462 A JP2011113462 A JP 2011113462A JP 2012241822 A JP2012241822 A JP 2012241822A
Authority
JP
Japan
Prior art keywords
mass body
dynamic damper
elastic
elastic body
insertion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011113462A
Other languages
Japanese (ja)
Inventor
Kunihisa Tago
邦久 田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2011113462A priority Critical patent/JP2012241822A/en
Publication of JP2012241822A publication Critical patent/JP2012241822A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic damper that can secure excellent dynamic vibration absorption characteristics in a low-frequency region and further improve the versatility of an elastic body in the tuning of the dynamic vibration absorption characteristics.SOLUTION: The dynamic damper includes a mass body 11 freely inserted to the inner periphery of a hollow shaft 2 that is a vibration reducing object; a pair of elastic bodies 12 composed of a rubber elastic material, which are disposed on both axial sides of the mass body 11 with outer diameter parts thereof being fitted to the inner peripheral surface of the hollow shaft 2; and an insert member 13 which is inserted to the inner periphery of the mass body 11 to connect one axial end of each elastic body 12 to the mass body 11.

Description

本発明は、例えば自動車のプロペラシャフト等、中空軸の内周空間に取り付けられて、この中空軸に発生する振動や騒音を抑制するダイナミックダンパに関する。   The present invention relates to a dynamic damper that is attached to an inner circumferential space of a hollow shaft, such as a propeller shaft of an automobile, and suppresses vibration and noise generated in the hollow shaft.

自動車のエンジンからトランスミッションを介して出力される駆動力を後輪に伝達するプロペラシャフトの内周空間に取り付けられて、このプロペラシャフトに発生する振動や騒音を抑制するダイナミックダンパの典型的な従来技術が、下記の特許文献1〜4に開示されている。   Typical conventional technology of a dynamic damper that is installed in the inner space of the propeller shaft that transmits the driving force output from the engine of the automobile via the transmission to the rear wheels and suppresses vibration and noise generated in the propeller shaft Are disclosed in Patent Documents 1 to 4 below.

このうち特許文献1に開示されたダイナミックダンパは、図9に示すように、プロペラシャフト100の内周にゴム材料又はゴム状弾性を有する合成樹脂材料からなる弾性層104を介して圧入されるアウターリング101と、その内周に配置した金属製の質量体102との間に、ゴム材料又はゴム状弾性を有する合成樹脂材料からなる弾性体103を介在させ、この弾性体103に円周方向等間隔で形成した複数の弾性支持部103aによって、アウターリング101に質量体102を弾性的に連結したものである。この構成によれば、アウターリング101に質量体102を弾性的に支持する弾性体103の弾性支持部103aが軸直角方向の入力振動に対して圧縮ばねとなるため、低周波領域での動的吸振特性を確保するために弾性支持部103aのばね定数を低くするには、弾性支持部103aのボリュームを小さくする必要があり、このため弾性支持部103aの耐久性が低下して破断しやすくなることが懸念される。   Among them, the dynamic damper disclosed in Patent Document 1 is an outer press-fitted into the inner periphery of the propeller shaft 100 via an elastic layer 104 made of a rubber material or a synthetic resin material having rubber-like elasticity, as shown in FIG. An elastic body 103 made of a rubber material or a synthetic resin material having rubber-like elasticity is interposed between the ring 101 and a metal mass body 102 arranged on the inner periphery thereof, and the elastic body 103 has a circumferential direction or the like. The mass body 102 is elastically connected to the outer ring 101 by a plurality of elastic support portions 103a formed at intervals. According to this configuration, the elastic support portion 103a of the elastic body 103 that elastically supports the mass body 102 on the outer ring 101 serves as a compression spring against the input vibration in the direction perpendicular to the axis. In order to reduce the spring constant of the elastic support portion 103a in order to ensure the vibration absorption characteristics, it is necessary to reduce the volume of the elastic support portion 103a. For this reason, the durability of the elastic support portion 103a is lowered and is easily broken. There is concern.

これに対し、特許文献2に開示されたダイナミックダンパは、図10に示すように、プロペラシャフト200の内周に遊挿される金属製の質量体202の軸方向両側に、プロペラシャフト200の内周面に圧接される筒状の弾性体201を一体成形したものであって、弾性体201が軸直角方向の入力振動に対して剪断ばねとなるため、ばね定数を低くして、低周波領域での優れた動的吸振特性を確保することができる。   On the other hand, as shown in FIG. 10, the dynamic damper disclosed in Patent Document 2 has an inner periphery of the propeller shaft 200 on both sides in the axial direction of the metal mass body 202 that is loosely inserted into the inner periphery of the propeller shaft 200. A cylindrical elastic body 201 that is press-contacted to the surface is integrally molded. Since the elastic body 201 becomes a shear spring against the input vibration in the direction perpendicular to the axis, the spring constant is reduced and the low frequency region is used. It is possible to ensure excellent dynamic vibration absorption characteristics.

