JP2012239236A - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
JP2012239236A
JP2012239236A JP2012191871A JP2012191871A JP2012239236A JP 2012239236 A JP2012239236 A JP 2012239236A JP 2012191871 A JP2012191871 A JP 2012191871A JP 2012191871 A JP2012191871 A JP 2012191871A JP 2012239236 A JP2012239236 A JP 2012239236A
Authority
JP
Japan
Prior art keywords
sealing portion
acoustic wave
sealing
sealing part
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012191871A
Other languages
Japanese (ja)
Other versions
JP5521016B2 (en
Inventor
Keiji Tsuda
慶二 津田
Joji Kimura
丈児 木村
Shunichi Aikawa
俊一 相川
Kazunori Inoue
和則 井上
Takashi Matsuda
隆志 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2012191871A priority Critical patent/JP5521016B2/en
Publication of JP2012239236A publication Critical patent/JP2012239236A/en
Application granted granted Critical
Publication of JP5521016B2 publication Critical patent/JP5521016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a hollow structure which is not deformed by a pressure caused during modularization without deteriorating the yield.SOLUTION: An elastic wave device includes: a first sealing part 26 formed by a photosensitive resin and provided so as to have a cavity 16 on an elastic wave element 12 provided on a piezoelectric substrate 10; a second sealing part 28 formed by a photosensitive resin and provided on the first sealing part; an external connection part 22 provided on the second sealing part; and columnar electrodes 20, which penetrate through the first sealing part and the second sealing part, directly contact with the first sealing part and the second sealing part, and electrically connect the elastic wave element with the external connection part. The first sealing part 26 has: a third sealing part 30 provided so as to have a step making the width of the first sealing part on the substrate side wider than the width of the first sealing part on the opposite side and enclose a functional part of the elastic wave element; and a fourth sealing part 32 provided on the third sealing part 32 so as to form the cavity on the functional part. The width of the third sealing part is wider than that of the fourth sealing part, and the second sealing part includes a step part of the first sealing part and directly contacts with the first sealing part.

Description

本発明は弾性波デバイスに関し、より詳細には弾性波素子の上部に空洞部を有する封止部を備えた弾性波デバイスに関する。   The present invention relates to an acoustic wave device, and more particularly, to an acoustic wave device including a sealing portion having a hollow portion above an acoustic wave element.

弾性波を利用した弾性波デバイスの1つとして、圧電基板の表面に形成したIDT(Interdigital Transducer)からなる櫛型電極を備え、この櫛型電極に電力を印加することで励振した弾性波を用いる弾性表面波デバイスは良く知られている。この弾性表面波デバイスは、例えば45MHz〜2GHzの周波数帯域における無線信号を処理する各種回路、例えば送信用バンドパスフィルタ、受信用バンドパスフィルタやアンテナ共用器等に広く用いられている。   As one of the acoustic wave devices using an acoustic wave, a comb-shaped electrode made of IDT (Interdigital Transducer) formed on the surface of a piezoelectric substrate is provided, and an elastic wave excited by applying electric power to the comb-shaped electrode is used. Surface acoustic wave devices are well known. This surface acoustic wave device is widely used in various circuits that process radio signals in a frequency band of 45 MHz to 2 GHz, for example, a transmission band-pass filter, a reception band-pass filter, an antenna duplexer, and the like.

また、最近では圧電薄膜の表裏に一対の電極を形成しその厚み振動を利用する圧電薄膜共振器(FBAR:Film Bulk Acoustic Resonator)を用いた弾性波デバイスも開発されている。圧電薄膜共振器を用いた弾性波デバイスは特に高周波数帯域での特性が良好であることから、例えば1GHz〜10GHzの周波数帯域で用いられている。   Recently, an elastic wave device using a piezoelectric thin film resonator (FBAR: Film Bulk Acoustic Resonator) in which a pair of electrodes are formed on the front and back sides of the piezoelectric thin film and the thickness vibration is used has been developed. An acoustic wave device using a piezoelectric thin film resonator has particularly good characteristics in a high frequency band, and is used in a frequency band of 1 GHz to 10 GHz, for example.

近年、特に移動体通信分野の進歩はめざましいものがあり、これらに用いられる信号処理機器は小型化が進み、合わせて弾性波デバイスの電子部品も小型化が求められている。同時に、弾性波素子の特性を維持するために、弾性波素子の機能部分(弾性表面波素子:IDTの電極指、圧電薄膜共振器素子:圧電薄膜を挟みこむ上下電極の重なる領域)上に空洞部を設ける必要がある。   In recent years, there has been remarkable progress in the field of mobile communication in particular, and signal processing equipment used in these fields has been downsized, and electronic components of acoustic wave devices have also been required to be downsized. At the same time, in order to maintain the characteristics of the acoustic wave element, a cavity is formed on the functional part of the acoustic wave element (surface acoustic wave element: electrode finger of IDT, piezoelectric thin film resonator element: region where upper and lower electrodes sandwich the piezoelectric thin film) It is necessary to provide a part.

このような要求を満たすために、弾性波素子の機能部分上に空洞部を有する封止部を設けた構造(いわゆる中空構造)を形成する方法が提案されている。例えば、特許文献1には、弾性波素子上に空洞となるべき領域に溶解用樹脂を形成し、溶解用樹脂上に上部板を形成した後、溶解用樹脂を除去することにより中空構造を形成する方法(従来例1)が開示されている。特許文献2には、電気的構造素子を包囲するフレーム構造体を形成し、電気的構造素子上が空洞になるように、フレーム構造体上に補助フィルムを貼り、その上に樹脂層を形成し、フレーム構造体の屋根部分以外を除去することにより中空構造を形成する方法(従来例2)が開示されている。特許文献3には、弾性波素子を形成した圧電基板上に樹脂フィルムを貼り、弾性波素子が複数設けられた基板の機能部分上部の樹脂フィルムを開口し、樹脂フィルム上に回路基板を密着し中空構造を形成する方法(従来例3)が開示されている。特許文献4には、弾性波素子を複数設けた基板上に感光性樹脂を形成し、弾性波素子の機能部分上の感光性樹脂を開口し、その上に配線基板集合体の基板を実装し、ダイシングで分割することにより中空構造を形成する方法(従来例4)が開示されている。   In order to satisfy such a requirement, a method of forming a structure (so-called hollow structure) in which a sealing portion having a hollow portion is provided on a functional portion of an acoustic wave element has been proposed. For example, in Patent Document 1, a melting structure is formed by forming a resin for dissolution in a region to be a cavity on an acoustic wave element, forming an upper plate on the resin for dissolution, and then removing the resin for dissolution. A method (conventional example 1) is disclosed. In Patent Document 2, a frame structure surrounding the electrical structure element is formed, an auxiliary film is pasted on the frame structure so that the electrical structure element is hollow, and a resin layer is formed thereon. A method (conventional example 2) for forming a hollow structure by removing the frame structure other than the roof portion is disclosed. In Patent Document 3, a resin film is pasted on a piezoelectric substrate on which an acoustic wave element is formed, a resin film above a functional part of the substrate on which a plurality of acoustic wave elements are provided is opened, and a circuit board is adhered to the resin film. A method of forming a hollow structure (conventional example 3) is disclosed. In Patent Document 4, a photosensitive resin is formed on a substrate provided with a plurality of acoustic wave elements, a photosensitive resin on a functional part of the acoustic wave element is opened, and a substrate of a wiring board assembly is mounted thereon. A method of forming a hollow structure by dividing by dicing (conventional example 4) is disclosed.

特許3291046号公報Japanese Patent No. 3291406 特表2003−523082号公報Special table 2003-523082 gazette 特許3196693号公報Japanese Patent No. 3196693 特許3225906号公報Japanese Patent No. 3225906

従来例1から4の方法で形成された弾性波デバイスは、モジュール化の際に加わる圧力に対し耐えられず、中空構造の天井部が凹んでしまう。この課題を解決する方法として、中空構造の天井部の厚さを厚くする方法が考えられる。しかしながら、樹脂を用いて形成した中空構造の天井部上にさらに樹脂を形成すると、歩留まりが低下するという課題が新たに生じる。   The elastic wave devices formed by the methods of Conventional Examples 1 to 4 cannot withstand the pressure applied during modularization, and the ceiling portion of the hollow structure is recessed. As a method of solving this problem, a method of increasing the thickness of the ceiling portion of the hollow structure is conceivable. However, when resin is further formed on the ceiling part of the hollow structure formed using resin, the problem that a yield falls newly arises.

本発明は、上記課題に鑑みなされたものであり、歩留まりを低下させずに、モジュール化の際の圧力で変形しない中空構造を有する弾性波デバイスを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an acoustic wave device having a hollow structure that is not deformed by pressure during modularization without reducing yield.

