JP2012239953A - Revolving type fine air bubble generator - Google Patents

Revolving type fine air bubble generator Download PDF

Info

Publication number
JP2012239953A
JP2012239953A JP2011110220A JP2011110220A JP2012239953A JP 2012239953 A JP2012239953 A JP 2012239953A JP 2011110220 A JP2011110220 A JP 2011110220A JP 2011110220 A JP2011110220 A JP 2011110220A JP 2012239953 A JP2012239953 A JP 2012239953A
Authority
JP
Japan
Prior art keywords
gas
liquid
hollow portion
fine bubble
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011110220A
Other languages
Japanese (ja)
Other versions
JP4903292B1 (en
Inventor
Shuichi Ishikawa
修一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011110220A priority Critical patent/JP4903292B1/en
Application granted granted Critical
Publication of JP4903292B1 publication Critical patent/JP4903292B1/en
Publication of JP2012239953A publication Critical patent/JP2012239953A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize and simplify a revolving type fine air bubble generator for clarifying a liquid such as water by introducing and dissolving gas such as air therein so as to be applicable to a small-scale water environment.SOLUTION: In the revolving type fine air bubble generator including a roughly spherical container with a hollow part rotationally symmetrically formed, a gas introducing port in which an external wall on one side on the rotationally symmetric axis of the container is projected in a roughly conical trapezoid into the hollow part along the rotationally symmetric axis and set up, a gas and liquid jetting port set up on the external wall on another side on the rotationally symmetric axis, and a pressurized-liquid introducing port perpendicularly set up to the rotationally symmetric axis in the vicinity of the gas and liquid jetting port, the gas self-fed from the gas introducing port by the revolving flow of the liquid flowing into the container is made fine bubbles, and a revolving gas and liquid mixture containing the fine bubble is discharged from the gas and liquid jetting port.

Description

本発明は、空気、ガス等の気体を水、その他の液体等に効率的に溶解して、たとえば水質を浄化して水環境を蘇生するための微細気泡発生装置に関する。   The present invention relates to a fine bubble generating apparatus for efficiently dissolving a gas such as air or gas in water, other liquids, etc., for example, purifying water quality and reviving a water environment.

微細気泡発生装置としては様々な方式のものが知られているが、比較的簡易かつ小規模な装置で大量の微細気泡を安定的に生成可能な方式として気液せん断方式がある。この気液せん断方式は、気液二相の流体中に高速渦流を発生させ、液流の遠心分離作用により渦流中心部に負圧の気体からなる旋回空洞部(以下、「負圧空洞部」と記す。)を形成し、液体の高速渦流と負圧空洞部との旋回速度差によって気体をせん断して微細化するものである。   Various types of microbubble generators are known, but there is a gas-liquid shearing system as a system that can stably generate a large amount of microbubbles with a relatively simple and small-scale apparatus. This gas-liquid shear method generates a high-speed vortex in a gas-liquid two-phase fluid, and a swirling cavity (hereinafter referred to as a “negative pressure cavity”) consisting of a negative pressure gas at the center of the vortex due to centrifugal separation of the liquid flow. The gas is sheared and refined by the difference in swirling speed between the liquid high-speed vortex and the negative pressure cavity.

かかる気液せん断方式の微細気泡発生装置の従来技術としては、特許文献1(特許第3397154号公報)、特許文献2(特開2006−116365号公報)に記載された発明の如く、円筒形開放容器内の内部に加圧液体を導入して高速渦流を発生させ、該高速渦流により生じた負圧空洞部の負圧により外部から気体を自吸して微細気泡化する技術が基本となる。
特許第3397154号公報 特開2006−116365号公報
As prior art of such a gas-liquid shearing type fine bubble generator, as disclosed in Patent Document 1 (Japanese Patent No. 3397154) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-116365), a cylindrical opening is used. The basic technique is to introduce a pressurized liquid into the inside of the container to generate a high-speed vortex, and to self-suck gas from the outside by the negative pressure of the negative-pressure cavity generated by the high-speed vortex to form fine bubbles.
Japanese Patent No. 3397154 JP 2006-116365 A

また、本願発明の発明者は、特許文献3(特許第4621796号)に記載された発明を提案している。すなわち、両端を閉鎖した円筒形容器の一端側の壁体に気液噴出口を設け、他端側の壁体を、気体自吸口を有し、かつ円筒形容器の軸線方向に沿って前後移動可能とすることで、生成される微細気泡の拡散形状を制御可能としたことを特徴とする、新たな気液せん断方式の微細気泡発生装置(以下、「旋回式微細気泡発生装置」と記す。)である。
特許第4621796号
The inventor of the present invention has proposed the invention described in Patent Document 3 (Patent No. 4621796). That is, a gas-liquid jet is provided in the wall on one end of the cylindrical container with both ends closed, and the wall on the other end has a gas self-priming port and moves back and forth along the axial direction of the cylindrical container. By enabling this, the diffusion shape of the generated fine bubbles can be controlled, and a new gas-liquid shearing type fine bubble generator (hereinafter referred to as “swivel type fine bubble generator”) will be described. ).
Japanese Patent No. 4621796

一方、旋回式微細気泡発生装置には、特許文献4(特許第3682286号公報)に記載された発明の如く、容器内に液体と気体を別個に導入するのではなく、あらかじめ液体と気体を混合した気液混合液の状態で導入する発明も提案されている。該発明は、容器の形状を球形、半球形、あるいはそれらを複数組み合わせた様々な形状とし、個々の容器においては、単一の導入口から導入した気液混合液により容器内に高速渦流を発生させるとともに、容器を浸漬した液体中に開放された一つ又は二つの気液噴出口から液体を取り込みつつ微細気泡を噴出させることを特徴としている。
特許第3682286号公報
On the other hand, in the swirl type fine bubble generator, the liquid and the gas are mixed in advance instead of separately introducing the liquid and the gas into the container as in the invention described in Patent Document 4 (Japanese Patent No. 3682286). An invention has also been proposed in which the gas-liquid mixed liquid is introduced in the state. The invention makes the shape of the vessel spherical, hemispherical, or various combinations of them, and in each vessel, a high-speed eddy current is generated in the vessel by the gas-liquid mixture introduced from a single inlet In addition, the microbubbles are ejected while taking in the liquid from one or two gas-liquid ejection openings opened in the liquid in which the container is immersed.
Japanese Patent No. 3682286

ところで、微細気泡発生装置は、前述の通り気体を微細気泡化することにより液体に効率的に溶解させることを目的とするものであり、湖沼や池、河川、海洋等の大規模な水環境にも、水槽や水道等の比較的限定された小規模な水環境にも適用される。前者に適用する場合は、微細気泡発生装置及びその附帯設備は比較的大型かつ複雑なものであってよいが、後者へ適用する場合は可能な限り小型かつ簡易な構造が求められる。   By the way, as described above, the microbubble generator is intended to efficiently dissolve the gas into a liquid by making the gas into microbubbles, and can be used in large-scale water environments such as lakes, ponds, rivers, and the ocean. It is also applied to relatively limited small-scale water environments such as water tanks and waterworks. When applied to the former, the fine bubble generator and its associated equipment may be relatively large and complex, but when applied to the latter, a structure that is as small and simple as possible is required.

特許文献4に記載の発明の如く、微細気泡発生装置に気液混合液を導入する方式は、大量の気体を導入でき、気液の混合比率もあらかじめ所定値に制御できるため、大規模な水環境への適用を想定した場合には利点を有する。しかし、この方式は、気液の混合比率を制御するための別途の装置を必要とするため、附帯設備も含めた装置全体の小型化は困難であり、たとえば家庭用の浄水器やシャワーヘッド等への組み込みなど、小規模な水環境への適用は難しいという問題がある。   As in the invention described in Patent Document 4, the method of introducing the gas-liquid mixture into the fine bubble generator can introduce a large amount of gas, and the gas-liquid mixing ratio can be controlled to a predetermined value in advance. It has advantages when envisioned for environmental applications. However, this method requires a separate device for controlling the mixing ratio of the gas and liquid, so it is difficult to reduce the size of the entire device including the incidental equipment. For example, a household water purifier or a shower head There is a problem that it is difficult to apply to a small-scale water environment, such as incorporation into a small water environment.

また、この方式では、混合状態の気体と液体を分離させた上で微細気泡を発生させるために、気液混合液を特に高速で旋回させなくてはならないため、気液混合液を高い圧力で容器内に圧送する必要がある。そのため、外部ポンプは必須となり、これも小型化の障害となる。   In this method, the gas-liquid mixture must be swirled at a particularly high speed in order to generate fine bubbles after separating the mixed gas and liquid. Need to be pumped into the container. For this reason, an external pump is indispensable, which also becomes an obstacle to miniaturization.

これに対し、特許文献1乃至3に記載の発明においては、気液をあらかじめ混合する必要はなく、容器に導入する液体が十分な効率で渦流を生じさえすれば、負圧空洞部の負圧により気体は自吸される。液体と気体は混合せず、自吸された気体が形成する負圧空洞部の尖端の微細気泡発生点において気体がせん断されて微細気泡が発生するのである。そのため、装置自体を小型化できるだけでなく、たとえば水道の水圧で高速渦流を発生させることができればポンプすら不要であり、前述の家庭用品等への組み込みも容易となる。   On the other hand, in the inventions described in Patent Documents 1 to 3, it is not necessary to preliminarily mix the gas and liquid. As long as the liquid introduced into the container generates a vortex with sufficient efficiency, the negative pressure of the negative pressure cavity is reduced. As a result, the gas is self-primed. The liquid and the gas are not mixed, and the gas is sheared at the tip of the fine bubble generation point of the negative pressure cavity formed by the self-sucked gas, and the fine bubble is generated. For this reason, not only can the apparatus itself be miniaturized, but, for example, if a high-speed eddy current can be generated by the water pressure of the water supply, even a pump is unnecessary, and it is easy to incorporate it into the aforementioned household items.

このように、小規模な水環境への適用を考慮した場合は、気液混合液を導入する方式よりも、気体と液体を別々に導入する方式の方が、装置全体としての小型化・簡易化が容易であり、より好適であるといえる。 Thus, when considering application to a small-scale water environment, the method of introducing gas and liquid separately is more compact and simpler than the method of introducing a gas-liquid mixture. Therefore, it can be said that it is more suitable.

ところで、旋回式微細気泡発生装置では、前述の通り、容器内に導入された気体が液体の高速渦流により負圧空洞部を形成し、気体と液体の境界、特に負圧空洞部の尖端に生ずる微細気泡発生点において、気体と液体の旋回速度差により気体が連続的にせん断されることにより微細気泡を発生させる。 By the way, in the swirl type fine bubble generator, as described above, the gas introduced into the container forms a negative pressure cavity due to the high-speed vortex of the liquid, and is generated at the boundary between the gas and the liquid, particularly at the tip of the negative pressure cavity. At the microbubble generation point, the gas is continuously sheared due to the difference in swirling speed between the gas and the liquid, thereby generating microbubbles.

ここで、液体渦流の旋回速度が速いほど負圧空洞部の負圧は大きくなり、単位時間当たりの気体の自吸量は大きくなる。従って、大量の微細気泡を効率的に発生させるために、容器の内部は、導入する液体に高い圧力を掛けずとも渦流の旋回速度を高められる構造とすることが望ましい。 Here, as the swirling speed of the liquid vortex increases, the negative pressure in the negative pressure cavity increases and the amount of gas self-priming per unit time increases. Therefore, in order to efficiently generate a large amount of fine bubbles, it is desirable that the inside of the container has a structure capable of increasing the swirling speed of the vortex without applying high pressure to the liquid to be introduced.

また、気体と液体の旋回速度差がせん断効果を生じるため、負圧空洞部においては気体導入口側から尖端の微細気泡発生点側に向けて旋回速度が急激に増加するほどせん断効果が高まり、発生する気泡をより微細化することができる。すなわち、負圧空洞部の断面積は、気体が容器に導入された直後にはある程度大きく、その後、尖端の微細気泡発生点に向けて急激に小さくなるようにすることが望ましい。 In addition, since the difference in swirling speed between gas and liquid produces a shearing effect, in the negative pressure cavity, the shearing effect increases as the swirling speed rapidly increases from the gas inlet side toward the fine bubble generation point side, The generated bubbles can be further refined. That is, it is desirable that the cross-sectional area of the negative pressure cavity is large to some extent immediately after the gas is introduced into the container, and then rapidly decreases toward the point where the fine bubbles are generated at the tip.

特許文献1乃至3に示される微細気泡発生装置は、容器の内部が基本的に円筒形の空間であり、その内部は当然微細気泡発生装置を浸漬した液体で満たされている。そのため、加圧液導入口を気体導入口側あるいは気液噴出口側のいずれに設置したとしても、液体自体の慣性により加圧液導入口付近とその反対側との間で液体の旋回速度に差を生じるため、大きな圧力で液体を圧送するならばともかく、比較的小さな圧力の場合は、結果的に渦流の旋回速度を十分に高めることが困難である。 In the fine bubble generating devices disclosed in Patent Documents 1 to 3, the inside of the container is basically a cylindrical space, and the inside is naturally filled with a liquid in which the fine bubble generating device is immersed. Therefore, regardless of whether the pressurized liquid inlet is installed on the gas inlet side or the gas liquid outlet side, the swirling speed of the liquid is increased between the vicinity of the pressurized liquid inlet and the opposite side due to the inertia of the liquid itself. In order to make a difference, it is difficult to sufficiently increase the swirling speed of the vortex flow as a result when the pressure is relatively small, regardless of whether the liquid is pumped at a large pressure.

なお、特許文献1及び2には、容器の内部を略円錐形とした微細気泡発生装置の図も示されているが、この場合も、略円錐形の基部と頂部では旋回する液体量の差から旋回速度にも差を生じるため、比較的小さな圧力で渦流の旋回速度を十分に高めることができないという問題があった。 In addition, Patent Documents 1 and 2 also show a diagram of a fine bubble generating device in which the inside of the container has a substantially conical shape, but in this case as well, the difference in the amount of liquid swirling between the substantially conical base and top Therefore, there is a problem that the swirling speed of the vortex cannot be sufficiently increased with a relatively small pressure.

以上の点から、旋回式微細気泡発生装置、特に小規模な水環境への適用を前提として気体と液体を別々に導入する方式を採用した微細気泡発生装置では、液体を圧送する圧力が小さくても液体の渦流の速度を高め、十分に微細化した気泡を大量に発生させるために、容器の内部形状のさらなる改善が必要であった。 In view of the above, in the swirl type fine bubble generator, particularly the fine bubble generator adopting the method of introducing gas and liquid separately on the premise of application to a small-scale water environment, the pressure for pumping the liquid is small. However, it was necessary to further improve the internal shape of the container in order to increase the speed of the liquid vortex and generate a large amount of sufficiently fine bubbles.

上記の課題を解決するために、本発明に係る旋回式微細気泡発生装置は、以下の構成を有している。   In order to solve the above-described problems, a swirling fine bubble generator according to the present invention has the following configuration.

すなわち、本発明の請求項1に記載の旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略球形の器体と、前記器体の回転対称軸上の一方側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の他方側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に流入した液体の旋回流により前記気体導入口から自吸した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   That is, the swirling fine bubble generator according to claim 1 of the present invention includes a substantially spherical container having a hollow portion formed in a rotational symmetry, and an outer wall on one side of the rotational symmetry axis of the container. In the vicinity of the gas / liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the rotational symmetry axis, a gas / liquid jet port opened on the other outer wall on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by microbubbles the gas that is sucked from the gas inlet by the swirling flow of the liquid that has flowed into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略球形とし、液体を満たした内部の中空部も略球形としたため、中空部内の
液体を高速旋回させる際、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。なお、加圧液導入口を回転対称軸に対して垂直方向に開設したため、中空部内に発生させる液体の渦流の旋回軸を器体の回転対称軸に一致させることができる。これにより、中空部内の液体の渦流が円滑化する。
(2)加圧液導入口から圧入された液体は、ただちに中空部内壁の曲面に沿って旋回運動を始めるが、加圧液導入口を器体の回転対称軸上の一方に設けた気液噴出口の近傍に設けたため、液体は中空部内壁沿いに旋回しながら反対側の気体導入口方向に向かい(往路)、気体導入口付近で反転した後、回転対称軸に沿って戻り(復路)、最終的に気液噴出口から器体外へ放出される。
(3)加圧液導入口付近では液体の旋回半径が小さく、中空部内にすでに存在する液体との摩擦も小さいため、中空部を円筒形とした場合に比べて、比較的小さな圧力で液体を導入しても効率的に渦流を発生させることができる。
(4)液体は旋回しながら気体導入口側へ進行するが、中空部の中心付近では当然液体の旋回半径が大きくなるため渦流の進行速度は一旦低下する。一方、遠心力は増大するため、回転対称軸上では負圧が生じ、この負圧により気体導入口から気体が中空部内へと自吸されて負圧空洞部が形成される。
(5)渦流がさらに気体導入口方向に進行すると、再び液体の旋回半径が小さくなるため、液体の旋回速度は当然に速くなり、気体導入口付近で形成された直後の負圧空洞部の負圧も高まるから、さらに効率的に気体が中空部内に自吸される。
(6)渦流の反転後の復路の過程では、液体は回転対称軸沿いに往路の内側を進む。このとき、外周側は往路の旋回流が占めているため旋回半径は拡大せず、旋回速度を維持したまま中空部中心を通過する。そして、気液噴出口に近づくにつれて旋回半径がさらに縮小するとともに、旋回速度がさらに増大する。そのため、負圧空洞部は周囲の渦流から圧迫され円錐状に先細りとなる。
(7)気体導入口から負圧空洞部内に自吸された気体は液体よりも比重が小さいため、その旋回速度は接触する液体の旋回速度よりも小さくなる。そのため、双方の旋回速度差により気液の接触面でせん断効果が発生し、負圧空洞部が円錐形に先細りとなった尖端部分に生じる微細気泡発生点において気体が微細気泡となるのである。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(8)本発明では、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した渦流が反転する際には該略円錐台形の側面に沿って誘導される。そのため、液体が回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(9)中空部内壁に直接気体導入口を開口させた場合は、前述の液体の渦流の反転の際に生ずる乱流により負圧空洞部の形状が不安定となり、ひいては微細気泡発生点における微細気泡の発生も不安定となる。本発明では、気体導入口が略円錐台形の頂部に開口しているため、自吸された気体は中空部の内壁よりも中心に近い位置で中空部内に放出される。そのため、負圧空洞部への乱流の影響を防ぐことができ、微細気泡発生の効率を高めることができる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially spherical shape and the hollow portion filled with the liquid has also a substantially spherical shape, when the liquid in the hollow portion is swirled at high speed, the friction between the liquid and the wall can be minimized, Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently. In addition, since the pressurized liquid inlet is opened in a direction perpendicular to the rotational symmetry axis, the swirl axis of the liquid vortex generated in the hollow portion can coincide with the rotational symmetry axis of the container. Thereby, the eddy flow of the liquid in a hollow part becomes smooth.
(2) The liquid press-fitted from the pressurized liquid inlet immediately starts swirling along the curved surface of the inner wall of the hollow part, but the pressurized liquid inlet is provided on one side of the rotational symmetry axis of the vessel Since the liquid is provided near the jet outlet, the liquid turns along the inner wall of the hollow part toward the gas inlet on the opposite side (outward path), reverses in the vicinity of the gas inlet, and then returns along the rotational symmetry axis (return path). Finally, it is discharged from the gas-liquid jet outlet to the outside of the body.
(3) Since the swirl radius of the liquid is small in the vicinity of the pressurized liquid inlet and the friction with the liquid already existing in the hollow portion is small, the liquid is discharged at a relatively small pressure compared to the case where the hollow portion is cylindrical. Even if it is introduced, a vortex can be efficiently generated.
(4) The liquid proceeds to the gas inlet side while swirling, but naturally the swirl radius of the liquid increases near the center of the hollow portion, and thus the traveling speed of the vortex flows temporarily decreases. On the other hand, since the centrifugal force increases, a negative pressure is generated on the rotationally symmetric axis, and the negative pressure causes a gas to be self-sucked from the gas inlet into the hollow portion to form a negative pressure cavity.
(5) When the vortex flows further in the direction of the gas inlet, the swirl radius of the liquid becomes smaller again, so the liquid swirl speed naturally increases, and the negative pressure cavity portion immediately after being formed near the gas inlet is negative. Since the pressure also increases, the gas is more efficiently self-primed into the hollow portion.
(6) In the process of the return path after the reversal of the vortex flow, the liquid travels along the outer axis along the axis of rotational symmetry. At this time, since the turning flow of the forward path occupies the outer peripheral side, the turning radius does not increase and passes through the center of the hollow portion while maintaining the turning speed. As the gas-liquid jet port is approached, the turning radius is further reduced and the turning speed is further increased. Therefore, the negative pressure cavity is compressed from the surrounding vortex and is tapered conically.
(7) Since the gas self-primed from the gas inlet into the negative pressure cavity has a specific gravity smaller than that of the liquid, the swirling speed is lower than the swirling speed of the liquid in contact. For this reason, a shearing effect is generated at the gas-liquid contact surface due to the difference in swirling speed between the two, and the gas becomes a fine bubble at a fine bubble generation point generated at a tip portion where the negative pressure cavity portion is tapered in a conical shape. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(8) In the present invention, since the gas inlet port is opened in the hollow portion so as to protrude in a substantially frustoconical shape, when the vortex reaching the inner wall of the hollow portion on the gas inlet side is reversed, Guided along the side. For this reason, the liquid easily recirculates along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(9) When the gas inlet is directly opened on the inner wall of the hollow portion, the shape of the negative pressure cavity portion becomes unstable due to the turbulent flow generated when the vortex flow of the liquid is reversed, and as a result, the fine bubbles at the microbubble generation point Bubble generation is also unstable. In the present invention, since the gas introduction port opens at the top of the substantially truncated cone shape, the self-sucked gas is discharged into the hollow portion at a position closer to the center than the inner wall of the hollow portion. Therefore, the influence of the turbulent flow on the negative pressure cavity can be prevented, and the efficiency of generating fine bubbles can be increased.

