JP2012239435A - チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法 - Google Patents

チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法 Download PDF

Info

Publication number
JP2012239435A
JP2012239435A JP2011113717A JP2011113717A JP2012239435A JP 2012239435 A JP2012239435 A JP 2012239435A JP 2011113717 A JP2011113717 A JP 2011113717A JP 2011113717 A JP2011113717 A JP 2011113717A JP 2012239435 A JP2012239435 A JP 2012239435A
Authority
JP
Japan
Prior art keywords
tea
ring spot
fungus
spot disease
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011113717A
Other languages
English (en)
Inventor
Ryoichi Sonoda
亮一 園田
Kengo Yamada
憲吾 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2011113717A priority Critical patent/JP2012239435A/ja
Publication of JP2012239435A publication Critical patent/JP2012239435A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

【課題】チャ輪斑病に対して従来の化学合成農薬と同等の防除効果を有する微生物農薬及びそれを用いた生物防除方法を開発すること。
【解決手段】チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上を茶樹に散布することを特徴とするチャ輪斑病の防除方法、並びに前記微生物として好適な新規微生物菌株であるグリオクラディウム・ロゼウム(Gliocladium roseum)KGR-1(NITE P-1084)を提供する。
【選択図】なし

Description

本発明はチャ輪斑病の生物防除技術に関し、詳しくは、チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法に関する。
植物病害の分野では、特定の微生物により特定の病原菌による発病が抑制される場合に、その微生物を拮抗微生物と呼んでいる。
植物病害防除を目的として販売される資材は農薬として農薬取締法により規定されており、経済的に有効な病害防除能を有する拮抗微生物は微生物農薬として開発され、登録・販売される。
細菌では非病原性エルビニア・カロトボーラ、バチルス・ズブチリス、シュードモナス・フルオレッセンスなど、糸状菌ではタラノマイセス・フラバス、トリコデルマ・アトロビリデなどが微生物農薬として登録、販売されてきた。
これらは主に作物としては野菜、果樹、イネが対象で、病害としては灰色かび病、うどんこ病、炭疽病、軟腐病、イネ種子伝染性病害が対象である(例えば非特許文献1参照)。
グリオクラディウム菌については土壌病原菌に対する拮抗微生物として注目され、Gliocladium catenulatumなどでの報告がある(例えば非特許文献2参照)。また、日本では(株)出光興産からグリオクラディウム菌を利用した土壌改良資材が販売されている(例えば特許文献1参照)。2005年にはグリオクラディウム・ロゼウムを用いた柑橘病害に対する生物防除法が公開されている(例えば特許文献2参照)が、グリオクラディウム・ロゼウムがチャの病害に対して防除効果を有することはこれまで知られていなかった。
チャ輪斑病に対する生物防除法としては、非特許文献3にチャ赤葉枯病菌が輪斑病の発生を抑制することを報告し、輪斑病の生物防除資材として有効ではないかと提言している。チャ赤葉枯病菌はその名の通り病原菌であり、病原性は弱いものの、樹体が何らかの理由で衰弱した時には被害を与えるため、実用化には至らなかった。
特開平8−73309号公報 特開2005−73586号公報
百町満朗監修、「拮抗微生物による作物病害の生物防除」、クミアイ化学工業株式会社、2003年 Mcquilken et al., Journal of phytopathology,2001,149,p.171-178 安藤・成澤、日本植物病理学会報、第55巻、p.267-274、1989年
近年、生物多様性を保全しながら安定した農業生産を行い、安全・安心な農産物を生産するために、環境保全型の病害防除技術の開発が求められている。微生物農薬は農家が化学合成農薬に替えて使いやすい環境保全型防除資材であり、その開発が期待されている。