本発明は、基板上に設けられた弾性波素子と、前記弾性波素子上に空洞部を有するように前記基板上に設けられた感光性樹脂からなる第1封止部と、前記第1封止部上に設けられた感光性樹脂からなる第2封止部と、前記第2封止部上に設けられた外部接続部と、前記第1封止部及び前記第2封止部を貫通して、前記第1封止部及び前記第2封止部に直接接し、前記弾性波素子と前記外部接続部とを電気的に接続させる柱状電極と、を具備し、前記第1封止部は、前記基板側の幅が前記基板に反対側の幅よりも広くなるような段差を有するように、前記弾性波素子の機能部分を囲うように前記基板上に設けられた第3封止部と、前記機能部分上に空洞部を形成するように前記第3封止部上に設けられた第4封止部と、を有し、前記第3封止部の幅は前記第4封止部の幅よりも広く、前記第2封止部は、前記第1封止部の前記段差の部分を含んで前記第1封止部に直接接していることを特徴とする弾性波デバイスである。本発明によれば、第2封止部の剥離を防止することができるため、歩留まりを低下させずに、モジュール化の際の圧力で変形しない中空構造を有する弾性波デバイスを提供することができる。   The present invention includes an acoustic wave element provided on a substrate, a first sealing portion made of a photosensitive resin provided on the substrate so as to have a cavity on the acoustic wave element, and the first seal. A second sealing portion made of a photosensitive resin provided on the stop portion, an external connection portion provided on the second sealing portion, and penetrating the first sealing portion and the second sealing portion. And a columnar electrode that is in direct contact with the first sealing portion and the second sealing portion and electrically connects the acoustic wave element and the external connection portion, and the first sealing portion. Is a third sealing portion provided on the substrate so as to surround the functional portion of the acoustic wave device so that the substrate side has a step so that the width on the substrate side is wider than the width on the opposite side of the substrate. And a fourth sealing portion provided on the third sealing portion so as to form a cavity on the functional portion, and the third sealing portion The width is wider than the width of the fourth sealing portion, and the second sealing portion is in direct contact with the first sealing portion including the step portion of the first sealing portion. It is an elastic wave device. According to the present invention, it is possible to prevent peeling of the second sealing portion, and thus it is possible to provide an acoustic wave device having a hollow structure that is not deformed by pressure during modularization without reducing yield. .

上記構成において、前記段差の形状は階段形状またはラウンド形状である構成とすることができる。 In the above configuration, the shape of the step may be a staircase shape or a round shape.

上記構成において、前記第1封止部は、前記弾性波素子の機能部分を囲うように前記基板上に設けられた第3封止部と、前記機能部分上に空洞部を形成するように前記第3封止部上に設けられた第4封止部と、を有し、前記第3封止部の幅が前記第4封止部の幅より広い構成とすることができる。この構成によれば、段差を有する第1封止部を容易に形成することができる。   In the above configuration, the first sealing portion includes a third sealing portion provided on the substrate so as to surround a functional portion of the acoustic wave element, and a cavity portion formed on the functional portion. And a fourth sealing portion provided on the third sealing portion, and the width of the third sealing portion may be wider than the width of the fourth sealing portion. According to this structure, the 1st sealing part which has a level | step difference can be formed easily.

上記構成において、前記第3封止部の表面と前記第4封止部の側面との前記第4封止部側のなす角度は鋭角である構成とすることができる。また、上記構成において、前記第3封止部の表面と前記第4封止部の側面との前記第4封止部側のなす角度は鈍角である構成とすることができる。   The said structure WHEREIN: The angle which the said 4th sealing part side makes with the surface of the said 3rd sealing part and the side surface of the said 4th sealing part can be set as the structure which is an acute angle. Moreover, the said structure WHEREIN: The angle which the said 4th sealing part side makes with the surface of the said 3rd sealing part and the side surface of the said 4th sealing part can be set as the structure which is an obtuse angle.

上記構成において、前記基板の表面と前記第3封止部の側面との前記第3封止部側のなす角度は鋭角である構成とすることができる。この構成によれば、第2封止部と基板との接触面積が大きくなるため、第2封止部と基板との密着力を向上させることができる。   The said structure WHEREIN: The angle which the said 3rd sealing part side makes with the surface of the said board | substrate and the side surface of the said 3rd sealing part can be set as the structure which is an acute angle. According to this configuration, since the contact area between the second sealing portion and the substrate is increased, the adhesion between the second sealing portion and the substrate can be improved.

上記構成において、前記第3封止部は前記第4封止部との接触面が平面状である構成とすることができる。   The said structure WHEREIN: The said 3rd sealing part can be set as the structure whose contact surface with the said 4th sealing part is planar.

上記構成において、前記第3封止部は前記第4封止部との接触面に凸凹を有する構成とすることができる。この構成によれば、第3封止部と第4封止部との接触面積が大きくなるため、第3封止部と第4封止部との密着力を向上させることができる。   The said structure WHEREIN: The said 3rd sealing part can be set as the structure which has an unevenness | corrugation in a contact surface with the said 4th sealing part. According to this structure, since the contact area of a 3rd sealing part and a 4th sealing part becomes large, the adhesive force of a 3rd sealing part and a 4th sealing part can be improved.

上記構成において、前記第1封止部および前記第2封止部は感光性樹脂からなる構成とすることができる。この構成によれば、第1封止部および第2封止部の形成を容易に行うことができる。また、上記構成において、前記第2封止部の端面は、前記基板上で且つ前記基板の端面よりも内側に位置している   The said structure WHEREIN: A said 1st sealing part and a said 2nd sealing part can be set as the structure which consists of photosensitive resin. According to this configuration, the first sealing portion and the second sealing portion can be easily formed. In the above configuration, the end surface of the second sealing portion is positioned on the substrate and on the inner side of the end surface of the substrate.

本発明によれば、段差を有する第1封止部上に第2封止部を設けることにより、第2封止部の剥離を防止することができるため、歩留まりを低下させずに、モジュール化の際の圧力で変形しない中空構造を有する弾性波デバイスを提供することができる。   According to the present invention, by providing the second sealing portion on the first sealing portion having a step, it is possible to prevent the second sealing portion from being peeled off, so that the module can be formed without reducing the yield. It is possible to provide an acoustic wave device having a hollow structure that is not deformed by the pressure at the time.

図1(a)は比較例1に係る弾性波デバイスの上視図であり、図1(b)は図1(a)のA−A間の断面図であり、図1(c)は図1(a)のB−B間の断面図である。1A is a top view of an acoustic wave device according to Comparative Example 1, FIG. 1B is a cross-sectional view taken along the line A-A in FIG. 1A, and FIG. It is sectional drawing between BB of 1 (a). 図2(a)から図2(f)は比較例1に係る弾性波デバイスの製造工程を示す断面図である。FIG. 2A to FIG. 2F are cross-sectional views illustrating manufacturing steps of the acoustic wave device according to Comparative Example 1. 図3は比較例2に係る弾性波デバイスの断面図である。FIG. 3 is a cross-sectional view of an acoustic wave device according to Comparative Example 2. 図4は比較例3に係る弾性波デバイスの断面図である。FIG. 4 is a cross-sectional view of an acoustic wave device according to Comparative Example 3. 図5はウエハの反りの影響による課題を説明するための図(その1)である。FIG. 5 is a diagram (part 1) for explaining a problem due to the influence of warpage of the wafer. 図6はウエハの反りの影響による課題を説明するための図(その2)である。FIG. 6 is a diagram (part 2) for explaining a problem due to the influence of wafer warpage. 図7(a)は実施例1に係る弾性波デバイスの上視図であり、図7(b)は図7(a)のA−A間の断面図であり、図7(c)は図7(a)のB−B間の断面図である。FIG. 7A is a top view of the acoustic wave device according to the first embodiment, FIG. 7B is a cross-sectional view taken along the line A-A in FIG. 7A, and FIG. It is sectional drawing between BB of 7 (a). 図8(a)から図8(f)は実施例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。FIG. 8A to FIG. 8F are cross-sectional views (part 1) showing the method for manufacturing the acoustic wave device according to the first embodiment. 図9(a)から図9(f)は実施例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。FIG. 9A to FIG. 9F are cross-sectional views (part 2) illustrating the method for manufacturing the acoustic wave device according to the first embodiment. 図10(a)から図10(f)は実施例1に係る弾性波デバイスの製造方法を示す断面図(その3)である。FIG. 10A to FIG. 10F are cross-sectional views (part 3) illustrating the method for manufacturing the acoustic wave device according to the first embodiment. 図11(a)から図11(f)は実施例1に係る弾性波デバイスの製造方法を示す断面図(その4)である。FIG. 11A to FIG. 11F are cross-sectional views (part 4) illustrating the method for manufacturing the acoustic wave device according to the first embodiment. 図12はラウンド形状を説明するための図である。FIG. 12 is a diagram for explaining the round shape. 図13は第3封止部と第4封止部の接触面が凸凹をした形状をしている場合を説明するための図である。FIG. 13 is a view for explaining a case where the contact surfaces of the third sealing portion and the fourth sealing portion have an uneven shape.

