JP2012239589A - Method for manufacturing in-vivo indwelling member - Google Patents

Method for manufacturing in-vivo indwelling member Download PDF

Info

Publication number
JP2012239589A
JP2012239589A JP2011111569A JP2011111569A JP2012239589A JP 2012239589 A JP2012239589 A JP 2012239589A JP 2011111569 A JP2011111569 A JP 2011111569A JP 2011111569 A JP2011111569 A JP 2011111569A JP 2012239589 A JP2012239589 A JP 2012239589A
Authority
JP
Japan
Prior art keywords
coil
mandrel
primary coil
manufacturing
aneurysm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011111569A
Other languages
Japanese (ja)
Other versions
JP5863278B2 (en
Inventor
Takyo Tsukumo
多挙 九十九
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011111569A priority Critical patent/JP5863278B2/en
Publication of JP2012239589A publication Critical patent/JP2012239589A/en
Application granted granted Critical
Publication of JP5863278B2 publication Critical patent/JP5863278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an in-vivo indwelling member, in which sticking of an oxide is suppressed, with high manufacturing efficiency.SOLUTION: When manufacturing a secondary coil CL2 to be the in-vivo indwelling member by working a primary coil CL1 using a mandrel 11, the mandrel 11 around which the primary coil CL1 is to be wound has on its surface a spiral groove 12 for housing the primary coil CL1, and a groove pitch P in at least a part of the spiral groove 12 is ≥90% and ≤99% of the outer diameter D of the primary coil CL1.

Description

本発明は、生体内留置部材の製造方法に関する。   The present invention relates to a method for manufacturing an in-vivo indwelling member.

人体には、様々な管状器官が存在する。そこで、例えば、外部からの開胸手術が複雑で困難な場合、このような管状器官を通じて、拡張具または閉塞具等の医療器具が、外部から内部の患部に向かって導かれ、その患部にて、治療が行われてきた。   There are various tubular organs in the human body. Therefore, for example, when an external thoracotomy is complicated and difficult, a medical instrument such as a dilator or an obturator is guided from the outside toward the internal affected area through such a tubular organ. The treatment has been done.

例えば、血管にできた動脈瘤を治療する場合、医療器具の一例であるカテーテルが、血管内を通じて動脈瘤に誘導され、さらに、このカテーテル内を通じて、金属コイル等の生体内留置部材が、動脈瘤内に挿入される。このような治療によると、動脈瘤は、内部を金属コイル等で埋められることで、血栓となり、その動脈瘤に血液が流れ込まなくなり、その結果、動脈瘤の破裂が防止される。   For example, when treating an aneurysm formed in a blood vessel, a catheter which is an example of a medical instrument is guided into the aneurysm through the blood vessel, and further, an indwelling member such as a metal coil is inserted into the aneurysm through the catheter. Inserted inside. According to such treatment, the aneurysm is filled with a metal coil or the like so that it becomes a thrombus and blood does not flow into the aneurysm. As a result, the aneurysm is prevented from rupturing.

血管閉塞用の金属のコイルは、例えば、白金等の線材をコイル状に成形させたもの(1次コイル)を、さらにコイル状に成形させたもの(2次コイル)で形成される(なお、このような金属コイルは、ダブルコイルとも称される)。このようなコイル(すなわち2次コイル)は、直線状に伸ばされた状態でカテーテル内に挿入され、管状器官内に留置するカテーテルから押し出された場合に、2次コイルの形状に復帰する。そのため、このコイルは、上述のように動脈瘤内を閉塞したり、または大量の出血を防止するために血路を閉塞したりするのに、好適といえる。   The metal coil for vascular occlusion is formed, for example, by forming a wire material such as platinum into a coil shape (primary coil) and further forming it into a coil shape (secondary coil) (note that Such a metal coil is also referred to as a double coil). Such a coil (i.e., secondary coil) is inserted into the catheter in a linearly stretched state and returns to the shape of the secondary coil when pushed out of the catheter placed in the tubular organ. Therefore, it can be said that this coil is suitable for occluding the inside of an aneurysm as described above or occluding a blood path in order to prevent a large amount of bleeding.