また、特許文献3に開示されたダイナミックダンパは、図11に示すように、プロペラシャフト300の内周に遊挿される金属製の質量体302の軸方向両側に、固定金具303の圧入によってプロペラシャフト300の内周面に圧接される筒状の弾性体301を一体成形したもので、図10に示すダイナミックダンパと同様、弾性体301が軸直角方向の入力振動に対して剪断ばねとなるものである。   In addition, as shown in FIG. 11, the dynamic damper disclosed in Patent Document 3 includes a propeller shaft that is press-fitted with fixing metal fittings 303 on both sides in the axial direction of a metal mass body 302 that is loosely inserted into the inner periphery of the propeller shaft 300. A cylindrical elastic body 301 that is pressed against the inner peripheral surface of 300 is integrally formed. Like the dynamic damper shown in FIG. 10, the elastic body 301 becomes a shear spring against input vibration in the direction perpendicular to the axis. is there.

さらに、特許文献4に開示されたダイナミックダンパも同様であって、図12に示すように、プロペラシャフト400の内周に遊挿される金属製の質量体402の軸方向両側に、プロペラシャフト400の内周面に圧接される環状の弾性体401を一体成形したものであり、弾性体401が軸直角方向の入力振動に対して剪断ばねとなるものである。   Further, the dynamic damper disclosed in Patent Document 4 is the same, and as shown in FIG. 12, the propeller shaft 400 is provided on both sides in the axial direction of the metal mass body 402 that is loosely inserted into the inner periphery of the propeller shaft 400. An annular elastic body 401 press-contacted to the inner peripheral surface is integrally formed, and the elastic body 401 serves as a shear spring against input vibration in the direction perpendicular to the axis.

特開平9−53686号公報JP-A-9-53686 特開2007−177830号公報JP 2007-177830 A 特開平5−149386号公報JP-A-5-149386 特開2003−294025号公報JP 2003-294025 A

しかしながら、図10〜図12(特許文献2〜4)のダイナミックダンパは、いずれも弾性体が軸直角方向の入力振動に対して剪断ばねとなるため、ボリュームを大きくしても低周波領域での優れた動的吸振特性を確保することができ、したがって耐久性を向上させることができると共に、加硫成形後の金型からの離型性の点でも有利であるが、質量体の軸方向両側に弾性体を一体成形した構造であるため、ダイナミックダンパ全体としての軸方向サイズが長くなって、金型構造が複雑になり、生産性が制約されやすい。   However, in any of the dynamic dampers shown in FIGS. 10 to 12 (Patent Documents 2 to 4), since the elastic body becomes a shear spring against the input vibration in the direction perpendicular to the axis, even in the low frequency region, even if the volume is increased. Excellent dynamic vibration-absorbing characteristics can be secured, and therefore durability can be improved, and it is advantageous in terms of releasability from the mold after vulcanization molding. Therefore, the axial size of the dynamic damper as a whole becomes longer, the mold structure becomes complicated, and productivity is easily restricted.

また、ダイナミックダンパの共振周波数による動的吸振特性のチューニングのために、弾性体の剛性(ばね定数)の変更及び質量体の重量(形状)の変更を行う場合、質量体の大きさや形状の変更の都度、質量体への弾性体の一体成形用金型を製作する必要があり、すなわち金型の汎用性が乏しく、したがってコストが高くなる問題があった。   Also, when changing the stiffness (spring constant) of the elastic body and the weight (shape) of the mass body in order to tune the dynamic vibration absorption characteristics by the resonance frequency of the dynamic damper, the size and shape of the mass body are changed. In each case, it is necessary to manufacture a mold for integrally molding an elastic body to a mass body, that is, there is a problem that the versatility of the mold is poor and therefore the cost is increased.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、低周波領域での優れた動的吸振特性を確保することができ、しかも動的吸振特性のチューニングにおいて弾性体の汎用性を向上させることの可能なダイナミックダンパを提供することにある。   The present invention has been made in view of the above points, and its technical problem is to ensure excellent dynamic vibration absorption characteristics in a low frequency region and to tune dynamic vibration absorption characteristics. An object of the present invention is to provide a dynamic damper capable of improving the versatility of an elastic body.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る中空軸用ダイナミックダンパは、振動低減対象の中空軸の内周に遊挿される質量体と、この質量体の軸方向両側に配置されると共に外径部が前記中空軸の内周面に嵌着されるゴム状弾性材料からなる一対の弾性体と、前記質量体の内周に挿入されて前記弾性体の軸方向一端を前記質量体に結合する挿入部材とを備えるものである。なお、ここでいうゴム状弾性材料は、ゴム材料又はゴム状弾性を有する合成樹脂材料のことである。   As a means for effectively solving the technical problem described above, a hollow shaft dynamic damper according to the invention of claim 1 includes a mass body loosely inserted on an inner periphery of a hollow shaft to be reduced in vibration, A pair of elastic bodies made of a rubber-like elastic material that is arranged on both sides in the axial direction and whose outer diameter portion is fitted to the inner peripheral surface of the hollow shaft, and inserted into the inner periphery of the mass body, And an insertion member for coupling one end in the axial direction to the mass body. The rubber-like elastic material here is a rubber material or a synthetic resin material having rubber-like elasticity.