まず発明者が従来例1から4の課題を明確にするために行った実験について説明する。図1(a)から図1(c)は感光性樹脂を用いて中空構造を形成した弾性波デバイス(比較例1)である。図1(a)は上視図、図1(b)は図1(a)のA−A間の断面図、図1(c)は図1(a)のB−B間の断面図である。なお、図1(a)は第1封止部26を透視して弾性波素子12、配線14および空洞部16を図示し、弾性波素子12および配線14は実線、空洞部16は破線で示している。図1(a)および図1(b)を参照に、圧電基板10表面に金属膜で形成されたIDT、反射器等からなる弾性波素子12が設けられ、さらに圧電基板10上には弾性波素子12の機能部分上に空洞部16を有する第1封止部26が設けられている。第1封止部26は弾性波素子12の機能部分を囲うように圧電基板10上に設けられた第3封止部30と、弾性波素子12の機能部分上に空洞部16を形成するように第3封止部30上に設けられた第4封止部32とで構成されている。なお、第1封止部26の高さは60μm、空洞部16の高さは30μmである。   First, an experiment conducted by the inventor to clarify the problems of the conventional examples 1 to 4 will be described. FIG. 1A to FIG. 1C show an acoustic wave device (Comparative Example 1) in which a hollow structure is formed using a photosensitive resin. 1A is a top view, FIG. 1B is a cross-sectional view taken along the line A-A in FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line BB in FIG. is there. 1A shows the acoustic wave element 12, the wiring 14, and the cavity 16 through the first sealing portion 26. The acoustic wave element 12 and the wiring 14 are indicated by a solid line, and the cavity 16 is indicated by a broken line. ing. Referring to FIGS. 1A and 1B, an acoustic wave element 12 made of a metal film, such as an IDT and a reflector, is provided on the surface of the piezoelectric substrate 10, and an acoustic wave is further formed on the piezoelectric substrate 10. A first sealing portion 26 having a hollow portion 16 is provided on the functional portion of the element 12. The first sealing portion 26 forms the third sealing portion 30 provided on the piezoelectric substrate 10 so as to surround the functional portion of the acoustic wave element 12 and the cavity portion 16 on the functional portion of the acoustic wave element 12. And a fourth sealing portion 32 provided on the third sealing portion 30. The first sealing portion 26 has a height of 60 μm, and the cavity portion 16 has a height of 30 μm.

図1(a)および図1(c)を参照に、圧電基板10表面に配線14および電極パッド24が形成され、配線14上に第1封止部26が設けられている。第1封止部26を貫通する貫通電極20が電極パッド24上に設けられ、弾性波素子12と貫通電極20とは配線14および配線14上の電極パッド24により接続されている。貫通電極20上にはハンダボール22が設けられている。これにより、貫通電極20およびハンダボール22は弾性波デバイスを表面実装する際、弾性波素子12を外部に電気的に接続する端子部として機能する。このように、弾性波素子12は中空構造を有する第1封止部26で封止され、配線14および貫通電極20を介しハンダボール22に接続されている。   With reference to FIG. 1A and FIG. 1C, a wiring 14 and an electrode pad 24 are formed on the surface of the piezoelectric substrate 10, and a first sealing portion 26 is provided on the wiring 14. The through electrode 20 penetrating the first sealing portion 26 is provided on the electrode pad 24, and the acoustic wave element 12 and the through electrode 20 are connected by the wiring 14 and the electrode pad 24 on the wiring 14. A solder ball 22 is provided on the through electrode 20. Accordingly, the through electrode 20 and the solder ball 22 function as a terminal portion that electrically connects the acoustic wave element 12 to the outside when the acoustic wave device is surface-mounted. As described above, the acoustic wave element 12 is sealed by the first sealing portion 26 having a hollow structure, and is connected to the solder ball 22 via the wiring 14 and the through electrode 20.

図2(a)から図2(f)を参照に、比較例1に係る弾性波デバイスの第1封止部26の形成工程を説明する。図2(a)から図2(c)は図1(a)のA−A間に相当する箇所の断面図であり、図2(d)から図2(f)は図1(a)のB−B間に相当する箇所の断面図である。図2(a)および図2(d)を参照に、弾性波素子12、配線14および電極パッド24が形成された圧電基板10上に、ネガ型感光性エポキシ樹脂を30μmの膜厚になるようにスピンコート法を用い塗布する。その後乾燥する。露光現像することで、弾性波素子12上および電極パッド24上のネガ型感光性エポキシ樹脂を除去する。これにより、弾性波素子12の機能部分上に開口部36および電極パッド24上に開口部42が形成され、これにより、弾性波素子12の機能部分を囲うように第3封止部30が形成される。さらに、約200℃の窒素雰囲気中で約1時間加熱し、第3封止部30を硬化させる。   With reference to FIG. 2A to FIG. 2F, a process of forming the first sealing portion 26 of the acoustic wave device according to Comparative Example 1 will be described. 2 (a) to 2 (c) are cross-sectional views corresponding to the area between AA in FIG. 1 (a), and FIGS. 2 (d) to 2 (f) are diagrams of FIG. 1 (a). It is sectional drawing of the location corresponded between BB. 2 (a) and 2 (d), a negative photosensitive epoxy resin is formed to a thickness of 30 μm on the piezoelectric substrate 10 on which the acoustic wave element 12, the wiring 14 and the electrode pad 24 are formed. It is applied using a spin coating method. Then dry. By performing exposure and development, the negative photosensitive epoxy resin on the acoustic wave element 12 and the electrode pad 24 is removed. As a result, an opening 36 is formed on the functional part of the acoustic wave element 12 and an opening 42 is formed on the electrode pad 24, thereby forming the third sealing part 30 so as to surround the functional part of the acoustic wave element 12. Is done. Further, the third sealing portion 30 is cured by heating in a nitrogen atmosphere at about 200 ° C. for about 1 hour.

図2(b)および図2(e)を参照に、開口部36および42を保持するように、厚さが30μmのフィルム状のネガ型感光性エポキシ樹脂をラミネート法を用い貼り付ける。これにより、弾性波素子12の機能部分上に蓋がされ、開口部36は空洞部16に開口部42は空洞部44になる。図2(c)および図2(f)を参照に、露光現像することで、弾性波素子12の機能部分上に空洞部16が形成されるように第3封止部30上に第4封止部32が形成される。また、電極パッド24上には貫通電極20を形成すべき開口部42も形成される。さらに、約200℃の窒素雰囲気中で約1時間加熱し、第4封止部32を硬化させる。これにより、比較例1に係る弾性波デバイスの第1封止部26の形成が完成する。   With reference to FIG. 2B and FIG. 2E, a film-like negative photosensitive epoxy resin having a thickness of 30 μm is pasted using a laminating method so as to hold the openings 36 and 42. As a result, the functional portion of the acoustic wave element 12 is covered, and the opening 36 becomes the cavity 16 and the opening 42 becomes the cavity 44. Referring to FIGS. 2C and 2F, the fourth seal is formed on the third sealing portion 30 so that the cavity portion 16 is formed on the functional portion of the acoustic wave element 12 by exposure and development. A stop 32 is formed. An opening 42 in which the through electrode 20 is to be formed is also formed on the electrode pad 24. Further, the fourth sealing portion 32 is cured by heating in a nitrogen atmosphere at about 200 ° C. for about 1 hour. Thereby, formation of the 1st sealing part 26 of the elastic wave device concerning the comparative example 1 is completed.

比較例1に係る弾性波デバイスをモジュール用基板に実装し表面保護用の樹脂をトランスファーモールドしたところ、中空構造の天井部が圧力で凹んでしまい、第1封止部26が弾性波素子12の機能部分に接触することが判明した。   When the elastic wave device according to the comparative example 1 is mounted on the module substrate and the resin for surface protection is transfer molded, the ceiling portion of the hollow structure is recessed by pressure, and the first sealing portion 26 is the elastic wave element 12. It was found that it touches the functional part.

次に、図3に示すような、第3封止部30の幅が狭い弾性波デバイス(比較例2)を作製した。図3は図1(a)のA−A間に相当する箇所の断面図である。図3を参照に、比較例2は第3封止部30の幅t1が30μmである。その他の構成については比較例1と同じであり、図1(a)から図1(c)に示しているので説明を省略する。   Next, an acoustic wave device (Comparative Example 2) in which the width of the third sealing portion 30 was narrow as shown in FIG. 3 was produced. FIG. 3 is a cross-sectional view of a portion corresponding to AA in FIG. Referring to FIG. 3, in Comparative Example 2, the width t1 of the third sealing portion 30 is 30 μm. Other configurations are the same as those of the first comparative example and are shown in FIG. 1A to FIG.

比較例2に係る弾性波デバイスは、図3に示すように、第3封止部30の幅t1が30μmと細いため、第3封止部30と第4封止部32との接触面積が小さい。このため、第3封止部30と第4封止部32との密着が不十分となり、図2(c)に示す第4封止部32の形成工程中の現像により、現像液が第3封止部30と第4封止部32との界面から中空構造内に進入してしまう。これにより、弾性波素子12の機能部分(IDTからなる電極指)が現像液により汚染され、特性不良が発生することが判明した。   As shown in FIG. 3, the elastic wave device according to Comparative Example 2 has a contact area between the third sealing portion 30 and the fourth sealing portion 32 because the width t1 of the third sealing portion 30 is as thin as 30 μm. small. For this reason, the close contact between the third sealing portion 30 and the fourth sealing portion 32 becomes insufficient, and the developing solution becomes the third by the development during the formation process of the fourth sealing portion 32 shown in FIG. It will enter into the hollow structure from the interface between the sealing part 30 and the fourth sealing part 32. As a result, it has been found that the functional part (electrode finger made of IDT) of the acoustic wave element 12 is contaminated by the developer, resulting in poor characteristics.