以上の通り、器体及び中空部を略球形とすることにより、従来の円筒形とした場合に比べて、比較的小さな圧力で液体を導入してもより高速の液体渦流を生じさせることができる。その結果、負圧空洞部の負圧も大きくなるため、単位時間当たりの気体の自吸量を増やすことができ、効率的により大量の微細気泡を発生させることができる。また、気体導入口を中空部内に突出する略円錐台形の頂部に設けることで、中空部内の液体の流れが円滑化し、負圧空洞部の形状を安定化できるため、微細気泡の発生効率を高めることができるのである。   As described above, by making the vessel body and the hollow part into a substantially spherical shape, a higher-speed liquid vortex can be generated even when the liquid is introduced at a relatively small pressure compared to the case of the conventional cylindrical shape. . As a result, since the negative pressure of the negative pressure cavity portion also increases, the amount of gas self-priming per unit time can be increased, and a larger amount of fine bubbles can be generated more efficiently. Also, by providing the gas inlet at the top of the substantially frustoconical shape protruding into the hollow part, the flow of liquid in the hollow part can be smoothed and the shape of the negative pressure cavity part can be stabilized, so the generation efficiency of fine bubbles is increased. It can be done.

なお、器体は完全な球形とするほかに、回転対称軸方向の全長を回転外周の最大直径よりも短くして、全体として回転対称軸方向に圧縮された球形としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to a perfect spherical shape, the entire length in the rotationally symmetric axis direction may be shorter than the maximum diameter of the outer periphery of the vessel, and may be a spherical shape that is compressed in the rotationally symmetric axis direction as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項2に係る旋回式微細気泡発生装置は、請求項1に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 2 of the present invention is the swirl type fine bubble generator according to claim 1, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

この構成により、気体導入口付近での液体の渦流の反転をさらに円滑化できる。中空部内における液体は略球形の中空部内壁に沿って円滑に旋回するが、反転の際には略円錐台形に突出した気体導入口の基部で乱流を生じ、中空部内の液体の旋回を乱すおそれがある。気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、乱流の発生自体をより効果的に防ぐことができる。   With this configuration, the reversal of the liquid vortex near the gas inlet can be further smoothed. The liquid in the hollow part swirls smoothly along the inner wall of the substantially spherical hollow part, but at the time of inversion, a turbulent flow is generated at the base of the gas inlet protruding in a substantially frustoconical shape, disturbing the swirling of the liquid in the hollow part. There is a fear. By making the substantially frustoconical side surface of the gas inlet into a curved surface integrated with the inner wall surface of the hollow portion, the occurrence of turbulence itself can be more effectively prevented.

次に、本発明の請求項3に係る旋回式微細気泡発生装置は、請求項1又は2のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, a swirl type fine bubble generator according to claim 3 of the present invention is the swirl type fine bubble generator according to claim 1 or 2, wherein the gas inlet has the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

気体導入口がかかる気体導入管を備えることにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。他の実施条件を固定したまま、気体導入口の位置のみを回転対称軸に沿って前後させた場合、気体導入口を中空部の中心に近付けるほど微細気泡の発生量が減少し、逆の場合は微細気泡の発生量が増加する。気体導入口の位置を中空部の中心に近付けた場合、負圧空洞部の全長は短くなり、単位時間当たりに微細気泡発生点に到達する気体量が増加する。液体の旋回速度が一定ならば微細気泡発生点におけるせん断効果の効率も一定であるため、気体量が多くなり過ぎると余分な気体は微細気泡化せず大きな気泡のまま気液噴出口から放出され、結果的に発生する微細気泡の量が減少することになる。逆に、気体導入口が中空部内壁に近ければ負圧空洞部の全長が長くなり、微細気泡発生点に到達した気体は余さず微細気泡化されるため、微細気泡の発生量が増加するのである。   By providing the gas introduction pipe with the gas introduction port, the position for introducing the gas into the hollow portion can be arbitrarily changed. When only the position of the gas inlet is moved back and forth along the rotational symmetry axis while fixing other implementation conditions, the amount of fine bubbles generated decreases as the gas inlet is closer to the center of the hollow part, and vice versa. Increases the amount of microbubbles generated. When the position of the gas inlet is brought closer to the center of the hollow portion, the total length of the negative pressure cavity portion is shortened, and the amount of gas reaching the fine bubble generation point per unit time is increased. If the swirl speed of the liquid is constant, the efficiency of the shear effect at the microbubble generation point is also constant, so if the amount of gas is too large, excess gas will not be made into microbubbles but will be released from the gas-liquid jet outlet as large bubbles. As a result, the amount of fine bubbles generated is reduced. On the contrary, if the gas inlet is close to the inner wall of the hollow part, the total length of the negative pressure cavity part becomes long, and the gas that has reached the fine bubble generation point is made into fine bubbles, so the amount of fine bubbles generated increases. It is.

これにより、特許文献4に記載の発明のように、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Thus, as in the invention described in Patent Document 4, in the present invention, the gas inlet tube is simply and mechanically introduced without adopting a method of introducing a gas-liquid mixed liquid in which the mixing ratio of gas and liquid is adjusted in advance. By changing the amount of protrusion into the hollow portion, the amount of fine bubbles generated can be easily controlled. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

さらに、気体導入管は器体に設けた気体導入口とは独立した部品であるため、適宜取り外して清掃することができる。器体本体は液体導入口、気液噴出口、気体導入口の合計3つの開口部を有するが、装置の運転中、液体導入口及び気液噴出口は通過する液体又は気液混合液は加圧されているため、液体導入口に至る液体流路にフィルター等を設けておけば大きな異物の進入は防げるし、気液噴出口の内径よりも小さな異物は液圧によって自然に器体外へ排出される。一方、気体導入口に至る気体流路においては、大気圧の気体が装置の動作によって自吸される構造である。そのため、大きな異物はフィルターで除去可能であるとしても、吸気効率を低下させないためには、小さな異物まで除去できるフィルターを設けることは適切でない。その結果、気体の自吸圧は液体の導入圧に比べてはるかに小さいため、気体中の小さな異物が気体導入口に残留しやすく、目詰まりを起こす可能性がある。しかし、気体導入口が独立した部品としての気体導入管として構成していれば、必要に応じて目詰まりを起こした気体導入管のみを器体から取り外し、管内の清掃あるいは気体導入管自体を交換することで容易に対処することができるという利点がある。   Furthermore, since the gas introduction pipe is a component independent of the gas introduction port provided in the container, it can be removed and cleaned as appropriate. The main body has a total of three openings: a liquid inlet, a gas-liquid jet, and a gas inlet. During operation of the device, the liquid inlet and the gas-liquid jet do not add liquid or gas-liquid mixture. Therefore, if a filter or the like is provided in the liquid flow path leading to the liquid inlet, large foreign objects can be prevented from entering, and foreign objects smaller than the inner diameter of the gas-liquid jet outlet can be discharged naturally outside the body by the liquid pressure. Is done. On the other hand, the gas flow path leading to the gas inlet has a structure in which atmospheric pressure gas is self-primed by the operation of the apparatus. For this reason, even if large foreign matters can be removed by a filter, it is not appropriate to provide a filter that can remove even small foreign matters in order not to reduce the intake efficiency. As a result, since the gas self-priming pressure is much smaller than the liquid introduction pressure, small foreign substances in the gas are likely to remain at the gas introduction port, which may cause clogging. However, if the gas inlet is configured as a gas inlet pipe as an independent part, remove only the clogged gas inlet pipe from the body as necessary, and clean the inside of the pipe or replace the gas inlet pipe itself This has the advantage that it can be easily handled.

次に、本発明の請求項4に係る旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略半球形の器体と、前記器体の略半球底面側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の略半球頂部側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に自吸した液体の旋回流により前記気体導入口から流入した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   Next, a swirl type fine bubble generator according to claim 4 of the present invention is rotationally symmetric between a substantially hemispherical container having a hollow portion formed in a rotational symmetry and an outer wall on the bottom side of the substantially hemispherical surface of the container. In the vicinity of the gas-liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the axis, a gas-liquid jet port opened on the outer wall on the substantially hemispherical top side on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by making the gas flowing from the gas inlet into a fine bubble by the swirling flow of the liquid self-sucked into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略半球形とし、液体を満たした内部の中空部も略半球形としたため、略球体とした場合と同じく、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。
(2)しかも、略球体の場合に比べて中空部内の液体の総量が小さくなり、旋回させる液体の慣性も小さくなるため、液体の導入圧が同じでも渦流の旋回速度をより高めることができ、単位時間当たりに自吸する気体量を増加させることができる。
(3)中空部を略半球形としたため、気体導入口の位置が中空部内で相対する気液噴出口に近くなるため、形成される負圧空洞部の全長も短くなる。この結果、負圧空洞部の断面は気体導入口付近から負圧空洞部尖端に向けて急激に小さくなる。これにより、負圧空洞部尖端に生じる微細気泡発生点での液体渦流の旋回速度も急激に増加し、気体のせん断効率が向上するため、より小さな微細気泡を発生させることができる。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(4)請求項1に記載の発明と同様に、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した液体の流れが反転する際、該略円錐台形の側面により誘導され、回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(5)一方、請求項1に記載の発明とは異なり、中空部は略半球形であって気体導入口付近では最大の半径を有するため、液体が反転する際には中空部が略球形の場合ほど旋回速度は増加しないが、反転後はただちに中空部の外径が縮小するため、負圧空洞部の尖端に向けて液体の旋回速度が増加する効果は同じである。
(6)そのため、結果的に回転対称軸に沿った短い距離で負圧空洞部の断面が急激に小さくなり、その尖端の微細気泡発生点における気体のせん断効率が高められる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially hemispherical shape, and the hollow portion filled with the liquid also has a substantially hemispherical shape, the friction between the liquid and the wall body can be minimized, as in the case of the substantially spherical body. Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently.
(2) Moreover, since the total amount of liquid in the hollow portion is smaller than in the case of a substantially spherical body and the inertia of the swirling liquid is smaller, the swirling speed of the vortex can be further increased even when the liquid introduction pressure is the same. The amount of gas that is self-primed per unit time can be increased.
(3) Since the hollow portion has a substantially hemispherical shape, the position of the gas introduction port is close to the gas-liquid jet port facing the inside of the hollow portion, so that the overall length of the formed negative pressure cavity portion is also shortened. As a result, the cross section of the negative pressure cavity portion decreases rapidly from the vicinity of the gas inlet toward the tip of the negative pressure cavity portion. As a result, the swirling speed of the liquid vortex at the microbubble generation point generated at the tip of the negative pressure cavity is also rapidly increased, and the shear efficiency of the gas is improved, so that smaller microbubbles can be generated. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(4) Since the gas introduction port is formed in the hollow portion so as to protrude in a substantially frustoconical shape, as in the invention described in claim 1, the flow of the liquid reaching the hollow portion inner wall on the gas introduction side is reversed. In this case, the liquid is guided by the substantially frustoconical side surface and is easy to recirculate along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(5) On the other hand, unlike the invention according to claim 1, the hollow part is substantially hemispherical and has the maximum radius near the gas inlet, so that when the liquid is reversed, the hollow part is substantially spherical. Although the swirling speed does not increase as much as the case, since the outer diameter of the hollow portion is reduced immediately after reversal, the effect of increasing the swirling speed of the liquid toward the tip of the negative pressure cavity is the same.
(6) As a result, the cross section of the negative pressure cavity is rapidly reduced at a short distance along the rotational symmetry axis, and the shear efficiency of the gas at the microbubble generation point at the tip is increased.

なお、器体は半球形とするほかに、回転対称軸方向の全長をさらに短くして、全体として凸レンズ形状としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to the hemispherical shape of the vessel, the overall length in the rotationally symmetric axis direction may be further shortened to have a convex lens shape as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項5に係る旋回式微細気泡発生装置は、請求項4に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 5 of the present invention is the swivel type fine bubble generator according to claim 4, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

請求項4に係る旋回式微細気泡発生装置では、前述の通り気体導入口周辺において中空部の断面積は最大であるので液体の旋回流の反転の最に乱流が生じる可能性は請求項3に係る旋回式微細気泡発生装置よりも小さいが、気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、この乱流の発生をさらに効果的に防ぐことができる。   In the swirl type fine bubble generator according to claim 4, since the cross-sectional area of the hollow portion is the maximum around the gas inlet as described above, there is a possibility that turbulence will occur at the time of reversal of the swirl flow of the liquid. Although it is smaller than the swirl type fine bubble generator according to the above, by making the substantially frustoconical side surface of the gas introduction port a curved surface integrated with the inner wall surface of the hollow portion, the generation of this turbulent flow can be prevented more effectively. it can.

次に、本発明の請求項6に係る旋回式微細気泡発生装置は、請求項4又は5のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, the swirl type fine bubble generator according to claim 6 of the present invention is the swirl type fine bubble generator according to any one of claims 4 and 5, wherein the gas inlet is the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

請求項3に係る旋回式微細気泡発生装置と同様に、気体導入管を回転対称軸に沿って動かすことにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。これにより、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Similarly to the swirling fine bubble generator according to the third aspect, by moving the gas introduction tube along the rotational symmetry axis, the position for introducing the gas into the hollow portion can be arbitrarily changed. Thus, the present invention simply and mechanically changes the amount of protrusion into the hollow portion of the gas introduction tube without adopting a method of introducing a gas-liquid mixture whose gas / liquid mixing ratio has been adjusted in advance. Thus, it becomes possible to easily control the generation amount of fine bubbles. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

本発明によれば、小型かつ簡易な構造で効率的に微細気泡を発生できる旋回式微細気泡発生装置を実現できる。本旋回式微細気泡発生装置では、外部ポンプにより器体内に液体を圧送することにより、気体は自動的に自吸されて微細気泡化される。特に、器体を極めて小型にした場合は、たとえば水道の水圧程度の圧力でも動作することができるため、浄水器やシャワーヘッド等の家庭用機器にも容易に組み込み可能である。そのため、本発明は、旋回式微細気泡発生装置において、特に小規模な水環境での適用範囲を拡大できるという効果を有する。   According to the present invention, it is possible to realize a swivel type microbubble generator that can efficiently generate microbubbles with a small and simple structure. In this swirling microbubble generator, the gas is automatically sucked into microbubbles by pumping the liquid into the container by an external pump. In particular, when the vessel body is extremely small, it can be operated even at a pressure about the water pressure of tap water, for example, and can be easily incorporated into household equipment such as a water purifier and a shower head. Therefore, this invention has the effect that the application range in a small-scale water environment can be expanded in a turning type fine bubble generator.

以下、本発明の実施の形態について図面1乃至5を参照して説明する。図1は、本発明の第一の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略球形の器体10は、その外壁の回転対称軸上に正対する位置に気液噴出口12と気体導入管13を有するとともに、前記気液噴出口12の近傍においては回転対称軸に対し垂直方向に向けて加圧液導入管14が接続されている。また、図2は、前記略球形の器体10を前記気液噴出口12側から観た正面図である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a side view of a swirling fine bubble generator according to a first embodiment of the present invention. The substantially spherical vessel 10 having a hollow inside has a gas-liquid jet 12 and a gas introduction pipe 13 at a position facing the rotational symmetry axis of the outer wall thereof, and is rotationally symmetric in the vicinity of the gas-liquid jet 12. A pressurized liquid introduction pipe 14 is connected in a direction perpendicular to the axis. FIG. 2 is a front view of the substantially spherical vessel 10 viewed from the gas-liquid jet 12 side.

図3は、図1の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体10の内部は中空となっており、中空部の内壁は気体導入口16付近を除いては滑らかな球内側面を成している。一方、気体導入口16は回転対称軸Xに沿って中空部内に突出した略円錐台形を成し、略円錐台形の側面は球内側面と一体的に滑らかな湾曲面16を成している。また、器体10の外部から気体導入口11を貫通する形で気体導入管13を備えている。加圧液導入管14は気液噴出口12の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口15を形成している。 FIG. 3 is a cross-sectional view of the swirling fine bubble generating device of FIG. The inside of the vessel body 10 is hollow, and the inner wall of the hollow portion forms a smooth spherical inner surface except for the vicinity of the gas inlet 16. On the other hand, the gas introduction port 16 has a substantially truncated cone shape protruding into the hollow portion along the rotational symmetry axis X, and the substantially truncated cone side surface forms a smooth curved surface 16 integrally with the spherical inner surface. Moreover, the gas introduction pipe | tube 13 is provided in the form which penetrates the gas introduction port 11 from the exterior of the container body 10. FIG. The pressurized liquid introduction pipe 14 is connected in the vicinity of the opening of the inner wall of the hollow part of the gas-liquid jet port 12 in the direction perpendicular to the rotational symmetry axis X, and forms a pressurized liquid inlet 15 on the inner wall of the hollow part. Yes.

旋回式微細気泡発生装置の動作前には、中空部には装置自体を浸漬した液体が満たされており、装置を動作すると、加圧液導入管14から圧送された液体Lが加圧液導入口15を通じて新たに中空部内に導入される。 Prior to the operation of the swirling fine bubble generating device, the hollow portion is filled with a liquid in which the device itself is immersed. When the device is operated, the liquid L fed from the pressurized liquid introducing pipe 14 is introduced into the pressurized liquid. It is newly introduced into the hollow portion through the mouth 15.

導入された液体Lは、ただちに中空部の内壁に沿って旋回しつつ、気体導入口11の方向(図3では左方向)に進み、渦流Rを生じる。渦流Rは加圧液導入口15付近では小さな半径で旋回するが、中空部の中心付近では最大の半径で旋回し、気体導入口11付近では再び小さな半径で旋回する。 The introduced liquid L immediately swirls along the inner wall of the hollow portion, proceeds in the direction of the gas inlet 11 (leftward in FIG. 3), and generates a vortex R. The swirl R swirls with a small radius near the pressurized liquid inlet 15, but swirls with a maximum radius near the center of the hollow portion, and swirls again with a small radius near the gas inlet 11.

湾曲面16まで到達した渦流Rは湾曲面16に沿って反転し、回転対称軸X沿いに往路の渦流Rの内側に復路の渦流R’を形成しつつ右方向へ進行する。渦流R’の旋回は渦流Rと同じ方向であるが、その半径は小さいため旋回速度は渦流Rよりも大きい。そのため、中空部内の液体Lには回転対称軸X上に沿って負圧が発生し、該負圧により気体導入管13から気体Aが中空部内に吸い込まれ、回転対称軸Xに沿って負圧空洞部Vが生じる。 The vortex flow R that has reached the curved surface 16 is reversed along the curved surface 16 and proceeds in the right direction along the rotational symmetry axis X while forming a return vortex flow R 'inside the forward vortex flow R. The swirl of the vortex R ′ is in the same direction as the vortex R, but the radius is small, so the swirl speed is larger than that of the vortex R. Therefore, a negative pressure is generated in the liquid L in the hollow portion along the rotational symmetry axis X, and the gas A is sucked into the hollow portion from the gas introduction pipe 13 by the negative pressure, and the negative pressure is generated along the rotational symmetry axis X. A cavity V is generated.

負圧空洞部Vを形成する気体Aは、渦流R’との摩擦によって回転を与えられ、旋回しつつ右方向に進むが、気液噴出口12に近づくにつれ渦流R’の旋回半径がさらに小さくなり、旋回速度も速くなるため、これに絞り込まれる形となって負圧空洞部Vは先細りの円錐形状となる。負圧空洞部Vの外側面では、気体Aと渦流R’の旋回する液体Lとの比重の違いから、気体Aの旋回速度は液体Lの旋回速度よりも小さくなるため、この旋回速度差により気体Aに対してせん断効果が発生し、負圧空洞部Vの尖端において気体Aが連続的にせん断されて微細気泡化する微細気泡発生点Pが生じる。 The gas A forming the negative pressure cavity V is rotated by friction with the vortex flow R ′ and proceeds to the right while swirling, but the swirl radius of the vortex flow R ′ becomes smaller as it approaches the gas-liquid jet port 12. Since the turning speed is also increased, the negative pressure cavity V becomes a tapered conical shape. On the outer surface of the negative pressure cavity V, the swirling speed of the gas A is smaller than the swirling speed of the liquid L due to the difference in specific gravity between the gas A and the swirling liquid L ′. A shear effect is generated with respect to the gas A, and a fine bubble generation point P is generated at which the gas A is continuously sheared at the tip of the negative pressure cavity V to form fine bubbles.

その後、渦流R’は微細気泡MBを含む気液混合液状態となって気液噴出口12から器体外に放出され、微細気泡MBが外部の液体中に拡散されるのである。 Thereafter, the vortex flow R ′ becomes a gas-liquid mixed liquid state containing the fine bubbles MB and is discharged from the gas-liquid jet 12 to the outside of the container, and the fine bubbles MB are diffused into the external liquid.

図4は、本発明の第二の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略半球形の器体20は、その外壁の回転対称軸X上に正対する位置に気液噴出口22と気体導入管23を有するとともに、前記気液噴出口22の近傍においては回転対称軸Xに対し垂直方向に向けて加圧液導入管24が接続されている。 FIG. 4 is a side view of the swirling fine bubble generating device according to the second embodiment of the present invention. A substantially hemispherical container body 20 having a hollow inside has a gas-liquid jet port 22 and a gas introduction pipe 23 at a position facing the rotational symmetry axis X of the outer wall, and in the vicinity of the gas-liquid jet port 22. A pressurized liquid introduction tube 24 is connected in a direction perpendicular to the rotational symmetry axis X.

図5は、図4の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体20の内部は中空となっており、中空部の内壁は気液噴出口22を頂点とする滑らかな半球内側面を成すが、気体導入口21側は半球の底面を塞ぐ円形の壁体27となっている。一方、気体導入口21は回転対称軸Xに沿って壁体27から中空部内に突出した略円錐台形を成し、中空部の内壁から壁体27を経て該略円錐台形の側面にかけて滑らかな湾曲面26を形成している。また、器体20の外部から壁体27と気体導入口21を貫通する形で気体導入管23を備えている。また、加圧液導入管24は気液噴出口22の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口25を形成している。 FIG. 5 is a cross-sectional view of the swivel type fine bubble generator of FIG. 4 taken along the rotational symmetry axis X. The inside of the vessel body 20 is hollow, and the inner wall of the hollow portion forms a smooth hemispheric inner surface with the gas-liquid jet port 22 at the top, but the gas inlet 21 side is a circular wall body that blocks the bottom surface of the hemisphere. 27. On the other hand, the gas introduction port 21 has a substantially truncated cone shape that protrudes from the wall body 27 into the hollow portion along the rotational symmetry axis X, and smoothly curves from the inner wall of the hollow portion to the side surface of the substantially truncated cone shape through the wall body 27. A surface 26 is formed. Further, a gas introduction pipe 23 is provided so as to penetrate the wall body 27 and the gas introduction port 21 from the outside of the vessel body 20. Further, the pressurized liquid introduction pipe 24 is connected in the vicinity of the opening of the inner wall of the hollow portion of the gas-liquid jet port 22 in the direction perpendicular to the rotational symmetry axis X, and the pressurized liquid inlet 25 is formed in the inner wall of the hollow portion. doing.