微生物農薬は化学合成農薬に比べて、一般に環境負荷が低い、人畜毒性が低いおよび耐性菌の発達が少ないなどの利点があるものの、生物であるため長期保存がしにくい、製造コストが高いなどの問題点がある。特に化学合成農薬に比較して防除効果はやや低い場合が多く、防除効果を安定させるために、その使用場面も苗・種子への処理や施設栽培など限られた使用法や使用環境であることが多い。
チャ(Camellia sinensis)では炭疽病、輪斑病、赤焼病、褐色円星病、もち病などの病害が発生し、病原糸状菌によって引き起こされる炭疽病と輪斑病を主な防除対象とした化学合成農薬による防除体系が確立されている。
栽培面積の約7割を占める主力品種「やぶきた」が強い病害抵抗性を持たないことから、抵抗性品種の利用が有効であるが、「やぶきた」以外の抵抗性品種への転換は進んでおらず、栽培管理の一環として行われる整枝による葉や枝の物理的除去以外に化学農薬の代替えになる防除技術はほとんどない。
また近年、我が国における茶生産の大半を占める静岡県と鹿児島県においてストロビルリン系殺菌剤に対する耐性を獲得した輪斑病菌が発見され、基幹防除剤として使われていた同系統の農薬は使用が困難な状況になりつつある。他の登録農薬はあるものの、剤の数が少ないことから新たな防除資材の開発が求められている。
チャの病害に対して登録のある微生物農薬は存在せず、防除効果の高い微生物農薬が開発されれば、チャの環境保全型防除に有効な資材となると考えられる。
そこで本発明は、チャ輪斑病に対して従来の化学合成農薬と同等又はそれ以上の防除効果を有する微生物農薬及びそれを用いた生物防除方法を開発することを目的とした。
本願発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、チャ輪斑病菌Pestalotiopsis longisetaに対する拮抗微生物として新規のグリオクラディウム・ロゼウム(Gliocladium roseum)菌株KGR-1の単離に成功した。
チャの葉面に傷を付けてそこにチャ輪斑病菌を人工的に感染させ、続いてそこにKGR-1を接種したところ、図1に示されるように輪斑病の病斑拡大は阻止された。
また、この新菌株の胞子を摘採(収穫)後の茶樹に噴霧することにより、チャ輪斑病の発病葉数を無処理の場合の2〜20%程度に抑えることができることを明らかにした。一方、従来の化学合成農薬で処理した際の発病葉数は、無処理の場合の0〜10%となる。
これらの知見に基づいて、本願発明者らは、当該新菌株の菌体や培養物、代謝産物、胞子をチャ輪斑病に対する生物的防除資材として利用することを着想し、本発明を完成するに至った。
すなわち、本願請求項1に係る発明は、チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)である。
本願請求項2に係る発明は、チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上を含有することを特徴とする、チャ輪斑病防除剤である。
本願請求項3に係る発明は、前記微生物がグリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)である、請求項2に記載のチャ輪斑病防除剤である。
本願請求項4に係る発明は、チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは請求項2又は3に記載のチャ輪斑病防除剤を茶樹に散布することを特徴とする、チャ輪斑病の防除方法である。
本願請求項5に係る発明は、前記微生物がグリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)である、請求項4に記載のチャ輪斑病の防除方法である。
本願請求項6に係る発明は、前記微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは前記チャ輪斑病防除剤の散布量が、胞子数として0.01〜5.0×10個/mである、請求項4又は5に記載のチャ輪斑病の防除方法である。
本願請求項7に係る発明は、前記微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは前記チャ輪斑病防除剤の散布時期が、茶の摘採後9時間以内である、請求項4〜6のいずれかに記載のチャ輪斑病の防除方法である。
チャに登録のある農薬の中で、病害防除のための微生物農薬はないことから、本発明によって環境保全型防除体系を構築するための有効な資材が提供される。しかも、微生物農薬は化学合成農薬よりも防除効果が劣ることが多いが、本発明は化学合成農薬と同等又はそれ以上の防除効果を得ることができ、しかもチャに対して病原性を示さないため、極めて画期的な防除資材といえる。
また輪斑病防除では、収穫直後の茶樹に防除資材を散布することが最も有効とされているが、微生物農薬は一般に残留等の問題がないため、本発明によって収穫直後の散布による周囲の未収穫茶園へのドリフト問題を解決できる。
KGR-1がチャ輪斑病の病斑進展に及ぼす影響を示す写真像図である。 実施例2におけるチャ輪斑病に対するKGR-1の圃場での防除効果を示す写真像図である。左側はKGR-1散布区、右側は無散布区での様子を示す。 実施例3におけるKGR-1の処理時期により防除価に与える影響を示す図である。
以下、本発明を詳細に説明する。
本発明に係る微生物(以下、「拮抗微生物」または「拮抗菌」と呼ぶこともある。)は、グリオクラディウム・ロゼウム(Gliocladium roseum)に属し、チャ輪斑病菌に対する防除能を有することを特色とする。
グリオクラディウム属菌は一般に土壌病原菌に対する拮抗微生物として知られていることから、土壌ではなく、茶樹の葉面に接種してチャ輪斑病に対する防除効果を発揮できるということは、全く予想外のことであった。
グリオクラディウム・ロゼウムは、チャ輪斑病菌に対する菌寄生菌として、チャ輪斑病の自然発病葉からprecolonized plate baiting法などにより、容易に分離することができる。precolonized plate baiting法については、以下の実施例1において詳述する。
また、分離したグリオクラディウム・ロゼウム菌株の中から、チャ輪斑病菌に対する拮抗能が高く、チャ輪斑病に対する強い防除効果を示す菌株の選抜は、例えば実施例1で記載したような輪斑病病斑長を指標とした室内検定試験によって、当業者であれば容易に行うことができる。
本発明に係る新規なグリオクラディウム属菌株は、上記の方法により分離されたグリオクラディウム・ロゼウム菌株KGR-1である。本菌株は独立行政法人製品評価技術基盤機構に寄託され、寄託番号はNITE P-1084である。
本発明のKGR-1菌株は、化学合成農薬とほぼ同等の高い輪斑病防除効果を有し、圃場試験においてチャ輪斑病の発病葉数を無処理の場合の2〜20%程度に抑えることができるが、チャに対しては病原性を示さない拮抗微生物である。
KGR-1菌株のrDNAのITS領域塩基配列の解析を行ったところ、Nectria gliocladioides(アナモルフ:Gliocladium roseum)、異名:Bionectria ochroleuca(アナモルフ:Clonostachys rosea)の塩基配列と一致した。
また、本菌株の培地上での生育はやや遅い。菌叢は初め白色綿毛状で、後に淡橙色となり、菌叢表面に多くの分生子が形成され粉状に見える。分生子の形成は、Verticillium型およびGliocladium型の分生子梗を形成する。Gliocladium型の分生子梗上のフィアライドから連鎖状に分生子が形成され、これが粉状に見える。分生子は5.0×2.9μmの楕円形である。1ヶ月以上培養すると、橙色で直径150〜300(平均220)μmの球形の子のう殻の集合体を形成する。集合体は直径2〜5mmで、大きさや形には幅がある。子のう胞子は2胞で約10×4μmであり、中央がやや細くなっている。
これらの特徴などから、KGR-1菌株は上記の菌と同定された。拮抗微生物としてはグリオクラディウム属の名前が有名なので、以下、本菌株の種名はグリオクラディウム・ロゼウムと記載する。
KGR-1菌株の培養方法は特に限定されず、グリオクラディウム属の微生物に一般的に適用されている方法によって培養することができる。
培地としては、例えばショ糖加用ジャガイモ煎汁寒天培地(PSA 培地)、ブドウ糖加用ジャガイモ煎汁寒天培地(PDA培地)、オートミール寒天培地などを使用することができる。培養温度は特に限定されないが、20〜25℃とするのが好ましい。
本発明のチャ輪斑病防除剤は、前記拮抗微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上を有効成分として含有する。
本発明において代謝産物とは、微生物の培養中に、微生物が培地中に分泌あるいは微生物体内に蓄積する物質を指し、例えば抗生物質や酵素などのタンパク質や、炭化水素などがこれに含まれる。グリオクラディウム・ロゼウムの代謝産物として実際に報告されている例としては、ペプチド系抗生物質(Journal of applied microbiology, Vol.110, p.1177-1186, 2011)、キチナーゼ、エンドグルカナーゼ(FEMS Microbiol. Lett. Vol.285, No.1, p.101-110, 2008)などが挙げられる。
製剤中には拮抗微生物以外の成分が含まれていてもよい。このような拮抗微生物以外の成分としては、例えば、溶媒、担体、安定化剤、増殖補助剤、界面活性剤、分散剤などを挙げることができる。
製剤中の拮抗微生物濃度は特に限定されないが、胞子濃度として0.01〜10×10個/mlとするのが好ましく、0.5〜1.0×10個/mlとするのがより好ましい。
本発明に係るチャ輪斑病の防除方法は、前記拮抗微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは前記のチャ輪斑病防除剤を、茶樹の葉面に散布することを特徴とする。