比較例2より、第3封止部30と第4封止部32との接触面積は大きくする必要がある。図4は第3封止部30と第4封止部32との接触面積を大きくした比較例3に係る弾性波デバイスの断面図である。図4を参照に、比較例3は第3封止部30の幅t1が80μmになっている。その他の構成については比較例1と同じであり図1(a)から図1(c)に示しているので説明を省略する。   From Comparative Example 2, the contact area between the third sealing portion 30 and the fourth sealing portion 32 needs to be increased. FIG. 4 is a cross-sectional view of an acoustic wave device according to Comparative Example 3 in which the contact area between the third sealing portion 30 and the fourth sealing portion 32 is increased. Referring to FIG. 4, in Comparative Example 3, the width t1 of the third sealing portion 30 is 80 μm. The other configuration is the same as that of Comparative Example 1 and is shown in FIGS.

比較例3は比較例2に比べて圧電基板10のウエハ内に占める第3封止部30の面積が大きくなる。このため、図2(a)および図2(d)に示すような第3封止部30の形成工程中の加熱により、第3封止部30に生じる圧縮力が比較例3は比較例2に比べて大きくなる。これにより、比較例3は比較例2に比べてウエハに大きな反りが発生する。圧電基板10が4インチウエハである場合、この反り量は最大2.5mmである。反りが発生しているウエハに、図2(c)に示すような第4封止部32の形成工程である露光を行うと、反りの影響が大きいウエハ外周部では紫外線(UV光)がウエハに対して斜めに照射されてしまい、図5に示すように、第4封止部32のパターンが第3封止部30のパターンに対してずれて形成されてしまう。また、ウエハ外周部に行くほど反りの影響が大きくなるため、第4封止部32のパターンのずれもウエハ外周部に行くほど必然的に大きくなる。   In Comparative Example 3, the area of the third sealing portion 30 in the wafer of the piezoelectric substrate 10 is larger than that in Comparative Example 2. For this reason, the compression force produced in the 3rd sealing part 30 by the heating in the formation process of the 3rd sealing part 30 as shown to FIG. 2A and FIG. Larger than As a result, the warpage of the wafer in Comparative Example 3 is larger than that in Comparative Example 2. When the piezoelectric substrate 10 is a 4-inch wafer, the amount of warping is 2.5 mm at the maximum. When the wafer in which the warpage has occurred is exposed as the formation process of the fourth sealing portion 32 as shown in FIG. 2C, ultraviolet rays (UV light) are emitted from the wafer outer peripheral portion where the influence of the warpage is large. As shown in FIG. 5, the pattern of the fourth sealing portion 32 is shifted from the pattern of the third sealing portion 30. Further, since the influence of the warpage increases as it goes to the outer peripheral portion of the wafer, the shift of the pattern of the fourth sealing portion 32 inevitably increases as it goes to the outer peripheral portion of the wafer.

図5に示すように、第4封止部32のパターンが第3封止部30のパターンに対してずれている弾性波デバイスでは、第3封止部30と第4封止部32との接触面積が小さい領域Aが発生してしまう。このため、比較例2で説明したように第4封止部32の形成工程中の現像で、現像液が中空構造内に進入し弾性波素子12の機能部分(IDTからなる電極指)が汚染され特性不良が発生してしまう。4インチウエハの場合、現像液が中空構造内に進入しない領域、つまり特性が良好な領域はウエハの中心から90mmの領域である。   As shown in FIG. 5, in the acoustic wave device in which the pattern of the fourth sealing portion 32 is shifted from the pattern of the third sealing portion 30, the third sealing portion 30 and the fourth sealing portion 32 A region A having a small contact area is generated. For this reason, as described in Comparative Example 2, in the development in the process of forming the fourth sealing portion 32, the developer enters the hollow structure and the functional portion of the acoustic wave element 12 (electrode finger made of IDT) is contaminated. As a result, a characteristic defect occurs. In the case of a 4-inch wafer, the region where the developer does not enter the hollow structure, that is, the region having good characteristics is a region 90 mm from the center of the wafer.

また、図5に示すように、第4封止部32のパターンが第3封止部30のパターンに対してずれているため、第4封止部32が庇となる領域Bが発生する。この状態で、モジュール化の際の圧力で中空構造の天井部が凹まないよう、第1封止部26を強化する目的で第1封止部26上に第2封止部28の形成を行うと、庇となっている領域Bは露光において紫外線(UV光)が照射されず、図6に示すように、現像によって空洞部16aが発生してしまう。この空洞部16aのため第2封止部28と圧電基板10との接触面積が小さくなり、第2封止部28と圧電基板10との密着力が低下してしまう。このため、第2封止部28が剥離してしまう現象が発生する。4インチウエハの場合、第2封止部28が剥離しない領域、つまり良品領域はウエハの中心から70mmの領域である。このように、第1封止部26上に第2封止部28を設けることで、歩留まりが低下するという課題が生じる。   Further, as shown in FIG. 5, since the pattern of the fourth sealing portion 32 is shifted from the pattern of the third sealing portion 30, a region B in which the fourth sealing portion 32 becomes a wrinkle occurs. In this state, the second sealing portion 28 is formed on the first sealing portion 26 for the purpose of strengthening the first sealing portion 26 so that the ceiling portion of the hollow structure is not dented by the pressure at the time of modularization. Then, the region B that is a wrinkle is not irradiated with ultraviolet rays (UV light) during exposure, and as shown in FIG. 6, a cavity 16a is generated by development. Due to the hollow portion 16a, the contact area between the second sealing portion 28 and the piezoelectric substrate 10 is reduced, and the adhesion between the second sealing portion 28 and the piezoelectric substrate 10 is reduced. For this reason, the phenomenon which the 2nd sealing part 28 peels generate | occur | produces. In the case of a 4-inch wafer, the area where the second sealing portion 28 does not peel, that is, the non-defective area is an area 70 mm from the center of the wafer. As described above, the provision of the second sealing portion 28 on the first sealing portion 26 causes a problem that the yield decreases.

以下、上記課題を解決するための実施例について説明する。   Hereinafter, examples for solving the above-described problems will be described.

図7(a)は実施例1に係る弾性波デバイスの上視図である。図7(b)は図7(a)のA−A間の断面図、図7(c)は図7(a)のB−B間の断面図である。なお、図7(a)において、第1封止部26および第2封止部28を透視して弾性波素子12、配線14および空洞部16を図示し、弾性波素子12および配線14は実線、空洞部16および第1封止部26は破線で示している。   FIG. 7A is a top view of the acoustic wave device according to the first embodiment. 7B is a cross-sectional view taken along the line AA in FIG. 7A, and FIG. 7C is a cross-sectional view taken along the line BB in FIG. 7A. In FIG. 7A, the acoustic wave element 12, the wiring 14, and the cavity 16 are illustrated through the first sealing portion 26 and the second sealing portion 28, and the acoustic wave element 12 and the wiring 14 are solid lines. The cavity 16 and the first sealing portion 26 are indicated by broken lines.

図7(a)および図7(b)を参照に、圧電基板10表面に金属膜で形成されたIDT、反射器等からなる弾性波素子12が設けられている。圧電基板10上に、弾性波素子12の機能部分上に空洞部16を有する第1封止部26が設けられている。第1封止部26は、弾性波素子12の機能部分を囲うように圧電基板10上に設けられた第3封止部30と、弾性波素子12の機能部分上に空洞部16を有するように第3封止部30上に設けられた第4封止部32と、で構成されている。第3封止部30の幅は第4封止部32の幅より広く、これにより第3封止部30と第4封止部32とは段差を有している。つまり、第3封止部30の側面P1は第4封止部32の側面P2より突出していて、第3封止部30と第4封止部32とは階段形状をした段差を有している。よって、第1封止部26は圧電基板10側の幅t2が圧電基板10に反対側の幅t3より広くなるような段差を有している。圧電基板10の表面と第3封止部30の側面との第3封止部30側のなす角度θ1は直角である。第3封止部30の表面と第4封止部32の側面との第4封止部32側のなす角度θ2も直角である。第3封止部30は第4封止部32との接触面が平面状をしている。第1封止部26上に第2封止部28が設けられている。なお、第3封止部30の高さは30μm、第4封止部32の高さは30μm、第2封止部28の高さは30μmである。また、第3封止部30と第4封止部32との接触面の幅t4は40μm以上、第4封止部32に接していない第3封止部30の幅t5は30μm以下である。   Referring to FIGS. 7A and 7B, an acoustic wave element 12 including an IDT, a reflector, and the like formed on a surface of the piezoelectric substrate 10 is provided. On the piezoelectric substrate 10, a first sealing portion 26 having a hollow portion 16 on a functional portion of the acoustic wave element 12 is provided. The first sealing portion 26 has the third sealing portion 30 provided on the piezoelectric substrate 10 so as to surround the functional portion of the acoustic wave element 12, and the cavity portion 16 on the functional portion of the acoustic wave element 12. And a fourth sealing portion 32 provided on the third sealing portion 30. The width of the third sealing part 30 is wider than the width of the fourth sealing part 32, whereby the third sealing part 30 and the fourth sealing part 32 have a step. That is, the side surface P1 of the third sealing portion 30 protrudes from the side surface P2 of the fourth sealing portion 32, and the third sealing portion 30 and the fourth sealing portion 32 have a stepped step. Yes. Therefore, the first sealing portion 26 has a step such that the width t2 on the piezoelectric substrate 10 side is wider than the width t3 on the opposite side of the piezoelectric substrate 10. An angle θ1 formed between the surface of the piezoelectric substrate 10 and the side surface of the third sealing portion 30 on the third sealing portion 30 side is a right angle. An angle θ2 formed between the surface of the third sealing portion 30 and the side surface of the fourth sealing portion 32 on the fourth sealing portion 32 side is also a right angle. The third sealing part 30 has a flat contact surface with the fourth sealing part 32. A second sealing portion 28 is provided on the first sealing portion 26. In addition, the height of the 3rd sealing part 30 is 30 micrometers, the height of the 4th sealing part 32 is 30 micrometers, and the height of the 2nd sealing part 28 is 30 micrometers. The width t4 of the contact surface between the third sealing portion 30 and the fourth sealing portion 32 is 40 μm or more, and the width t5 of the third sealing portion 30 not in contact with the fourth sealing portion 32 is 30 μm or less. .