本実施形態においても、装置が動作して加圧液導入管24から圧送された液体Lが加圧液導入口25を通じて新たに中空部内に導入され、生じた渦流Rが図の左方向に旋回しつつ進行する過程は第一実施形態と同様である。   Also in this embodiment, the liquid L pumped from the pressurized liquid introduction pipe 24 by operating the apparatus is newly introduced into the hollow portion through the pressurized liquid introduction port 25, and the generated vortex R swirls in the left direction in the figure. However, the process of proceeding is the same as in the first embodiment.

本実施形態では、中空部が最大半径となったところで渦流Rが壁体27に到達し、湾曲面26に沿って反転して渦流R’となり、回転対称軸X沿いに渦流Rの内側を気液噴出口22に向かって進行する。渦流Rは反転する前に、第一実施形態のように旋回半径が小さくならないため、気体導入口21付近での乱流の発生が抑制される。   In the present embodiment, when the hollow portion has the maximum radius, the vortex flow R reaches the wall body 27, is reversed along the curved surface 26 to become the vortex flow R ′, and the inside of the vortex flow R along the rotational symmetry axis X is aired. It proceeds toward the liquid spout 22. Since the swirl radius is not reduced as in the first embodiment before the vortex R is reversed, the generation of turbulent flow in the vicinity of the gas inlet 21 is suppressed.

また、本実施形態では、中空部が略半球形で回転対称軸X方向の長さが短いため、反転後の渦流R’は第一実施形態よりも短い距離で旋回半径が小さくなる。その結果、発生する負圧空洞部Vの全長も短くなり、その断面積は第一実施形態よりも急激に絞り込まれることになる。そのため、負圧空洞部Vの周囲における渦流R’の旋回速度も第一実施形態よりも急激に大きくなり、微細気泡発生点Pでは気体Aに対するせん断効果は十分に高くなる。   In this embodiment, since the hollow portion is substantially hemispherical and has a short length in the direction of the rotational symmetry axis X, the swirl radius of the vortex R ′ after reversal becomes smaller at a shorter distance than in the first embodiment. As a result, the total length of the generated negative pressure cavity V is also shortened, and the cross-sectional area is narrowed more rapidly than in the first embodiment. Therefore, the swirling speed of the vortex R 'around the negative pressure cavity V is also increased more rapidly than in the first embodiment, and the shear effect on the gas A is sufficiently high at the fine bubble generation point P.

以上、二つの実施形態を比較すると、第一実施形態に比べて第二実施形態の方が中空部の容積が小さいため、当然ながら中空部内で旋回する液体Aの量、すなわち慣性重量も小さい。そのため、中空部内へ液体Lを圧送する圧力が同じであれば、第二実施形態の方がより高速の渦流を生じ、回転対称軸X上に生じる負圧空洞部Vの負圧も大きくなる。   As described above, when the two embodiments are compared, since the volume of the hollow portion is smaller in the second embodiment than in the first embodiment, the amount of the liquid A swirling in the hollow portion, that is, the inertia weight is naturally small. Therefore, if the pressure for pumping the liquid L into the hollow portion is the same, the second embodiment generates a higher-speed vortex, and the negative pressure of the negative pressure cavity V generated on the rotational symmetry axis X also increases.

このことは、本願発明の発明者が実施した実験結果からも明らかである。図6は、器体の最大直径を等しくした第一実施形態(略球形)と第二実施形態(略半球形)の試作機を用いて水中での動作実験を行い、動作中に中空部内に生じる負圧を計測した数値を表にしたものである。なお、試作機に水を圧送するポンプの出力は等しくした。   This is also clear from the results of experiments conducted by the inventors of the present invention. FIG. 6 shows an experiment in water using the prototypes of the first embodiment (substantially spherical) and the second embodiment (substantially hemispherical) with the same maximum diameter of the vessel body. The numerical values obtained by measuring the generated negative pressure are tabulated. The output of the pump that pumps water to the prototype was the same.

その結果、装置を通過する水の流量は第一実施形態では毎秒15g強であるのに対し、第二実施形態では毎秒23g強と大きく、より小型である第二実施形態の方が単位時間当たりの流量が大きいことが示された。 As a result, the flow rate of water passing through the apparatus is slightly higher than 15 g per second in the first embodiment, but is higher than 23 g per second in the second embodiment, and the smaller second embodiment is more per unit time. The flow rate of was shown to be large.

また、中空部内に生じる負圧は、第一実施形態では3回の試行の結果、平均0.458mAqであったのに対し、第二実施形態では7回の試行の結果、平均1.04mAqと二倍強の数値となった。   In addition, the negative pressure generated in the hollow portion was 0.458 mAq on average as a result of three trials in the first embodiment, whereas 1.04 mAq on average as a result of seven trials in the second embodiment. The value was more than twice.

実験の結果、第二実施形態は同じ圧力で液体を圧送しても、第一実施形態よりも速く液体Lを通過させて、中空部内においてより大きな負圧を発生させることが確認された。そのため、単位時間当たりに自吸される空気Aの量も第二実施形態の方が多くなるものと考えられるが、このことは気液噴出口から噴出する微細気泡の発生量が、目視でも第二実施形態の方が多いことからも確認できた。 As a result of the experiment, it was confirmed that even when the liquid was pumped at the same pressure, the second embodiment allowed the liquid L to pass faster than the first embodiment, thereby generating a larger negative pressure in the hollow portion. For this reason, it is considered that the amount of air A that is self-absorbed per unit time is larger in the second embodiment. This is because the amount of microbubbles ejected from the gas-liquid ejection port is also visually observed. It was confirmed from the fact that there were more two embodiments.

以上から、本発明に係る旋回式微細気泡発生装置においては、器体内の中空部の形態を略球形よりも略半球形とする方が効率性及び装置の小型化の両面においてより好適である。 From the above, in the swirling fine bubble generating device according to the present invention, it is more preferable in terms of both efficiency and miniaturization of the device that the shape of the hollow portion in the container is substantially hemispherical than spherical.

なお、器体の形状を変えた場合に微細気泡発生点Pを気液噴出口12の中空部側の近傍の適切な位置に生じさせることは、前述した通り、気体導入口11を形成する円錐台形側面の回転対称軸Xに対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部Vの円錐形の高さを制御することにより実現できる。図7は、円錐台形の形状と生成される負圧空洞部Vの形状の関係を例示した部分拡大図であるが、負圧空洞部Vの円錐形は概ね円錐台形の頂部を底面とし、円錐台形の側面の延長面に沿って負圧空洞部Vの側面も形成されることが発明者の実験で確認された。 When the shape of the container is changed, the generation of the fine bubble generation point P at an appropriate position in the vicinity of the hollow portion side of the gas-liquid jet 12 is, as described above, the cone forming the gas inlet 11 This can be realized by controlling the height of the conical shape of the negative pressure cavity V by appropriately changing the angle of the trapezoidal side surface with respect to the rotational symmetry axis X and the cross-sectional area of the top of the truncated cone. FIG. 7 is a partially enlarged view illustrating the relationship between the shape of the frustoconical shape and the shape of the generated negative pressure cavity portion V. The conical shape of the negative pressure cavity portion V has a substantially truncated cone-shaped top portion as a bottom surface, and a conical shape. It was confirmed by the inventors' experiment that the side surface of the negative pressure cavity V is also formed along the extended surface of the trapezoidal side surface.

以上、本発明に係る旋回式微細気泡発生装置の実施の形態について図面を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的又は本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属する。 The embodiment of the swirling fine bubble generator according to the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and the purpose of the improvement or the technical idea of the present invention. Within the scope of the present invention, improvements or modifications are possible and belong to the technical scope of the present invention.

本発明は、気体を微細気泡化して液体中に効率的に溶解させるための微細気泡発生装置に適用され、例えば水中の酸素量を賦加して水質を改善する水質改善装置に適している。本発明は、特に、効率性の高い微細気泡発生装置を小型化し簡易な構造で実現可能であるので、家庭用の浄水器やシャワーヘッド等に内蔵する小型の水質改善装置に好適である。   The present invention is applied to a fine bubble generating device for making a gas into fine bubbles and efficiently dissolving them in a liquid. For example, the present invention is suitable for a water quality improving device that improves the water quality by adding an amount of oxygen in water. The present invention is particularly suitable for a small water quality improvement device built in a domestic water purifier or a shower head because a highly efficient microbubble generator can be realized with a small size and a simple structure.

本発明の第一実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の正面図である。It is a front view of the revolving type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning-type fine bubble generator which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第一実施形態及び第二実施形態に係る旋回式微細気泡発生装置の試作品を用いて行った試験結果数値の表である。It is a table | surface of the numerical value of the test result performed using the prototype of the turning type fine bubble generator which concerns on 1st embodiment of this invention, and 2nd embodiment. 円錐台形の形状による負圧空洞部の形状の変化を例示する部分拡大図である。It is the elements on larger scale which illustrate the change of the shape of the negative pressure cavity part by the shape of a truncated cone.

X 回転対称軸
A 気体
L 液体
MB 微細気泡
R 渦流(往路)
R’ 渦流(復路)
V 負圧空洞部
10 器体(第一実施形態)
11 気体導入口(第一実施形態)
12 気液噴出口(第一実施形態)
13 気体導入管(第一実施形態)
14 加圧液導入管(第一実施形態)
15 加圧液導入口(第一実施形態)
16 湾曲面(第一実施形態)
20 器体(第二実施形態)
21 気体導入口(第二実施形態)
22 気液噴出口(第二実施形態)
23 気体導入管(第二実施形態)
24 加圧液導入管(第二実施形態)
25 加圧液導入口(第二実施形態)
26 湾曲面(第二実施形態)
27 壁体(第二実施形態)
X Axis of rotation A Gas L Liquid MB Fine bubble R Eddy current (outward)
R 'vortex (return)
V negative pressure cavity 10 vessel (first embodiment)
11 Gas inlet (first embodiment)
12 Gas-liquid spout (first embodiment)
13 Gas introduction pipe (first embodiment)
14 Pressurized liquid introduction pipe (first embodiment)
15 Pressurized liquid inlet (first embodiment)
16 Curved surface (first embodiment)
20 body (second embodiment)
21 Gas inlet (second embodiment)
22 Gas-liquid spout (second embodiment)
23 Gas introduction pipe (second embodiment)
24 Pressurized liquid introduction pipe (second embodiment)
25 Pressurized liquid inlet (second embodiment)
26 Curved surface (second embodiment)
27 Wall body (second embodiment)

本発明は、空気、ガス等の気体を水、その他の液体等に効率的に溶解して、たとえば水質を浄化して水環境を蘇生するための微細気泡発生装置に関する。   The present invention relates to a fine bubble generating apparatus for efficiently dissolving a gas such as air or gas in water, other liquids, etc., for example, purifying water quality and reviving a water environment.

微細気泡発生装置としては様々な方式のものが知られているが、比較的簡易かつ小規模な装置で大量の微細気泡を安定的に生成可能な方式として気液せん断方式がある。この気液せん断方式は、気液二相の流体中に高速渦流を発生させ、液流の遠心分離作用により渦流中心部に負圧の気体からなる旋回空洞部(以下、「負圧空洞部」と記す。)を形成し、液体の高速渦流と負圧空洞部との旋回速度差によって気体をせん断して微細化するものである。   Various types of microbubble generators are known, but there is a gas-liquid shearing system as a system that can stably generate a large amount of microbubbles with a relatively simple and small-scale apparatus. This gas-liquid shear method generates a high-speed vortex in a gas-liquid two-phase fluid, and a swirling cavity (hereinafter referred to as a “negative pressure cavity”) consisting of a negative pressure gas at the center of the vortex due to centrifugal separation of the liquid flow. The gas is sheared and refined by the difference in swirling speed between the liquid high-speed vortex and the negative pressure cavity.

かかる気液せん断方式の微細気泡発生装置の従来技術としては、特許文献1(特許第3397154号公報)、特許文献2(特開2006−116365号公報)に記載された発明の如く、円筒形開放容器内の内部に加圧液体を導入して高速渦流を発生させ、該高速渦流により生じた負圧空洞部の負圧により外部から気体を自吸して微細気泡化する技術が基本となる。
特許第3397154号公報 特開2006−116365号公報
As prior art of such a gas-liquid shearing type fine bubble generator, as disclosed in Patent Document 1 (Japanese Patent No. 3397154) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-116365), a cylindrical opening is used. The basic technique is to introduce a pressurized liquid into the inside of the container to generate a high-speed vortex, and to self-suck gas from the outside by the negative pressure of the negative-pressure cavity generated by the high-speed vortex to form fine bubbles.
Japanese Patent No. 3397154 JP 2006-116365 A

また、本願発明の発明者は、特許文献3(特許第4621796号)に記載された発明を提案している。すなわち、両端を閉鎖した円筒形容器の一端側の壁体に気液噴出口を設け、他端側の壁体を、気体自吸口を有し、かつ円筒形容器の軸線方向に沿って前後移動可能とすることで、生成される微細気泡の拡散形状を制御可能としたことを特徴とする、新たな気液せん断方式の微細気泡発生装置(以下、「旋回式微細気泡発生装置」と記す。)である。
特許第4621796号
The inventor of the present invention has proposed the invention described in Patent Document 3 (Patent No. 4621796). That is, a gas-liquid jet is provided in the wall on one end of the cylindrical container with both ends closed, and the wall on the other end has a gas self-priming port and moves back and forth along the axial direction of the cylindrical container. By enabling this, the diffusion shape of the generated fine bubbles can be controlled, and a new gas-liquid shearing type fine bubble generator (hereinafter referred to as “swivel type fine bubble generator”) will be described. ).
Japanese Patent No. 4621796

一方、旋回式微細気泡発生装置には、特許文献4(特許第3682286号公報)に記載された発明の如く、容器内に液体と気体を別個に導入するのではなく、あらかじめ液体と気体を混合した気液混合液の状態で導入する発明も提案されている。該発明は、容器の形状を球形、半球形、あるいはそれらを複数組み合わせた様々な形状とし、個々の容器においては、単一の導入口から導入した気液混合液により容器内に高速渦流を発生させるとともに、容器を浸漬した液体中に開放された一つ又は二つの気液噴出口から液体を取り込みつつ微細気泡を噴出させることを特徴としている。
特許第3682286号公報
On the other hand, in the swirl type fine bubble generator, the liquid and the gas are mixed in advance instead of separately introducing the liquid and the gas into the container as in the invention described in Patent Document 4 (Japanese Patent No. 3682286). An invention has also been proposed in which the gas-liquid mixed liquid is introduced in the state. The invention makes the shape of the vessel spherical, hemispherical, or various combinations of them, and in each vessel, a high-speed eddy current is generated in the vessel by the gas-liquid mixture introduced from a single inlet In addition, the microbubbles are ejected while taking in the liquid from one or two gas-liquid ejection openings opened in the liquid in which the container is immersed.
Japanese Patent No. 3682286

ところで、微細気泡発生装置は、前述の通り気体を微細気泡化することにより液体に効率的に溶解させることを目的とするものであり、湖沼や池、河川、海洋等の大規模な水環境にも、水槽や水道等の比較的限定された小規模な水環境にも適用される。前者に適用する場合は、微細気泡発生装置及びその附帯設備は比較的大型かつ複雑なものであってよいが、後者へ適用する場合は可能な限り小型かつ簡易な構造が求められる。   By the way, as described above, the microbubble generator is intended to efficiently dissolve the gas into a liquid by making the gas into microbubbles, and can be used in large-scale water environments such as lakes, ponds, rivers, and the ocean. It is also applied to relatively limited small-scale water environments such as water tanks and waterworks. When applied to the former, the fine bubble generator and its associated equipment may be relatively large and complex, but when applied to the latter, a structure that is as small and simple as possible is required.

特許文献4に記載の発明の如く、微細気泡発生装置に気液混合液を導入する方式は、大量の気体を導入でき、気液の混合比率もあらかじめ所定値に制御できるため、大規模な水環境への適用を想定した場合には利点を有する。しかし、この方式は、気液の混合比率を制御するための別途の装置を必要とするため、附帯設備も含めた装置全体の小型化は困難であり、たとえば家庭用の浄水器やシャワーヘッド等への組み込みなど、小規模な水環境への適用は難しいという問題がある。   As in the invention described in Patent Document 4, the method of introducing the gas-liquid mixture into the fine bubble generator can introduce a large amount of gas, and the gas-liquid mixing ratio can be controlled to a predetermined value in advance. It has advantages when envisioned for environmental applications. However, this method requires a separate device for controlling the mixing ratio of the gas and liquid, so it is difficult to reduce the size of the entire device including the incidental equipment. For example, a household water purifier or a shower head There is a problem that it is difficult to apply to a small-scale water environment, such as incorporation into a small water environment.

また、この方式では、混合状態の気体と液体を分離させた上で微細気泡を発生させるために、気液混合液を特に高速で旋回させなくてはならないため、気液混合液を高い圧力で容器内に圧送する必要がある。そのため、外部ポンプは必須となり、これも小型化の障害となる。   In this method, the gas-liquid mixture must be swirled at a particularly high speed in order to generate fine bubbles after separating the mixed gas and liquid. Need to be pumped into the container. For this reason, an external pump is indispensable, which also becomes an obstacle to miniaturization.

これに対し、特許文献1乃至3に記載の発明においては、気液をあらかじめ混合する必要はなく、容器に導入する液体が十分な効率で渦流を生じさえすれば、負圧空洞部の負圧により気体は自吸される。液体と気体は混合せず、自吸された気体が形成する負圧空洞部の尖端の微細気泡発生点において気体がせん断されて微細気泡が発生するのである。そのため、装置自体を小型化できるだけでなく、たとえば水道の水圧で高速渦流を発生させることができればポンプすら不要であり、前述の家庭用品等への組み込みも容易となる。   On the other hand, in the inventions described in Patent Documents 1 to 3, it is not necessary to preliminarily mix the gas and liquid. As long as the liquid introduced into the container generates a vortex with sufficient efficiency, the negative pressure of the negative pressure cavity is reduced. As a result, the gas is self-primed. The liquid and the gas are not mixed, and the gas is sheared at the tip of the fine bubble generation point of the negative pressure cavity formed by the self-sucked gas, and the fine bubble is generated. For this reason, not only can the apparatus itself be miniaturized, but, for example, if a high-speed eddy current can be generated by the water pressure of the water supply, even a pump is unnecessary, and it is easy to incorporate it into the aforementioned household items.

このように、小規模な水環境への適用を考慮した場合は、気液混合液を導入する方式よりも、気体と液体を別々に導入する方式の方が、装置全体としての小型化・簡易化が容易であり、より好適であるといえる。 Thus, when considering application to a small-scale water environment, the method of introducing gas and liquid separately is more compact and simpler than the method of introducing a gas-liquid mixture. Therefore, it can be said that it is more suitable.

ところで、旋回式微細気泡発生装置では、前述の通り、容器内に導入された気体が液体の高速渦流により負圧空洞部を形成し、気体と液体の境界、特に負圧空洞部の尖端に生ずる微細気泡発生点において、気体と液体の旋回速度差により気体が連続的にせん断されることにより微細気泡を発生させる。 By the way, in the swirl type fine bubble generator, as described above, the gas introduced into the container forms a negative pressure cavity due to the high-speed vortex of the liquid, and is generated at the boundary between the gas and the liquid, particularly at the tip of the negative pressure cavity. At the microbubble generation point, the gas is continuously sheared due to the difference in swirling speed between the gas and the liquid, thereby generating microbubbles.

ここで、液体渦流の旋回速度が速いほど負圧空洞部の負圧は大きくなり、単位時間当たりの気体の自吸量は大きくなる。従って、大量の微細気泡を効率的に発生させるために、容器の内部は、導入する液体に高い圧力を掛けずとも渦流の旋回速度を高められる構造とすることが望ましい。 Here, as the swirling speed of the liquid vortex increases, the negative pressure in the negative pressure cavity increases and the amount of gas self-priming per unit time increases. Therefore, in order to efficiently generate a large amount of fine bubbles, it is desirable that the inside of the container has a structure capable of increasing the swirling speed of the vortex without applying high pressure to the liquid to be introduced.

また、気体と液体の旋回速度差がせん断効果を生じるため、負圧空洞部においては気体導入口側から尖端の微細気泡発生点側に向けて旋回速度が急激に増加するほどせん断効果が高まり、発生する気泡をより微細化することができる。すなわち、負圧空洞部の断面積は、気体が容器に導入された直後にはある程度大きく、その後、尖端の微細気泡発生点に向けて急激に小さくなるようにすることが望ましい。 In addition, since the difference in swirling speed between gas and liquid produces a shearing effect, in the negative pressure cavity, the shearing effect increases as the swirling speed rapidly increases from the gas inlet side toward the fine bubble generation point side, The generated bubbles can be further refined. That is, it is desirable that the cross-sectional area of the negative pressure cavity is large to some extent immediately after the gas is introduced into the container, and then rapidly decreases toward the point where the fine bubbles are generated at the tip.

特許文献1乃至3に示される微細気泡発生装置は、容器の内部が基本的に円筒形の空間であり、その内部は当然微細気泡発生装置を浸漬した液体で満たされている。そのため、加圧液導入口を気体導入口側あるいは気液噴出口側のいずれに設置したとしても、液体自体の慣性により加圧液導入口付近とその反対側との間で液体の旋回速度に差を生じるため、大きな圧力で液体を圧送するならばともかく、比較的小さな圧力の場合は、結果的に渦流の旋回速度を十分に高めることが困難である。 In the fine bubble generating devices disclosed in Patent Documents 1 to 3, the inside of the container is basically a cylindrical space, and the inside is naturally filled with a liquid in which the fine bubble generating device is immersed. Therefore, regardless of whether the pressurized liquid inlet is installed on the gas inlet side or the gas liquid outlet side, the swirling speed of the liquid is increased between the vicinity of the pressurized liquid inlet and the opposite side due to the inertia of the liquid itself. In order to make a difference, it is difficult to sufficiently increase the swirling speed of the vortex flow as a result when the pressure is relatively small, regardless of whether the liquid is pumped at a large pressure.