散布量はチャ輪斑病を防除できる範囲内であれば特に限定されないが、通常は圃場1m当たり100〜500ml、好ましくは300〜400mlとする。また拮抗菌胞子数としては、圃場1m当たり0.01〜5.0×10個、好ましくは1.5〜4.0×10個となるように散布する。
散布時期は、従来の化学農薬による輪斑病防除法と同様に、茶の摘採(収穫)直後とするのが効果的である。具体的には摘採後9時間以内、より好ましくは6時間以内に散布すると高い防除効果が得られるが、摘採後1日以内であっても一定の効果は期待できる。
散布方法は特に限定されず、通常の農薬散布に用いるような噴霧器などで茶樹の葉面に散布すればよい。
以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
実施例1(KGR-1 菌株の分離)
茶園から採取したチャ輪斑病の自然発病葉からprecolonized plate baiting 法にて、チャ輪斑病に対する拮抗微生物を分離した。
すなわち、あらかじめショ糖加用ジャガイモ煎汁寒天平板培地(PSA 培地、ジャガイモ200gの浸出液1リットルにショ糖20g、寒天15gを添加)に培養したチャ輪斑病菌菌叢上に、採取したチャ葉の輪斑病病斑部分を5mm 大の大きさに切って、25℃で10日間静置した。病斑片に輪斑病菌に寄生する(病原菌を食べる)微生物が存在すると、培地上に生えている輪斑病菌を餌にしてその微生物が生えてくるので、輪斑病菌菌叢上に形成された拮抗微生物と思われる微生物の胞子を分離し、別のPSA培地に移植して、培養することにより複数の菌株を得た。
次に、上記で得られた菌株の中から、室内検定により特に輪斑病菌に対する防除効果の高い菌株を選抜した。
すなわち、上記で得られた菌株(拮抗菌株)をPSA 培地で25℃、2週間培養し、生育した菌叢の先端を径6mm のコルクボーラーで打ち抜いて含菌寒天片を得た。輪斑病菌についても同じ培地で25℃、1週間培養後に同様に含菌寒天片を得た。
茶園から採取した健全なチャ葉5枚(木化した枝についているやや硬化した葉、品種:「やぶきた」)を高湿度状態に保った容器に並べ、プラスのドライバーで中肋を挟んで両側の1個所ずつ計2個所付傷した。拮抗菌株の含菌寒天片を、菌叢面を葉の付傷部に密着させるようにして置き、25℃で1日静置後に除去した。続いて、輪斑病菌の含菌寒天片も同様に付傷部に置き、25 ℃で1日静置後に除去した。なお、対照として、拮抗菌株含菌寒天片の代わりにPAS培地片を置いた。
以後、葉は水を含ませたスポンジ状の資材に挿して25 ℃、照明条件下で管理して、2週間後に輪斑病の発病を調査し、拮抗菌株による防除効果を調査した。試験は3回行った。
防除効果は、付傷接種部から伸長した楕円形状の輪斑病病斑10 個について、長径部の長さ(病斑長)を測定して平均値を算出し、輪斑病菌のみ接種した葉での病斑長と比較して評価した。供試した拮抗菌株の中から特に高い防除効果を示した1菌株を選抜し、KGR-1と命名した。
KGR-1菌株についての室内検定試験の結果を表1に示す。KGR-1 を処理すると病斑の伸長は完全に抑制されることから、KGR-1には輪斑病に対する極めて高い防除効果があることが判明した。
実施例2(屋外における防除効果試験)
試験は独立行政法人農業・食品産業技術総合研究機構 野菜茶業研究所 金谷茶業研究拠点内の茶園(品種:「やぶきた」)で、2007年7月〜9月にかけて2回行った。
すなわち、KGR-1 菌株をPSA 培地で25 ℃で3〜4週間培養した後、流水をかけながら筆で菌叢の表面の気中菌糸を除去し、25 ℃、照明下に1週間置いて表面に胞子(分生子)を形成させた。この胞子を集めて水道水に懸濁させて胞子懸濁液を作り、胞子濃度をおよそ1.0 × 10個/ ml に調整して以下の試験に用いた。
病原菌は、チャ輪斑病菌を茶葉培地(チャの葉と少しの水を入れて高圧蒸気滅菌した培地)で25 ℃、1 ヶ月間培養した。これに水道水を加えて振とうし、ガーゼでこして胞子濃度を約1.0× 10個/ ml に調整して胞子懸濁液とし、以下の試験に用いた。
茶園で摘採機を用いて茎葉の先端を刈り取って摘採した後に、病原菌胞子懸濁液を散布し、さらにその3〜4時間後にKGR-1 菌株胞子懸濁液を散布した。散布量は、病原菌は約150 ml/m、KGR-1 は約330 ml/mとした。なお、農薬散布区では、KGR-1 菌株胞子懸濁液の替わりに、TPN 水和剤(商品名「ダコニール1000」、エス・ディー・エス バイオテック社製)700 倍液を200ml /m相当量散布した。
散布から約3週間後に1区当たり1 mの病葉の数を数え、防除効果を調査した(図2)。防除効果の指標である防除価は、輪斑病菌胞子懸濁液のみを接種した区(下記表2の無散布区)と比較し、下記の計算式から算出した。
防除価=100−((散布区の発病葉数÷無散布区の発病葉数)×100)
結果を表2及び図2に示す。第1回試験では防除価約80 とやや低かったが実用上十分な防除効果を示し、第2回試験では防除価約98 という化学農薬に匹敵する高い防除効果を示した(表2)。また図2からも、病原菌のみ接種した無散布区(写真右側)に比べて、KGR-1散布区(写真左側)では病害の発生が著しく抑えられていることが分かる。