図7(a)および図7(c)を参照に、圧電基板10表面に配線14および電極パッド24が形成され、配線14上に第1封止部26と第2封止部28とが設けられている。第1封止部26と第2封止部28とを貫通する貫通電極20が電極パッド24上に設けられ、弾性波素子12と貫通電極20とは配線14および配線14上の電極パッド24により接続されている。貫通電極20上にはハンダボール22が設けられている。これにより、貫通電極20およびハンダボール22は弾性波デバイスを表面実装する際、弾性波素子12を外部に電気的に接続する端子部として機能する。   7A and 7C, the wiring 14 and the electrode pad 24 are formed on the surface of the piezoelectric substrate 10, and the first sealing portion 26 and the second sealing portion 28 are provided on the wiring 14. It has been. A through electrode 20 that penetrates the first sealing portion 26 and the second sealing portion 28 is provided on the electrode pad 24, and the acoustic wave element 12 and the through electrode 20 are connected to the wiring 14 and the electrode pad 24 on the wiring 14. It is connected. A solder ball 22 is provided on the through electrode 20. Accordingly, the through electrode 20 and the solder ball 22 function as a terminal portion that electrically connects the acoustic wave element 12 to the outside when the acoustic wave device is surface-mounted.

次に、図8(a)から図11(f)を用い、実施例1に係る弾性波デバイスの製造方法について説明する。なお、図8(a)から図8(c)、図9(a)から図9(c)、図10(a)から図10(c)並びに図11(a)から図11(c)は図7(a)のA−A間に相当する箇所における製造工程を示した断面図である。図8(d)から図8(f)、図9(d)から図9(f)、図10(d)から図10(f)並びに図11(d)から図11(f)は図7(a)のB−B間に相当する箇所における製造工程を示した断面図である。また、図8(a)から図11(f)は、ウエハ状態の圧電基板10を用いて行われる製造工程であり、複数の弾性波デバイスとなるべき領域がウエハ上に存在するが、複数の弾性波デバイスのうち1つの弾性波デバイスとなるべき領域を図示して説明する。そして、図11(c)および図11(f)において、周辺領域をダイシングで分離することにより、ウエハ上に形成された複数の弾性波デバイスがそれぞれ1つに分離される。   Next, a method for manufacturing the acoustic wave device according to the first embodiment will be described with reference to FIGS. 8A to FIG. 8C, FIG. 9A to FIG. 9C, FIG. 10A to FIG. 10C, and FIG. 11A to FIG. 11C. It is sectional drawing which showed the manufacturing process in the location corresponded between AA of Fig.7 (a). 8 (d) to FIG. 8 (f), FIG. 9 (d) to FIG. 9 (f), FIG. 10 (d) to FIG. 10 (f) and FIG. 11 (d) to FIG. It is sectional drawing which showed the manufacturing process in the location corresponded between BB of (a). FIGS. 8A to 11F show a manufacturing process performed using the piezoelectric substrate 10 in a wafer state, and there are a plurality of regions to be acoustic wave devices on the wafer. A region to be one acoustic wave device among the acoustic wave devices is illustrated and described. In FIG. 11C and FIG. 11F, the peripheral regions are separated by dicing, so that a plurality of acoustic wave devices formed on the wafer are separated into one.

図8(a)および図8(d)を参照に、LiNbO(ニオブ酸リチウム)あるいはLiTaO(タンタル酸リチウム)等からなる圧電基板10表面にAl(アルミニウム)やCu(銅)等を用い金属膜を形成し、弾性波素子12および配線14を形成する。配線14上に貫通電極20を形成すべき領域に電極パッド24を形成する。図8(b)および図8(e)を参照に、圧電基板10、弾性波素子12および配線14上にネガ型感光性エポキシ樹脂である第1樹脂膜31をスピンコート法により30μm塗布しベークする。図8(c)および図8(f)を参照に、マスクを用い紫外線(UV光)を弾性波素子12の機能部分上の空洞部16を形成すべき領域、電極パッド24上の貫通電極20を形成すべき領域および周辺領域、以外の領域の第1樹脂膜31に照射する。 Referring to FIGS. 8A and 8D, Al (aluminum), Cu (copper), or the like is used on the surface of the piezoelectric substrate 10 made of LiNbO 3 (lithium niobate) or LiTaO 3 (lithium tantalate). A metal film is formed, and the acoustic wave element 12 and the wiring 14 are formed. An electrode pad 24 is formed on the wiring 14 in a region where the through electrode 20 is to be formed. Referring to FIGS. 8B and 8E, a first resin film 31 that is a negative photosensitive epoxy resin is applied on the piezoelectric substrate 10, the acoustic wave element 12, and the wiring 14 by spin coating to a thickness of 30 μm. To do. With reference to FIGS. 8C and 8F, ultraviolet light (UV light) is applied to the region where the cavity 16 on the functional portion of the acoustic wave element 12 is to be formed using the mask, and the through electrode 20 on the electrode pad 24. The first resin film 31 in the region other than the region where the film is to be formed and the peripheral region is irradiated.

図9(a)および図9(d)を参照に、第1樹脂膜31を現像することで紫外線(UV光)を照射していない領域の第1樹脂膜31を除去する。これにより、弾性波素子12の機能部分上の空洞部16となるべき箇所に開口部36が形成され、弾性波素子12の機能部分の周囲に第3封止部30が形成される。また、電極パッド24上には開口部42が形成される。窒素雰囲気中の200℃で1時間熱処理することで第3封止部30を硬化させる。図9(b)および図9(e)を参照に、開口部36および42を保持するように、保護フィルム40に塗られたフィルム状のネガ型感光性エポキシ樹脂である厚さ30μmの第2樹脂膜33をラミネータ等の押し付けロール38を用い、第3封止部30上に押し付け貼り付ける。これにより、弾性波素子12の機能部分上に蓋がされ、開口部36は空洞部16に開口部42は空洞部44になる。図9(c)および図9(f)を参照に、マスクを用い紫外線(UV光)を照射する。   With reference to FIGS. 9A and 9D, the first resin film 31 is developed to remove the first resin film 31 in the region not irradiated with ultraviolet rays (UV light). As a result, an opening 36 is formed at a location that should become the cavity 16 on the functional portion of the acoustic wave element 12, and a third sealing portion 30 is formed around the functional portion of the acoustic wave element 12. An opening 42 is formed on the electrode pad 24. The 3rd sealing part 30 is hardened by heat-processing at 200 degreeC in nitrogen atmosphere for 1 hour. Referring to FIGS. 9B and 9E, a second 30 μm-thick second photosensitive epoxy resin film that is applied to the protective film 40 so as to hold the openings 36 and 42. The resin film 33 is pressed and pasted onto the third sealing portion 30 using a pressing roll 38 such as a laminator. As a result, the functional portion of the acoustic wave element 12 is covered, and the opening 36 becomes the cavity 16 and the opening 42 becomes the cavity 44. Referring to FIG. 9C and FIG. 9F, ultraviolet rays (UV light) are irradiated using a mask.