上記構成のダイナミックダンパは、質量体と別個に成形された一対の弾性体を、挿入部材を介して質量体の軸方向両側に結合することによって、容易に組み立てることができる。そして、弾性体は、軸方向一端が質量体に結合されると共に外径部が中空軸の内周面に嵌着されることによって、軸直角方向の入力振動に対して剪断ばねとなるので、ばね定数を低く設定することができる。このため低周波領域での優れた動的吸振特性が確保され、しかも、質量体を圧縮方向へ支持する場合のようにばね定数を低くするために弾性体のボリュームを小さくする必要がないので、弾性体の耐久性を向上させることができる。   The dynamic damper having the above-described configuration can be easily assembled by coupling a pair of elastic bodies formed separately from the mass body to both sides in the axial direction of the mass body via insertion members. And, since the elastic body is coupled to the mass body at one end in the axial direction and the outer diameter portion is fitted to the inner peripheral surface of the hollow shaft, it becomes a shear spring against the input vibration in the direction perpendicular to the axis. The spring constant can be set low. For this reason, excellent dynamic vibration absorption characteristics in the low frequency region are secured, and it is not necessary to reduce the volume of the elastic body in order to lower the spring constant as in the case of supporting the mass body in the compression direction. The durability of the elastic body can be improved.

また、弾性体が質量体と別個に成形されることに加え、質量体と弾性体を結合する挿入部材も、弾性体をばねとするばね−質量系における質量の一部として機能するので、動的吸振特性(ダイナミックダンパの共振周波数)のチューニングにおいて、質量体の大きさや形状の変更の都度、質量体への弾性体の一体成形用金型を製作する必要がなく、弾性体の汎用性、ひいてはこの弾性体を成形する金型の汎用性を向上させることができる。   In addition to the elastic body being molded separately from the mass body, the insertion member that couples the mass body and the elastic body also functions as part of the mass in the spring-mass system using the elastic body as a spring. When tuning the dynamic vibration absorption characteristics (resonance frequency of the dynamic damper), it is not necessary to manufacture a mold for integrally molding the elastic body to the mass body every time the size or shape of the mass body is changed. As a result, the versatility of the metal mold | die which shape | molds this elastic body can be improved.

請求項2の発明に係る中空軸用ダイナミックダンパは、請求項1に記載された構成において、弾性体が挿入部材に一体に加硫接着されたことを特徴とするものである。   The dynamic damper for a hollow shaft according to the invention of claim 2 is characterized in that, in the configuration described in claim 1, the elastic body is integrally vulcanized and bonded to the insertion member.

上記構成によれば、予め弾性体と挿入部材が加硫接着により一体化されていることによって、組み立ての際には弾性体と一体の挿入部材を質量体に結合するだけで良いので、組み立てが容易になる。また、挿入部材は質量体に比較して十分に小さなもので良いため、弾性体を挿入部材と一体に成形する金型の大型化を来たさないようにすることができる。   According to the above configuration, since the elastic body and the insertion member are integrated by vulcanization adhesion in advance, it is only necessary to couple the insertion member integral with the elastic body to the mass body at the time of assembly. It becomes easy. Further, since the insertion member may be sufficiently smaller than the mass body, it is possible to prevent an increase in the size of the mold for integrally molding the elastic body with the insertion member.

請求項3の発明に係る中空軸用ダイナミックダンパは、請求項1又は2に記載された構成において、質量体、弾性体及び挿入部材が筒状又は環状であることを特徴とするものである。   A dynamic damper for a hollow shaft according to a third aspect of the invention is characterized in that, in the configuration described in the first or second aspect, the mass body, the elastic body and the insertion member are cylindrical or annular.

上記構成によれば、中空軸の内周空間へ洗浄液などが侵入しても、筒状又は環状をなす質量体、弾性体及び挿入部材の内周を通じて容易に排出されるため、中空軸の内周空間に洗浄液などが残留するのを防止することができる。   According to the above configuration, even if cleaning liquid or the like enters the inner circumferential space of the hollow shaft, it is easily discharged through the inner circumference of the cylindrical or annular mass body, the elastic body, and the insertion member. It is possible to prevent the cleaning liquid and the like from remaining in the peripheral space.

本発明に係る中空軸用ダイナミックダンパによれば、低周波領域での優れた動的吸振特性を確保することができ、しかも動的吸振特性のチューニングは、弾性体とは別に質量体や挿入部材の大きさや形状等の変更によって行うことができるので、弾性体を成形する金型の汎用性を向上させることができ、さらには、質量体にゴム状弾性材料からなる弾性体が一体に加硫接着されたものではないため、廃却後に質量体を容易に資源リサイクルすることができる。   According to the dynamic damper for a hollow shaft according to the present invention, excellent dynamic vibration absorption characteristics in a low frequency region can be secured, and the dynamic vibration absorption characteristics can be tuned separately from an elastic body by a mass body or an insertion member. Therefore, the versatility of the mold for molding the elastic body can be improved, and the elastic body made of a rubber-like elastic material is integrally vulcanized in the mass body. Since it is not bonded, the mass body can be easily recycled after it is discarded.