このような血管閉塞の一般的な手技の方法では、まず、動脈瘤の大きさに合わせた血管閉塞用のコイルが選択され、そのコイルが動脈瘤に挿入される。このような初期段階で挿入されたコイルは、動脈瘤に、別のコイルを入れるための枠組となる(このような動脈瘤へのコイル挿入は、フレーミングとも称される)。そのため、フレーミングでは、初期の動脈瘤容積に合わせた形状を有するコイルが選択され、コイル長さは比較的長尺で、かつ、2次コイル径は瘤径に近い比較的大径のものが選択される。   In such a general technique for vascular occlusion, first, a vascular occlusion coil is selected according to the size of the aneurysm, and the coil is inserted into the aneurysm. The coil inserted in such an initial stage becomes a framework for inserting another coil into the aneurysm (the insertion of the coil into the aneurysm is also referred to as framing). Therefore, in framing, a coil having a shape that matches the initial aneurysm volume is selected, the coil length is relatively long, and the secondary coil diameter is relatively large, close to the aneurysm diameter. Is done.

次に、動脈瘤容積に対するコイル占有率を高めるため、動脈瘤にて形成された枠内に、別のコイルが挿入され、その枠内が満たされる(このような動脈瘤の枠内へのコイル挿入は、フィリングとも称される)。そのため、フィリングでは、コイルは枠内に収まる大きさでなくてはならず、フレーミングで選択されたコイルよりも、短尺かつ小径のコイルが選択される。   Next, in order to increase the coil occupancy ratio relative to the volume of the aneurysm, another coil is inserted into the frame formed by the aneurysm to fill the frame (the coil into the frame of such an aneurysm). Insertion is also referred to as filling). Therefore, in the filling, the coil must have a size that fits within the frame, and a coil that is shorter and smaller in diameter than the coil selected by framing is selected.

最後に、手技後の経時的な形状変化による隙間や再開通の発生(コンパクション)を抑えるべく、動脈瘤における僅かな隙間を埋め、さらなるコイル占有率を高めるために、フィリングで選択されたコイルよりも、より柔軟で短尺かつ小径のコイルが選択され、それが留置される(このようなコイルの挿入は、フィニッシングとも称される)。つまり、複数のコイルが動脈瘤に挿入され、かつ留置される場合、挿入順が遅くなるにつれて、徐々に、コイルの形状は小さくなっている。   Finally, in order to reduce the gap due to shape change over time after the procedure and the occurrence of compaction (compaction), in order to fill a small gap in the aneurysm and further increase the coil occupancy, the coil selected by filling However, a more flexible, shorter and smaller diameter coil is selected and placed (the insertion of such a coil is also referred to as finishing). That is, when a plurality of coils are inserted into an aneurysm and placed, the shape of the coil gradually decreases as the insertion order becomes slower.

ところで、血管にできた瘤の形状は、人によって様々であるため、コイルは、動脈瘤の形状に沿った形であることが好ましい。すなわち、コイルには、複雑な形状が必要とされる。また、動脈瘤における占有率を高めることを目的としたコイルは、動脈瘤における僅かな隙間であっても、脱落なく収まらなくてはならない。そのため、そのようなコイル(2次コイル)は、柔軟で、かつ剛性傾斜をもたせられるよう設計されることで、動脈瘤内への留置性能を高めている。   By the way, since the shape of the aneurysm formed in the blood vessel varies depending on the person, it is preferable that the coil has a shape along the shape of the aneurysm. That is, a complicated shape is required for the coil. In addition, a coil intended to increase the occupancy ratio in an aneurysm must be accommodated without dropping even a slight gap in the aneurysm. Therefore, such a coil (secondary coil) is designed to be flexible and have a rigid inclination, thereby enhancing the indwelling performance in the aneurysm.

このような2次コイル形状の製造方法を示す特許文献1では、例えば、白金、パラジウム、ロジウム、金、タングステン、それらの合金、または、ステンレス鋼および超弾性合金を材料とした血管閉塞部材が、球形または変形した球形の形態マンドレルに巻き付けられ、1100°Fで加熱される。   In Patent Document 1 showing a manufacturing method of such a secondary coil shape, for example, a vascular occlusion member made of platinum, palladium, rhodium, gold, tungsten, an alloy thereof, or stainless steel and a superelastic alloy is used. Wrapped around a spherical or deformed spherical form mandrel and heated at 1100 ° F.