図10(a)および図10(d)を参照に、保護フィルム40を剥がし、現像することにより紫外線(UV光)を照射していない領域の第2樹脂膜33を除去する。これにより、弾性波素子12の機能部分上に空洞部16を形成するように第3封止部30上に第4封止部32が形成される。また、電極パッド24上には開口部42が形成される。窒素雰囲気中の200℃で1時間熱処理することで第4封止部32を硬化させる。これにより、第3封止部30と第4封止部32とからなり、弾性波素子12上に空洞部16を有し、圧電基板10側の幅t2が圧電基板10に反対側の幅t3より広くなるような段差を有する第1封止部26が形成される。図10(b)および図10(e)を参照に、第1封止部26を覆うように、ネガ型感光性エポキシ樹脂である厚さ30μmの第3樹脂膜35を形成する。第3樹脂膜35は例えばフィルム状であり、真空ラミネートまたは真空プレス法を用い形成する。また、第3樹脂膜35は液状でスピンコート法により形成してもよい。図10(c)および図10(f)を参照に、マスクを用い電極パッド24上の領域および周辺領域、以外の領域に紫外線(UV光)を照射する。   With reference to FIG. 10A and FIG. 10D, the protective film 40 is peeled off and developed to remove the second resin film 33 in the region not irradiated with ultraviolet rays (UV light). As a result, the fourth sealing portion 32 is formed on the third sealing portion 30 so as to form the cavity portion 16 on the functional portion of the acoustic wave element 12. An opening 42 is formed on the electrode pad 24. The fourth sealing portion 32 is cured by heat treatment at 200 ° C. for 1 hour in a nitrogen atmosphere. As a result, the third sealing portion 30 and the fourth sealing portion 32 are provided, the cavity portion 16 is provided on the acoustic wave element 12, and the width t2 on the piezoelectric substrate 10 side is opposite to the width t3 on the piezoelectric substrate 10 side. A first sealing portion 26 having a step which becomes wider is formed. With reference to FIG. 10B and FIG. 10E, a third resin film 35 having a thickness of 30 μm, which is a negative photosensitive epoxy resin, is formed so as to cover the first sealing portion 26. The third resin film 35 is, for example, in the form of a film, and is formed using vacuum lamination or a vacuum press method. Further, the third resin film 35 may be formed in a liquid state by a spin coating method. Referring to FIG. 10C and FIG. 10F, the region other than the region on the electrode pad 24 and the peripheral region is irradiated with ultraviolet rays (UV light) using a mask.

図11(a)および図11(d)を参照に、現像することにより紫外線(UV光)を照射していない領域の第3樹脂膜35を除去する。これにより、第1封止部26上に第2封止部28が形成される。窒素雰囲気中の200℃で1時間熱処理することで第2封止部28を硬化させる。第2封止部28は電極パッド24上に開口部42を有している。また、周辺領域には第2封止部28は形成されていない。図11(b)および図11(e)を参照に、開口部42内にNi(ニッケル)、CuまたはAu(金)等を無電解メッキし導電性の貫通電極20を形成する。貫通電極20は銀ペースト等の導電性物質を印刷で開口部42内に充填する方法で形成してもよい。図11(c)および図11(f)を参照に、貫通電極20上に、貫通電極20に接続するハンダボール22をSnAgハンダボールの搭載もしくはSnAgハンダペーストをマスク印刷、リフローすることにより形成する。以上により、弾性波素子12と電気的に接続する貫通電極20およびハンダボール22が形成される。その後、周辺領域で圧電基板10をダイシングにより切断する。以上により、実施例1に係る弾性波デバイスが完成する。   Referring to FIGS. 11A and 11D, the third resin film 35 in the region not irradiated with ultraviolet rays (UV light) is removed by development. Thereby, the second sealing portion 28 is formed on the first sealing portion 26. The 2nd sealing part 28 is hardened by heat-processing at 200 degreeC in nitrogen atmosphere for 1 hour. The second sealing portion 28 has an opening 42 on the electrode pad 24. Further, the second sealing portion 28 is not formed in the peripheral region. Referring to FIGS. 11B and 11E, the conductive through electrode 20 is formed by electroless plating Ni (nickel), Cu, Au (gold), or the like in the opening 42. The through electrode 20 may be formed by a method of filling a conductive material such as silver paste into the opening 42 by printing. Referring to FIG. 11C and FIG. 11F, a solder ball 22 connected to the through electrode 20 is formed on the through electrode 20 by mounting a SnAg solder ball or by mask printing and reflowing SnAg solder paste. . Thus, the through electrode 20 and the solder ball 22 that are electrically connected to the acoustic wave element 12 are formed. Thereafter, the piezoelectric substrate 10 is cut by dicing in the peripheral region. Thus, the acoustic wave device according to Example 1 is completed.

実施例1によれば、図7(b)に示すように、第1封止部26は圧電基板10側の幅t2が圧電基板10に反対側の幅t3に比べて広くなるような段差を有している。これにより、圧電基板10のウエハの反りの影響によりウエハ周辺部で第4封止部32のパターンが第3封止部30のパターンに対してずれた場合でも、図5に示す比較例3のように、第4封止部32が庇となる領域Bは発生しない。このため、第1封止部26上に第2封止部28を形成した場合に、比較例3に比べてウエハ周辺部で第2封止部28と圧電基板10との接触面積が大きくなり、第2封止部28の密着力が向上し剥離を抑制することができる。したがって、実施例1では比較例3よりも歩留まりを向上させることができる。また、第1封止部26上に第2封止部28が設けられているため、実施例1に係る弾性波デバイスをモジュール化しても、モジュール化の際の圧力で弾性波素子12の機能部分上の第1封止部26および第2封止部28の天井部が凹むことを防ぐことができる。   According to the first embodiment, as shown in FIG. 7B, the first sealing portion 26 has a step that makes the width t <b> 2 on the piezoelectric substrate 10 side wider than the width t <b> 3 on the opposite side of the piezoelectric substrate 10. Have. Thus, even when the pattern of the fourth sealing portion 32 is shifted from the pattern of the third sealing portion 30 in the peripheral portion of the wafer due to the influence of the warpage of the wafer of the piezoelectric substrate 10, the comparative example 3 shown in FIG. Thus, the area | region B where the 4th sealing part 32 becomes a wrinkle does not generate | occur | produce. For this reason, when the second sealing portion 28 is formed on the first sealing portion 26, the contact area between the second sealing portion 28 and the piezoelectric substrate 10 becomes larger at the wafer peripheral portion than in the comparative example 3. In addition, the adhesion of the second sealing portion 28 is improved and peeling can be suppressed. Therefore, the yield in Example 1 can be improved as compared with Comparative Example 3. In addition, since the second sealing portion 28 is provided on the first sealing portion 26, the function of the acoustic wave element 12 can be controlled by the pressure at the time of modularization even if the elastic wave device according to the first embodiment is modularized. It can prevent that the ceiling part of the 1st sealing part 26 and the 2nd sealing part 28 on a part dents.

また、図7(b)に示すように、第1封止部26は、弾性波素子12の機能部分を囲うように圧電基板10上に設けられた第3封止部30と、弾性波素子12の機能部分上に空洞部16を形成するように第3封止部30上に設けられた第4封止部32と、を有している。また、第3封止部30の幅は第4封止部32の幅より広く、このため、第3封止部30と第4封止部32とは段差を有している。これにより、圧電基板10側の幅t2が圧電基板10の反対側の幅t3に比べて広くなるような段差を有する第1封止部26を容易に形成することができる。   Further, as shown in FIG. 7B, the first sealing portion 26 includes a third sealing portion 30 provided on the piezoelectric substrate 10 so as to surround the functional portion of the acoustic wave element 12, and an acoustic wave element. And a fourth sealing portion 32 provided on the third sealing portion 30 so as to form the cavity portion 16 on the 12 functional portions. In addition, the width of the third sealing portion 30 is wider than the width of the fourth sealing portion 32, and thus the third sealing portion 30 and the fourth sealing portion 32 have a step. Accordingly, the first sealing portion 26 having a step so that the width t2 on the piezoelectric substrate 10 side is wider than the width t3 on the opposite side of the piezoelectric substrate 10 can be easily formed.

さらに、図7(b)に示すように、第3封止部30と第4封止部32との接触面の幅t4は40μm以上である。この場合は、ウエハの反りの影響により第4封止部32のパターンが第3封止部30のパターンに対してずれた場合でも、第3封止部30と第4封止部32との接触面の幅t4を十分確保することができる。このため、第4封止部32の形成工程の現像において、第3封止部30と第4封止部32との界面から現像液が空洞部16内に進入することを防止できる。また、第4封止部32に接していない第3封止部30の幅t5は30μm以下である。弾性波デバイスの小型化という点から第4封止部32に接していない第3封止部30の幅t5は30μm以下である場合が好ましい。   Further, as shown in FIG. 7B, the width t4 of the contact surface between the third sealing portion 30 and the fourth sealing portion 32 is 40 μm or more. In this case, even when the pattern of the fourth sealing portion 32 is shifted from the pattern of the third sealing portion 30 due to the influence of the warp of the wafer, the third sealing portion 30 and the fourth sealing portion 32 are not aligned. A sufficient width t4 of the contact surface can be ensured. For this reason, it is possible to prevent the developer from entering the hollow portion 16 from the interface between the third sealing portion 30 and the fourth sealing portion 32 in the development in the step of forming the fourth sealing portion 32. Further, the width t5 of the third sealing portion 30 not in contact with the fourth sealing portion 32 is 30 μm or less. From the viewpoint of downsizing the acoustic wave device, it is preferable that the width t5 of the third sealing portion 30 not in contact with the fourth sealing portion 32 is 30 μm or less.