本発明に係る中空軸用ダイナミックダンパの第一の実施の形態を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows 1st embodiment of the dynamic damper for hollow shafts which concerns on this invention by the plane which passes along an axial center. 第一の実施の形態の中空軸用ダイナミックダンパを、軸心を通る平面で切断して示す組み立て前の状態の断面斜視図である。It is a cross-sectional perspective view of the state before the assembly which cuts and shows the dynamic damper for hollow shafts of 1st embodiment by the plane which passes along an axial center. 第一の実施の形態の中空軸用ダイナミックダンパを、軸心を通る平面で切断して示す組み立て状態の断面斜視図である。It is a cross-sectional perspective view of the assembly state which cut | disconnects and shows the dynamic damper for hollow shafts of 1st embodiment by the plane which passes along an axial center. 本発明に係る中空軸用ダイナミックダンパの第二の実施の形態を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows 2nd embodiment of the dynamic damper for hollow shafts which concerns on this invention by the plane which passes along an axial center. 第二の実施の形態の中空軸用ダイナミックダンパを、軸心を通る平面で切断して示す組み立て前の状態の断面図である。It is sectional drawing of the state before the assembly which cuts and shows the dynamic damper for hollow shafts of 2nd Embodiment by the plane which passes along an axial center. 本発明に係る中空軸用ダイナミックダンパの第三の実施の形態を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cut | disconnects and shows 3rd embodiment of the dynamic damper for hollow shafts which concerns on this invention by the plane which passes along an axial center. 第三の実施の形態の中空軸用ダイナミックダンパを、軸心を通る平面で切断して示す組み立て前の状態の断面斜視図である。It is a cross-sectional perspective view of the state before the assembly which shows the dynamic damper for hollow shafts of 3rd Embodiment cut | disconnected by the plane which passes along an axial center. 第三の実施の形態の中空軸用ダイナミックダンパを、軸心を通る平面で切断して示す組み立て状態の断面斜視図である。It is a cross-sectional perspective view of the assembly state which cut | disconnects and shows the dynamic damper for hollow shafts of 3rd embodiment by the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの一例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows an example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面斜視図である。It is a cross-sectional perspective view which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center. 従来の中空軸用ダイナミックダンパの他の例を、軸心を通る平面で切断して示す断面図である。It is sectional drawing which cuts and shows the other example of the conventional dynamic damper for hollow shafts in the plane which passes along an axial center.

以下、本発明に係る中空軸用ダイナミックダンパの好ましい実施の形態を、図面を参照しながら説明する。まず図1〜図3は、第一の実施の形態を示すものである。   Hereinafter, preferred embodiments of a dynamic damper for a hollow shaft according to the present invention will be described with reference to the drawings. 1 to 3 show a first embodiment.

図1において、参照符号1はダイナミックダンパ、2は自動車のプロペラシャフトである。プロペラシャフト2は、請求項1に記載された中空軸に相当するものであって、すなわち中空円筒状であり、ダイナミックダンパ1はプロペラシャフト2の内周空間に取り付けられるものである。   In FIG. 1, reference numeral 1 is a dynamic damper, and 2 is a propeller shaft of an automobile. The propeller shaft 2 corresponds to the hollow shaft described in claim 1, that is, has a hollow cylindrical shape, and the dynamic damper 1 is attached to the inner circumferential space of the propeller shaft 2.

ダイナミックダンパ1は、振動低減対象のプロペラシャフト2の内周に遊挿される質量体11と、この質量体11の軸方向両側に配置されると共に外径部12aがプロペラシャフト2の内周面2aに嵌着されるゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)からなる一対の弾性体12と、この弾性体12の内周に一体的に設けられると共に前記質量体11の内周に挿入されて弾性体12の軸方向一端を前記質量体11に結合する一対の挿入部材13とを備える。   The dynamic damper 1 includes a mass body 11 that is loosely inserted into the inner periphery of the propeller shaft 2 to be reduced in vibration, and is disposed on both sides in the axial direction of the mass body 11, and an outer diameter portion 12 a is an inner peripheral surface 2 a of the propeller shaft 2. A pair of elastic bodies 12 made of a rubber-like elastic material (rubber material or a synthetic resin material having rubber-like elasticity) to be fitted on the inner surface of the elastic body 12 and the mass body 11. And a pair of insertion members 13 that are inserted into the inner periphery and couple one end of the elastic body 12 in the axial direction to the mass body 11.

質量体11は例えば金属製の比較的厚肉の円筒体からなるものであって、所要の軸方向長さを有し、外周面はプロペラシャフト2の内周面2aよりも小径に形成されている。また、この質量体11の軸方向両端内周縁には面取り11aが形成されている。   The mass body 11 is made of, for example, a relatively thick cylindrical body made of metal, has a required axial length, and has an outer peripheral surface formed with a smaller diameter than the inner peripheral surface 2 a of the propeller shaft 2. Yes. Further, chamfers 11 a are formed on the inner peripheral edges of both ends in the axial direction of the mass body 11.

弾性体12は環状をなすものであって、外径部12aが質量体11の外径より大径に形成されると共に、プロペラシャフト2の内周面2aに対して適当な締め代をもっている。また、この弾性体12の軸方向一端は、挿入部材13の外周面に一体的に加硫接着されており、この接着部12bには、質量体11の内周面11bに対して適当な締め代をもつ円筒状の弾性膜部12cが延在されている。そして、前記接着部12bと外径部12aの間は、プロペラシャフト2と質量体11の軸直角方向の相対変位に伴って主に剪断変形を受けるばね部12dとなっている。また、外径部12aは複数の凹部12eによって円周方向に分割されている。   The elastic body 12 has an annular shape, and the outer diameter portion 12 a is formed to have a larger diameter than the outer diameter of the mass body 11 and has an appropriate margin for the inner peripheral surface 2 a of the propeller shaft 2. Further, one end of the elastic body 12 in the axial direction is integrally vulcanized and bonded to the outer peripheral surface of the insertion member 13, and the bonded portion 12b is appropriately tightened to the inner peripheral surface 11b of the mass body 11. A cylindrical elastic membrane portion 12c having a margin is extended. And between the said adhesion part 12b and the outer-diameter part 12a, it is the spring part 12d which receives a shear deformation mainly with the relative displacement of the propeller shaft 2 and the mass body 11 at the axis orthogonal direction. The outer diameter portion 12a is divided in the circumferential direction by a plurality of recesses 12e.