また、特許文献2では、溝を有する球状の本体とその本体の表面に突き立ったコイルシームとを含むマンドレルが開示されており、生体内留置部材を形成する微細ケーブルが、溝によって整列されつつ、マンドレルに巻きつけられ、1100°Fで加熱される。   Patent Document 2 discloses a mandrel including a spherical main body having a groove and a coil seam protruding from the surface of the main body, and the fine cable forming the in-vivo indwelling member is aligned by the groove, It is wrapped around a mandrel and heated at 1100 ° F.

すなわち、従来の2次コイル形状の製造方法は、金属またはセラミック等をマンドレルの材料とし、単純または意図的な溝形状に沿って、一次コイルを巻きつけ、1100°Fという高温な熱処理を施している。   That is, the conventional secondary coil shape manufacturing method uses a metal or ceramic material as a mandrel material, winds the primary coil along a simple or intentional groove shape, and performs a high temperature heat treatment of 1100 ° F. Yes.

特開平09−168541号公報JP 09-168541 A 特開2008−119488号公報JP 2008-119488 A

しかしながら、特許文献1・2の製造方法では、加熱温度に起因して、血管閉塞部材が著しく酸化し、その酸化物を除去するための工程が必要になる(すなわち、酸化物除去処理工程を含む分、この製造方法は、製造効率の低い方法といえる)。また、球形のマンドレルであるが故に、完成したコイルは動脈瘤に挿入されても、動脈瘤における隙間を無くすことができず、その結果、治療後に、患者は再開通の発生のリスクを負うこともある。   However, in the manufacturing methods of Patent Documents 1 and 2, the vascular occlusion member is remarkably oxidized due to the heating temperature, and a step for removing the oxide is required (that is, the oxide removing treatment step is included). This manufacturing method can be said to be a method with low manufacturing efficiency). Also, because of the spherical mandrel, even if the completed coil is inserted into the aneurysm, the gap in the aneurysm cannot be eliminated, and as a result, the patient is at risk of reopening after treatment. There is also.

また、特許文献2の製造方法にて、2次コイルに形状付与させる場合、単純溝に沿って、1次コイルが巻き付けられるだけであるので、2次コイルとしての剛性傾斜の概念はない。   In addition, when the shape is imparted to the secondary coil by the manufacturing method of Patent Document 2, there is no concept of rigid inclination as the secondary coil because the primary coil is only wound along the simple groove.

本発明は、上記の問題点を解決するためになされたものである。そして、その目的は、酸化物の付着を抑えた生体内留置部材を、高い製造効率にて製造できる製造方法を提供することにある。   The present invention has been made to solve the above problems. And the objective is to provide the manufacturing method which can manufacture the in-vivo indwelling member which suppressed adhesion of an oxide with high manufacturing efficiency.

生体内留置部材の製造方法では、1次コイルをマンドレルで加工することで、生体内留置部材となる2次コイルを製造する。そして、この製造方法では、1次コイルを巻き付けるマンドレルは、表面に、1次コイルを収める螺旋溝を有しており、螺旋溝の少なくとも一部における溝ピッチが、1次コイルの外径に対して、90%以上99%以下である。   In the in-vivo indwelling member manufacturing method, the primary coil is processed by a mandrel to manufacture a secondary coil to be an in-vivo indwelling member. And in this manufacturing method, the mandrel around which the primary coil is wound has a spiral groove for accommodating the primary coil on the surface, and the groove pitch in at least a part of the spiral groove is smaller than the outer diameter of the primary coil. And 90% or more and 99% or less.

なお、1次コイルを加工する場合に、その1次コイルへの加熱温度は、550℃以下であると好ましい。   In addition, when processing a primary coil, it is preferable that the heating temperature to the primary coil is 550 degrees C or less.