なお、特許文献1及び2には、容器の内部を略円錐形とした微細気泡発生装置の図も示されているが、この場合も、略円錐形の基部と頂部では旋回する液体量の差から旋回速度にも差を生じるため、比較的小さな圧力で渦流の旋回速度を十分に高めることができないという問題があった。 In addition, Patent Documents 1 and 2 also show a diagram of a fine bubble generating device in which the inside of the container has a substantially conical shape, but in this case as well, the difference in the amount of liquid swirling between the substantially conical base and the top is shown. Therefore, there is a problem that the swirling speed of the vortex cannot be sufficiently increased with a relatively small pressure.

以上の点から、旋回式微細気泡発生装置、特に小規模な水環境への適用を前提として気体と液体を別々に導入する方式を採用した微細気泡発生装置では、液体を圧送する圧力が小さくても液体の渦流の速度を高め、十分に微細化した気泡を大量に発生させるために、容器の内部形状のさらなる改善が必要であった。 In view of the above, in the swirl type fine bubble generator, particularly the fine bubble generator adopting the method of introducing gas and liquid separately on the premise of application to a small-scale water environment, the pressure for pumping the liquid is small. However, it was necessary to further improve the internal shape of the container in order to increase the speed of the liquid vortex and generate a large amount of sufficiently fine bubbles.

上記の課題を解決するために、本発明に係る旋回式微細気泡発生装置は、以下の構成を有している。   In order to solve the above-described problems, a swirling fine bubble generator according to the present invention has the following configuration.

すなわち、本発明の請求項1に記載の旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略球形の器体と、前記器体の回転対称軸上の一方側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の他方側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に流入した液体の旋回流により前記気体導入口から自吸した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   That is, the swirling fine bubble generator according to claim 1 of the present invention includes a substantially spherical container having a hollow portion formed in a rotational symmetry, and an outer wall on one side of the rotational symmetry axis of the container. In the vicinity of the gas / liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the rotational symmetry axis, a gas / liquid jet port opened on the other outer wall on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by microbubbles the gas that is sucked from the gas inlet by the swirling flow of the liquid that has flowed into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略球形とし、液体を満たした内部の中空部も略球形としたため、中空部内の
液体を高速旋回させる際、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。なお、加圧液導入口を回転対称軸に対して垂直方向に開設したため、中空部内に発生させる液体の渦流の旋回軸を器体の回転対称軸に一致させることができる。これにより、中空部内の液体の渦流が円滑化する。
(2)加圧液導入口から圧入された液体は、ただちに中空部内壁の曲面に沿って旋回運動を始めるが、加圧液導入口を器体の回転対称軸上の一方に設けた気液噴出口の近傍に設けたため、液体は中空部内壁沿いに旋回しながら反対側の気体導入口方向に向かい(往路)、気体導入口付近で反転した後、回転対称軸に沿って戻り(復路)、最終的に気液噴出口から器体外へ放出される。
(3)加圧液導入口付近では液体の旋回半径が小さく、中空部内にすでに存在する液体との摩擦も小さいため、中空部を円筒形とした場合に比べて、比較的小さな圧力で液体を導入しても効率的に渦流を発生させることができる。
(4)液体は旋回しながら気体導入口側へ進行するが、この往路の渦流は単純な螺旋状に旋回するのではなく、器体内壁面の曲面に沿って文字通り渦巻き状に旋回するため、渦流の旋回面は、器体内部が円筒形である場合に比して、回転対称軸に対して気体導入口に向けて傾斜する。そのため、往路における液体の延べ行程距離が短縮されて渦流の進行速度が増し、気体導入口付近に単位時間当たりに到達する液体量も増加する。また、中空部の中心付近では当然液体の旋回半径が大きくなるため渦流の進行速度は一旦低下する。一方、遠心力は増大するため、回転対称軸上では負圧が生じ、この負圧により気体導入口から気体が中空部内へと自吸されて負圧空洞部が形成される。
(5)渦流がさらに気体導入口方向に進行すると、再び液体の旋回半径が小さくなるため、液体の旋回速度は当然に速くなり、気体導入口付近で形成された直後の負圧空洞部の負圧も高まるから、さらに効率的に気体が中空部内に自吸される。
(6)渦流の反転後の復路の過程では、液体は回転対称軸沿いに往路の内側を進む。このとき、外周側は往路の旋回流が占めているため旋回半径は拡大せず、旋回速度を維持したまま中空部中心を通過する。そして、気液噴出口に近づくにつれて旋回半径がさらに縮小するとともに、旋回速度がさらに増大する。そのため、負圧空洞部は周囲の渦流から圧迫され円錐状に先細りとなる。
(7)気体導入口から負圧空洞部内に自吸された気体は液体よりも比重が小さいため、その旋回速度は接触する液体の旋回速度よりも小さくなる。そのため、双方の旋回速度差により気液の接触面でせん断効果が発生し、負圧空洞部が円錐形に先細りとなった尖端部分に生じる微細気泡発生点において気体が微細気泡となるのである。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(8)本発明では、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した渦流が反転する際には該略円錐台形の側面に沿って誘導される。そのため、液体が回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(9)中空部内壁に直接気体導入口を開口させた場合は、前述の液体の渦流の反転の際に生ずる乱流により負圧空洞部の形状が不安定となり、ひいては微細気泡発生点における微細気泡の発生も不安定となる。本発明では、気体導入口が略円錐台形の頂部に開口しているため、自吸された気体は中空部の内壁よりも中心に近い位置で中空部内に放出される。そのため、負圧空洞部への乱流の影響を防ぐことができ、微細気泡発生の効率を高めることができる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially spherical shape and the hollow portion filled with the liquid has also a substantially spherical shape, when the liquid in the hollow portion is swirled at high speed, the friction between the liquid and the wall can be minimized, Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently. In addition, since the pressurized liquid inlet is opened in a direction perpendicular to the rotational symmetry axis, the swirl axis of the liquid vortex generated in the hollow portion can coincide with the rotational symmetry axis of the container. Thereby, the eddy flow of the liquid in a hollow part becomes smooth.
(2) The liquid press-fitted from the pressurized liquid inlet immediately starts swirling along the curved surface of the inner wall of the hollow part, but the pressurized liquid inlet is provided on one side of the rotational symmetry axis of the vessel Since the liquid is provided near the jet outlet, the liquid turns along the inner wall of the hollow part toward the gas inlet on the opposite side (outward path), reverses in the vicinity of the gas inlet, and then returns along the rotational symmetry axis (return path). Finally, it is discharged from the gas-liquid jet outlet to the outside of the body.
(3) Since the swirl radius of the liquid is small in the vicinity of the pressurized liquid inlet and the friction with the liquid already existing in the hollow portion is small, the liquid is discharged at a relatively small pressure compared to the case where the hollow portion is cylindrical. Even if it is introduced, a vortex can be efficiently generated.
(4) Although the liquid travels to the gas inlet side while swirling, the vortex in this forward path does not swirl in a simple spiral but literally swirls along the curved surface of the inner wall surface. The swivel plane is inclined toward the gas inlet with respect to the rotational symmetry axis as compared with the case where the inside of the vessel is cylindrical. As a result, the total travel distance of the liquid in the forward path is shortened, the vortex flow speed increases, and the amount of liquid that reaches the vicinity of the gas inlet per unit time also increases. In addition, since the swirl radius of the liquid naturally increases near the center of the hollow portion, the traveling speed of the vortex flows temporarily decreases. On the other hand, since the centrifugal force increases, a negative pressure is generated on the rotationally symmetric axis, and the negative pressure causes a gas to be self-sucked from the gas inlet into the hollow portion to form a negative pressure cavity.
(5) When the vortex flows further in the direction of the gas inlet, the swirl radius of the liquid becomes smaller again, so the liquid swirl speed naturally increases, and the negative pressure cavity portion immediately after being formed near the gas inlet is negative. Since the pressure also increases, the gas is more efficiently self-primed into the hollow portion.
(6) In the process of the return path after the reversal of the vortex flow, the liquid travels along the outer axis along the axis of rotational symmetry. At this time, since the turning flow of the forward path occupies the outer peripheral side, the turning radius does not increase and passes through the center of the hollow portion while maintaining the turning speed. As the gas-liquid jet port is approached, the turning radius is further reduced and the turning speed is further increased. Therefore, the negative pressure cavity is compressed from the surrounding vortex and is tapered conically.
(7) Since the gas self-primed from the gas inlet into the negative pressure cavity has a specific gravity smaller than that of the liquid, the swirling speed is lower than the swirling speed of the liquid in contact. For this reason, a shearing effect is generated at the gas-liquid contact surface due to the difference in swirling speed between the two, and the gas becomes a fine bubble at a fine bubble generation point generated at a tip portion where the negative pressure cavity portion is tapered in a conical shape. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(8) In the present invention, since the gas inlet port is opened in the hollow portion so as to protrude in a substantially frustoconical shape, when the vortex reaching the inner wall of the hollow portion on the gas inlet side is reversed, Guided along the side. For this reason, the liquid easily recirculates along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(9) When the gas inlet is directly opened on the inner wall of the hollow portion, the shape of the negative pressure cavity portion becomes unstable due to the turbulent flow generated when the vortex flow of the liquid is reversed, and as a result, the fine bubbles at the microbubble generation point Bubble generation is also unstable. In the present invention, since the gas introduction port opens at the top of the substantially truncated cone shape, the self-sucked gas is discharged into the hollow portion at a position closer to the center than the inner wall of the hollow portion. Therefore, the influence of the turbulent flow on the negative pressure cavity can be prevented, and the efficiency of generating fine bubbles can be increased.

以上の通り、器体及び中空部を略球形とすることにより、従来の円筒形とした場合に比べて、比較的小さな圧力で液体を導入してもより高速の液体渦流を生じさせることができる。その結果、負圧空洞部の負圧も大きくなるため、単位時間当たりの気体の自吸量を増やすことができ、効率的により大量の微細気泡を発生させることができる。また、気体導入口を中空部内に突出する略円錐台形の頂部に設けることで、中空部内の液体の流れが円滑化し、負圧空洞部の形状を安定化できるため、微細気泡の発生効率を高めることができるのである。   As described above, by making the vessel body and the hollow part into a substantially spherical shape, a higher-speed liquid vortex can be generated even when the liquid is introduced at a relatively small pressure compared to the case of the conventional cylindrical shape. . As a result, since the negative pressure of the negative pressure cavity portion also increases, the amount of gas self-priming per unit time can be increased, and a larger amount of fine bubbles can be generated more efficiently. Also, by providing the gas inlet at the top of the substantially frustoconical shape protruding into the hollow part, the flow of liquid in the hollow part can be smoothed and the shape of the negative pressure cavity part can be stabilized, so the generation efficiency of fine bubbles is increased. It can be done.

なお、器体は完全な球形とするほかに、回転対称軸方向の全長を回転外周の最大直径よりも短くして、全体として回転対称軸方向に圧縮された球形としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to a perfect spherical shape, the entire length in the rotationally symmetric axis direction may be shorter than the maximum diameter of the outer periphery of the vessel, and may be a spherical shape that is compressed in the rotationally symmetric axis direction as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項2に係る旋回式微細気泡発生装置は、請求項1に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 2 of the present invention is the swirl type fine bubble generator according to claim 1, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

この構成により、気体導入口付近での液体の渦流の反転をさらに円滑化できる。中空部内における液体は略球形の中空部内壁に沿って円滑に旋回するが、反転の際には略円錐台形に突出した気体導入口の基部で乱流を生じ、中空部内の液体の旋回を乱すおそれがある。気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、乱流の発生自体をより効果的に防ぐことができる。   With this configuration, the reversal of the liquid vortex near the gas inlet can be further smoothed. The liquid in the hollow part swirls smoothly along the inner wall of the substantially spherical hollow part, but at the time of inversion, a turbulent flow is generated at the base of the gas inlet protruding in a substantially frustoconical shape, disturbing the swirling of the liquid in the hollow part. There is a fear. By making the substantially frustoconical side surface of the gas inlet into a curved surface integrated with the inner wall surface of the hollow portion, the occurrence of turbulence itself can be more effectively prevented.

次に、本発明の請求項3に係る旋回式微細気泡発生装置は、請求項1又は2のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, a swirl type fine bubble generator according to claim 3 of the present invention is the swirl type fine bubble generator according to claim 1 or 2, wherein the gas inlet has the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

気体導入口がかかる気体導入管を備えることにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。他の実施条件を固定したまま、気体導入口の位置のみを回転対称軸に沿って前後させた場合、気体導入口を中空部の中心に近付けるほど微細気泡の発生量が減少し、逆の場合は微細気泡の発生量が増加する。気体導入口の位置を中空部の中心に近付けた場合、負圧空洞部の全長は短くなり、単位時間当たりに微細気泡発生点に到達する気体量が増加する。液体の旋回速度が一定ならば微細気泡発生点におけるせん断効果の効率も一定であるため、気体量が多くなり過ぎると余分な気体は微細気泡化せず大きな気泡のまま気液噴出口から放出され、結果的に発生する微細気泡の量が減少することになる。逆に、気体導入口が中空部内壁に近ければ負圧空洞部の全長が長くなり、微細気泡発生点に到達した気体は余さず微細気泡化されるため、微細気泡の発生量が増加するのである。   By providing the gas introduction pipe with the gas introduction port, the position for introducing the gas into the hollow portion can be arbitrarily changed. When only the position of the gas inlet is moved back and forth along the rotational symmetry axis while fixing other implementation conditions, the amount of fine bubbles generated decreases as the gas inlet is closer to the center of the hollow part, and vice versa. Increases the amount of microbubbles generated. When the position of the gas inlet is brought closer to the center of the hollow portion, the total length of the negative pressure cavity portion is shortened, and the amount of gas reaching the fine bubble generation point per unit time is increased. If the swirl speed of the liquid is constant, the efficiency of the shear effect at the microbubble generation point is also constant, so if the amount of gas is too large, excess gas will not be made into microbubbles but will be released from the gas-liquid jet outlet as large bubbles. As a result, the amount of fine bubbles generated is reduced. On the contrary, if the gas inlet is close to the inner wall of the hollow part, the total length of the negative pressure cavity part becomes long, and the gas that has reached the fine bubble generation point is made into fine bubbles, so the amount of fine bubbles generated increases. It is.

これにより、特許文献4に記載の発明のように、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Thus, as in the invention described in Patent Document 4, in the present invention, the gas inlet tube is simply and mechanically introduced without adopting a method of introducing a gas-liquid mixed liquid in which the mixing ratio of gas and liquid is adjusted in advance. By changing the amount of protrusion into the hollow portion, the amount of fine bubbles generated can be easily controlled. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

さらに、気体導入管は器体に設けた気体導入口とは独立した部品であるため、適宜取り外して清掃することができる。器体本体は液体導入口、気液噴出口、気体導入口の合計3つの開口部を有するが、装置の運転中、液体導入口及び気液噴出口は通過する液体又は気液混合液は加圧されているため、液体導入口に至る液体流路にフィルター等を設けておけば大きな異物の進入は防げるし、気液噴出口の内径よりも小さな異物は液圧によって自然に器体外へ排出される。一方、気体導入口に至る気体流路においては、大気圧の気体が装置の動作によって自吸される構造である。そのため、大きな異物はフィルターで除去可能であるとしても、吸気効率を低下させないためには、小さな異物まで除去できるフィルターを設けることは適切でない。その結果、気体の自吸圧は液体の導入圧に比べてはるかに小さいため、気体中の小さな異物が気体導入口に残留しやすく、目詰まりを起こす可能性がある。しかし、気体導入口が独立した部品としての気体導入管として構成していれば、必要に応じて目詰まりを起こした気体導入管のみを器体から取り外し、管内の清掃あるいは気体導入管自体を交換することで容易に対処することができるという利点がある。   Furthermore, since the gas introduction pipe is a component independent of the gas introduction port provided in the container, it can be removed and cleaned as appropriate. The main body has a total of three openings: a liquid inlet, a gas-liquid jet, and a gas inlet. During operation of the device, the liquid inlet and the gas-liquid jet do not add liquid or gas-liquid mixture. Therefore, if a filter or the like is provided in the liquid flow path leading to the liquid inlet, large foreign objects can be prevented from entering, and foreign objects smaller than the inner diameter of the gas-liquid jet outlet can be discharged naturally outside the body by the liquid pressure. Is done. On the other hand, the gas flow path leading to the gas inlet has a structure in which atmospheric pressure gas is self-primed by the operation of the apparatus. For this reason, even if large foreign matters can be removed by a filter, it is not appropriate to provide a filter that can remove even small foreign matters in order not to reduce the intake efficiency. As a result, since the gas self-priming pressure is much smaller than the liquid introduction pressure, small foreign substances in the gas are likely to remain at the gas introduction port, which may cause clogging. However, if the gas inlet is configured as a gas inlet pipe as an independent part, remove only the clogged gas inlet pipe from the body as necessary, and clean the inside of the pipe or replace the gas inlet pipe itself This has the advantage that it can be easily handled.

次に、本発明の請求項4に係る旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略半球形の器体と、前記器体の略半球底面側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の略半球頂部側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に自吸した液体の旋回流により前記気体導入口から流入した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   Next, a swirl type fine bubble generator according to claim 4 of the present invention is rotationally symmetric between a substantially hemispherical container having a hollow portion formed in a rotational symmetry and an outer wall on the bottom side of the substantially hemispherical surface of the container. In the vicinity of the gas-liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the axis, a gas-liquid jet port opened on the outer wall on the substantially hemispherical top side on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by making the gas flowing from the gas inlet into a fine bubble by the swirling flow of the liquid self-sucked into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略半球形とし、液体を満たした内部の中空部も略半球形としたため、略球体とした場合と同じく、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。
(2)しかも、略球体の場合に比べて中空部内の液体の総量が小さくなり、旋回させる液体の慣性も小さくなるため、液体の導入圧が同じでも渦流の旋回速度をより高めることができ、単位時間当たりに自吸する気体量を増加させることができる。なお、往路の渦流が器体内壁面の曲面に沿って文字通り渦巻き状に旋回するため、渦流の旋回面が回転対称軸に対して気体導入口に向けて傾斜し、そのため、往路における液体の延べ行程距離が短縮されて渦流の進行速度が増し、気体導入口付近に単位時間当たりに到達する液体量も増加する点は、請求項1に記載の発明と同様である。
(3)中空部を略半球形としたため、気体導入口の位置が中空部内で相対する気液噴出口に近くなるため、形成される負圧空洞部の全長も短くなる。この結果、負圧空洞部の断面は気体導入口付近から負圧空洞部尖端に向けて急激に小さくなる。これにより、負圧空洞部尖端に生じる微細気泡発生点での液体渦流の旋回速度も急激に増加し、気体のせん断効率が向上するため、より小さな微細気泡を発生させることができる。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(4)請求項1に記載の発明と同様に、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した液体の流れが反転する際、該略円錐台形の側面により誘導され、回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(5)一方、請求項1に記載の発明とは異なり、中空部は略半球形であって気体導入口付近では最大の半径を有するため、液体が反転する際には中空部が略球形の場合ほど旋回速度は増加しないが、反転後はただちに中空部の外径が縮小するため、負圧空洞部の尖端に向けて液体の旋回速度が増加する効果は同じである。
(6)そのため、結果的に回転対称軸に沿った短い距離で負圧空洞部の断面が急激に小さくなり、その尖端の微細気泡発生点における気体のせん断効率が高められる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially hemispherical shape, and the hollow portion filled with the liquid also has a substantially hemispherical shape, the friction between the liquid and the wall body can be minimized, as in the case of the substantially spherical body. Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently.
(2) Moreover, since the total amount of liquid in the hollow portion is smaller than in the case of a substantially spherical body and the inertia of the swirling liquid is smaller, the swirling speed of the vortex can be further increased even when the liquid introduction pressure is the same. The amount of gas that is self-primed per unit time can be increased. Since the vortex in the forward path literally swirls along the curved surface of the inner wall, the swirling surface of the vortex is inclined toward the gas inlet with respect to the rotational axis of symmetry, and therefore the total travel of the liquid in the forward path Similar to the first aspect of the invention, the distance is shortened to increase the speed of vortex flow, and the amount of liquid that reaches the vicinity of the gas inlet per unit time also increases.
(3) Since the hollow portion has a substantially hemispherical shape, the position of the gas introduction port is close to the gas-liquid jet port facing the inside of the hollow portion, so that the overall length of the formed negative pressure cavity portion is also shortened. As a result, the cross section of the negative pressure cavity portion decreases rapidly from the vicinity of the gas inlet toward the tip of the negative pressure cavity portion. As a result, the swirling speed of the liquid vortex at the microbubble generation point generated at the tip of the negative pressure cavity is also rapidly increased, and the shear efficiency of the gas is improved, so that smaller microbubbles can be generated. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(4) Since the gas introduction port is formed in the hollow portion so as to protrude in a substantially frustoconical shape, as in the invention described in claim 1, the flow of the liquid reaching the hollow portion inner wall on the gas introduction side is reversed. In this case, the liquid is guided by the substantially frustoconical side surface and is easy to recirculate along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(5) On the other hand, unlike the invention according to claim 1, the hollow part is substantially hemispherical and has the maximum radius near the gas inlet, so that when the liquid is reversed, the hollow part is substantially spherical. Although the swirling speed does not increase as much as the case, since the outer diameter of the hollow portion is reduced immediately after reversal, the effect of increasing the swirling speed of the liquid toward the tip of the negative pressure cavity is the same.
(6) As a result, the cross section of the negative pressure cavity is rapidly reduced at a short distance along the rotational symmetry axis, and the shear efficiency of the gas at the microbubble generation point at the tip is increased.