挿入部材13は、金属製の円筒体からなるものであって、その外周面は質量体11の内周面11bよりも小径である。そして図2に示すように、弾性体12と挿入部材13からなる一体成形物は、不図示の加硫成形用金型内に、挿入部材13を位置決めセットし、この挿入部材13の外周側からその軸方向一側の外周側へかけて前記金型によって画成された環状のキャビティに、未加硫ゴム材料を充填して加熱・加圧することによって、弾性体12の加硫成形と同時に挿入部材13の外周面に加硫接着したものである。   The insertion member 13 is made of a metal cylinder, and its outer peripheral surface has a smaller diameter than the inner peripheral surface 11 b of the mass body 11. As shown in FIG. 2, the integrally molded product including the elastic body 12 and the insertion member 13 positions and sets the insertion member 13 in a mold for vulcanization molding (not shown), and from the outer peripheral side of the insertion member 13. The annular cavity defined by the die is filled with unvulcanized rubber material toward the outer peripheral side on the one side in the axial direction, and heated and pressurized to be inserted simultaneously with the vulcanization molding of the elastic body 12. The member 13 is vulcanized and bonded to the outer peripheral surface.

すなわちこのダイナミックダンパ1は、図2に示すように、質量体11の内周へ、その軸方向両側から、弾性体12と挿入部材13の一体成形物における挿入部材13を挿入し、この挿入部材13の外周面に加硫接着された弾性体12の弾性膜部12cを質量体11の内周面11bへ圧入嵌着することによって、図3に示すように組み立てられるものである。このとき、質量体11の軸方向両端内周縁には面取り11aが形成されているため、弾性体12の弾性膜部12cが質量体11への圧入過程で損傷するのを防止することができる。そして前記弾性膜部12cは、挿入部材13の外周面と質量体11の内周面11bの間で径方向に圧縮され、質量体11の内周面11bに対する顕著な嵌着力を補償されるため、質量体11とその軸方向両側の弾性体12は互いにしっかり結合される。   That is, as shown in FIG. 2, the dynamic damper 1 inserts the insertion member 13 in the integrally formed product of the elastic body 12 and the insertion member 13 into the inner periphery of the mass body 11 from both sides in the axial direction. As shown in FIG. 3, the elastic film portion 12 c of the elastic body 12 vulcanized and bonded to the outer peripheral surface 13 is press-fitted into the inner peripheral surface 11 b of the mass body 11. At this time, since the chamfer 11a is formed at the inner peripheral edges of both ends in the axial direction of the mass body 11, it is possible to prevent the elastic film portion 12c of the elastic body 12 from being damaged in the press-fitting process into the mass body 11. The elastic film portion 12c is compressed in the radial direction between the outer peripheral surface of the insertion member 13 and the inner peripheral surface 11b of the mass body 11 to compensate for a significant fitting force on the inner peripheral surface 11b of the mass body 11. The mass body 11 and the elastic bodies 12 on both axial sides thereof are firmly connected to each other.

ダイナミックダンパ1は、弾性体12(ばね部12d)をばねとし、質量体11及び挿入部材13を質量とするばね−質量系を構成するものであって、その径方向共振周波数は、質量体11と一対の挿入部材13の質量の和と、弾性体12のばね部12dの径方向剪断ばね定数によって、プロペラシャフト2に生じる振動の振幅が最も増大する周波数帯域にチューニングされている。すなわち挿入部材13は、弾性体12の弾性膜部12cへの嵌着力補償手段としてのほか、前記ばね−質量系における質量の一部としても機能するものである。   The dynamic damper 1 constitutes a spring-mass system in which the elastic body 12 (spring portion 12d) is a spring and the mass body 11 and the insertion member 13 are masses, and the radial resonance frequency thereof is the mass body 11. And the sum of the mass of the pair of insertion members 13 and the radial shear spring constant of the spring portion 12d of the elastic body 12 are tuned to a frequency band in which the amplitude of vibration generated in the propeller shaft 2 increases most. That is, the insertion member 13 functions as a part of the mass in the spring-mass system as well as a means for compensating for the fitting force of the elastic body 12 to the elastic film portion 12c.

以上のように構成されたダイナミックダンパ1は、図1に示すように、質量体11の軸方向両側の弾性体12における外径部12aを、プロペラシャフト2の内周面2aにおける所定の位置へ圧入嵌着することによって取り付けられる。   As shown in FIG. 1, the dynamic damper 1 configured as described above moves the outer diameter portion 12 a of the elastic body 12 on both axial sides of the mass body 11 to a predetermined position on the inner peripheral surface 2 a of the propeller shaft 2. It is attached by press fitting.