本発明によれば、酸化物の付着を抑えた生体内留置部材を、高い製造効率にて製造できる。   ADVANTAGE OF THE INVENTION According to this invention, the in-vivo indwelling member which suppressed adhesion of an oxide can be manufactured with high manufacturing efficiency.

は、マンドレルの側面図である。FIG. 3 is a side view of a mandrel. は、図1に示すマンドレルで製造されたコイルの側面図である。FIG. 2 is a side view of a coil manufactured by the mandrel shown in FIG. 1. は、マンドレルの側面図である。FIG. 3 is a side view of a mandrel. は、1次コイルの側面図である。These are side views of a primary coil.

[実施の形態1]
実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。
[Embodiment 1]
The following describes one embodiment with reference to the drawings. For convenience, hatching, member codes, and the like may be omitted, but in such a case, other drawings are referred to.

なお、実施形態として説明する生体内留置部材(医療用デバイスの一種)の各部材の形状、材料、大きさ、または長さ等は、例示として説明するものであって、適宜変更可能である。   In addition, the shape, material, size, length, or the like of each member of the in-vivo indwelling member (a kind of medical device) described as the embodiment is described as an example, and can be changed as appropriate.

生体内留置部材(例えば、血栓塞栓部材)は、例えば、金属製の線材を加工することで形成される。なお、このような加工は、複数回行われることがあり、1回目の加工を1次加工、2回目の加工を2次加工と称する。   The in-vivo indwelling member (for example, a thrombus embolization member) is formed, for example, by processing a metal wire. Such processing may be performed a plurality of times, and the first processing is referred to as primary processing and the second processing is referred to as secondary processing.

まず、線材について詳説する。線材の材料としては、例えば、プラチナ(白金)、タングステン、金、タンタル、イリジウム、チタニウム、若しくは、ステンレス、または、これら材料から任意に選択されたものを含む合金線材、または、超弾性合金線が、挙げられる。   First, the wire will be described in detail. As the material of the wire, for example, platinum (platinum), tungsten, gold, tantalum, iridium, titanium, or stainless steel, or an alloy wire containing any material selected from these materials, or a superelastic alloy wire may be used. .

そして、このような線材は、適切なサイズの芯材の周りに巻き回すという1次加工の工程を経ることで、巻き回された形状を保持され、図4に示すようにコイルCL1となる(すなわち、1次コイルCL1が完成される)
なお、このような1次コイルCL1のサイズは、特に限定されるものではないが、例えば、外径(φ)は、0.200mm以上0.500mm以下であると好ましい。また、1次コイルCL1が形成された後、その1次コイルCL1の内腔に、金属線材またはポリマー線材で形成された伸張防止用線が配置されてもよい。
Then, such a wire is subjected to a primary processing step of winding around a core material of an appropriate size, so that the wound shape is retained, and becomes a coil CL1 as shown in FIG. 4 ( That is, the primary coil CL1 is completed)
The size of the primary coil CL1 is not particularly limited. For example, the outer diameter (φ) is preferably 0.200 mm or more and 0.500 mm or less. Further, after the primary coil CL1 is formed, an extension preventing wire formed of a metal wire or a polymer wire may be disposed in the lumen of the primary coil CL1.

1次コイルCL1は、さらに加工(2次加工)されることで、2次コイルCL2となる。そして、この2次加工では、図1に示すように、マンドレル11が使用される。なお、マンドレル11の材料は、特に限定されるものではないが、例えば、アルミナ、ジルコニア、窒化珪素、炭化珪素等に代表されるセラミック、または、耐熱性合金が挙げられる。また、マンドレル11の材料は、加工性、耐摩耗性、および耐熱性の観点から、アルミナであってもよい。   The primary coil CL1 becomes a secondary coil CL2 by further processing (secondary processing). In this secondary processing, a mandrel 11 is used as shown in FIG. The material of the mandrel 11 is not particularly limited, and examples thereof include ceramics typified by alumina, zirconia, silicon nitride, silicon carbide and the like, or heat resistant alloys. The material of the mandrel 11 may be alumina from the viewpoints of workability, wear resistance, and heat resistance.