なお、器体は半球形とするほかに、回転対称軸方向の全長をさらに短くして、全体として凸レンズ形状としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to the hemispherical shape of the vessel, the overall length in the rotationally symmetric axis direction may be further shortened to have a convex lens shape as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項5に係る旋回式微細気泡発生装置は、請求項4に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 5 of the present invention is the swivel type fine bubble generator according to claim 4, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

請求項4に係る旋回式微細気泡発生装置では、前述の通り気体導入口周辺において中空部の断面積は最大であるので液体の旋回流の反転の最に乱流が生じる可能性は請求項3に係る旋回式微細気泡発生装置よりも小さいが、気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、この乱流の発生をさらに効果的に防ぐことができる。   In the swirl type fine bubble generator according to claim 4, since the cross-sectional area of the hollow portion is the maximum around the gas inlet as described above, there is a possibility that turbulence will occur at the time of reversal of the swirl flow of the liquid. Although it is smaller than the swirl type fine bubble generator according to the above, by making the substantially frustoconical side surface of the gas introduction port a curved surface integrated with the inner wall surface of the hollow portion, the generation of this turbulent flow can be prevented more effectively. it can.

次に、本発明の請求項6に係る旋回式微細気泡発生装置は、請求項4又は5のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, the swirl type fine bubble generator according to claim 6 of the present invention is the swirl type fine bubble generator according to any one of claims 4 and 5, wherein the gas inlet is the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

請求項3に係る旋回式微細気泡発生装置と同様に、気体導入管を回転対称軸に沿って動かすことにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。これにより、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Similarly to the swirling fine bubble generator according to the third aspect, by moving the gas introduction tube along the rotational symmetry axis, the position for introducing the gas into the hollow portion can be arbitrarily changed. Thus, the present invention simply and mechanically changes the amount of protrusion into the hollow portion of the gas introduction tube without adopting a method of introducing a gas-liquid mixture whose gas / liquid mixing ratio has been adjusted in advance. Thus, it becomes possible to easily control the generation amount of fine bubbles. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

本発明によれば、小型かつ簡易な構造で効率的に微細気泡を発生できる旋回式微細気泡発生装置を実現できる。本旋回式微細気泡発生装置では、外部ポンプにより器体内に液体を圧送することにより、気体は自動的に自吸されて微細気泡化される。特に、器体を極めて小型にした場合は、たとえば水道の水圧程度の圧力でも動作することができるため、浄水器やシャワーヘッド等の家庭用機器にも容易に組み込み可能である。そのため、本発明は、旋回式微細気泡発生装置において、特に小規模な水環境での適用範囲を拡大できるという効果を有する。   According to the present invention, it is possible to realize a swivel type microbubble generator that can efficiently generate microbubbles with a small and simple structure. In this swirling microbubble generator, the gas is automatically sucked into microbubbles by pumping the liquid into the container by an external pump. In particular, when the vessel body is extremely small, it can be operated even at a pressure about the water pressure of tap water, for example, and can be easily incorporated into household equipment such as a water purifier and a shower head. Therefore, this invention has the effect that the application range in a small-scale water environment can be expanded in a turning type fine bubble generator.

以下、本発明の実施の形態について図面1乃至5を参照して説明する。図1は、本発明の第一の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略球形の器体10は、その外壁の回転対称軸上に正対する位置に気液噴出口12と気体導入管13を有するとともに、前記気液噴出口12の近傍においては回転対称軸に対し垂直方向に向けて加圧液導入管14が接続されている。また、図2は、前記略球形の器体10を前記気液噴出口12側から観た正面図である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a side view of a swirling fine bubble generator according to a first embodiment of the present invention. The substantially spherical vessel 10 having a hollow inside has a gas-liquid jet 12 and a gas introduction pipe 13 at a position facing the rotational symmetry axis of the outer wall thereof, and is rotationally symmetric in the vicinity of the gas-liquid jet 12. A pressurized liquid introduction pipe 14 is connected in a direction perpendicular to the axis. FIG. 2 is a front view of the substantially spherical vessel 10 viewed from the gas-liquid jet 12 side.

図3は、図1の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体10の内部は中空となっており、中空部の内壁は気体導入口16付近を除いては滑らかな球内側面を成している。一方、気体導入口16は回転対称軸Xに沿って中空部内に突出した略円錐台形を成し、略円錐台形の側面は球内側面と一体的に滑らかな湾曲面16を成している。また、器体10の外部から気体導入口11を貫通する形で気体導入管13を備えている。加圧液導入管14は気液噴出口12の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口15を形成している。 FIG. 3 is a cross-sectional view of the swirling fine bubble generating device of FIG. The inside of the vessel body 10 is hollow, and the inner wall of the hollow portion forms a smooth spherical inner surface except for the vicinity of the gas inlet 16. On the other hand, the gas introduction port 16 has a substantially truncated cone shape protruding into the hollow portion along the rotational symmetry axis X, and the substantially truncated cone side surface forms a smooth curved surface 16 integrally with the spherical inner surface. Moreover, the gas introduction pipe | tube 13 is provided in the form which penetrates the gas introduction port 11 from the exterior of the container body 10. FIG. The pressurized liquid introduction pipe 14 is connected in the vicinity of the opening of the inner wall of the hollow part of the gas-liquid jet port 12 in the direction perpendicular to the rotational symmetry axis X, and forms a pressurized liquid inlet 15 on the inner wall of the hollow part. Yes.

旋回式微細気泡発生装置の動作前には、中空部には装置自体を浸漬した液体が満たされており、装置を動作すると、加圧液導入管14から圧送された液体Lが加圧液導入口15を通じて新たに中空部内に導入される。 Prior to the operation of the swirling fine bubble generating device, the hollow portion is filled with a liquid in which the device itself is immersed. When the device is operated, the liquid L fed from the pressurized liquid introducing pipe 14 is introduced into the pressurized liquid. It is newly introduced into the hollow portion through the mouth 15.

導入された液体Lは、ただちに中空部の内壁に沿って旋回しつつ、気体導入口11の方向(図3では左方向)に進み、渦流Rを生じる。渦流Rは加圧液導入口15付近では小さな半径で旋回するが、中空部の中心付近では最大の半径で旋回し、気体導入口11付近では再び小さな半径で旋回する。 The introduced liquid L immediately swirls along the inner wall of the hollow portion, proceeds in the direction of the gas inlet 11 (leftward in FIG. 3), and generates a vortex R. The swirl R swirls with a small radius near the pressurized liquid inlet 15, but swirls with a maximum radius near the center of the hollow portion, and swirls again with a small radius near the gas inlet 11.

湾曲面16まで到達した渦流Rは湾曲面16に沿って反転し、回転対称軸X沿いに往路の渦流Rの内側に復路の渦流R’を形成しつつ右方向へ進行する。渦流R’の旋回は渦流Rと同じ方向であるが、その半径は小さいため旋回速度は渦流Rよりも大きい。そのため、中空部内の液体Lには回転対称軸X上に沿って負圧が発生し、該負圧により気体導入管13から気体Aが中空部内に吸い込まれ、回転対称軸Xに沿って負圧空洞部Vが生じる。 The vortex flow R that has reached the curved surface 16 is reversed along the curved surface 16 and proceeds in the right direction along the rotational symmetry axis X while forming a return vortex flow R 'inside the forward vortex flow R. The swirl of the vortex R ′ is in the same direction as the vortex R, but the radius is small, so the swirl speed is larger than that of the vortex R. Therefore, a negative pressure is generated in the liquid L in the hollow portion along the rotational symmetry axis X, and the gas A is sucked into the hollow portion from the gas introduction pipe 13 by the negative pressure, and the negative pressure is generated along the rotational symmetry axis X. A cavity V is generated.

負圧空洞部Vを形成する気体Aは、渦流R’との摩擦によって回転を与えられ、旋回しつつ右方向に進むが、気液噴出口12に近づくにつれ渦流R’の旋回半径がさらに小さくなり、旋回速度も速くなるため、これに絞り込まれる形となって負圧空洞部Vは先細りの円錐形状となる。負圧空洞部Vの外側面では、気体Aと渦流R’の旋回する液体Lとの比重の違いから、気体Aの旋回速度は液体Lの旋回速度よりも小さくなるため、この旋回速度差により気体Aに対してせん断効果が発生し、負圧空洞部Vの尖端において気体Aが連続的にせん断されて微細気泡化する微細気泡発生点Pが生じる。 The gas A forming the negative pressure cavity V is rotated by friction with the vortex flow R ′ and proceeds to the right while swirling, but the swirl radius of the vortex flow R ′ becomes smaller as it approaches the gas-liquid jet port 12. Since the turning speed is also increased, the negative pressure cavity V becomes a tapered conical shape. On the outer surface of the negative pressure cavity V, the swirling speed of the gas A is smaller than the swirling speed of the liquid L due to the difference in specific gravity between the gas A and the swirling liquid L ′. A shear effect is generated with respect to the gas A, and a fine bubble generation point P is generated at which the gas A is continuously sheared at the tip of the negative pressure cavity V to form fine bubbles.

その後、渦流R’は微細気泡MBを含む気液混合液状態となって気液噴出口12から器体外に放出され、微細気泡MBが外部の液体中に拡散されるのである。 Thereafter, the vortex flow R ′ becomes a gas-liquid mixed liquid state containing the fine bubbles MB and is discharged from the gas-liquid jet 12 to the outside of the container, and the fine bubbles MB are diffused into the external liquid.

図4は、本発明の第二の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略半球形の器体20は、その外壁の回転対称軸X上に正対する位置に気液噴出口22と気体導入管23を有するとともに、前記気液噴出口22の近傍においては回転対称軸Xに対し垂直方向に向けて加圧液導入管24が接続されている。 FIG. 4 is a side view of the swirling fine bubble generating device according to the second embodiment of the present invention. A substantially hemispherical container body 20 having a hollow inside has a gas-liquid jet port 22 and a gas introduction pipe 23 at a position facing the rotational symmetry axis X of the outer wall, and in the vicinity of the gas-liquid jet port 22. A pressurized liquid introduction tube 24 is connected in a direction perpendicular to the rotational symmetry axis X.

図5は、図4の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体20の内部は中空となっており、中空部の内壁は気液噴出口22を頂点とする滑らかな半球内側面を成すが、気体導入口21側は半球の底面を塞ぐ円形の壁体27となっている。一方、気体導入口21は回転対称軸Xに沿って壁体27から中空部内に突出した略円錐台形を成し、中空部の内壁から壁体27を経て該略円錐台形の側面にかけて滑らかな湾曲面26を形成している。また、器体20の外部から壁体27と気体導入口21を貫通する形で気体導入管23を備えている。また、加圧液導入管24は気液噴出口22の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口25を形成している。 FIG. 5 is a cross-sectional view of the swivel type fine bubble generator of FIG. 4 taken along the rotational symmetry axis X. The inside of the vessel body 20 is hollow, and the inner wall of the hollow portion forms a smooth hemispheric inner surface with the gas-liquid jet port 22 at the top, but the gas inlet 21 side is a circular wall body that blocks the bottom surface of the hemisphere. 27. On the other hand, the gas introduction port 21 has a substantially truncated cone shape that protrudes from the wall body 27 into the hollow portion along the rotational symmetry axis X, and smoothly curves from the inner wall of the hollow portion to the side surface of the substantially truncated cone shape through the wall body 27. A surface 26 is formed. Further, a gas introduction pipe 23 is provided so as to penetrate the wall body 27 and the gas introduction port 21 from the outside of the vessel body 20. Further, the pressurized liquid introduction pipe 24 is connected in the vicinity of the opening of the inner wall of the hollow portion of the gas-liquid jet port 22 in the direction perpendicular to the rotational symmetry axis X, and the pressurized liquid inlet 25 is formed in the inner wall of the hollow portion. doing.

本実施形態においても、装置が動作して加圧液導入管24から圧送された液体Lが加圧液導入口25を通じて新たに中空部内に導入され、生じた渦流Rが図の左方向に旋回しつつ進行する過程は第一実施形態と同様である。   Also in this embodiment, the liquid L pumped from the pressurized liquid introduction pipe 24 by operating the apparatus is newly introduced into the hollow portion through the pressurized liquid introduction port 25, and the generated vortex R swirls in the left direction in the figure. However, the process of proceeding is the same as in the first embodiment.

本実施形態では、中空部が最大半径となったところで渦流Rが壁体27に到達し、湾曲面26に沿って反転して渦流R’となり、回転対称軸X沿いに渦流Rの内側を気液噴出口22に向かって進行する。渦流Rは反転する前に、第一実施形態のように旋回半径が小さくならないため、気体導入口21付近での乱流の発生が抑制される。   In the present embodiment, when the hollow portion has the maximum radius, the vortex flow R reaches the wall body 27, is reversed along the curved surface 26 to become the vortex flow R ′, and the inside of the vortex flow R along the rotational symmetry axis X is aired. It proceeds toward the liquid spout 22. Since the swirl radius is not reduced as in the first embodiment before the vortex R is reversed, the generation of turbulent flow in the vicinity of the gas inlet 21 is suppressed.

また、本実施形態では、中空部が略半球形で回転対称軸X方向の長さが短いため、反転後の渦流R’は第一実施形態よりも短い距離で旋回半径が小さくなる。その結果、発生する負圧空洞部Vの全長も短くなり、その断面積は第一実施形態よりも急激に絞り込まれることになる。そのため、負圧空洞部Vの周囲における渦流R’の旋回速度も第一実施形態よりも急激に大きくなり、微細気泡発生点Pでは気体Aに対するせん断効果は十分に高くなる。   In this embodiment, since the hollow portion is substantially hemispherical and has a short length in the direction of the rotational symmetry axis X, the swirl radius of the vortex R ′ after reversal becomes smaller at a shorter distance than in the first embodiment. As a result, the total length of the generated negative pressure cavity V is also shortened, and the cross-sectional area is narrowed more rapidly than in the first embodiment. Therefore, the swirling speed of the vortex R 'around the negative pressure cavity V is also increased more rapidly than in the first embodiment, and the shear effect on the gas A is sufficiently high at the fine bubble generation point P.

以上、二つの実施形態を比較すると、第一実施形態に比べて第二実施形態の方が中空部の容積が小さいため、当然ながら中空部内で旋回する液体Aの量、すなわち慣性重量も小さい。そのため、中空部内へ液体Lを圧送する圧力が同じであれば、第二実施形態の方がより高速の渦流を生じ、回転対称軸X上に生じる負圧空洞部Vの負圧も大きくなる。   As described above, when the two embodiments are compared, since the volume of the hollow portion is smaller in the second embodiment than in the first embodiment, the amount of the liquid A swirling in the hollow portion, that is, the inertia weight is naturally small. Therefore, if the pressure for pumping the liquid L into the hollow portion is the same, the second embodiment generates a higher-speed vortex, and the negative pressure of the negative pressure cavity V generated on the rotational symmetry axis X also increases.

このことは、本願発明の発明者が実施した実験結果からも明らかである。図6は、器体の最大直径を等しくした第一実施形態(略球形)と第二実施形態(略半球形)の試作機を用いて水中での動作実験を行い、動作中に中空部内に生じる負圧を計測した数値を表にしたものである。なお、試作機に水を圧送するポンプの出力は等しくした。   This is also clear from the results of experiments conducted by the inventors of the present invention. FIG. 6 shows an experiment in water using the prototypes of the first embodiment (substantially spherical) and the second embodiment (substantially hemispherical) with the same maximum diameter of the vessel body. The numerical values obtained by measuring the generated negative pressure are tabulated. The output of the pump that pumps water to the prototype was the same.

その結果、装置を通過する水の流量は第一実施形態では毎秒15g強であるのに対し、第二実施形態では毎秒23g強と大きく、より小型である第二実施形態の方が単位時間当たりの流量が大きいことが示された。 As a result, the flow rate of water passing through the apparatus is slightly higher than 15 g per second in the first embodiment, but is higher than 23 g per second in the second embodiment, and the smaller second embodiment is more per unit time. The flow rate of was shown to be large.

また、中空部内に生じる負圧は、第一実施形態では3回の試行の結果、平均0.458mAqであったのに対し、第二実施形態では7回の試行の結果、平均1.04mAqと二倍強の数値となった。   In addition, the negative pressure generated in the hollow portion was 0.458 mAq on average as a result of three trials in the first embodiment, whereas 1.04 mAq on average as a result of seven trials in the second embodiment. The value was more than twice.

実験の結果、第二実施形態は同じ圧力で液体を圧送しても、第一実施形態よりも速く液体Lを通過させて、中空部内においてより大きな負圧を発生させることが確認された。そのため、単位時間当たりに自吸される空気Aの量も第二実施形態の方が多くなるものと考えられるが、このことは気液噴出口から噴出する微細気泡の発生量が、目視でも第二実施形態の方が多いことからも確認できた。 As a result of the experiment, it was confirmed that even when the liquid was pumped at the same pressure, the second embodiment allowed the liquid L to pass faster than the first embodiment, thereby generating a larger negative pressure in the hollow portion. For this reason, it is considered that the amount of air A that is self-absorbed per unit time is larger in the second embodiment. This is because the amount of microbubbles ejected from the gas-liquid ejection port is also visually observed. It was confirmed from the fact that there were more two embodiments.

以上から、本発明に係る旋回式微細気泡発生装置においては、器体内の中空部の形態を略球形よりも略半球形とする方が効率性及び装置の小型化の両面においてより好適である。 From the above, in the swirling fine bubble generating device according to the present invention, it is more preferable in terms of both efficiency and miniaturization of the device that the shape of the hollow portion in the container is substantially hemispherical than spherical.

なお、器体の形状を変えた場合に微細気泡発生点Pを気液噴出口12の中空部側の近傍の適切な位置に生じさせることは、前述した通り、気体導入口11を形成する円錐台形側面の回転対称軸Xに対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部Vの円錐形の高さを制御することにより実現できる。図7は、円錐台形の形状と生成される負圧空洞部Vの形状の関係を例示した部分拡大図であるが、負圧空洞部Vの円錐形は概ね円錐台形の頂部を底面とし、円錐台形の側面の延長面に沿って負圧空洞部Vの側面も形成されることが発明者の実験で確認された。 When the shape of the container is changed, the generation of the fine bubble generation point P at an appropriate position in the vicinity of the hollow portion side of the gas-liquid jet 12 is, as described above, the cone forming the gas inlet 11 This can be realized by controlling the height of the conical shape of the negative pressure cavity V by appropriately changing the angle of the trapezoidal side surface with respect to the rotational symmetry axis X and the cross-sectional area of the top of the truncated cone. FIG. 7 is a partially enlarged view illustrating the relationship between the shape of the frustoconical shape and the shape of the generated negative pressure cavity portion V. The conical shape of the negative pressure cavity portion V has a substantially truncated cone-shaped top portion as a bottom surface, and a conical shape. It was confirmed by the inventors' experiment that the side surface of the negative pressure cavity V is also formed along the extended surface of the trapezoidal side surface.

以上、本発明に係る旋回式微細気泡発生装置の実施の形態について図面を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的又は本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属する。 The embodiment of the swirling fine bubble generator according to the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and the purpose of the improvement or the technical idea of the present invention. Within the scope of the present invention, improvements or modifications are possible and belong to the technical scope of the present invention.

本発明は、気体を微細気泡化して液体中に効率的に溶解させるための微細気泡発生装置に適用され、例えば水中の酸素量を賦加して水質を改善する水質改善装置に適している。本発明は、特に、効率性の高い微細気泡発生装置を小型化し簡易な構造で実現可能であるので、家庭用の浄水器やシャワーヘッド等に内蔵する小型の水質改善装置に好適である。   The present invention is applied to a fine bubble generating device for making a gas into fine bubbles and efficiently dissolving them in a liquid. For example, the present invention is suitable for a water quality improving device that improves the water quality by adding an amount of oxygen in water. The present invention is particularly suitable for a small water quality improvement device built in a domestic water purifier or a shower head because a highly efficient microbubble generator can be realized with a small size and a simple structure.

本発明の第一実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の正面図である。It is a front view of the revolving type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning-type fine bubble generator which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第一実施形態及び第二実施形態に係る旋回式微細気泡発生装置の試作品を用いて行った試験結果数値の表である。It is a table | surface of the numerical value of the test result performed using the prototype of the turning type fine bubble generator which concerns on 1st embodiment of this invention, and 2nd embodiment. 円錐台形の形状による負圧空洞部の形状の変化を例示する部分拡大図である。It is the elements on larger scale which illustrate the change of the shape of the negative pressure cavity part by the shape of a truncated cone.

X 回転対称軸
A 気体
L 液体
MB 微細気泡
R 渦流(往路)
R’ 渦流(復路)
V 負圧空洞部
10 器体(第一実施形態)
11 気体導入口(第一実施形態)
12 気液噴出口(第一実施形態)
13 気体導入管(第一実施形態)
14 加圧液導入管(第一実施形態)
15 加圧液導入口(第一実施形態)
16 湾曲面(第一実施形態)
20 器体(第二実施形態)
21 気体導入口(第二実施形態)
22 気液噴出口(第二実施形態)
23 気体導入管(第二実施形態)
24 加圧液導入管(第二実施形態)
25 加圧液導入口(第二実施形態)
26 湾曲面(第二実施形態)
27 壁体(第二実施形態)
X Axis of rotation A Gas L Liquid MB Fine bubble R Eddy current (outward)
R 'vortex (return)
V negative pressure cavity 10 vessel (first embodiment)
11 Gas inlet (first embodiment)
12 Gas-liquid spout (first embodiment)
13 Gas introduction pipe (first embodiment)
14 Pressurized liquid introduction pipe (first embodiment)
15 Pressurized liquid inlet (first embodiment)
16 Curved surface (first embodiment)
20 body (second embodiment)
21 Gas inlet (second embodiment)
22 Gas-liquid spout (second embodiment)
23 Gas introduction pipe (second embodiment)
24 Pressurized liquid introduction pipe (second embodiment)
25 Pressurized liquid inlet (second embodiment)
26 Curved surface (second embodiment)
27 Wall body (second embodiment)

本発明は、空気、ガス等の気体を水、その他の液体等に効率的に溶解して、たとえば水質を浄化して水環境を蘇生するための微細気泡発生装置に関する。   The present invention relates to a fine bubble generating apparatus for efficiently dissolving a gas such as air or gas in water, other liquids, etc., for example, purifying water quality and reviving a water environment.