試験1:輪斑病菌散布は2007年7月24日10:00 で、摘採から3時間後。
試験2:輪斑病菌散布は2007年8月30日10:00 で、摘採から1時間後。
実施例3(KGR-1菌株の処理時期の検討)
実施例2の防除効果試験における試験2と同様の方法で、拮抗菌の処理時期を変えて、最も防除効果の高い処理時期を調べた。試験は2008年6月〜9月にかけて2 回に分けて行い、防除効果の判定を実施例2に準じて行った。
結果を図3に示す。摘採の11 日前、1 日前、摘採当日(摘採の6時間後)、1 日後、2 日後、3 日後および7 日後に処理したが、摘採当日処理が最も高い防除効果を示した(図3)。
実施例4(KGR-1菌株の処理濃度の検討)
実施例2の防除効果試験における試験2と同様の方法で、拮抗菌の胞子懸濁液の濃度を変えて、防除効果を検討した。試験は2008年6月〜9月にかけて2 回に分けて行い、防除効果の判定を実施例2に準じて行った。
結果を表3に示す。胞子濃度が最も濃い1.0 × 10個/ml(原液)で最も防除効果が高くなり、10 倍希釈すると明らかに低下した(表3)。よって、有効な防除効果を得るには0.25 〜 1.0 × 10個/ml の胞子濃度が必要であることが判明した。
なお、チャ輪斑病菌のみを接種した無散布区におけるm当たりの発病葉数は、試験1で620枚、試験2で531枚であった。
チャに登録のある農薬の中で、病害防除のための微生物農薬はないことから、本発明は、化学農薬を低減した環境保全型防除体系を構築するための有効な資材として利用可能である。

Claims (7)

  1. チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)。
  2. チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上を含有することを特徴とする、チャ輪斑病防除剤。
  3. 前記微生物がグリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)である、請求項2に記載のチャ輪斑病防除剤。
  4. チャ輪斑病菌に対する防除能を有する、グリオクラディウム・ロゼウム(Gliocladium roseum)に属する微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは請求項2又は3に記載のチャ輪斑病防除剤を茶樹に散布することを特徴とする、チャ輪斑病の防除方法。
  5. 前記微生物がグリオクラディウム・ロゼウム(Gliocladium roseum)に属する新規な微生物菌株KGR-1(NITE P-1084)である、請求項4に記載のチャ輪斑病の防除方法。
  6. 前記微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは前記チャ輪斑病防除剤の散布量が、胞子数として0.01〜5.0×10個/mである、請求項4又は5に記載のチャ輪斑病の防除方法。
  7. 前記微生物の菌体、培養物、代謝産物及び胞子からなる群より選ばれた一種以上、あるいは前記チャ輪斑病防除剤の散布時期が、茶の摘採後9時間以内である、請求項4〜6のいずれかに記載のチャ輪斑病の防除方法。
JP2011113717A 2011-05-20 2011-05-20 チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法 Withdrawn JP2012239435A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113717A JP2012239435A (ja) 2011-05-20 2011-05-20 チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011113717A JP2012239435A (ja) 2011-05-20 2011-05-20 チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法

Publications (1)

Publication Number Publication Date
JP2012239435A true JP2012239435A (ja) 2012-12-10

Family

ID=47461817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113717A Withdrawn JP2012239435A (ja) 2011-05-20 2011-05-20 チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法

Country Status (1)

Country Link
JP (1) JP2012239435A (ja)

Similar Documents

Publication Publication Date Title
US11771090B2 (en) Fungal endophytes for improved crop yields and protection from pests
Yao et al. Biological control of potato late blight using isolates of Trichoderma
Naz et al. Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber
JP2016534737A (ja) 生物農薬として使用されるクロノスタキス・ロゼア(Clonostachys rosea)の分離菌株
JP2016534737A5 (ja)
Sriwati et al. Trichoderma from Aceh Sumatra reduce Phytophthora lesions on pods and cacao seedlings
Nagachandrabose Liquid bioformulations for the management of root-knot nematode, Meloidogyne hapla that infects carrot
Mercado-Flores et al. Application of Bacillus subtilis in the biological control of the phytopathogenic fungus Sporisorium reilianum
JPWO2005104853A1 (ja) 植物病害の発生を抑制する微生物農薬
Abada et al. Management of pepper Verticillium wilt by combinations of inducer chemicals for plant resistance, bacterial bioagents and compost
KR20120061580A (ko) 심플리실리움 라멜리콜라 krict3 균주, 이를 함유하는 식물병 방제용 조성물 및 식물병 방제방법
Hussein et al. Biological control of Botrytis allii by Trichoderma viride on onion Allium cepa
JP2003531603A (ja) 新規のトリコデルマ属微生物菌株を利用した生物学的防除用微生物製剤およびその製造方法
Behairy et al. Alternaria leaf spot disease control on faba bean in Egypt
Abada et al. Effect of combination among bioagents, compost and soil solarization on management of strawberry Fusarium wilt
Matumwabirhi Effectiveness of Trichoderma Spp., Bacillus Spp. And Pseudomonas Fluorescens in the Management of Early Blight of Tomatoes
Carnot et al. Study of antagonistic beneficial microorganisms to Phytophtora colocasiae, causal agent of taro mildew (Colocasia esculenta (L.) Schott)
Abou-Zeid et al. Trichoderma species in Egypt and their biocontrol potential against some plant pathogenic fungi.
JP2012239435A (ja) チャ輪斑病に対する防除能を有する新規なグリオクラディウム属菌及びそれを用いた生物防除方法
Panda et al. Diversity of Endophytic Fungi in Banana Cultivars of Assam India
Shinde et al. Efficiency of Pseudomonas fluorescens and Bacillus subtilis against Phytophthora spp. in citrus.
Rani et al. Evaluation of biocontrol agents against Rhizoctonia solani f. sp sasakii causing banded leaf and sheath blight of maize
Jabnoun-Khiareddine et al. Multi-species endophytic Bacillus for improved control of potato soilborne and tuber-borne diseases in Tunisia: from laboratory to field conditions
PAULITE EFFICACY OF MIXED ACTINOMYCETES AGAINST FUSARIUM WILT CAUSED BY Fusarium oxysporum f. sp. cubense IN ‘CAVENDISH’BANANA
Poleatewich Development of biological control strategies for integrated management of pre-and postharvest diseases of apple in Pennsylvania

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805