ここで、ダイナミックダンパ1は、環状である弾性体12と円筒状である挿入部材13及び質量体11からなるものであるため、ダイナミックダンパ1をプロペラシャフト2の内周に取り付けた後でプロペラシャフト2の洗浄を行った場合、洗浄過程でダイナミックダンパ1の内部空間に入り込んだ洗浄液は、ダイナミックダンパ1の内周を通じて容易に排出される。あるいは前記洗浄液の一部は、弾性体12の外径部12aに形成された凹部12eを通じても排出される。このため、プロペラシャフト2の内周空間に洗浄液が残留するのを防止することができる。   Here, since the dynamic damper 1 includes the annular elastic body 12, the cylindrical insertion member 13, and the mass body 11, the propeller shaft is mounted after the dynamic damper 1 is attached to the inner periphery of the propeller shaft 2. When cleaning 2 is performed, the cleaning liquid that has entered the internal space of the dynamic damper 1 during the cleaning process is easily discharged through the inner periphery of the dynamic damper 1. Alternatively, part of the cleaning liquid is also discharged through the recess 12e formed in the outer diameter portion 12a of the elastic body 12. For this reason, it is possible to prevent the cleaning liquid from remaining in the inner circumferential space of the propeller shaft 2.

次に図1に示す装着状態において、プロペラシャフト2の回転に伴い軸直角方向への振動が発生すると、弾性体12(ばね部12d)をばねとし、質量体11及び挿入部材13を質量とするばね−質量系(ダイナミックダンパ1)の共振周波数は、プロペラシャフト2の振動の振幅が最も増大する周波数帯域にチューニングされているので、このような周波数帯域でダイナミックダンパ1が共振し、その振動波形の位相が入力振動と逆位相となる動的吸振作用によって、入力振動の振幅のピークを低減し、プロペラシャフト2の振動及び騒音を有効に低減することができる。   Next, in the mounted state shown in FIG. 1, when vibration in the direction perpendicular to the axis is generated as the propeller shaft 2 rotates, the elastic body 12 (spring portion 12 d) is used as a spring, and the mass body 11 and the insertion member 13 are used as mass. Since the resonance frequency of the spring-mass system (dynamic damper 1) is tuned to a frequency band in which the amplitude of vibration of the propeller shaft 2 increases most, the dynamic damper 1 resonates in such a frequency band and its vibration waveform. By the dynamic vibration absorption action in which the phase of the input vibration is opposite to that of the input vibration, the amplitude peak of the input vibration can be reduced, and the vibration and noise of the propeller shaft 2 can be effectively reduced.

そしてこのダイナミックダンパ1によれば、軸直角方向の入力振動に対して、弾性体12のばね部12dが主に剪断変形を受けるので、径方向ばね定数を低くして、低周波領域での優れた動的吸振特性を確保することができる。   According to the dynamic damper 1, since the spring portion 12d of the elastic body 12 is mainly subjected to shear deformation with respect to the input vibration in the direction perpendicular to the axis, the radial spring constant is lowered, and excellent in the low frequency region. The dynamic vibration absorption characteristics can be ensured.

また、質量体11に対して、弾性体12と挿入部材13との一体成形物を別部材としたため、例えば振動低減対象のプロペラシャフト2の仕様変更等に対して、ダイナミックダンパ1の動的吸振特性を対応させる場合は、例えば弾性体12と挿入部材13の一体成形物の仕様は変更せずに、質量体11の長さの変更等によって質量のみを変更することでばね−質量系の共振周波数をチューニングすることができる。このため質量体11の大きさや形状の変更の都度、弾性体12と挿入部材13の一体成形用金型を製作する必要はなく、チューニングに要するコストを低減することができる。   Further, since the integrally molded product of the elastic body 12 and the insertion member 13 is a separate member with respect to the mass body 11, for example, the dynamic vibration absorption of the dynamic damper 1 is changed in response to a change in the specification of the propeller shaft 2 to be reduced in vibration. In order to make the characteristics correspond, for example, without changing the specification of the integrally molded product of the elastic body 12 and the insertion member 13, only the mass is changed by changing the length of the mass body 11 or the like, thereby resonating the spring-mass system. The frequency can be tuned. For this reason, it is not necessary to manufacture a die for integrally molding the elastic body 12 and the insertion member 13 every time the size and shape of the mass body 11 are changed, and the cost required for tuning can be reduced.

しかも、質量体11にはゴム状弾性材料からなる弾性体12が加硫接着されていないので、廃却後には、質量体11を容易に資源リサイクルすることができる。   Moreover, since the elastic body 12 made of a rubber-like elastic material is not vulcanized and bonded to the mass body 11, the mass body 11 can be easily recycled after being discarded.

次に図4及び図5は、本発明に係る中空軸用ダイナミックダンパの第二の実施の形態を示すものである。   Next, FIGS. 4 and 5 show a second embodiment of the dynamic damper for a hollow shaft according to the present invention.

この形態によるダイナミックダンパ1において、上述した第一の実施の形態と異なるところは、弾性体12に挿入部材13の外周面を覆う弾性膜部12cが形成されておらず、質量体11の内周面11bに、挿入部材13の外周面が金属嵌合される点にある。その他の部分は、基本的に第一の実施の形態と同様である。   In the dynamic damper 1 according to this embodiment, the difference from the first embodiment described above is that the elastic body 12 is not formed with the elastic film portion 12c covering the outer peripheral surface of the insertion member 13, and the inner periphery of the mass body 11 is not formed. The outer peripheral surface of the insertion member 13 is metal-fitted to the surface 11b. Other parts are basically the same as those of the first embodiment.

すなわちこの第二の実施の形態は、弾性体12と挿入部材13からなる一体成形物を製作し、図5に示すように、質量体11の軸方向両側から、前記一体成形物の挿入部材13を質量体11の内周へ圧入して金属嵌合することによって組み立てられるもので、第一の実施の形態と同様の効果を実現することができる。   That is, in the second embodiment, an integrally molded product including the elastic body 12 and the insertion member 13 is manufactured, and the insertion member 13 of the integrally molded product is formed from both sides in the axial direction of the mass body 11 as shown in FIG. Can be assembled by press fitting into the inner periphery of the mass body 11 and metal fitting, and can achieve the same effect as the first embodiment.

さらに図6〜図8は、本発明に係る中空軸用ダイナミックダンパの第三の実施の形態を示すものである。   Further, FIGS. 6 to 8 show a third embodiment of the hollow shaft dynamic damper according to the present invention.

この形態によるダイナミックダンパ1において、上述した第一及び第二の実施の形態と異なるところは、弾性体12と挿入部材13が加硫接着されておらず、挿入部材13が弾性体12における弾性膜部12cの内周面に圧入される点にある。その他の部分は、基本的に第一の実施の形態と同様である。   The dynamic damper 1 according to this embodiment is different from the first and second embodiments described above in that the elastic body 12 and the insertion member 13 are not vulcanized and bonded, and the insertion member 13 is an elastic film in the elastic body 12. It exists in the point press-fitted in the internal peripheral surface of the part 12c. Other parts are basically the same as those of the first embodiment.

すなわちこのダイナミックダンパ1は、図7に示すように、質量体11の軸方向端部内周面11bへ、軸方向両側から弾性体12の弾性膜部12cを挿入し、その後、挿入部材13を、前記弾性膜部12cの内周へ圧入することによって、図6に示すように組み立てられるものである。そして前記弾性膜部12cは、挿入部材13の圧入によって、質量体11の内周面11bの間で径方向に圧縮され、質量体11の内周面11bに対する顕著な嵌着力を補償されるため、質量体11とその軸方向両側の弾性体12は互いにしっかり結合される。   That is, as shown in FIG. 7, the dynamic damper 1 inserts the elastic film portion 12c of the elastic body 12 from both sides in the axial direction into the inner peripheral surface 11b of the axial end portion of the mass body 11, and then inserts the insertion member 13 By press-fitting into the inner periphery of the elastic membrane portion 12c, it is assembled as shown in FIG. The elastic membrane portion 12c is compressed in the radial direction between the inner peripheral surfaces 11b of the mass body 11 by the press-fitting of the insertion member 13, and compensates for a significant fitting force on the inner peripheral surface 11b of the mass body 11. The mass body 11 and the elastic bodies 12 on both axial sides thereof are firmly connected to each other.

また、先に弾性体12の弾性膜部12cの内周へ挿入部材13を挿入して仮組みしてから、質量体11の軸方向端部内周面11bへ、弾性膜部12cと挿入部材13を同時に圧入することによって組み立てることもできる。   The insertion member 13 is first inserted into the inner periphery of the elastic film portion 12 c of the elastic body 12 and temporarily assembled, and then the elastic film portion 12 c and the insertion member 13 are inserted into the inner peripheral surface 11 b in the axial end portion of the mass body 11. It is also possible to assemble by press-fitting at the same time.

この第三の実施の形態によれば、第一の実施の形態と同様の効果が実現されるのに加え、弾性体12と挿入部材13が別体であるため、質量の変更による共振周波数のチューニングを、質量体11の長さや肉厚の変更によって行っても良いし、質量体11の長さや肉厚は変更せずに挿入部材13の長さや肉厚を変更することでチューニングすることも容易であるため、チューニングにおける自由度を向上させることができる。   According to the third embodiment, in addition to realizing the same effect as the first embodiment, since the elastic body 12 and the insertion member 13 are separate, the resonance frequency of the mass change can be reduced. Tuning may be performed by changing the length or thickness of the mass body 11 or by changing the length or thickness of the insertion member 13 without changing the length or thickness of the mass body 11. Since it is easy, the degree of freedom in tuning can be improved.

しかも、質量体11及び挿入部材13にはゴム状弾性材料からなる弾性体12が加硫接着されていないので、廃却後には、質量体11ばかりでなく挿入部材13も容易に資源リサイクルすることができる。   Moreover, since the elastic body 12 made of a rubber-like elastic material is not vulcanized and bonded to the mass body 11 and the insertion member 13, not only the mass body 11 but also the insertion member 13 can be easily recycled after disposal. Can do.