微細気泡発生装置としては様々な方式のものが知られているが、比較的簡易かつ小規模な装置で大量の微細気泡を安定的に生成可能な方式として気液せん断方式がある。この気液せん断方式は、気液二相の流体中に高速渦流を発生させ、液流の遠心分離作用により渦流中心部に負圧の気体からなる旋回空洞部(以下、「負圧空洞部」と記す。)を形成し、液体の高速渦流と負圧空洞部との旋回速度差によって気体をせん断して微細化するものである。   Various types of microbubble generators are known, but there is a gas-liquid shearing system as a system that can stably generate a large amount of microbubbles with a relatively simple and small-scale apparatus. This gas-liquid shear method generates a high-speed vortex in a gas-liquid two-phase fluid, and a swirling cavity (hereinafter referred to as a “negative pressure cavity”) consisting of a negative pressure gas at the center of the vortex due to centrifugal separation of the liquid flow. The gas is sheared and refined by the difference in swirling speed between the liquid high-speed vortex and the negative pressure cavity.

かかる気液せん断方式の微細気泡発生装置の従来技術としては、特許文献1(特許第3397154号公報)、特許文献2(特開2006−116365号公報)に記載された発明の如く、円筒形開放容器内の内部に加圧液体を導入して高速渦流を発生させ、該高速渦流により生じた負圧空洞部の負圧により外部から気体を自吸して微細気泡化する技術が基本となる。
特許第3397154号公報 特開2006−116365号公報
As prior art of such a gas-liquid shearing type fine bubble generator, as disclosed in Patent Document 1 (Japanese Patent No. 3397154) and Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-116365), a cylindrical opening is used. The basic technique is to introduce a pressurized liquid into the inside of the container to generate a high-speed vortex, and to self-suck gas from the outside by the negative pressure of the negative-pressure cavity generated by the high-speed vortex to form fine bubbles.
Japanese Patent No. 3397154 JP 2006-116365 A

また、本願発明の発明者は、特許文献3(特許第4621796号)に記載された発明を提案している。すなわち、両端を閉鎖した円筒形容器の一端側の壁体に気液噴出口を設け、他端側の壁体を、気体自吸口を有し、かつ円筒形容器の軸線方向に沿って前後移動可能とすることで、生成される微細気泡の拡散形状を制御可能としたことを特徴とする、新たな気液せん断方式の微細気泡発生装置(以下、「旋回式微細気泡発生装置」と記す。)である。
特許第4621796号
The inventor of the present invention has proposed the invention described in Patent Document 3 (Patent No. 4621796). That is, a gas-liquid jet is provided in the wall on one end of the cylindrical container with both ends closed, and the wall on the other end has a gas self-priming port and moves back and forth along the axial direction of the cylindrical container. By enabling this, the diffusion shape of the generated fine bubbles can be controlled, and a new gas-liquid shearing type fine bubble generator (hereinafter referred to as “swivel type fine bubble generator”) will be described. ).
Japanese Patent No. 4621796

一方、旋回式微細気泡発生装置には、特許文献4(特許第3682286号公報)に記載された発明の如く、容器内に液体と気体を別個に導入するのではなく、あらかじめ液体と気体を混合した気液混合液の状態で導入する発明も提案されている。該発明は、容器の形状を球形、半球形、あるいはそれらを複数組み合わせた様々な形状とし、個々の容器においては、単一の導入口から導入した気液混合液により容器内に高速渦流を発生させるとともに、容器を浸漬した液体中に開放された一つ又は二つの気液噴出口から液体を取り込みつつ微細気泡を噴出させることを特徴としている。
特許第3682286号公報
On the other hand, in the swirl type fine bubble generator, the liquid and the gas are mixed in advance instead of separately introducing the liquid and the gas into the container as in the invention described in Patent Document 4 (Japanese Patent No. 3682286). An invention has also been proposed in which the gas-liquid mixed liquid is introduced in the state. The invention makes the shape of the vessel spherical, hemispherical, or various combinations of them, and in each vessel, a high-speed eddy current is generated in the vessel by the gas-liquid mixture introduced from a single inlet In addition, the microbubbles are ejected while taking in the liquid from one or two gas-liquid ejection openings opened in the liquid in which the container is immersed.
Japanese Patent No. 3682286

ところで、微細気泡発生装置は、前述の通り気体を微細気泡化することにより液体に効率的に溶解させることを目的とするものであり、湖沼や池、河川、海洋等の大規模な水環境にも、水槽や水道等の比較的限定された小規模な水環境にも適用される。前者に適用する場合は、微細気泡発生装置及びその附帯設備は比較的大型かつ複雑なものであってよいが、後者へ適用する場合は可能な限り小型かつ簡易な構造が求められる。   By the way, as described above, the microbubble generator is intended to efficiently dissolve the gas into a liquid by making the gas into microbubbles, and can be used in large-scale water environments such as lakes, ponds, rivers, and the ocean. It is also applied to relatively limited small-scale water environments such as water tanks and waterworks. When applied to the former, the fine bubble generator and its associated equipment may be relatively large and complex, but when applied to the latter, a structure that is as small and simple as possible is required.

特許文献4に記載の発明の如く、微細気泡発生装置に気液混合液を導入する方式は、大量の気体を導入でき、気液の混合比率もあらかじめ所定値に制御できるため、大規模な水環境への適用を想定した場合には利点を有する。しかし、この方式は、気液の混合比率を制御するための別途の装置を必要とするため、附帯設備も含めた装置全体の小型化は困難であり、たとえば家庭用の浄水器やシャワーヘッド等への組み込みなど、小規模な水環境への適用は難しいという問題がある。   As in the invention described in Patent Document 4, the method of introducing the gas-liquid mixture into the fine bubble generator can introduce a large amount of gas, and the gas-liquid mixing ratio can be controlled to a predetermined value in advance. It has advantages when envisioned for environmental applications. However, this method requires a separate device for controlling the mixing ratio of the gas and liquid, so it is difficult to reduce the size of the entire device including the incidental equipment. For example, a household water purifier or a shower head There is a problem that it is difficult to apply to a small-scale water environment, such as incorporation into a small water environment.

また、この方式では、混合状態の気体と液体を分離させた上で微細気泡を発生させるために、気液混合液を特に高速で旋回させなくてはならないため、気液混合液を高い圧力で容器内に圧送する必要がある。そのため、外部ポンプは必須となり、これも小型化の障害となる。   In this method, the gas-liquid mixture must be swirled at a particularly high speed in order to generate fine bubbles after separating the mixed gas and liquid. Need to be pumped into the container. For this reason, an external pump is indispensable, which also becomes an obstacle to miniaturization.

これに対し、特許文献1乃至3に記載の発明においては、気液をあらかじめ混合する必要はなく、容器に導入する液体が十分な効率で渦流を生じさえすれば、負圧空洞部の負圧により気体は自吸される。液体と気体は混合せず、自吸された気体が形成する負圧空洞部の尖端の微細気泡発生点において気体がせん断されて微細気泡が発生するのである。そのため、装置自体を小型化できるだけでなく、たとえば水道の水圧で高速渦流を発生させることができればポンプすら不要であり、前述の家庭用品等への組み込みも容易となる。   On the other hand, in the inventions described in Patent Documents 1 to 3, it is not necessary to preliminarily mix the gas and liquid. As long as the liquid introduced into the container generates a vortex with sufficient efficiency, the negative pressure of the negative pressure cavity is reduced. As a result, the gas is self-primed. The liquid and the gas are not mixed, and the gas is sheared at the tip of the fine bubble generation point of the negative pressure cavity formed by the self-sucked gas, and the fine bubble is generated. For this reason, not only can the apparatus itself be miniaturized, but, for example, if a high-speed eddy current can be generated by the water pressure of the water supply, even a pump is unnecessary, and it is easy to incorporate it into the aforementioned household items.

このように、小規模な水環境への適用を考慮した場合は、気液混合液を導入する方式よりも、気体と液体を別々に導入する方式の方が、装置全体としての小型化・簡易化が容易であり、より好適であるといえる。 Thus, when considering application to a small-scale water environment, the method of introducing gas and liquid separately is more compact and simpler than the method of introducing a gas-liquid mixture. Therefore, it can be said that it is more suitable.

ところで、旋回式微細気泡発生装置では、前述の通り、容器内に導入された気体が液体の高速渦流により負圧空洞部を形成し、気体と液体の境界、特に負圧空洞部の尖端に生ずる微細気泡発生点において、気体と液体の旋回速度差により気体が連続的にせん断されることにより微細気泡を発生させる。 By the way, in the swirl type fine bubble generator, as described above, the gas introduced into the container forms a negative pressure cavity due to the high-speed vortex of the liquid, and is generated at the boundary between the gas and the liquid, particularly at the tip of the negative pressure cavity. At the microbubble generation point, the gas is continuously sheared due to the difference in swirling speed between the gas and the liquid, thereby generating microbubbles.

ここで、液体渦流の旋回速度が速いほど負圧空洞部の負圧は大きくなり、単位時間当たりの気体の自吸量は大きくなる。従って、大量の微細気泡を効率的に発生させるために、容器の内部は、導入する液体に高い圧力を掛けずとも渦流の旋回速度を高められる構造とすることが望ましい。 Here, as the swirling speed of the liquid vortex increases, the negative pressure in the negative pressure cavity increases and the amount of gas self-priming per unit time increases. Therefore, in order to efficiently generate a large amount of fine bubbles, it is desirable that the inside of the container has a structure capable of increasing the swirling speed of the vortex without applying high pressure to the liquid to be introduced.

また、気体と液体の旋回速度差がせん断効果を生じるため、負圧空洞部においては気体導入口側から尖端の微細気泡発生点側に向けて旋回速度が急激に増加するほどせん断効果が高まり、発生する気泡をより微細化することができる。すなわち、負圧空洞部の断面積は、気体が容器に導入された直後にはある程度大きく、その後、尖端の微細気泡発生点に向けて急激に小さくなるようにすることが望ましい。 In addition, since the difference in swirling speed between gas and liquid produces a shearing effect, in the negative pressure cavity, the shearing effect increases as the swirling speed rapidly increases from the gas inlet side toward the fine bubble generation point side, The generated bubbles can be further refined. That is, it is desirable that the cross-sectional area of the negative pressure cavity is large to some extent immediately after the gas is introduced into the container, and then rapidly decreases toward the point where the fine bubbles are generated at the tip.

特許文献1乃至3に示される微細気泡発生装置は、容器の内部が基本的に円筒形の空間であり、その内部は当然微細気泡発生装置を浸漬した液体で満たされている。そのため、加圧液導入口を気体導入口側あるいは気液噴出口側のいずれに設置したとしても、液体自体の慣性により加圧液導入口付近とその反対側との間で液体の旋回速度に差を生じるため、大きな圧力で液体を圧送するならばともかく、比較的小さな圧力の場合は、結果的に渦流の旋回速度を十分に高めることが困難である。 In the fine bubble generating devices disclosed in Patent Documents 1 to 3, the inside of the container is basically a cylindrical space, and the inside is naturally filled with a liquid in which the fine bubble generating device is immersed. Therefore, regardless of whether the pressurized liquid inlet is installed on the gas inlet side or the gas liquid outlet side, the swirling speed of the liquid is increased between the vicinity of the pressurized liquid inlet and the opposite side due to the inertia of the liquid itself. In order to make a difference, it is difficult to sufficiently increase the swirling speed of the vortex flow as a result when the pressure is relatively small, regardless of whether the liquid is pumped at a large pressure.

なお、特許文献1及び2には、容器の内部を略円錐形とした微細気泡発生装置の図も示されているが、この場合も、略円錐形の基部と頂部では旋回する液体量の差から旋回速度にも差を生じるため、比較的小さな圧力で渦流の旋回速度を十分に高めることができないという問題があった。 In addition, Patent Documents 1 and 2 also show a diagram of a fine bubble generating device in which the inside of the container has a substantially conical shape, but in this case as well, the difference in the amount of liquid swirling between the substantially conical base and the top is shown. Therefore, there is a problem that the swirling speed of the vortex cannot be sufficiently increased with a relatively small pressure.

以上の点から、旋回式微細気泡発生装置、特に小規模な水環境への適用を前提として気体と液体を別々に導入する方式を採用した微細気泡発生装置では、液体を圧送する圧力が小さくても液体の渦流の速度を高め、十分に微細化した気泡を大量に発生させるために、容器の内部形状のさらなる改善が必要であった。 In view of the above, in the swirl type fine bubble generator, particularly the fine bubble generator adopting the method of introducing gas and liquid separately on the premise of application to a small-scale water environment, the pressure for pumping the liquid is small. However, it was necessary to further improve the internal shape of the container in order to increase the speed of the liquid vortex and generate a large amount of sufficiently fine bubbles.

上記の課題を解決するために、本発明に係る旋回式微細気泡発生装置は、以下の構成を有している。   In order to solve the above-described problems, a swirling fine bubble generator according to the present invention has the following configuration.

すなわち、本発明の請求項1に記載の旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略球形の器体と、前記器体の回転対称軸上の一方側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の他方側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に流入した液体の旋回流により前記気体導入口から自吸した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   That is, the swirling fine bubble generator according to claim 1 of the present invention includes a substantially spherical container having a hollow portion formed in a rotational symmetry, and an outer wall on one side of the rotational symmetry axis of the container. In the vicinity of the gas / liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the rotational symmetry axis, a gas / liquid jet port opened on the other outer wall on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by microbubbles the gas that is sucked from the gas inlet by the swirling flow of the liquid that has flowed into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略球形とし、液体を満たした内部の中空部も略球形としたため、中空部内の
液体を高速旋回させる際、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。なお、加圧液導入口を回転対称軸に対して垂直方向に開設したため、中空部内に発生させる液体の渦流の旋回軸を器体の回転対称軸に一致させることができる。これにより、中空部内の液体の渦流が円滑化する。
(2)加圧液導入口から圧入された液体は、ただちに中空部内壁の曲面に沿って旋回運動を始めるが、加圧液導入口を器体の回転対称軸上の一方に設けた気液噴出口の近傍に設けたため、液体は中空部内壁沿いに旋回しながら反対側の気体導入口方向に向かい(往路)、気体導入口付近で反転した後、回転対称軸に沿って戻り(復路)、最終的に気液噴出口から器体外へ放出される。
(3)加圧液導入口付近では液体の旋回半径が小さく、中空部内にすでに存在する液体との摩擦も小さいため、中空部を円筒形とした場合に比べて、比較的小さな圧力で液体を導入しても効率的に渦流を発生させることができる。
(4)液体は旋回しながら気体導入口側へ進行するが、中空部の中心付近では当然液体の旋回半径が大きくなるため渦流の進行速度は一旦低下する。一方、遠心力は増大するため、回転対称軸上では負圧が生じ、この負圧により気体導入口から気体が中空部内へと自吸されて負圧空洞部が形成される。
(5)渦流がさらに気体導入口方向に進行すると、再び液体の旋回半径が小さくなるため、液体の旋回速度は当然に速くなり、気体導入口付近で形成された直後の負圧空洞部の負圧も高まるから、さらに効率的に気体が中空部内に自吸される。
(6)渦流の反転後の復路の過程では、液体は回転対称軸沿いに往路の内側を進む。このとき、外周側は往路の旋回流が占めているため旋回半径は拡大せず、旋回速度を維持したまま中空部中心を通過する。そして、気液噴出口に近づくにつれて旋回半径がさらに縮小するとともに、旋回速度がさらに増大する。そのため、負圧空洞部は周囲の渦流から圧迫され円錐状に先細りとなる。
(7)気体導入口から負圧空洞部内に自吸された気体は液体よりも比重が小さいため、その旋回速度は接触する液体の旋回速度よりも小さくなる。そのため、双方の旋回速度差により気液の接触面でせん断効果が発生し、負圧空洞部が円錐形に先細りとなった尖端部分に生じる微細気泡発生点において気体が微細気泡となるのである。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(8)本発明では、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した渦流が反転する際には該略円錐台形の側面に沿って誘導される。そのため、液体が回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(9)中空部内壁に直接気体導入口を開口させた場合は、前述の液体の渦流の反転の際に生ずる乱流により負圧空洞部の形状が不安定となり、ひいては微細気泡発生点における微細気泡の発生も不安定となる。本発明では、気体導入口が略円錐台形の頂部に開口しているため、自吸された気体は中空部の内壁よりも中心に近い位置で中空部内に放出される。そのため、負圧空洞部への乱流の影響を防ぐことができ、微細気泡発生の効率を高めることができる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially spherical shape and the hollow portion filled with the liquid has also a substantially spherical shape, when the liquid in the hollow portion is swirled at high speed, the friction between the liquid and the wall can be minimized, Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently. In addition, since the pressurized liquid inlet is opened in a direction perpendicular to the rotational symmetry axis, the swirl axis of the liquid vortex generated in the hollow portion can coincide with the rotational symmetry axis of the container. Thereby, the eddy flow of the liquid in a hollow part becomes smooth.
(2) The liquid press-fitted from the pressurized liquid inlet immediately starts swirling along the curved surface of the inner wall of the hollow part, but the pressurized liquid inlet is provided on one side of the rotational symmetry axis of the vessel Since the liquid is provided near the jet outlet, the liquid turns along the inner wall of the hollow part toward the gas inlet on the opposite side (outward path), reverses in the vicinity of the gas inlet, and then returns along the rotational symmetry axis (return path). Finally, it is discharged from the gas-liquid jet outlet to the outside of the body.
(3) Since the swirl radius of the liquid is small in the vicinity of the pressurized liquid inlet and the friction with the liquid already existing in the hollow portion is small, the liquid is discharged at a relatively small pressure compared to the case where the hollow portion is cylindrical. Even if it is introduced, a vortex can be efficiently generated.
(4) The liquid proceeds to the gas inlet side while swirling, but naturally the swirl radius of the liquid increases near the center of the hollow portion, and thus the traveling speed of the vortex flows temporarily decreases. On the other hand, since the centrifugal force increases, a negative pressure is generated on the rotationally symmetric axis, and the negative pressure causes a gas to be self-sucked from the gas inlet into the hollow portion to form a negative pressure cavity.
(5) When the vortex flows further in the direction of the gas inlet, the swirl radius of the liquid becomes smaller again, so the liquid swirl speed naturally increases, and the negative pressure cavity portion immediately after being formed near the gas inlet is negative. Since the pressure also increases, the gas is more efficiently self-primed into the hollow portion.
(6) In the process of the return path after the reversal of the vortex flow, the liquid travels along the outer axis along the axis of rotational symmetry. At this time, since the turning flow of the forward path occupies the outer peripheral side, the turning radius does not increase and passes through the center of the hollow portion while maintaining the turning speed. As the gas-liquid jet port is approached, the turning radius is further reduced and the turning speed is further increased. Therefore, the negative pressure cavity is compressed from the surrounding vortex and is tapered conically.
(7) Since the gas self-primed from the gas inlet into the negative pressure cavity has a specific gravity smaller than that of the liquid, the swirling speed is lower than the swirling speed of the liquid in contact. For this reason, a shearing effect is generated at the gas-liquid contact surface due to the difference in swirling speed between the two, and the gas becomes a fine bubble at a fine bubble generation point generated at a tip portion where the negative pressure cavity portion is tapered in a conical shape. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(8) In the present invention, since the gas inlet port is opened in the hollow portion so as to protrude in a substantially frustoconical shape, when the vortex reaching the inner wall of the hollow portion on the gas inlet side is reversed, Guided along the side. For this reason, the liquid easily recirculates along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(9) When the gas inlet is directly opened on the inner wall of the hollow portion, the shape of the negative pressure cavity portion becomes unstable due to the turbulent flow generated when the vortex flow of the liquid is reversed, and as a result, the fine bubbles at the microbubble generation point Bubble generation is also unstable. In the present invention, since the gas introduction port opens at the top of the substantially truncated cone shape, the self-sucked gas is discharged into the hollow portion at a position closer to the center than the inner wall of the hollow portion. Therefore, the influence of the turbulent flow on the negative pressure cavity can be prevented, and the efficiency of generating fine bubbles can be increased.

以上の通り、器体及び中空部を略球形とすることにより、従来の円筒形とした場合に比べて、比較的小さな圧力で液体を導入してもより高速の液体渦流を生じさせることができる。その結果、負圧空洞部の負圧も大きくなるため、単位時間当たりの気体の自吸量を増やすことができ、効率的により大量の微細気泡を発生させることができる。また、気体導入口を中空部内に突出する略円錐台形の頂部に設けることで、中空部内の液体の流れが円滑化し、負圧空洞部の形状を安定化できるため、微細気泡の発生効率を高めることができるのである。   As described above, by making the vessel body and the hollow part into a substantially spherical shape, a higher-speed liquid vortex can be generated even when the liquid is introduced at a relatively small pressure compared to the case of the conventional cylindrical shape. . As a result, since the negative pressure of the negative pressure cavity portion also increases, the amount of gas self-priming per unit time can be increased, and a larger amount of fine bubbles can be generated more efficiently. Also, by providing the gas inlet at the top of the substantially frustoconical shape protruding into the hollow part, the flow of liquid in the hollow part can be smoothed and the shape of the negative pressure cavity part can be stabilized, so the generation efficiency of fine bubbles is increased. It can be done.

なお、器体は完全な球形とするほかに、回転対称軸方向の全長を回転外周の最大直径よりも短くして、全体として回転対称軸方向に圧縮された球形としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to a perfect spherical shape, the entire length in the rotationally symmetric axis direction may be shorter than the maximum diameter of the outer periphery of the vessel, and may be a spherical shape that is compressed in the rotationally symmetric axis direction as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項2に係る旋回式微細気泡発生装置は、請求項1に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 2 of the present invention is the swirl type fine bubble generator according to claim 1, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

この構成により、気体導入口付近での液体の渦流の反転をさらに円滑化できる。中空部内における液体は略球形の中空部内壁に沿って円滑に旋回するが、反転の際には略円錐台形に突出した気体導入口の基部で乱流を生じ、中空部内の液体の旋回を乱すおそれがある。気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、乱流の発生自体をより効果的に防ぐことができる。   With this configuration, the reversal of the liquid vortex near the gas inlet can be further smoothed. The liquid in the hollow part swirls smoothly along the inner wall of the substantially spherical hollow part, but at the time of inversion, a turbulent flow is generated at the base of the gas inlet protruding in a substantially frustoconical shape, disturbing the swirling of the liquid in the hollow part. There is a fear. By making the substantially frustoconical side surface of the gas inlet into a curved surface integrated with the inner wall surface of the hollow portion, the occurrence of turbulence itself can be more effectively prevented.