そして、1次コイルCL1を巻き付けられるこのマンドレル11は、表面に、1次コイルCL1を収める螺旋溝12を有する。この螺旋溝12に対する1次コイルCL1の巻き付け方について説明する。   The mandrel 11 around which the primary coil CL1 is wound has a spiral groove 12 for accommodating the primary coil CL1 on the surface. A method of winding the primary coil CL1 around the spiral groove 12 will be described.

まず、1次コイルCL1の全長Lよりも長く、かつ1次コイルCL1の内径よりも小さな金属等(例えば、ステンレス)の極細ワイヤーが、1次コイルCL1の内腔に通される。そして、この極細ワイヤー(不図示)と1次コイルCL1とが、供に、螺旋溝12に収まるように(すなわち、螺旋溝12に沿うように)、マンドレル11に巻き付けられる。なお、この巻き付け工程では、マンドレル11はマンドレルチャック(不図示)に固定され、極細ワイヤーに一様なテンションが加えられつつ、マンドレル11が回転することで、極細ワイヤーと1次コイルCL1とが巻き付けられると好ましい。   First, a fine wire made of metal (for example, stainless steel) that is longer than the total length L of the primary coil CL1 and smaller than the inner diameter of the primary coil CL1 is passed through the lumen of the primary coil CL1. Then, the ultrafine wire (not shown) and the primary coil CL1 are wound around the mandrel 11 so as to be accommodated in the spiral groove 12 (that is, along the spiral groove 12). In this winding step, the mandrel 11 is fixed to a mandrel chuck (not shown), and the mandrel 11 is rotated while a uniform tension is applied to the fine wire, so that the fine wire and the primary coil CL1 are wound. Preferably.

そして、マンドレル11に巻き付けられた1次コイルCL1は、加熱されることで、形が保持されるようになり、その結果、2次コイル(塞栓コイル)CL2が完成する。なお、この加熱に要する熱源は、特に限定されず、例えば、温度調整可能な一般的なヒータが挙げられる。   The primary coil CL1 wound around the mandrel 11 is heated to maintain its shape, and as a result, the secondary coil (emboli coil) CL2 is completed. In addition, the heat source required for this heating is not specifically limited, For example, the general heater which can adjust temperature is mentioned.

また、この加熱において、マンドレル11に熱が加えられる場合、伝熱によって行われてもよいし、輻射熱によって行われてもよい。ただし、均等加熱または均一加熱の観点から、好適には輻射熱が好ましい。   In this heating, when heat is applied to the mandrel 11, it may be performed by heat transfer or by radiant heat. However, from the viewpoint of uniform heating or uniform heating, radiant heat is preferable.

ここで、マンドレル11について詳説する。マンドレル11は、表面に、図1に示すように、螺旋溝12を有する。そして、この螺旋溝12の溝ピッチPは、1次コイルCL1の外径Dに対して、90%以上99%以下である(0.9D≦P≦0.99D)。   Here, the mandrel 11 will be described in detail. The mandrel 11 has a spiral groove 12 on the surface as shown in FIG. The groove pitch P of the spiral groove 12 is 90% or more and 99% or less (0.9D ≦ P ≦ 0.99D) with respect to the outer diameter D of the primary coil CL1.

このようなマンドレル11であれば、そのマンドレル11に1次コイルCL1が螺旋状に巻かれる場合と、例えば、表面に溝の無いマンドレルに、1次コイルCL1が巻かれる場合とを比べると、螺旋溝12の有るマンドレル11のほうが、1次コイルCL1を強く巻き付けられる。そのため、螺旋溝12の有るマンドレル11に巻かれた1次コイルCL1には、応力が生じやすくなる。   If such a mandrel 11 is compared with a case where the primary coil CL1 is spirally wound around the mandrel 11 and a case where the primary coil CL1 is wound around a mandrel having no groove on the surface, for example, The mandrel 11 having the groove 12 winds the primary coil CL1 more strongly. Therefore, stress is easily generated in the primary coil CL1 wound around the mandrel 11 having the spiral groove 12.

そのため、2次加工(1次コイルCL1にコイル状の形状を付与するための加工)において、螺旋溝12の有るマンドレル11のほうが、例えば、表面に溝の無いマンドレルに比べて、加熱温度を低く抑えることができる。
例えば、2次加工での加熱温度が550℃以下であっても、図2に示すように、密巻き2次コイルCL2は完成する。
Therefore, in the secondary processing (processing for imparting a coil shape to the primary coil CL1), the mandrel 11 having the spiral groove 12 has a lower heating temperature than, for example, a mandrel having no groove on the surface. Can be suppressed.
For example, even when the heating temperature in the secondary processing is 550 ° C. or lower, the densely wound secondary coil CL2 is completed as shown in FIG.

また、一般的に、2次加工での1次コイルCL1への加熱に起因して、2次コイルCL2に酸化が生じるが、その酸化の程度は、比較的低い加熱温度に対応する。すると、螺旋溝12の有るマンドレル11で、2次コイルCL2が作成されると、その2次コイルCL2は、あまり酸化されないので、酸化物を除去する工程が省ける(すなわち、製造工程の簡略化が図られる)。   In general, the secondary coil CL2 is oxidized due to heating of the primary coil CL1 in the secondary processing, and the degree of oxidation corresponds to a relatively low heating temperature. Then, when the secondary coil CL2 is created by the mandrel 11 having the spiral groove 12, the secondary coil CL2 is not oxidized so much, so that the process of removing the oxide can be omitted (that is, the manufacturing process can be simplified). Figured).

また、550℃を越えるような高い加熱温度で作成された2次コイルCL2に生じる弊害、例えば、著しい酸化で金属光沢が失われ、針状等の酸化物が付着するような現象が、螺旋溝12の有るマンドレル11で加工された2次コイルCL2には生じない(なお、針状酸化物は、SEM等で確認できる)。すると、この2次コイルCL2では、酸化物が剥離して、血管内に流出し、血栓の原因になるといった問題が起き得ない。   In addition, adverse effects that occur in the secondary coil CL2 produced at a high heating temperature exceeding 550 ° C., for example, a phenomenon in which metallic luster is lost due to significant oxidation and acicular oxides adhere to the spiral groove. It does not occur in the secondary coil CL2 processed by the mandrel 11 with 12 (acicular oxides can be confirmed by SEM or the like). As a result, the secondary coil CL2 cannot cause a problem that the oxide is peeled off and flows out into the blood vessel to cause a thrombus.

特に、螺旋溝12を含んだマンドレル11であれば、500℃以下の加熱温度であっても、2次コイルCL2を完成させられるので、より安全な2次コイルCL2を提供できる。   In particular, in the case of the mandrel 11 including the spiral groove 12, the secondary coil CL2 can be completed even at a heating temperature of 500 ° C. or lower, and thus a safer secondary coil CL2 can be provided.

つまり、以上の生体内留置部材の方法では、0.9D≦P≦0.99Dの条件式を満たす螺旋溝12を含んだマンドレル11が使用されることで、剛性傾斜を付与された2次コイルCL2が、高い製造効率にて製造でき、その上、その2次コイルCL2は、酸化物の発生を抑えられているので、手技後に発生し得る再開通の発生を未然に防げる。   That is, in the above in-vivo indwelling member method, the mandrel 11 including the spiral groove 12 that satisfies the conditional expression of 0.9D ≦ P ≦ 0.99D is used, so that the secondary coil provided with a rigid inclination is used. Since CL2 can be manufactured with high manufacturing efficiency, and the secondary coil CL2 suppresses the generation of oxides, the occurrence of resumption that can occur after the procedure can be prevented in advance.

[実施の形態2]
実施の形態2について説明する。なお、実施の形態1で用いた部材と同様の機能を有する部材については同一の符号を付記し、その部材の種々説明を省略する。
[Embodiment 2]
A second embodiment will be described. In addition, the same code | symbol is attached about the member which has the same function as the member used in Embodiment 1, and the various description of the member is abbreviate | omitted.

実施の形態1では、図1に示すように、マンドレル11の螺旋溝12の溝ピッチPは、一定であったが、これに限定されるものではない。   In the first embodiment, as shown in FIG. 1, the groove pitch P of the spiral groove 12 of the mandrel 11 is constant, but is not limited to this.