1 ダイナミックダンパ
11 質量体
12 弾性体
12a 外径部
12b 接着部
12c 弾性膜部
12d ばね部
12e 凹部
13 挿入部材
2 プロペラシャフト(中空軸)
DESCRIPTION OF SYMBOLS 1 Dynamic damper 11 Mass body 12 Elastic body 12a Outer diameter part 12b Adhesion part 12c Elastic film part 12d Spring part 12e Recess 13 Insert member 2 Propeller shaft (hollow shaft)

Claims (3)

振動低減対象の中空軸の内周に遊挿される質量体と、この質量体の軸方向両側に配置されると共に外径部が前記中空軸の内周面に嵌着されるゴム状弾性材料からなる一対の弾性体と、前記質量体の内周に挿入されて前記弾性体の軸方向一端を前記質量体に結合する挿入部材とを備えることを特徴とする中空軸用ダイナミックダンパ。   A mass body loosely inserted in the inner periphery of the hollow shaft to be reduced in vibration, and a rubber-like elastic material that is disposed on both sides in the axial direction of the mass body and whose outer diameter portion is fitted on the inner peripheral surface of the hollow shaft. A hollow shaft dynamic damper, comprising: a pair of elastic bodies; and an insertion member that is inserted into an inner periphery of the mass body and couples one end of the elastic body in the axial direction to the mass body. 弾性体が挿入部材に一体に加硫接着されたことを特徴とする請求項1に記載の中空軸用ダイナミックダンパ。   2. The dynamic damper for a hollow shaft according to claim 1, wherein the elastic body is integrally vulcanized and bonded to the insertion member. 質量体、弾性体及び挿入部材が筒状又は環状であることを特徴とする請求項1又は2に記載の中空軸用ダイナミックダンパ。   The dynamic damper for a hollow shaft according to claim 1 or 2, wherein the mass body, the elastic body, and the insertion member are cylindrical or annular.
JP2011113462A 2011-05-20 2011-05-20 Dynamic damper for hollow shaft Pending JP2012241822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113462A JP2012241822A (en) 2011-05-20 2011-05-20 Dynamic damper for hollow shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113462A JP2012241822A (en) 2011-05-20 2011-05-20 Dynamic damper for hollow shaft

Publications (1)

Publication Number Publication Date
JP2012241822A true JP2012241822A (en) 2012-12-10

Family

ID=47463760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113462A Pending JP2012241822A (en) 2011-05-20 2011-05-20 Dynamic damper for hollow shaft

Country Status (1)

Country Link
JP (1) JP2012241822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139450A (en) * 2013-01-21 2014-07-31 Nok Corp Dynamic damper
CN104279264A (en) * 2014-09-18 2015-01-14 亚新科噪声与振动技术(安徽)有限公司 Transmission shaft vibration absorber
CN111237388A (en) * 2018-11-29 2020-06-05 长城汽车股份有限公司 Transmission shaft structure and vehicle
JP2020094684A (en) * 2018-12-04 2020-06-18 Nok株式会社 Dynamic damper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348039A (en) * 1989-07-14 1991-03-01 Tokai Rubber Ind Ltd Dynamic damper
JP2002147532A (en) * 2000-08-29 2002-05-22 Kinugawa Rubber Ind Co Ltd Propeller shaft

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348039A (en) * 1989-07-14 1991-03-01 Tokai Rubber Ind Ltd Dynamic damper
JP2002147532A (en) * 2000-08-29 2002-05-22 Kinugawa Rubber Ind Co Ltd Propeller shaft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139450A (en) * 2013-01-21 2014-07-31 Nok Corp Dynamic damper
CN104279264A (en) * 2014-09-18 2015-01-14 亚新科噪声与振动技术(安徽)有限公司 Transmission shaft vibration absorber
CN111237388A (en) * 2018-11-29 2020-06-05 长城汽车股份有限公司 Transmission shaft structure and vehicle
JP2020094684A (en) * 2018-12-04 2020-06-18 Nok株式会社 Dynamic damper
JP7401206B2 (en) 2018-12-04 2023-12-19 Nok株式会社 dynamic damper

Similar Documents

Publication Publication Date Title
JP5382345B2 (en) Dynamic damper for hollow rotating shaft
KR101648427B1 (en) Dynamic damper
JP6532367B2 (en) Tubular vibration control with bracket
JP2012241822A (en) Dynamic damper for hollow shaft
JP2007218412A (en) Method for manufacturing vibration-proof bush
JP4716387B2 (en) Anti-vibration bush
KR20150106638A (en) Dynamic damper
JP6872316B2 (en) Dynamic damper for propeller shaft
JP4624494B2 (en) Cylindrical dynamic damper and manufacturing method thereof
JP2009180330A (en) Automobile cylindrical vibration absorbing device manufacturing method
JP2007263148A (en) Member mount and its manufacturing method
JP7390872B2 (en) Dynamic damper and its manufacturing method
JP5003882B2 (en) Torsional damper
JP2005344764A (en) Vibration control bush
JP6100070B2 (en) Torque fluctuation absorbing damper
JP7079784B2 (en) Cylindrical motor mount for electric vehicles
JP2014020427A (en) Vibration control grommet
JP2004340170A (en) Damper
JP5944282B2 (en) Dynamic damper for hollow shaft
JP2017219055A (en) Gear Damper
JP2003247593A (en) Manufacturing method for dynamic damper
JP2004150596A (en) Flexible mounting device
JP2010216579A (en) Dynamic damper and propeller shaft
WO2016189925A1 (en) Vibration-damping device
JP5672439B2 (en) Sliding bush and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150511