次に、本発明の請求項3に係る旋回式微細気泡発生装置は、請求項1又は2のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, a swirl type fine bubble generator according to claim 3 of the present invention is the swirl type fine bubble generator according to claim 1 or 2, wherein the gas inlet has the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

気体導入口がかかる気体導入管を備えることにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。他の実施条件を固定したまま、気体導入口の位置のみを回転対称軸に沿って前後させた場合、気体導入口を中空部の中心に近付けるほど微細気泡の発生量が減少し、逆の場合は微細気泡の発生量が増加する。気体導入口の位置を中空部の中心に近付けた場合、負圧空洞部の全長は短くなり、単位時間当たりに微細気泡発生点に到達する気体量が増加する。液体の旋回速度が一定ならば微細気泡発生点におけるせん断効果の効率も一定であるため、気体量が多くなり過ぎると余分な気体は微細気泡化せず大きな気泡のまま気液噴出口から放出され、結果的に発生する微細気泡の量が減少することになる。逆に、気体導入口が中空部内壁に近ければ負圧空洞部の全長が長くなり、微細気泡発生点に到達した気体は余さず微細気泡化されるため、微細気泡の発生量が増加するのである。   By providing the gas introduction pipe with the gas introduction port, the position for introducing the gas into the hollow portion can be arbitrarily changed. When only the position of the gas inlet is moved back and forth along the rotational symmetry axis while fixing other implementation conditions, the amount of fine bubbles generated decreases as the gas inlet is closer to the center of the hollow part, and vice versa. Increases the amount of microbubbles generated. When the position of the gas inlet is brought closer to the center of the hollow portion, the total length of the negative pressure cavity portion is shortened, and the amount of gas reaching the fine bubble generation point per unit time is increased. If the swirl speed of the liquid is constant, the efficiency of the shear effect at the microbubble generation point is also constant, so if the amount of gas is too large, excess gas will not be made into microbubbles but will be released from the gas-liquid jet outlet as large bubbles. As a result, the amount of fine bubbles generated is reduced. On the contrary, if the gas inlet is close to the inner wall of the hollow part, the total length of the negative pressure cavity part becomes long, and the gas that has reached the fine bubble generation point is made into fine bubbles, so the amount of fine bubbles generated increases. It is.

これにより、特許文献4に記載の発明のように、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Thus, as in the invention described in Patent Document 4, in the present invention, the gas inlet tube is simply and mechanically introduced without adopting a method of introducing a gas-liquid mixed liquid in which the mixing ratio of gas and liquid is adjusted in advance. By changing the amount of protrusion into the hollow portion, the amount of fine bubbles generated can be easily controlled. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

さらに、気体導入管は器体に設けた気体導入口とは独立した部品であるため、適宜取り外して清掃することができる。器体本体は液体導入口、気液噴出口、気体導入口の合計3つの開口部を有するが、装置の運転中、液体導入口及び気液噴出口は通過する液体又は気液混合液は加圧されているため、液体導入口に至る液体流路にフィルター等を設けておけば大きな異物の進入は防げるし、気液噴出口の内径よりも小さな異物は液圧によって自然に器体外へ排出される。一方、気体導入口に至る気体流路においては、大気圧の気体が装置の動作によって自吸される構造である。そのため、大きな異物はフィルターで除去可能であるとしても、吸気効率を低下させないためには、小さな異物まで除去できるフィルターを設けることは適切でない。その結果、気体の自吸圧は液体の導入圧に比べてはるかに小さいため、気体中の小さな異物が気体導入口に残留しやすく、目詰まりを起こす可能性がある。しかし、気体導入口が独立した部品としての気体導入管として構成していれば、必要に応じて目詰まりを起こした気体導入管のみを器体から取り外し、管内の清掃あるいは気体導入管自体を交換することで容易に対処することができるという利点がある。   Furthermore, since the gas introduction pipe is a component independent of the gas introduction port provided in the container, it can be removed and cleaned as appropriate. The main body has a total of three openings: a liquid inlet, a gas-liquid jet, and a gas inlet. During operation of the device, the liquid inlet and the gas-liquid jet do not add liquid or gas-liquid mixture. Therefore, if a filter or the like is provided in the liquid flow path leading to the liquid inlet, large foreign objects can be prevented from entering, and foreign objects smaller than the inner diameter of the gas-liquid jet outlet can be discharged naturally outside the body by the liquid pressure. Is done. On the other hand, the gas flow path leading to the gas inlet has a structure in which atmospheric pressure gas is self-primed by the operation of the apparatus. For this reason, even if large foreign matters can be removed by a filter, it is not appropriate to provide a filter that can remove even small foreign matters in order not to reduce the intake efficiency. As a result, since the gas self-priming pressure is much smaller than the liquid introduction pressure, small foreign substances in the gas are likely to remain at the gas introduction port, which may cause clogging. However, if the gas inlet is configured as a gas inlet pipe as an independent part, remove only the clogged gas inlet pipe from the body as necessary, and clean the inside of the pipe or replace the gas inlet pipe itself This has the advantage that it can be easily handled.

次に、本発明の請求項4に係る旋回式微細気泡発生装置は、回転対称に形成された中空部を有する略半球形の器体と、前記器体の略半球底面側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の略半球頂部側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に自吸した液体の旋回流により前記気体導入口から流入した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする。   Next, a swirl type fine bubble generator according to claim 4 of the present invention is rotationally symmetric between a substantially hemispherical container having a hollow portion formed in a rotational symmetry and an outer wall on the bottom side of the substantially hemispherical surface of the container. In the vicinity of the gas-liquid jet port, a gas inlet port opened by projecting into a substantially frustoconical shape in the hollow portion along the axis, a gas-liquid jet port opened on the outer wall on the substantially hemispherical top side on the rotational symmetry axis, and A pressurized liquid inlet that is opened in a direction perpendicular to the rotational symmetry axis, and the gas-liquid outlet is formed by making the gas flowing from the gas inlet into a fine bubble by the swirling flow of the liquid self-sucked into the container. A swirling gas-liquid mixture containing fine bubbles is derived from the above.

この構成により、以下のような作用が得られる。
(1)器体を略半球形とし、液体を満たした内部の中空部も略半球形としたため、略球体とした場合と同じく、液体と壁体との摩擦を最小限とすることができ、液体圧送の圧力が小さくても効率的に渦流の旋回速度を高めることができる。
(2)しかも、略球体の場合に比べて中空部内の液体の総量が小さくなり、旋回させる液体の慣性も小さくなるため、液体の導入圧が同じでも渦流の旋回速度をより高めることができ、単位時間当たりに自吸する気体量を増加させることができる。
(3)中空部を略半球形としたため、気体導入口の位置が中空部内で相対する気液噴出口に近くなるため、形成される負圧空洞部の全長も短くなる。この結果、負圧空洞部の断面は気体導入口付近から負圧空洞部尖端に向けて急激に小さくなる。これにより、負圧空洞部尖端に生じる微細気泡発生点での液体渦流の旋回速度も急激に増加し、気体のせん断効率が向上するため、より小さな微細気泡を発生させることができる。なお、微細気泡発生点は中空部内の気液噴出口の近傍に生じさせることが望ましい。
(4)請求項1に記載の発明と同様に、気体導入口を中空部内に略円錐台形に突出させて開設しているため、気体導入口側の中空部内壁まで達した液体の流れが反転する際、該略円錐台形の側面により誘導され、回転対称軸に沿って還流し易くなり、全体として中空部内の液体の流れが円滑化する。
(5)一方、請求項1に記載の発明とは異なり、中空部は略半球形であって気体導入口付近では最大の半径を有するため、液体が反転する際には中空部が略球形の場合ほど旋回速度は増加しないが、反転後はただちに中空部の外径が縮小するため、負圧空洞部の尖端に向けて液体の旋回速度が増加する効果は同じである。
(6)そのため、結果的に回転対称軸に沿った短い距離で負圧空洞部の断面が急激に小さくなり、その尖端の微細気泡発生点における気体のせん断効率が高められる。
With this configuration, the following effects can be obtained.
(1) Since the container body has a substantially hemispherical shape, and the hollow portion filled with the liquid also has a substantially hemispherical shape, the friction between the liquid and the wall body can be minimized, as in the case of the substantially spherical body. Even if the pressure of liquid pumping is small, the swirl speed of the vortex can be increased efficiently.
(2) Moreover, since the total amount of liquid in the hollow portion is smaller than in the case of a substantially spherical body and the inertia of the swirling liquid is smaller, the swirling speed of the vortex can be further increased even when the liquid introduction pressure is the same. The amount of gas that is self-primed per unit time can be increased.
(3) Since the hollow portion has a substantially hemispherical shape, the position of the gas introduction port is close to the gas-liquid jet port facing the inside of the hollow portion, so that the overall length of the formed negative pressure cavity portion is also shortened. As a result, the cross section of the negative pressure cavity portion decreases rapidly from the vicinity of the gas inlet toward the tip of the negative pressure cavity portion. As a result, the swirling speed of the liquid vortex at the microbubble generation point generated at the tip of the negative pressure cavity is also rapidly increased, and the shear efficiency of the gas is improved, so that smaller microbubbles can be generated. In addition, it is desirable to generate the fine bubble generation point in the vicinity of the gas-liquid jet outlet in the hollow portion.
(4) Since the gas introduction port is formed in the hollow portion so as to protrude in a substantially frustoconical shape, as in the invention described in claim 1, the flow of the liquid reaching the hollow portion inner wall on the gas introduction side is reversed. In this case, the liquid is guided by the substantially frustoconical side surface and is easy to recirculate along the rotational symmetry axis, and the flow of the liquid in the hollow portion is smoothed as a whole.
(5) On the other hand, unlike the invention according to claim 1, the hollow part is substantially hemispherical and has the maximum radius near the gas inlet, so that when the liquid is reversed, the hollow part is substantially spherical. Although the swirling speed does not increase as much as the case, since the outer diameter of the hollow portion is reduced immediately after reversal, the effect of increasing the swirling speed of the liquid toward the tip of the negative pressure cavity is the same.
(6) As a result, the cross section of the negative pressure cavity is rapidly reduced at a short distance along the rotational symmetry axis, and the shear efficiency of the gas at the microbubble generation point at the tip is increased.

なお、器体は半球形とするほかに、回転対称軸方向の全長をさらに短くして、全体として凸レンズ形状としてもよい。この場合、内部の中空部の回転対称軸方向の全長も短くなり、気体導入口と気液噴出口の距離も短くなるが、略円錐台形側面の回転対称軸に対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部の円錐形の高さを制御して、微細気泡発生点を気液噴出口の近傍に生じさせることができる。   In addition to the hemispherical shape of the vessel, the overall length in the rotationally symmetric axis direction may be further shortened to have a convex lens shape as a whole. In this case, the overall length of the inner hollow portion in the rotational symmetry axis direction is also shortened, and the distance between the gas inlet and the gas-liquid jet outlet is also shortened, but the angle of the substantially frustoconical side surface with respect to the rotational symmetry axis and the cross-sectional area of the truncated cone top portion. By appropriately changing the above, it is possible to control the height of the conical shape of the negative pressure cavity, and to generate a fine bubble generation point in the vicinity of the gas-liquid jet port.

次に、本発明の請求項5に係る旋回式微細気泡発生装置は、請求項4に記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする。   Next, a swirl type fine bubble generator according to claim 5 of the present invention is the swivel type fine bubble generator according to claim 4, wherein the gas inlet has the substantially frustoconical side surface as the container. It is characterized by forming a curved surface integral with the body wall surface.

請求項4に係る旋回式微細気泡発生装置では、前述の通り気体導入口周辺において中空部の断面積は最大であるので液体の旋回流の反転の最に乱流が生じる可能性は請求項3に係る旋回式微細気泡発生装置よりも小さいが、気体導入口の略円錐台形の側面を中空部内壁面と一体的な湾曲面とすることで、この乱流の発生をさらに効果的に防ぐことができる。   In the swirl type fine bubble generator according to claim 4, since the cross-sectional area of the hollow portion is the maximum around the gas inlet as described above, there is a possibility that turbulence will occur at the time of reversal of the swirl flow of the liquid. Although it is smaller than the swirl type fine bubble generator according to the above, by making the substantially frustoconical side surface of the gas introduction port a curved surface integrated with the inner wall surface of the hollow portion, the generation of this turbulent flow can be prevented more effectively. it can.

次に、本発明の請求項6に係る旋回式微細気泡発生装置は、請求項4又は5のいずれかに記載の旋回式微細気泡発生装置であって、前記気体導入口が、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする。   Next, the swirl type fine bubble generator according to claim 6 of the present invention is the swirl type fine bubble generator according to any one of claims 4 and 5, wherein the gas inlet is the substantially frustoconical shape. A gas introduction pipe that penetrates the outer wall of the container body and is movable back and forth along the rotational symmetry axis direction of the container body.

請求項3に係る旋回式微細気泡発生装置と同様に、気体導入管を回転対称軸に沿って動かすことにより、中空部内へ気体を導入する位置を任意に変更することが可能となる。これにより、あらかじめ気体と液体の混合比率を調整した気液混合液を導入する方式をとらずとも、本発明では、単純かつ機械的に気体導入管の中空部内への突出量を変更することで、容易に微細気泡の発生量を制御することが可能となる。そのため、あらかじめ気液混合液を作ってその混合比率を調整するための附帯設備は不要であり、小型かつ簡易な構造の装置本体のみで微細気泡の発生量を制御することができるという利点を有する。   Similarly to the swirling fine bubble generator according to the third aspect, by moving the gas introduction tube along the rotational symmetry axis, the position for introducing the gas into the hollow portion can be arbitrarily changed. Thus, the present invention simply and mechanically changes the amount of protrusion into the hollow portion of the gas introduction tube without adopting a method of introducing a gas-liquid mixture whose gas / liquid mixing ratio has been adjusted in advance. Thus, it becomes possible to easily control the generation amount of fine bubbles. Therefore, there is no need for incidental equipment for preparing a gas-liquid mixed liquid in advance and adjusting the mixing ratio, and it is possible to control the generation amount of fine bubbles only with a small and simple apparatus body. .

本発明によれば、小型かつ簡易な構造で効率的に微細気泡を発生できる旋回式微細気泡発生装置を実現できる。本旋回式微細気泡発生装置では、外部ポンプにより器体内に液体を圧送することにより、気体は自動的に自吸されて微細気泡化される。特に、器体を極めて小型にした場合は、たとえば水道の水圧程度の圧力でも動作することができるため、浄水器やシャワーヘッド等の家庭用機器にも容易に組み込み可能である。そのため、本発明は、旋回式微細気泡発生装置において、特に小規模な水環境での適用範囲を拡大できるという効果を有する。   According to the present invention, it is possible to realize a swivel type microbubble generator that can efficiently generate microbubbles with a small and simple structure. In this swirling microbubble generator, the gas is automatically sucked into microbubbles by pumping the liquid into the container by an external pump. In particular, when the vessel body is extremely small, it can be operated even at a pressure about the water pressure of tap water, for example, and can be easily incorporated into household equipment such as a water purifier and a shower head. Therefore, this invention has the effect that the application range in a small-scale water environment can be expanded in a turning type fine bubble generator.

以下、本発明の実施の形態について図面1乃至5を参照して説明する。図1は、本発明の第一の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略球形の器体10は、その外壁の回転対称軸上に正対する位置に気液噴出口12と気体導入管13を有するとともに、前記気液噴出口12の近傍においては回転対称軸に対し垂直方向に向けて加圧液導入管14が接続されている。また、図2は、前記略球形の器体10を前記気液噴出口12側から観た正面図である。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 1 is a side view of a swirling fine bubble generator according to a first embodiment of the present invention. The substantially spherical vessel 10 having a hollow inside has a gas-liquid jet 12 and a gas introduction pipe 13 at a position facing the rotational symmetry axis of the outer wall thereof, and is rotationally symmetric in the vicinity of the gas-liquid jet 12. A pressurized liquid introduction pipe 14 is connected in a direction perpendicular to the axis. FIG. 2 is a front view of the substantially spherical vessel 10 viewed from the gas-liquid jet 12 side.

図3は、図1の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体10の内部は中空となっており、中空部の内壁は気体導入口16付近を除いては滑らかな球内側面を成している。一方、気体導入口16は回転対称軸Xに沿って中空部内に突出した略円錐台形を成し、略円錐台形の側面は球内側面と一体的に滑らかな湾曲面16を成している。また、器体10の外部から気体導入口11を貫通する形で気体導入管13を備えている。加圧液導入管14は気液噴出口12の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口15を形成している。 FIG. 3 is a cross-sectional view of the swirling fine bubble generating device of FIG. The inside of the vessel body 10 is hollow, and the inner wall of the hollow portion forms a smooth spherical inner surface except for the vicinity of the gas inlet 16. On the other hand, the gas introduction port 16 has a substantially truncated cone shape protruding into the hollow portion along the rotational symmetry axis X, and the substantially truncated cone side surface forms a smooth curved surface 16 integrally with the spherical inner surface. Moreover, the gas introduction pipe | tube 13 is provided in the form which penetrates the gas introduction port 11 from the exterior of the container body 10. FIG. The pressurized liquid introduction pipe 14 is connected in the vicinity of the opening of the inner wall of the hollow part of the gas-liquid jet port 12 in the direction perpendicular to the rotational symmetry axis X, and forms a pressurized liquid inlet 15 on the inner wall of the hollow part. Yes.

旋回式微細気泡発生装置の動作前には、中空部には装置自体を浸漬した液体が満たされており、装置を動作すると、加圧液導入管14から圧送された液体Lが加圧液導入口15を通じて新たに中空部内に導入される。 Prior to the operation of the swirling fine bubble generating device, the hollow portion is filled with a liquid in which the device itself is immersed. When the device is operated, the liquid L fed from the pressurized liquid introducing pipe 14 is introduced into the pressurized liquid. It is newly introduced into the hollow portion through the mouth 15.

導入された液体Lは、ただちに中空部の内壁に沿って旋回しつつ、気体導入口11の方向(図3では左方向)に進み、渦流Rを生じる。渦流Rは加圧液導入口15付近では小さな半径で旋回するが、中空部の中心付近では最大の半径で旋回し、気体導入口11付近では再び小さな半径で旋回する。 The introduced liquid L immediately swirls along the inner wall of the hollow portion, proceeds in the direction of the gas inlet 11 (leftward in FIG. 3), and generates a vortex R. The swirl R swirls with a small radius near the pressurized liquid inlet 15, but swirls with a maximum radius near the center of the hollow portion, and swirls again with a small radius near the gas inlet 11.

湾曲面16まで到達した渦流Rは湾曲面16に沿って反転し、回転対称軸X沿いに往路の渦流Rの内側に復路の渦流R’を形成しつつ右方向へ進行する。渦流R’の旋回は渦流Rと同じ方向であるが、その半径は小さいため旋回速度は渦流Rよりも大きい。そのため、中空部内の液体Lには回転対称軸X上に沿って負圧が発生し、該負圧により気体導入管13から気体Aが中空部内に吸い込まれ、回転対称軸Xに沿って負圧空洞部Vが生じる。 The vortex flow R that has reached the curved surface 16 is reversed along the curved surface 16 and proceeds in the right direction along the rotational symmetry axis X while forming a return vortex flow R 'inside the forward vortex flow R. The swirl of the vortex R ′ is in the same direction as the vortex R, but the radius is small, so the swirl speed is larger than that of the vortex R. Therefore, a negative pressure is generated in the liquid L in the hollow portion along the rotational symmetry axis X, and the gas A is sucked into the hollow portion from the gas introduction pipe 13 by the negative pressure, and the negative pressure is generated along the rotational symmetry axis X. A cavity V is generated.

負圧空洞部Vを形成する気体Aは、渦流R’との摩擦によって回転を与えられ、旋回しつつ右方向に進むが、気液噴出口12に近づくにつれ渦流R’の旋回半径がさらに小さくなり、旋回速度も速くなるため、これに絞り込まれる形となって負圧空洞部Vは先細りの円錐形状となる。負圧空洞部Vの外側面では、気体Aと渦流R’の旋回する液体Lとの比重の違いから、気体Aの旋回速度は液体Lの旋回速度よりも小さくなるため、この旋回速度差により気体Aに対してせん断効果が発生し、負圧空洞部Vの尖端において気体Aが連続的にせん断されて微細気泡化する微細気泡発生点Pが生じる。 The gas A forming the negative pressure cavity V is rotated by friction with the vortex flow R ′ and proceeds to the right while swirling, but the swirl radius of the vortex flow R ′ becomes smaller as it approaches the gas-liquid jet port 12. Since the turning speed is also increased, the negative pressure cavity V becomes a tapered conical shape. On the outer surface of the negative pressure cavity V, the swirling speed of the gas A is smaller than the swirling speed of the liquid L due to the difference in specific gravity between the gas A and the swirling liquid L ′. A shear effect is generated with respect to the gas A, and a fine bubble generation point P is generated at which the gas A is continuously sheared at the tip of the negative pressure cavity V to form fine bubbles.

その後、渦流R’は微細気泡MBを含む気液混合液状態となって気液噴出口12から器体外に放出され、微細気泡MBが外部の液体中に拡散されるのである。 Thereafter, the vortex flow R ′ becomes a gas-liquid mixed liquid state containing the fine bubbles MB and is discharged from the gas-liquid jet 12 to the outside of the container, and the fine bubbles MB are diffused into the external liquid.

図4は、本発明の第二の実施形態に係る旋回式微細気泡発生装置の側面図である。内部が中空の略半球形の器体20は、その外壁の回転対称軸X上に正対する位置に気液噴出口22と気体導入管23を有するとともに、前記気液噴出口22の近傍においては回転対称軸Xに対し垂直方向に向けて加圧液導入管24が接続されている。 FIG. 4 is a side view of the swirling fine bubble generating device according to the second embodiment of the present invention. A substantially hemispherical container body 20 having a hollow inside has a gas-liquid jet port 22 and a gas introduction pipe 23 at a position facing the rotational symmetry axis X of the outer wall, and in the vicinity of the gas-liquid jet port 22. A pressurized liquid introduction tube 24 is connected in a direction perpendicular to the rotational symmetry axis X.