例えば、図3に示すように、マンドレル11は、異なる溝ピッチ(溝ピッチP<溝ピッチQ)を含んでいても構わない。すなわち、生体内留置部材の製造方法では、マンドレル11における表面の螺旋溝12は、少なくとも一部でも、1次コイルCL1の外径Dに対して、90%以上99%以下である溝ピッチPを有していればよい。   For example, as shown in FIG. 3, the mandrel 11 may include different groove pitches (groove pitch P <groove pitch Q). That is, in the in-vivo indwelling member manufacturing method, at least part of the spiral groove 12 on the surface of the mandrel 11 has a groove pitch P that is 90% or more and 99% or less with respect to the outer diameter D of the primary coil CL1. It only has to have.

このようになっていても、2次コイルCL2は、溝ピッチPで加工された部分を含むので、溝ピッチPよりも広い溝ピッチ(例えば、溝ピッチQ)のみを含むマンドレルで製造された2次コイルに比べて、加熱温度を抑えることができる。   Even in this case, since the secondary coil CL2 includes a portion processed with the groove pitch P, the secondary coil CL2 is manufactured by a mandrel including only a groove pitch (for example, a groove pitch Q) wider than the groove pitch P. Compared to the secondary coil, the heating temperature can be suppressed.

その結果、実施の形態2での製造方法であっても、実施の形態1と同様の作用効果が奏ずる。   As a result, even if it is the manufacturing method in Embodiment 2, the same effect as Embodiment 1 is produced.

また、異なる溝ピッチを含むマンドレル11で加工された2次コイルCL2は、密巻きの部分と疎巻きの部分とを含むが、このような2次コイルCL2のほうが、全長に亘って、密巻きの2次コイルまたは疎巻きの2次コイルに比べて、体内(例えば、動脈瘤)の留置性を高められることがある。そのため、例えば、密巻きの部分と疎巻きの部分とが交互に、かつ、ランダムまたは周期的に配された2次コイルCL2であってもよい。   Further, the secondary coil CL2 processed by the mandrel 11 including different groove pitches includes a densely wound portion and a loosely wound portion, but such a secondary coil CL2 is densely wound over the entire length. In some cases, indwellability in the body (for example, aneurysm) may be improved as compared with the secondary coil or the loosely wound secondary coil. Therefore, for example, the secondary coil CL2 in which densely wound portions and loosely wound portions are alternately and randomly or periodically arranged may be used.

つまり、2次コイルCL2の形状に、疎部(疎ピッチ部分)と密部(密ピッチ部分)とが設けられるのであれば、その2次コイルCL2は、意図的に剛性バランスを付与されることになる。その結果、疎ピッチ部分を有することで屈曲しやすくなり、動脈瘤にてコイルの充填されていない空間に入りやすい2次コイルCL2が実現する。すなわち、実施の形態2の製造方法であると、留置性能を高めた血管閉塞部材(2次コイルCL2)を提供でき、ひいては、その血管塞栓部材で治療された患者の再開通を抑制できる。   In other words, if the sparse part (sparse pitch part) and the dense part (dense pitch part) are provided in the shape of the secondary coil CL2, the secondary coil CL2 is intentionally given a rigidity balance. become. As a result, it becomes easy to bend by having a sparse pitch portion, and a secondary coil CL2 that easily enters a space not filled with coils in an aneurysm is realized. That is, with the manufacturing method according to the second embodiment, it is possible to provide a blood vessel occlusion member (secondary coil CL2) with improved indwelling performance, and consequently, it is possible to suppress reopening of a patient treated with the blood vessel embolization member.