さらに、図7(a)および図7(c)に示すように、第3封止部30と第4封止部32とからなる第1封止部26は、弾性波素子12の機能部分上に空洞部16を形成すべき領域以外の領域、例えば貫通電極20の周辺の領域にも形成されている場合を例に示した。しかしながら、第1封止部26は貫通電極20の周辺の領域等に形成されていなくてもよい。これにより、第1封止部26のウエハに占める面積が小さくなるため、第1封止部26の熱処理により生じる第1封止部26の圧縮力を抑えることができ、ウエハの反り量を緩和することができる。同様の理由から、貫通電極20の周辺の領域に第3封止部30のみ形成され、第4封止部32が形成されていない場合でもよい。   Further, as shown in FIGS. 7A and 7C, the first sealing portion 26 composed of the third sealing portion 30 and the fourth sealing portion 32 is provided on the functional portion of the acoustic wave element 12. In the example, the cavity portion 16 is also formed in a region other than the region where the cavity portion 16 is to be formed, for example, a region around the through electrode 20. However, the first sealing portion 26 may not be formed in a region around the through electrode 20. As a result, the area occupied by the first sealing portion 26 on the wafer is reduced, so that the compressive force of the first sealing portion 26 generated by the heat treatment of the first sealing portion 26 can be suppressed, and the amount of warpage of the wafer is reduced. can do. For the same reason, there may be a case where only the third sealing portion 30 is formed in the region around the through electrode 20 and the fourth sealing portion 32 is not formed.

さらに、図7(b)に示すように、第1封止部26に設けられた段差の形状が階段形状をしている場合、つまり、第3封止部30の側面と表面および第4封止部32の側面と表面はそれぞれ平面からなる場合を例に示した。しかしながら、図12に示すような、第3封止部30の側面と表面との角および第4封止部の側面と表面との角の少なくとも一方の角が丸くなったラウンド形状をしている場合でもよい。この場合でも、歩留まりが向上し、モジュール化の際の圧力で弾性波素子12の機能部分上の第1封止部26および第2封止部28の天井部が凹まない弾性波デバイスを得ることができる。   Further, as shown in FIG. 7B, when the step provided in the first sealing portion 26 has a stepped shape, that is, the side surface and the surface of the third sealing portion 30 and the fourth seal. The case where the side surface and the surface of the stop portion 32 are each formed as a flat surface is shown as an example. However, as shown in FIG. 12, it has a round shape in which at least one of the corner between the side surface and the surface of the third sealing portion 30 and the corner of the fourth sealing portion is rounded. It may be the case. Even in this case, the yield is improved, and an acoustic wave device is obtained in which the ceiling of the first sealing portion 26 and the second sealing portion 28 on the functional portion of the acoustic wave element 12 is not recessed by the pressure at the time of modularization. Can do.

さらに、図7(b)に示すように、第3封止部30の表面と第4封止部32の側面との第4封止部32側のなす角度θ2は直角である場合を例に示したが、鋭角や鈍角の場合でもよい。しかしながら、鈍角の角度が大きくなりすぎると、庇となる領域が発生し、第2封止部28の形成工程で第2封止部28が形成されない領域が発生してしまう。このため、第2封止部28の密着力が低下し、剥離が発生しやすくなってしまう。よって、第3封止部30の表面と第4封止部32の側面との第4封止部32側のなす角度θ2は直角、鋭角またはわずかな鈍角であることが好ましい。   Furthermore, as shown in FIG. 7B, an example in which the angle θ2 formed on the fourth sealing portion 32 side between the surface of the third sealing portion 30 and the side surface of the fourth sealing portion 32 is a right angle is taken as an example. Although shown, it may be an acute angle or an obtuse angle. However, if the obtuse angle is excessively large, a region that becomes a wrinkle is generated, and a region in which the second sealing portion 28 is not formed in the formation process of the second sealing portion 28 is generated. For this reason, the adhesive force of the 2nd sealing part 28 falls, and it will become easy to generate | occur | produce peeling. Therefore, it is preferable that the angle θ2 formed between the surface of the third sealing portion 30 and the side surface of the fourth sealing portion 32 on the fourth sealing portion 32 side is a right angle, an acute angle, or a slight obtuse angle.

さらに、図7(b)に示すように、圧電基板10の表面と第3封止部30との第3封止部30側のなす角度θ1は直角である場合を示したが、これに限らず、鋭角である場合でもよい。この場合でも、第1封止部26により庇となる領域が発生しないため、第2封止部28と圧電基板10との接触面積を大きくすることができる。よって、第2封止部28の密着性を向上させることができ、歩留まりを向上させることができる。   Furthermore, as shown in FIG. 7B, the case where the angle θ1 formed between the surface of the piezoelectric substrate 10 and the third sealing portion 30 on the third sealing portion 30 side is a right angle is shown, but the present invention is not limited thereto. Alternatively, it may be an acute angle. Even in this case, since the area | region used as a wrinkle does not generate | occur | produce with the 1st sealing part 26, the contact area of the 2nd sealing part 28 and the piezoelectric substrate 10 can be enlarged. Therefore, the adhesion of the second sealing portion 28 can be improved, and the yield can be improved.

さらに、図7(b)に示すように、第3封止部30は第4封止部32との接触面が平面状である場合を例に示したが、図13に示すような、凸凹を有している場合でもよい。凸凹を有している場合は、第3封止部30と第4封止部32との接触面積が大きくなるため、第3封止部30と第4封止部32との密着力を向上させることができる。なお、凸凹の形状は、所望の凸凹のパターンを有するマスクを用いて、第3封止部30を露光現像することで形成することができる。   Furthermore, as shown in FIG. 7B, the third sealing portion 30 has been illustrated by taking an example in which the contact surface with the fourth sealing portion 32 is planar, but as shown in FIG. You may have. In the case of having irregularities, the contact area between the third sealing portion 30 and the fourth sealing portion 32 is increased, so that the adhesion between the third sealing portion 30 and the fourth sealing portion 32 is improved. Can be made. The uneven shape can be formed by exposing and developing the third sealing portion 30 using a mask having a desired uneven pattern.

さらに、図7(b)に示すように、第1封止部26は第3封止部30と第4封止部32とにより段差が1段設けられている場合を示したが、これに限らず、複数の段差が設けられている場合でもよい。この場合でも、第2封止部28の剥離を防止することができるため、歩留まりを向上させることができる。   Further, as shown in FIG. 7B, the first sealing portion 26 has been shown in the case where one step is provided by the third sealing portion 30 and the fourth sealing portion 32. Not limited to this, a plurality of steps may be provided. Even in this case, since the peeling of the second sealing portion 28 can be prevented, the yield can be improved.

実施例1において第1封止部26および第2封止部28は感光性エポキシ樹脂である場合を例に示したが、これに限らず、弾性波素子12の機能部分を保護できればその他の材料でもよい。しかしながら、段差を有する第1封止部26や第1封止部26上に形成する第2封止部28を容易に形成することができるため、感光性ポリイミド樹脂等、感光性樹脂である場合が好ましい。   In the first embodiment, the case where the first sealing portion 26 and the second sealing portion 28 are photosensitive epoxy resins is shown as an example. However, the present invention is not limited to this, and other materials can be used as long as the functional portion of the acoustic wave element 12 can be protected. But you can. However, since the first sealing portion 26 having a step and the second sealing portion 28 formed on the first sealing portion 26 can be easily formed, the photosensitive resin such as a photosensitive polyimide resin is used. Is preferred.

また、実施例1において、弾性波素子12は圧電基板10上に形成された弾性表面波(SAW)素子の場合を例に示したが、例えばシリコン基板等の基板上に形成した圧電膜に形成されたSAW素子の場合でもよい。また、圧電薄膜共振器(FBAR)素子を用いることもできる。FBAR素子を用いる場合、基板は圧電基板ではなく、例えばシリコン基板、ガラス基板、サファイア基板等を用い、FBARは基板上の圧電膜を用い形成される。   In the first embodiment, the acoustic wave element 12 is a surface acoustic wave (SAW) element formed on the piezoelectric substrate 10, but is formed on a piezoelectric film formed on a substrate such as a silicon substrate. It may be the case of the SAW element made. A piezoelectric thin film resonator (FBAR) element can also be used. When the FBAR element is used, the substrate is not a piezoelectric substrate, but a silicon substrate, a glass substrate, a sapphire substrate, or the like is used, and the FBAR is formed using a piezoelectric film on the substrate.