図5は、図4の旋回式微細気泡発生装置を回転対称軸Xの位置で切断した断面図である。器体20の内部は中空となっており、中空部の内壁は気液噴出口22を頂点とする滑らかな半球内側面を成すが、気体導入口21側は半球の底面を塞ぐ円形の壁体27となっている。一方、気体導入口21は回転対称軸Xに沿って壁体27から中空部内に突出した略円錐台形を成し、中空部の内壁から壁体27を経て該略円錐台形の側面にかけて滑らかな湾曲面26を形成している。また、器体20の外部から壁体27と気体導入口21を貫通する形で気体導入管23を備えている。また、加圧液導入管24は気液噴出口22の中空部内壁の開口部近傍において、回転対称軸Xに対し垂直方向に向けて接続され、中空部内壁に加圧液導入口25を形成している。 FIG. 5 is a cross-sectional view of the swivel type fine bubble generator of FIG. 4 taken along the rotational symmetry axis X. The inside of the vessel body 20 is hollow, and the inner wall of the hollow portion forms a smooth hemispheric inner surface with the gas-liquid jet port 22 at the top, but the gas inlet 21 side is a circular wall body that blocks the bottom surface of the hemisphere. 27. On the other hand, the gas introduction port 21 has a substantially truncated cone shape that protrudes from the wall body 27 into the hollow portion along the rotational symmetry axis X, and smoothly curves from the inner wall of the hollow portion to the side surface of the substantially truncated cone shape through the wall body 27. A surface 26 is formed. Further, a gas introduction pipe 23 is provided so as to penetrate the wall body 27 and the gas introduction port 21 from the outside of the vessel body 20. Further, the pressurized liquid introduction pipe 24 is connected in the vicinity of the opening of the inner wall of the hollow portion of the gas-liquid jet port 22 in the direction perpendicular to the rotational symmetry axis X, and the pressurized liquid inlet 25 is formed in the inner wall of the hollow portion. doing.

本実施形態においても、装置が動作して加圧液導入管24から圧送された液体Lが加圧液導入口25を通じて新たに中空部内に導入され、生じた渦流Rが図の左方向に旋回しつつ進行する過程は第一実施形態と同様である。   Also in this embodiment, the liquid L pumped from the pressurized liquid introduction pipe 24 by operating the apparatus is newly introduced into the hollow portion through the pressurized liquid introduction port 25, and the generated vortex R swirls in the left direction in the figure. However, the process of proceeding is the same as in the first embodiment.

本実施形態では、中空部が最大半径となったところで渦流Rが壁体27に到達し、湾曲面26に沿って反転して渦流R’となり、回転対称軸X沿いに渦流Rの内側を気液噴出口22に向かって進行する。渦流Rは反転する前に、第一実施形態のように旋回半径が小さくならないため、気体導入口21付近での乱流の発生が抑制される。   In the present embodiment, when the hollow portion has the maximum radius, the vortex flow R reaches the wall body 27, is reversed along the curved surface 26 to become the vortex flow R ′, and the inside of the vortex flow R along the rotational symmetry axis X is aired. It proceeds toward the liquid spout 22. Since the swirl radius is not reduced as in the first embodiment before the vortex R is reversed, the generation of turbulent flow in the vicinity of the gas inlet 21 is suppressed.

また、本実施形態では、中空部が略半球形で回転対称軸X方向の長さが短いため、反転後の渦流R’は第一実施形態よりも短い距離で旋回半径が小さくなる。その結果、発生する負圧空洞部Vの全長も短くなり、その断面積は第一実施形態よりも急激に絞り込まれることになる。そのため、負圧空洞部Vの周囲における渦流R’の旋回速度も第一実施形態よりも急激に大きくなり、微細気泡発生点Pでは気体Aに対するせん断効果は十分に高くなる。   In this embodiment, since the hollow portion is substantially hemispherical and has a short length in the direction of the rotational symmetry axis X, the swirl radius of the vortex R ′ after reversal becomes smaller at a shorter distance than in the first embodiment. As a result, the total length of the generated negative pressure cavity V is also shortened, and the cross-sectional area is narrowed more rapidly than in the first embodiment. Therefore, the swirling speed of the vortex R 'around the negative pressure cavity V is also increased more rapidly than in the first embodiment, and the shear effect on the gas A is sufficiently high at the fine bubble generation point P.

以上、二つの実施形態を比較すると、第一実施形態に比べて第二実施形態の方が中空部の容積が小さいため、当然ながら中空部内で旋回する液体Aの量、すなわち慣性重量も小さい。そのため、中空部内へ液体Lを圧送する圧力が同じであれば、第二実施形態の方がより高速の渦流を生じ、回転対称軸X上に生じる負圧空洞部Vの負圧も大きくなる。   As described above, when the two embodiments are compared, since the volume of the hollow portion is smaller in the second embodiment than in the first embodiment, the amount of the liquid A swirling in the hollow portion, that is, the inertia weight is naturally small. Therefore, if the pressure for pumping the liquid L into the hollow portion is the same, the second embodiment generates a higher-speed vortex, and the negative pressure of the negative pressure cavity V generated on the rotational symmetry axis X also increases.

このことは、本願発明の発明者が実施した実験結果からも明らかである。図6は、器体の最大直径を等しくした第一実施形態(略球形)と第二実施形態(略半球形)の試作機を用いて水中での動作実験を行い、動作中に中空部内に生じる負圧を計測した数値を表にしたものである。なお、試作機に水を圧送するポンプの出力は等しくした。   This is also clear from the results of experiments conducted by the inventors of the present invention. FIG. 6 shows an experiment in water using the prototypes of the first embodiment (substantially spherical) and the second embodiment (substantially hemispherical) with the same maximum diameter of the vessel body. The numerical values obtained by measuring the generated negative pressure are tabulated. The output of the pump that pumps water to the prototype was the same.

その結果、装置を通過する水の流量は第一実施形態では毎秒15g強であるのに対し、第二実施形態では毎秒23g強と大きく、より小型である第二実施形態の方が単位時間当たりの流量が大きいことが示された。 As a result, the flow rate of water passing through the apparatus is slightly higher than 15 g per second in the first embodiment, but is higher than 23 g per second in the second embodiment, and the smaller second embodiment is more per unit time. The flow rate of was shown to be large.

また、中空部内に生じる負圧は、第一実施形態では3回の試行の結果、平均0.458mAqであったのに対し、第二実施形態では7回の試行の結果、平均1.04mAqと二倍強の数値となった。   In addition, the negative pressure generated in the hollow portion was 0.458 mAq on average as a result of three trials in the first embodiment, whereas 1.04 mAq on average as a result of seven trials in the second embodiment. The value was more than twice.

実験の結果、第二実施形態は同じ圧力で液体を圧送しても、第一実施形態よりも速く液体Lを通過させて、中空部内においてより大きな負圧を発生させることが確認された。そのため、単位時間当たりに自吸される空気Aの量も第二実施形態の方が多くなるものと考えられるが、このことは気液噴出口から噴出する微細気泡の発生量が、目視でも第二実施形態の方が多いことからも確認できた。 As a result of the experiment, it was confirmed that even when the liquid was pumped at the same pressure, the second embodiment allowed the liquid L to pass faster than the first embodiment, thereby generating a larger negative pressure in the hollow portion. For this reason, it is considered that the amount of air A that is self-absorbed per unit time is larger in the second embodiment. This is because the amount of microbubbles ejected from the gas-liquid ejection port is also visually observed. It was confirmed from the fact that there were more two embodiments.

以上から、本発明に係る旋回式微細気泡発生装置においては、器体内の中空部の形態を略球形よりも略半球形とする方が効率性及び装置の小型化の両面においてより好適である。 From the above, in the swirling fine bubble generating device according to the present invention, it is more preferable in terms of both efficiency and miniaturization of the device that the shape of the hollow portion in the container is substantially hemispherical than spherical.

なお、器体の形状を変えた場合に微細気泡発生点Pを気液噴出口12の中空部側の近傍の適切な位置に生じさせることは、前述した通り、気体導入口11を形成する円錐台形側面の回転対称軸Xに対する角度並びに円錐台頂部の断面積を適宜変化させることで負圧空洞部Vの円錐形の高さを制御することにより実現できる。図7は、円錐台形の形状と生成される負圧空洞部Vの形状の関係を例示した部分拡大図であるが、負圧空洞部Vの円錐形は概ね円錐台形の頂部を底面とし、円錐台形の側面の延長面に沿って負圧空洞部Vの側面も形成されることが発明者の実験で確認された。 When the shape of the container is changed, the generation of the fine bubble generation point P at an appropriate position in the vicinity of the hollow portion side of the gas-liquid jet 12 is, as described above, the cone forming the gas inlet 11 This can be realized by controlling the height of the conical shape of the negative pressure cavity V by appropriately changing the angle of the trapezoidal side surface with respect to the rotational symmetry axis X and the cross-sectional area of the top of the truncated cone. FIG. 7 is a partially enlarged view illustrating the relationship between the shape of the frustoconical shape and the shape of the generated negative pressure cavity portion V. The conical shape of the negative pressure cavity portion V has a substantially truncated cone-shaped top portion as a bottom surface, and a conical shape. It was confirmed by the inventors' experiment that the side surface of the negative pressure cavity V is also formed along the extended surface of the trapezoidal side surface.

以上、本発明に係る旋回式微細気泡発生装置の実施の形態について図面を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的又は本発明の技術的思想の範囲内において改良又は変更が可能であり、それらは本発明の技術的範囲に属する。 The embodiment of the swirling fine bubble generator according to the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above embodiment, and the purpose of the improvement or the technical idea of the present invention. Within the scope of the present invention, improvements or modifications are possible and belong to the technical scope of the present invention.

本発明は、気体を微細気泡化して液体中に効率的に溶解させるための微細気泡発生装置に適用され、例えば水中の酸素量を賦加して水質を改善する水質改善装置に適している。本発明は、特に、効率性の高い微細気泡発生装置を小型化し簡易な構造で実現可能であるので、家庭用の浄水器やシャワーヘッド等に内蔵する小型の水質改善装置に好適である。   The present invention is applied to a fine bubble generating device for making a gas into fine bubbles and efficiently dissolving them in a liquid. For example, the present invention is suitable for a water quality improving device that improves the water quality by adding an amount of oxygen in water. The present invention is particularly suitable for a small water quality improvement device built in a domestic water purifier or a shower head because a highly efficient microbubble generator can be realized with a small size and a simple structure.

本発明の第一実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の正面図である。It is a front view of the revolving type fine bubble generator concerning a first embodiment of the present invention. 本発明の第一実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning-type fine bubble generator which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の側面図である。It is a side view of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る旋回式微細気泡発生装置の断面図である。It is sectional drawing of the turning type fine bubble generator which concerns on 2nd embodiment of this invention. 本発明の第一実施形態及び第二実施形態に係る旋回式微細気泡発生装置の試作品を用いて行った試験結果数値の表である。It is a table | surface of the numerical value of the test result performed using the prototype of the turning type fine bubble generator which concerns on 1st embodiment of this invention, and 2nd embodiment. 円錐台形の形状による負圧空洞部の形状の変化を例示する部分拡大図である。It is the elements on larger scale which illustrate the change of the shape of the negative pressure cavity part by the shape of a truncated cone.

X 回転対称軸
A 気体
L 液体
MB 微細気泡
R 渦流(往路)
R’ 渦流(復路)
V 負圧空洞部
10 器体(第一実施形態)
11 気体導入口(第一実施形態)
12 気液噴出口(第一実施形態)
13 気体導入管(第一実施形態)
14 加圧液導入管(第一実施形態)
15 加圧液導入口(第一実施形態)
16 湾曲面(第一実施形態)
20 器体(第二実施形態)
21 気体導入口(第二実施形態)
22 気液噴出口(第二実施形態)
23 気体導入管(第二実施形態)
24 加圧液導入管(第二実施形態)
25 加圧液導入口(第二実施形態)
26 湾曲面(第二実施形態)
27 壁体(第二実施形態)
X Axis of rotation A Gas L Liquid MB Fine bubble R Eddy current (outward)
R 'vortex (return)
V negative pressure cavity 10 vessel (first embodiment)
11 Gas inlet (first embodiment)
12 Gas-liquid spout (first embodiment)
13 Gas introduction pipe (first embodiment)
14 Pressurized liquid introduction pipe (first embodiment)
15 Pressurized liquid inlet (first embodiment)
16 Curved surface (first embodiment)
20 body (second embodiment)
21 Gas inlet (second embodiment)
22 Gas-liquid spout (second embodiment)
23 Gas introduction pipe (second embodiment)
24 Pressurized liquid introduction pipe (second embodiment)
25 Pressurized liquid inlet (second embodiment)
26 Curved surface (second embodiment)
27 Wall body (second embodiment)

Claims (6)

回転対称に形成された中空部を有する略球形の器体と、前記器体の回転対称軸上の一方側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の他方側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に流入した液体の旋回流により前記気体導入口から自吸した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする旋回式微細気泡発生装置。     A substantially spherical container having a hollow portion formed in a rotationally symmetric manner, and an outer wall on one side on the rotationally symmetric axis of the vessel body were formed by projecting into a substantially frustoconical shape in the hollow portion along the rotationally symmetric axis. A gas inlet, a gas-liquid jet opening in the outer wall on the other side on the rotational symmetry axis, and a pressurized liquid inlet opening in the direction perpendicular to the rotational symmetry axis in the vicinity of the gas-liquid jet outlet The gas self-sucked from the gas inlet is made into fine bubbles by the swirling flow of the liquid flowing into the container, and the swirling gas-liquid mixture containing fine bubbles is led out from the gas-liquid jet port. A swirl type fine bubble generator characterized by the above. 前記気体導入口は、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする請求項1に記載の旋回式微細気泡発生装置。     2. The swirling fine bubble generating device according to claim 1, wherein a side surface of the substantially frustoconical shape forms a curved surface integrated with the inner wall surface of the gas introduction port. 前記気体導入口は、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする請求項1又は2のいずれかに記載の旋回式微細気泡発生装置。     3. The gas introduction port includes a gas introduction pipe that penetrates the outer wall of the substantially truncated cone shape and is movable back and forth along the rotational symmetry axis direction of the container body. The swirl type fine bubble generator according to any one of the above. 回転対称に形成された中空部を有する略半球形の器体と、前記器体の略半球底面側の外壁を回転対称軸に沿って前記中空部内に略円錐台形に突出させて開設した気体導入口と、回転対称軸上の略半球頂部側の外壁に開設した気液噴出口と、前記気液噴出口の近傍において回転対称軸に対し垂直方向に開設した加圧液導入口と、を備え、前記器体内に流入した液体の旋回流により前記気体導入口から自吸した気体を微細気泡化し、前記気液噴出口から微細気泡を含む旋回気液混合液を導出するように成したことを特徴とする旋回式微細気泡発生装置。     A substantially hemispherical vessel having a hollow portion formed in rotational symmetry, and a gas introduction established by projecting an outer wall on the bottom side of the substantially hemispherical surface of the vessel into a substantially frustoconical shape in the hollow portion along the axis of rotational symmetry A gas-liquid jet port opened on the outer wall on the substantially hemispherical top side on the rotational symmetry axis, and a pressurized liquid inlet port opened in a direction perpendicular to the rotational symmetry axis in the vicinity of the gas-liquid jet port. The gas self-sucked from the gas inlet is made into fine bubbles by the swirling flow of the liquid flowing into the container, and the swirling gas-liquid mixture containing fine bubbles is led out from the gas-liquid jet port. A swirl type fine bubble generator characterized by the above. 前記気体導入口は、前記略円錐台形の側面が前記器体内壁面と一体的な湾曲面を成すことを特徴とする請求項4に記載の旋回式微細気泡発生装置。     5. The swirling fine bubble generating device according to claim 4, wherein a side surface of the substantially frustoconical shape of the gas introduction port forms a curved surface integrated with the wall surface of the body. 前記気体導入口は、前記略円錐台形の前記器体外壁を貫通し、かつ前記器体の回転対称軸方向に沿って前後移動可能な気体導入管を備えることを特徴とする請求項4又は5のいずれかに記載の旋回式微細気泡発生装置。
6. The gas introduction port includes a gas introduction pipe that penetrates through the outer wall of the substantially truncated cone shape and is movable back and forth along a rotationally symmetric axis direction of the container body. The swirl type fine bubble generator according to any one of the above.
JP2011110220A 2011-05-17 2011-05-17 Swivel type micro bubble generator Active JP4903292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110220A JP4903292B1 (en) 2011-05-17 2011-05-17 Swivel type micro bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110220A JP4903292B1 (en) 2011-05-17 2011-05-17 Swivel type micro bubble generator

Publications (2)

Publication Number Publication Date
JP4903292B1 JP4903292B1 (en) 2012-03-28
JP2012239953A true JP2012239953A (en) 2012-12-10

Family

ID=46060729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110220A Active JP4903292B1 (en) 2011-05-17 2011-05-17 Swivel type micro bubble generator

Country Status (1)

Country Link
JP (1) JP4903292B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083502A (en) * 2012-10-24 2014-05-12 Shinko Sangyo Kk Neutralization apparatus of alkali water
KR20190095311A (en) 2016-12-19 2019-08-14 오노 디벨롭먼트 컴퍼니 리미티드 Apparatus and System for Producing Vapors Containing Microbubbles
WO2020138248A1 (en) * 2018-12-25 2020-07-02 株式会社御池鐵工所 Ultrafine bubble maker and ultrafine bubble water preparing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201900119A1 (en) * 2016-08-24 2019-07-31 Емсо Ватер Патент Гмбх METHOD AND DEVICE FOR ENERGY EFFICIENT GENERATION OF VOLUME VORTEXES IN A REACTIVE CHAMBER

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059186A (en) * 2000-08-17 2002-02-26 Ryosaku Fujisato Water-jet type fine bubble generator
JP2002166151A (en) * 2000-11-30 2002-06-11 Tashizen Techno Works:Kk Minute foam supply method and minute foam supply apparatus
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus
JP2004263152A (en) * 2003-03-04 2004-09-24 National Institute Of Advanced Industrial & Technology Method for producing gas hydrate by utilizing ultra fine bubble and gas hydrate obtained by the method
JP2006122813A (en) * 2004-10-28 2006-05-18 Sento Yasukazu Mixer and mixing apparatus using this
JP2009101329A (en) * 2007-10-25 2009-05-14 Tashizen Techno Works:Kk Liquid treatment apparatus
JP4621796B1 (en) * 2009-10-20 2011-01-26 修一 石川 Swivel type micro bubble generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059186A (en) * 2000-08-17 2002-02-26 Ryosaku Fujisato Water-jet type fine bubble generator
JP2002166151A (en) * 2000-11-30 2002-06-11 Tashizen Techno Works:Kk Minute foam supply method and minute foam supply apparatus
JP2003181258A (en) * 2001-12-13 2003-07-02 Tashizen Techno Works:Kk Whirling type fine bubble formation apparatus
JP2004263152A (en) * 2003-03-04 2004-09-24 National Institute Of Advanced Industrial & Technology Method for producing gas hydrate by utilizing ultra fine bubble and gas hydrate obtained by the method
JP2006122813A (en) * 2004-10-28 2006-05-18 Sento Yasukazu Mixer and mixing apparatus using this
JP2009101329A (en) * 2007-10-25 2009-05-14 Tashizen Techno Works:Kk Liquid treatment apparatus
JP4621796B1 (en) * 2009-10-20 2011-01-26 修一 石川 Swivel type micro bubble generator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083502A (en) * 2012-10-24 2014-05-12 Shinko Sangyo Kk Neutralization apparatus of alkali water
KR20190095311A (en) 2016-12-19 2019-08-14 오노 디벨롭먼트 컴퍼니 리미티드 Apparatus and System for Producing Vapors Containing Microbubbles
WO2020138248A1 (en) * 2018-12-25 2020-07-02 株式会社御池鐵工所 Ultrafine bubble maker and ultrafine bubble water preparing device
JPWO2020138248A1 (en) * 2018-12-25 2021-10-14 株式会社御池鐵工所 Ultra fine bubble maker and ultra fine bubble water maker
JP7150408B2 (en) 2018-12-25 2022-10-11 株式会社御池鐵工所 Ultra-fine bubble maker and ultra-fine bubble water maker
US11980850B2 (en) 2018-12-25 2024-05-14 Miike Tekkou Kabushikigaisha Ultrafine bubble manufacturing unit and ultrafine bubble water manufacturing device

Also Published As

Publication number Publication date
JP4903292B1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP6169749B1 (en) Microbubble generator
JP4636420B2 (en) Microbubble generator
KR101483412B1 (en) Micro bubble nozzle
JP4142728B1 (en) Bubble refiner
JP6842249B2 (en) Fine bubble generation nozzle
WO2013012069A1 (en) Bubble generating mechanism and showerhead with bubble generating mechanism
US8622715B1 (en) Twin turbine asymmetrical nozzle and jet pump incorporating such nozzle
JP4903292B1 (en) Swivel type micro bubble generator
JP2016036775A (en) Fine bubble generator and method for generation of the same
JP5573879B2 (en) Microbubble generator
WO2018117040A1 (en) Device and system for generating gas-liquid containing microbubbles
JP4621796B1 (en) Swivel type micro bubble generator
JP6449531B2 (en) Microbubble generator
CN110891674A (en) Microbubble generating apparatus and microbubble generating method, and shower apparatus and oil-water separating apparatus having the same
KR102313214B1 (en) Ultra fine bubble generating system with coil-shaped nozzle
JP2017136513A (en) Fine air bubble generating device, fine air bubble generating method, and shower device and oil water separating apparatus having the fine air bubble generating device
JP2007268390A (en) Bubble generating device
JP2019166493A (en) Fine bubble generation nozzle
JP5257586B2 (en) Swivel type micro bubble generator
KR20170096674A (en) micro-bubble generator
JP2002166151A (en) Minute foam supply method and minute foam supply apparatus
JP2006122813A (en) Mixer and mixing apparatus using this
KR101524403B1 (en) Apparatus for generating micro bubbles
KR100854687B1 (en) Micro bubble system
WO2018131714A1 (en) Fluid mixing device, and method for producing mixed fluid using this mixing device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Ref document number: 4903292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250