11 マンドレル
12 螺旋溝
P 溝ピッチ
Q 溝ピッチ
D 1次コイルの外径
CL1 1次コイル
CL2 2次コイル[生体内留置部材]
11 Mandrel 12 Spiral groove P Groove pitch Q Groove pitch D Primary coil outer diameter CL1 Primary coil CL2 Secondary coil [In-vivo indwelling member]

Claims (2)

1次コイルをマンドレルで加工することで、生体内留置部材となる2次コイルを製造する生体内留置部材の製造方法にあって、
上記1次コイルを巻き付けるマンドレルは、表面に、上記1次コイルを収める螺旋溝を有しており、
上記螺旋溝の少なくとも一部における溝ピッチが、上記1次コイルの外径に対して、90%以上99%以下である生体内留置部材の製造方法。
In the in-vivo indwelling member manufacturing method of manufacturing a secondary coil to be an in-vivo indwelling member by processing the primary coil with a mandrel,
The mandrel around which the primary coil is wound has a spiral groove on the surface for accommodating the primary coil.
A method for producing an in-vivo indwelling member, wherein a groove pitch in at least a part of the spiral groove is 90% or more and 99% or less with respect to the outer diameter of the primary coil.
上記1次コイルを加工する場合に、上記1次コイルへの加熱温度は、550℃以下である請求項1に記載の生体内留置部材の製造方法。



The method for manufacturing an in-vivo indwelling member according to claim 1, wherein when the primary coil is processed, a heating temperature of the primary coil is 550 ° C. or less.



JP2011111569A 2011-05-18 2011-05-18 Method for producing in-vivo indwelling member Active JP5863278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111569A JP5863278B2 (en) 2011-05-18 2011-05-18 Method for producing in-vivo indwelling member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111569A JP5863278B2 (en) 2011-05-18 2011-05-18 Method for producing in-vivo indwelling member

Publications (2)

Publication Number Publication Date
JP2012239589A true JP2012239589A (en) 2012-12-10
JP5863278B2 JP5863278B2 (en) 2016-02-16

Family

ID=47461948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111569A Active JP5863278B2 (en) 2011-05-18 2011-05-18 Method for producing in-vivo indwelling member

Country Status (1)

Country Link
JP (1) JP5863278B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142893A1 (en) * 2005-12-19 2007-06-21 Buiser Marcia S Embolic coils
JP2008515467A (en) * 2004-09-17 2008-05-15 コーディス・ニューロバスキュラー・インコーポレイテッド Vascular occlusion device with embolic mesh ribbon
JP2010012282A (en) * 2001-05-29 2010-01-21 Boston Scientific Ltd Absorbable implantable vaso-occlusive member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012282A (en) * 2001-05-29 2010-01-21 Boston Scientific Ltd Absorbable implantable vaso-occlusive member
JP2008515467A (en) * 2004-09-17 2008-05-15 コーディス・ニューロバスキュラー・インコーポレイテッド Vascular occlusion device with embolic mesh ribbon
US20070142893A1 (en) * 2005-12-19 2007-06-21 Buiser Marcia S Embolic coils

Also Published As

Publication number Publication date
JP5863278B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP4938643B2 (en) Vascular occlusion coil with non-overlapping portion
US7731676B2 (en) Ureteral stent
US11400261B2 (en) Preformed guidewire
JP2021130019A (en) Vaso-occlusive device and delivery assembly
US20100249655A1 (en) Tip-Shapeable Guidewire
JP5142230B2 (en) Guide wire
JP2002035135A (en) Stent and method for manufacturing stent
JP2004500929A (en) Three-dimensional low friction coil and method of manufacturing the same
EP2415497A1 (en) Guidewire
JP2006239428A (en) Embolic coil with twisted wire
EP2881136B1 (en) Guidewire
US20130066359A1 (en) Vaso-occlusive device
US20120209309A1 (en) Vaso-occlusive device
WO2016028486A1 (en) Medical device with support member
EP2865407A1 (en) Coil body and guide wire
CN106068103B (en) Vaso-occlusive coil with curved section
KR20100107255A (en) Detachable coil with helical shape which make complex-shaped coil basket easily used in endovascular treatment of cerebral aneurysms
JP5863278B2 (en) Method for producing in-vivo indwelling member
JP2013162920A (en) Guide wire
CN112423825A (en) Guide wire
JP7050175B2 (en) Medical equipment
JP2013176488A (en) Guide wire
JP6155765B2 (en) Gastrointestinal stent
JP6306994B2 (en) Guide wire and guide wire manufacturing method
JP7256582B2 (en) guide wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250