さらに、実施例1において図7(a)に示すように、弾性波素子12および空洞部16はそれぞれ2つづつ形成されている場合を示したが、これらの数に限られるものではない。また、実施例1において、端子部として貫通電極20およびハンダボール22の場合を例に説明したが、表面実装のために外部と電気的に接続するためのものであれば良く、例えばAu、Cu等の金属を用いたバンプであっても良い。   Furthermore, in the first embodiment, as shown in FIG. 7A, the case where two acoustic wave elements 12 and two cavities 16 are formed is shown, but the number is not limited thereto. Further, in the first embodiment, the case where the through electrode 20 and the solder ball 22 are used as the terminal portions has been described as an example. However, any terminal may be used as long as it is electrically connected to the outside for surface mounting, for example, Au, Cu It may be a bump using a metal such as.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 圧電基板
12 弾性波素子
14 配線
16、16a 空洞部
20 貫通電極
22 ハンダボール
24 電極パッド
26 第1封止部
28 第2封止部
30 第3封止部
31 第1樹脂膜
32 第4封止部
33 第2樹脂膜
35 第3樹脂膜
36 開口部
38 押し付けロール
40 保護フィルム
42 開口部
DESCRIPTION OF SYMBOLS 10 Piezoelectric substrate 12 Elastic wave element 14 Wiring 16, 16a Cavity part 20 Through electrode 22 Solder ball 24 Electrode pad 26 1st sealing part 28 2nd sealing part 30 3rd sealing part 31 1st resin film 32 4th sealing Stop portion 33 Second resin film 35 Third resin film 36 Opening portion 38 Pressing roll 40 Protective film 42 Opening portion

Claims (8)

基板上に設けられた弾性波素子と、
前記弾性波素子上に空洞部を有するように前記基板上に設けられた感光性樹脂からなる第1封止部と、
前記第1封止部上に設けられた感光性樹脂からなる第2封止部と、
前記第2封止部上に設けられた外部接続部と、
前記第1封止部及び前記第2封止部を貫通して、前記第1封止部及び前記第2封止部に直接接し、前記弾性波素子と前記外部接続部とを電気的に接続させる柱状電極と、を具備し、
前記第1封止部は、前記基板側の幅が前記基板に反対側の幅よりも広くなるような段差を有するように、前記弾性波素子の機能部分を囲うように前記基板上に設けられた第3封止部と、前記機能部分上に空洞部を形成するように前記第3封止部上に設けられた第4封止部と、を有し、前記第3封止部の幅が前記第4封止部の幅よりも広く、
前記第2封止部は、前記第1封止部の前記段差の部分を含んで前記第1封止部に直接接していることを特徴とする弾性波デバイス。
An acoustic wave device provided on a substrate;
A first sealing portion made of a photosensitive resin provided on the substrate so as to have a cavity on the acoustic wave element;
A second sealing portion made of a photosensitive resin provided on the first sealing portion;
An external connection portion provided on the second sealing portion;
Passing through the first sealing portion and the second sealing portion, directly contacting the first sealing portion and the second sealing portion, and electrically connecting the acoustic wave element and the external connection portion A columnar electrode,
The first sealing portion is provided on the substrate so as to surround the functional portion of the acoustic wave device so that the substrate side has a step so that the width on the substrate side is wider than the width on the opposite side of the substrate. A third sealing portion, and a fourth sealing portion provided on the third sealing portion so as to form a cavity on the functional portion, and the width of the third sealing portion Is wider than the width of the fourth sealing portion,
The elastic wave device, wherein the second sealing portion is in direct contact with the first sealing portion including the step portion of the first sealing portion.
前記段差の形状は階段形状またはラウンド形状であることを特徴とする請求項1記載の弾性波デバイス。   2. The acoustic wave device according to claim 1, wherein a shape of the step is a step shape or a round shape. 前記第3封止部の表面と前記第4封止部の側面との前記第4封止部側のなす角度は鋭角であることを特徴とする請求項1または2記載の弾性波デバイス。   3. The acoustic wave device according to claim 1, wherein an angle formed between the surface of the third sealing portion and the side surface of the fourth sealing portion on the side of the fourth sealing portion is an acute angle. 前記第3封止部の表面と前記第4封止部の側面との前記第4封止部側のなす角度は鈍角であることを特徴とする請求項1または2記載の弾性波デバイス。   3. The acoustic wave device according to claim 1, wherein an angle formed between the surface of the third sealing portion and the side surface of the fourth sealing portion on the side of the fourth sealing portion is an obtuse angle. 前記基板の表面と前記第3封止部の側面との前記第3封止部側のなす角度は鋭角であることを特徴とする請求項1から4のいずれか一項記載の弾性波デバイス。   5. The acoustic wave device according to claim 1, wherein an angle formed on a side of the third sealing portion between a surface of the substrate and a side surface of the third sealing portion is an acute angle. 前記第3封止部は前記第4封止部との接触面が平面状であることを特徴とする請求項1から5のいずれか一項記載の弾性波デバイス。   6. The acoustic wave device according to claim 1, wherein a contact surface of the third sealing portion with the fourth sealing portion is planar. 前記第3封止部は前記第4封止部との接触面に凸凹を有することを特徴とする請求項1から5のいずれか一項記載の弾性波デバイス。   6. The acoustic wave device according to claim 1, wherein the third sealing portion has an uneven surface on a contact surface with the fourth sealing portion. 前記第2封止部の端面は、前記基板上で且つ前記基板の端面よりも内側に位置していることを特徴とする請求項1から7のいずれか一項記載の弾性波デバイス。   8. The acoustic wave device according to claim 1, wherein an end face of the second sealing portion is located on the substrate and inside the end face of the substrate. 9.
JP2012191871A 2012-08-31 2012-08-31 Elastic wave device Expired - Fee Related JP5521016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191871A JP5521016B2 (en) 2012-08-31 2012-08-31 Elastic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191871A JP5521016B2 (en) 2012-08-31 2012-08-31 Elastic wave device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007012100A Division JP5113394B2 (en) 2007-01-23 2007-01-23 Elastic wave device

Publications (2)

Publication Number Publication Date
JP2012239236A true JP2012239236A (en) 2012-12-06
JP5521016B2 JP5521016B2 (en) 2014-06-11

Family

ID=47461658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191871A Expired - Fee Related JP5521016B2 (en) 2012-08-31 2012-08-31 Elastic wave device

Country Status (1)

Country Link
JP (1) JP5521016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697262A (en) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 Hydrophone and method for manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162693A (en) * 1995-12-14 1997-06-20 Kokusai Electric Co Ltd Surface acoustic wave element
JPH10270975A (en) * 1996-03-08 1998-10-09 Matsushita Electric Ind Co Ltd Electronic part and its manufacture
JP2002026675A (en) * 2000-07-04 2002-01-25 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and its manufacturing method
JP2002283507A (en) * 2001-03-27 2002-10-03 Matsushita Electric Works Ltd Thin-walled molded product, substrate for memory card, and method and apparatus for manufacturing thin- walled molded product
JP2004111565A (en) * 2002-09-17 2004-04-08 Denso Corp Multilayer printed board
JP2006128930A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave device, method of manufacturing same, and communication device equipped therewith
WO2006134928A1 (en) * 2005-06-16 2006-12-21 Murata Manufacturing Co., Ltd. Piezoelectric device and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162693A (en) * 1995-12-14 1997-06-20 Kokusai Electric Co Ltd Surface acoustic wave element
JPH10270975A (en) * 1996-03-08 1998-10-09 Matsushita Electric Ind Co Ltd Electronic part and its manufacture
JP2002026675A (en) * 2000-07-04 2002-01-25 Hitachi Media Electoronics Co Ltd Surface acoustic wave device and its manufacturing method
JP2002283507A (en) * 2001-03-27 2002-10-03 Matsushita Electric Works Ltd Thin-walled molded product, substrate for memory card, and method and apparatus for manufacturing thin- walled molded product
JP2004111565A (en) * 2002-09-17 2004-04-08 Denso Corp Multilayer printed board
JP2006128930A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave device, method of manufacturing same, and communication device equipped therewith
WO2006134928A1 (en) * 2005-06-16 2006-12-21 Murata Manufacturing Co., Ltd. Piezoelectric device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112697262A (en) * 2020-12-08 2021-04-23 联合微电子中心有限责任公司 Hydrophone and method for manufacturing same

Also Published As

Publication number Publication date
JP5521016B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5113394B2 (en) Elastic wave device
JP5117083B2 (en) Elastic wave device and manufacturing method thereof
JP4509038B2 (en) Elastic wave device and manufacturing method thereof
JP5654303B2 (en) Electronic component and method for manufacturing the same, and electronic device including the electronic component
KR100866433B1 (en) Elastic wave device and manufacturing method of the same
WO2015098793A1 (en) Electronic component module
JP6106404B2 (en) Electronic component module
US8692440B2 (en) Piezoelectric device and manufacturing method therefor
JP2012182604A (en) Elastic wave filter component
JP2004254287A (en) Surface acoustic wave device and its manufacturing method
JP5340756B2 (en) Electronic component and manufacturing method thereof
KR20080048432A (en) Acoustic wave device
KR100891418B1 (en) Acoustic wave device and method of manufacturing the same
JP2013251323A (en) Electronic component
JP5873311B2 (en) Elastic wave device and multilayer substrate
US20200083191A1 (en) Electronic component module
JP5521016B2 (en) Elastic wave device
JP2016208367A (en) Module and manufacturing method of module
JP2000236230A (en) Surface acoustic wave filter
JP5716875B2 (en) Electronic components and electronic modules
JP2015012428A (en) Acoustic wave device, electronic component module, and mobile terminal
JP2012186633A (en) Electronic component and manufacturing method thereof
JP2002324864A (en) Electronic device
JPWO2019039336A1 (en) Electronic component module and method of manufacturing electronic component module
JP2000315933A (en) Multi-stage coupling type surface acoustic wave filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5521016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees