JP2012237048A - Hot stamping steel plate excellent in hot composite molding property and delayed fracture resistance in punched part thereof, method for manufacturing the same and method for smelting the same - Google Patents

Hot stamping steel plate excellent in hot composite molding property and delayed fracture resistance in punched part thereof, method for manufacturing the same and method for smelting the same Download PDF

Info

Publication number
JP2012237048A
JP2012237048A JP2011108364A JP2011108364A JP2012237048A JP 2012237048 A JP2012237048 A JP 2012237048A JP 2011108364 A JP2011108364 A JP 2011108364A JP 2011108364 A JP2011108364 A JP 2011108364A JP 2012237048 A JP2012237048 A JP 2012237048A
Authority
JP
Japan
Prior art keywords
hot
hot stamping
steel sheet
delayed fracture
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011108364A
Other languages
Japanese (ja)
Other versions
JP5652321B2 (en
Inventor
Kaoru Kawasaki
薫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011108364A priority Critical patent/JP5652321B2/en
Publication of JP2012237048A publication Critical patent/JP2012237048A/en
Application granted granted Critical
Publication of JP5652321B2 publication Critical patent/JP5652321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture a part, especially an automobile part that has a strength of 1,470 MPa or more and also is excellent in delayed fracture resistance and toughness of the processed part thereof, by a hot stamp technology.SOLUTION: A hot stamping steel plate contains, by mass, 0.001-0.005% S, 0.005-0.03% REM (or 0.005-0.03% Mg), and 0.003-0.007% O, wherein a spherical inclusion containing two or more of S, O and REM and having a diameter of 0.1 μm or less is dispersed, thereby excellent in hot composite molding property and delayed fracture resistance in the punched part thereof.

Description

本発明は、熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れ、複雑な形状の部品に加工し得るホットスタンプ用鋼板とその製造方法及び溶製方法に関するものである。   The present invention relates to a hot stamping steel plate that is excellent in hot composite formability and delayed fracture resistance of a punched portion and can be processed into a component having a complicated shape, and a manufacturing method and a melting method thereof.

近年、地球環境保護の視点から自動車車体を軽量化することは喫緊の課題であり、それに対して、高強度鋼板を適用する検討が積極的に行われていることから、鋼材に要求される強度は益々高くなっている。しかし、鋼板強度が高くなるのに伴い、加工性が劣化するとともに、形状凍結性への配慮が必要となる。一方、通常使用するプレス加工においては、成形荷重が益々高まり、プレス能力の向上も実用化に向けての大きな課題である。   In recent years, it has been an urgent task to reduce the weight of automobile bodies from the viewpoint of protecting the global environment. On the other hand, since the study of applying high-strength steel sheets has been actively conducted, the strength required of steel materials Is getting higher and higher. However, as steel plate strength increases, workability deteriorates and consideration for shape freezeability is required. On the other hand, in the press work that is normally used, the molding load increases more and more, and the improvement of the press capability is also a big issue for practical use.

一方、ホットスタンプ技術は、鋼板をオーステナイト域の高温まで加熱した後にプレス成形を実施するものである。そのため、室温で実施する通常のプレス加工に比べ、成形荷重が大幅に低減される。   On the other hand, the hot stamping technique is to perform press forming after heating a steel plate to a high temperature in the austenite region. For this reason, the molding load is greatly reduced as compared with the normal pressing performed at room temperature.

また、ホットスタンプ技術は、プレス加工と同時に、金型内で、いわゆる焼入れ処理を行うことになるので、鋼のC量に応じた強度を得ることができる。それ故、ホットスタンプ技術は、形状凍結性と強度を両立させる技術として注目されている。   Moreover, since the hot stamping technique performs a so-called quenching process in the mold simultaneously with the press working, it is possible to obtain a strength corresponding to the C amount of steel. Therefore, hot stamping technology is attracting attention as a technology that achieves both shape freezing properties and strength.

特許文献1には、ホットスタンプ技術を活用した鋼板として、Mgを含む酸化物の平均粒径と分布密度を規定し、ホットスタンプ後の強度、切断性、及び、打抜き性に加え、遅れ破壊特性とスポット溶接性を改善した鋼板が開示されている。しかし、特許文献1の鋼板は、ホットスタンプ時の成形性と、それと同時に行う打抜きを可能とする打抜き性の改善を目的とするものではない。   Patent Document 1 defines the average particle size and distribution density of oxides containing Mg as a steel plate utilizing hot stamping technology, and includes delayed fracture characteristics in addition to strength, cutability and punchability after hot stamping. And steel plates with improved spot weldability are disclosed. However, the steel sheet of Patent Document 1 is not intended to improve the formability at the time of hot stamping and the punchability that enables punching performed at the same time.

また、特許文献2には、熱間成形用鋼板及びその製造方法に関する技術が開示されている。上記技術は、熱間成形を施す前の鋼板に対し、所定の熱処理を施した後、再度加熱して、熱間でプレス成形を実施するものであり、ホットスタンプ時の伸びフランジ成形における成形性や、熱間で打ち抜いた部位における遅れ破壊特性は考慮されていない。   Patent Document 2 discloses a technique related to a hot forming steel sheet and a method for manufacturing the same. In the above technology, the steel sheet before hot forming is subjected to a predetermined heat treatment and then heated again to perform hot press forming. Formability in stretch flange forming during hot stamping In addition, delayed fracture characteristics in the hot punched part are not taken into consideration.

特開2006−009116号公報JP 2006-009116 A 特開2006−283064号公報JP 2006-283064 A

自動車用部品、特に、フレーム、メンバー、及び、リンフォースといった部品は、その役割から、衝突時にエネルギを効率良く吸収する部品と、耐力を確保し、変形せずに、衝突時のエネルギを伝達する部品に分類される。   Parts for automobiles, especially parts such as frames, members, and reinforcements, due to their roles, parts that efficiently absorb energy at the time of collision, and ensure strength, transmit energy at the time of collision without deformation Classified into parts.

特に、リンフォースに対しては要求強度が益々高くなり、冷間でのプレス成形では、プレス機の能力が不足することや、鋼板の形状凍結性が悪化するという理由から、1470MPaの強度を必要とする部品には、ホットスタンプ材を適用した部品が増えている。   In particular, the required strength for reinforcement is increasing, and cold press forming requires a strength of 1470 MPa because the press machine capacity is insufficient and the shape freezeability of the steel sheet deteriorates. The number of parts to which hot stamp materials are applied is increasing.

また、自動車車体のさらなる軽量化を実現するには、強度が1770MPa以上の部材が必要となる。したがって、ホットスタンプ技術を適用する部品の拡大を図るためには、熱間でのプレス成形性の向上と同時に、部品に成形した後の成形部の遅れ破壊特性に配慮する必要がある。   Moreover, in order to realize further weight reduction of the automobile body, a member having a strength of 1770 MPa or more is required. Therefore, in order to expand the number of parts to which the hot stamp technology is applied, it is necessary to consider the delayed fracture characteristics of the molded part after being molded into the part as well as improving the hot press formability.

本発明者らは、従来技術における上記実情に鑑み、1470MPa以上の強度を有するとともに、加工部の耐遅れ破壊特性と靭性に優れた部品を、ホットスタンプ技術で製造することを目的とする。   In view of the above situation in the prior art, the present inventors have an object of manufacturing a part having a strength of 1470 MPa or more and excellent in delayed fracture resistance and toughness of a processed part by a hot stamping technique.

本発明者らは、上記目的を達成する手法について鋭意検討した。その結果、S、O、及び、REMの2種以上を含む複合硫酸化物を、球状介在物として鋼板中に分散させると、加工部において、良好な靭性と耐遅れ破壊特性を確保できることが判明した。   The present inventors diligently studied a method for achieving the above object. As a result, it was found that when composite sulfur oxides containing two or more of S, O, and REM are dispersed in the steel sheet as spherical inclusions, good toughness and delayed fracture resistance can be secured in the processed part. .

本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、S:0.001〜0.005%、REM:0.005〜0.03%、及び、O:0.003〜0.007%を含むホットスタンプ用鋼板において、S、O、及び、REMの2種以上を含む直径0.1μm以下の球状介在物が分散していることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   (1) In a steel sheet for hot stamping containing, in mass%, S: 0.001 to 0.005%, REM: 0.005 to 0.03%, and O: 0.003 to 0.007%, For hot stamping excellent in hot composite moldability and delayed fracture resistance of the punched portion, characterized in that spherical inclusions having a diameter of 0.1 μm or less, including two or more of, O, and REM are dispersed steel sheet.

(2)質量%で、S:0.001〜0.005%、Mg:0.005〜0.03%、及び、O:0.003〜0.007%を含むホットスタンプ用鋼板において、S、O、及び、Mgの2種以上を含む直径0.1μm以下の球状介在物が分散していることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   (2) In a steel sheet for hot stamping containing, in mass%, S: 0.001 to 0.005%, Mg: 0.005 to 0.03%, and O: 0.003 to 0.007%, For hot stamping excellent in hot composite moldability and delayed fracture resistance of the punched portion, characterized in that spherical inclusions having a diameter of 0.1 μm or less containing two or more of, O and Mg are dispersed steel sheet.

(3)前記ホットスタンプ用鋼板が、質量%で、C:0.20〜0.35%、Si:0.1〜0.5%、Mn+Cr:1〜3%、Ti:0.005〜0.1%、及び、Nb:0.005〜0.1%を含み、残部Fe及び不可避的不純物からなることを特徴とする前記(1)又は(2)に記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   (3) The steel sheet for hot stamping is mass%, C: 0.20 to 0.35%, Si: 0.1 to 0.5%, Mn + Cr: 1 to 3%, Ti: 0.005 to 0 .1% and Nb: 0.005 to 0.1%, the balance being Fe and inevitable impurities, the hot composite formability and punching according to (1) or (2) above Steel sheet for hot stamping with excellent delayed fracture resistance.

(4)前記ホットスタンプ用鋼板が、さらに、質量%で、B:0.0005〜0.002%、V:0.005〜0.1%、及び、Mo:0.05〜0.5%の1種又は2種以上を含むことを特徴とする前記(3)に記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   (4) The steel sheet for hot stamping is further mass%, B: 0.0005 to 0.002%, V: 0.005 to 0.1%, and Mo: 0.05 to 0.5%. The steel sheet for hot stamping which is excellent in hot composite formability and delayed fracture resistance of the punched portion according to (3) above, comprising one or more of the above.

(5)前記球状介在物が複合硫酸化物であることを特徴とする前記(1)〜(4)のいずれかに記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   (5) The hot stamping excellent in hot composite formability and delayed fracture resistance of the punched portion according to any one of (1) to (4), wherein the spherical inclusion is a composite sulfate Steel plate.

(6)前記(3)又は(4)に記載の成分組成のスラブを1250℃以下の温度域に加熱して熱間圧延に供し、Ar3点以上の温度域で、最終スタンド及び1つ前のスタンドでの総圧下量を60%以上として仕上圧延を終了し、仕上圧延終了後、1秒以内に冷却を開始し、600℃以下の温度で巻き取ることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板の製造方法。   (6) The slab having the composition described in the above (3) or (4) is heated to a temperature range of 1250 ° C. or less and subjected to hot rolling, and in the temperature range of Ar3 or higher, the last stand and the previous stand Finishing the finish rolling with the total reduction amount at the stand being 60% or more, starting the cooling within 1 second after finishing the finish rolling, and winding up at a temperature of 600 ° C. or less, A method for manufacturing a steel sheet for hot stamping with excellent delayed fracture resistance at the punched portion.

(7)前記(3)又は(4)に記載の成分組成の溶鋼をAlで予備脱酸して、溶鋼中のフリー酸素を10〜50ppmまで低減し、次いで、Si又はTiとREM又はMgで複合脱酸することを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板の溶製方法。   (7) The molten steel having the composition described in (3) or (4) is pre-deoxidized with Al to reduce free oxygen in the molten steel to 10 to 50 ppm, and then with Si or Ti and REM or Mg A method for producing a steel sheet for hot stamping, which is excellent in hot composite formability and delayed fracture resistance of a punched portion, characterized by performing composite deoxidation.

本発明によれば、ホットスタンプ時の複合成形性と打抜き性に優れ、かつ、ホットスタンプ後において、1470MPa以上の強度を有するとともに、加工部の耐遅れ破壊特性と靭性に優れたホットスタンプ用鋼板を提供することができる。   According to the present invention, a steel sheet for hot stamping that is excellent in composite formability and punchability at the time of hot stamping, has strength of 1470 MPa or more after hot stamping, and has excellent delayed fracture resistance and toughness of a processed part. Can be provided.

熱間での伸びフランジ成形性の評価を説明する図である。(a)は、評価試験に使用する金型の構成を示し、(b)は、評価試験に使用するブランクの形状を示す。It is a figure explaining evaluation of stretch flange formability in hot. (A) shows the structure of the metal mold | die used for an evaluation test, (b) shows the shape of the blank used for an evaluation test. REM又はMgの添加量(質量%)とフランジ高さH(mm)の関係における割れの有無を示す図である。It is a figure which shows the presence or absence of the crack in the relationship between the addition amount (mass%) of REM or Mg, and the flange height H (mm). 熱間打抜き試験装置の断面態様を示す図である。It is a figure which shows the cross-sectional aspect of a hot punching test apparatus.

まず、本発明を完成させるに至った実験について説明する。   First, the experiment that led to the completion of the present invention will be described.

本発明者らは、質量%で、0.28%C−0.5%Si−1%Mn−0.5%Cr−0.003%S−0.05%Ti−0.05%Nb−0.0041%Oの鋼をベースとし、REM又はMgの添加量を変化させて添加した板厚1.6mmの冷延・焼鈍板から採取したブランク(被成形材)を900℃に加熱し、その後、図1(a)に示す金型でプレス成形し、成形後、直ちに、50℃/秒で室温まで冷却した。   The present inventors, in mass%, 0.28% C-0.5% Si-1% Mn-0.5% Cr-0.003% S-0.05% Ti-0.05% Nb- Based on 0.0041% O steel, the blank (molded material) taken from a cold-rolled / annealed plate with a thickness of 1.6 mm added by changing the amount of REM or Mg was heated to 900 ° C. Thereafter, it was press-molded with a mold shown in FIG. 1A, and immediately after molding, it was cooled to room temperature at 50 ° C./second.

プレス成形は、図1(a)に示すように、パンチAとパッドCで、ブランクDを挟み、同時に、ダイスBを矢印の方向に移動してフランジを立てる成形を行った。図1(b)に、用いたブランクDの形状を示す。ブランク幅Wが140mm、コーナー部の曲率半径Rが10mm、コーナー部の開き角θが120°である。   As shown in FIG. 1A, press molding was performed such that a blank D was sandwiched between a punch A and a pad C, and at the same time, a die B was moved in the direction of an arrow to raise a flange. FIG. 1B shows the shape of the blank D used. The blank width W is 140 mm, the radius of curvature R of the corner portion is 10 mm, and the opening angle θ of the corner portion is 120 °.

伸びフランジ成形部xのフランジ高さHは、下記式で定義される。
フランジ高さH=ブランク中央部の全長Htotal−非成形部y(パンチとパッドに
挟まれるブランク平坦部)の中央の長さHflat
The flange height H of the stretch flange formed part x is defined by the following equation.
Flange height H = Total length H total of the blank central portion −Non -molded portion y (on punch and pad)
The length H flat of the center of the blank flat part)

冷却後の成形材については、伸びフランジ成形部xにおける割れの有無を調査するとともに、非成形部yの硬度をビッカース硬度(荷重:10kgf)で測定した。   About the molding material after cooling, while investigating the presence or absence of the crack in the stretch flange molding part x, the hardness of the non-molding part y was measured by Vickers hardness (load: 10 kgf).

図2に、REM又はMgの添加量(質量%)とフランジ高さH(mm)の関係における割れの有無を示す。図2から、割れのない伸びフランジ部の成形を実現するためには、REM又はMgを0.005質量%以上添加する必要があり、さらに、より高い成形性(フランジ高さH≧30mm)を確保するためには、0.01質量%以上添加する必要があることが解る。   In FIG. 2, the presence or absence of the crack in the relationship between the addition amount (mass%) of REM or Mg and the flange height H (mm) is shown. From FIG. 2, it is necessary to add REM or Mg in an amount of 0.005% by mass or more in order to realize the formation of a stretch-free flange portion without cracks, and a higher formability (flange height H ≧ 30 mm). It can be seen that it is necessary to add 0.01% by mass or more in order to ensure.

なお、いずれの成形材においても、非成形部yの硬度は、引張強度で1770MPa以上に相当するHv≧540であった。   In any of the molding materials, the hardness of the non-molded portion y was Hv ≧ 540 corresponding to a tensile strength of 1770 MPa or more.

さらに、上記冷延・焼鈍板から採取した150mm角の鋼板を900℃に加熱した後、図3に示す熱間打抜き試験装置で直径20mmの穴を打ち抜いた。   Further, a 150 mm square steel plate collected from the cold-rolled / annealed plate was heated to 900 ° C., and then a hole with a diameter of 20 mm was punched by a hot punching test apparatus shown in FIG.

図3に示す熱間打抜き試験装置においては、中央に20.3φのダイス2を備える基台9の上部に、20φのパンチ1を備えるパンチ保持台1aをバネ5で保持するストリッパー4が配置されている。ストリッパー4は、上面に、パンチ保持台1aとの間隔を確保するスペーサー3を備えている。   In the hot punching test apparatus shown in FIG. 3, a stripper 4 for holding a punch holding table 1 a having a 20φ punch 1 by a spring 5 is arranged on an upper part of a base 9 having a 20.3φ die 2 in the center. ing. The stripper 4 is provided with a spacer 3 on the upper surface to ensure a distance from the punch holder 1a.

パンチ保持台1aとストリッパー4が下降し、さらに、パンチ保持台1aが下降し、パンチ1とダイス2の協働で、基台9の上に、クッションピン7で保持され、位置決めピン6で位置決めされている鋼板8に直径20mmの穴を打ち抜くことができる。   The punch holding base 1a and the stripper 4 are lowered, and the punch holding base 1a is further lowered. The punch 1 and the die 2 cooperate to hold the punch 9 on the base 9 with the cushion pin 7 and to position with the positioning pin 6. A hole having a diameter of 20 mm can be punched into the steel plate 8 that has been formed.

パンチ1とダイス2は水冷構造となっているので、穴の打抜きと同時に、鋼板8を900℃から室温に冷却することができる。   Since the punch 1 and the die 2 have a water cooling structure, the steel plate 8 can be cooled from 900 ° C. to room temperature simultaneously with the punching of holes.

穴を打ち抜いた鋼板を、室温にて、0.3%チオシアン酸アンモニウムと3%NaClを含む水溶液に浸漬し、該鋼板に、電流密度0.1mA/cm2で48時間、電流を流した後、打抜き破面での割れ発生の有無を調査した。その結果、REM又はMgを本発明の範囲で添加した場合、打ち抜き破面に水素に起因する遅れ破壊が発生しないことが判明した。本発明者らは、こうした実験事実に基づいて本発明を完成させた。 The steel plate with punched holes was immersed in an aqueous solution containing 0.3% ammonium thiocyanate and 3% NaCl at room temperature, and a current was passed through the steel plate at a current density of 0.1 mA / cm 2 for 48 hours. The presence or absence of cracks on the punched fracture surface was investigated. As a result, it was found that when REM or Mg is added within the scope of the present invention, delayed fracture due to hydrogen does not occur on the punched fracture surface. The present inventors have completed the present invention based on these experimental facts.

以下、本発明の限定要件について説明する。まず、鋼の成分組成を限定する理由について説明する。なお、成分組成に係る%は、質量%を意味する。   Hereinafter, the limitation requirement of this invention is demonstrated. First, the reason for limiting the component composition of steel will be described. In addition,% concerning a component composition means the mass%.

Sは、REM又はMgと複合硫酸化物を形成するために添加する元素である。そのため0.001%以上添加するが、0.005%を超えると、複合硫酸化物が過剰に生成して、ホットスタンプでの熱間加工性の劣化、及び、打抜き部での遅れ破壊特性の劣化が懸念されるので、Sは0.001〜0.005%とする。好ましくは0.002〜0.004%である。   S is an element added to form a composite sulfate with REM or Mg. Therefore, 0.001% or more is added, but if it exceeds 0.005%, composite sulfate is excessively generated, hot workability deterioration in hot stamping, and delayed fracture characteristics deterioration in the punched part. Therefore, S is made 0.001 to 0.005%. Preferably it is 0.002 to 0.004%.

REMとMgは、S及びOと複合硫酸化物を形成させるために添加する元素である。そのため0.005%以上添加するが、0.03%を超えると、複合硫酸化物が過剰に生成して、ホットスタンプでの熱間加工性の劣化、及び、打抜き部での遅れ破壊特性の劣化が懸念されるので、REMとMgは、ともに、0.005〜0.03%とする。好ましくは、REM、Mgともに、0.008〜0.02%である。   REM and Mg are elements added to form a composite sulfate with S and O. Therefore, 0.005% or more is added, but if it exceeds 0.03%, composite sulfate is excessively generated, hot workability deterioration in hot stamping, and delayed fracture characteristics deterioration in the punched part. Therefore, both REM and Mg are made 0.005 to 0.03%. Preferably, both REM and Mg are 0.008 to 0.02%.

Oは、REM、Mg、Sと複合硫酸化物を形成するために積極的に添加する元素である。0.003%未満では、複合硫酸化物の生成量が少なく、ホットスタンプでの熱間加工性を十分に得られない。一方、0.007%を超えると、複合硫酸化物が過剰に生成して、熱間加工性が劣化するばかりでなく、打抜き部での遅れ破壊特性が劣化する。それ故、Oは、0.003〜0.007%とする。好ましくは0.004〜0.006%である。   O is an element that is positively added to form a composite sulfate with REM, Mg, and S. If it is less than 0.003%, the amount of composite sulfate produced is small, and hot workability with hot stamping cannot be sufficiently obtained. On the other hand, if it exceeds 0.007%, composite sulfate is excessively generated, and not only the hot workability is deteriorated, but also the delayed fracture characteristics at the punched portion are deteriorated. Therefore, O is 0.003 to 0.007%. Preferably it is 0.004 to 0.006%.

本発明においては、S、O、及び、REM又はMgで形成される複合硫酸化物の大きさを直径0.1μm以下として、鋼板中に球状介在物として分散させる。   In the present invention, the composite sulfur oxide formed of S, O, and REM or Mg has a diameter of 0.1 μm or less and is dispersed as spherical inclusions in the steel sheet.

球状介在物の大きさが直径0.1μmを超えると、熱間加工性が劣化するばかりでなく、生成する球状介在物の個数が減少する。球状介在物は、遅れ破壊の原因となる水素をトラップするサイトとして機能するので、球状介在物の個数の減少は、耐遅れ破壊特性の劣化を招くことになる。それ故、球状介在物の大きさは直径0.1μm以下とする。   When the size of the spherical inclusions exceeds 0.1 μm in diameter, not only the hot workability is deteriorated but also the number of spherical inclusions to be generated is reduced. Since the spherical inclusion functions as a site for trapping hydrogen that causes delayed fracture, a decrease in the number of spherical inclusions leads to deterioration of delayed fracture resistance. Therefore, the size of the spherical inclusion is set to 0.1 μm or less in diameter.

Cは、焼入れ後の強度を確保するのに必要な元素である。焼入れ後に1470MPa以上の強度を得るため、0.20%以上が必要であるが、0.35%を超えると、衝撃変形時に破断が生じ易くなるとともに、溶接性が劣化し、溶接部の強度が低下するので、Cは0.20〜0.35%とする。好ましくは0.23〜0.31%である。   C is an element necessary for ensuring the strength after quenching. In order to obtain a strength of 1470 MPa or more after quenching, 0.20% or more is necessary. However, if it exceeds 0.35%, breakage is likely to occur during impact deformation, weldability deteriorates, and the strength of the welded portion increases. Since it falls, C is made 0.20 to 0.35%. Preferably it is 0.23 to 0.31%.

Siは、固溶強化元素であると同時に、セメンタイトの析出を抑制する元素でもある。添加効果を得るため0.1%以上添加するが、0.5%を超えると、メッキ性が劣化するので、Siは0.1〜0.5%とする。好ましくは0.2〜0.4%である。   Si is an element that suppresses precipitation of cementite as well as a solid solution strengthening element. To obtain the effect of addition, 0.1% or more is added, but if it exceeds 0.5%, the plating property deteriorates, so Si is made 0.1 to 0.5%. Preferably it is 0.2 to 0.4%.

MnとCrは、焼入性の確保に必要な重要な元素である。ホットスタンプを実施する際の焼入性を確保するため、MnとCrの合計で1%以上必要であるが、3%を超えると、焼入性の向上が飽和するので、MnとCrの合計は1〜3%とする。好ましくは1.4〜2.6%である。   Mn and Cr are important elements necessary for ensuring hardenability. In order to ensure hardenability when performing hot stamping, the total of Mn and Cr is required to be 1% or more. However, if it exceeds 3%, the improvement of hardenability is saturated, so the total of Mn and Cr Is 1 to 3%. Preferably it is 1.4 to 2.6%.

MnとCrの下限は、特に限定しないが、焼入性確保のため、Mnは0.01%以上、Crは0.01%以上が好ましい。   Although the lower limit of Mn and Cr is not particularly limited, Mn is preferably 0.01% or more and Cr is preferably 0.01% or more for ensuring hardenability.

Ti及びNbは、微細な炭化物を生成し、ホットスタンプ後の旧オーステナイト粒径を微細化して、靭性を確保する元素である。ホットスタンプ後の旧オーステナイト粒径を、平均値で、好ましくは6μm以下とするために、それぞれ、0.005%以上添加するが、0.1%を超えると、添加効果が飽和するので、Ti及びNbとも、0.005〜0.1%とする。好ましくは、Tiは0.01〜0.06%、Nbは0.01〜0.06%である。   Ti and Nb are elements that generate fine carbides, refine the prior austenite grain size after hot stamping, and ensure toughness. In order to make the prior austenite particle size after hot stamping an average value, preferably 6 μm or less, 0.005% or more is added respectively. However, if it exceeds 0.1%, the effect of addition is saturated. And Nb is made 0.005 to 0.1%. Preferably, Ti is 0.01 to 0.06% and Nb is 0.01 to 0.06%.

Bは、焼入性を確保するのに有効な元素である。0.0005%未満では、添加効果が発現せず、0.002%を超えると、添加効果が飽和するので、Bは0.0005〜0.002%とする。好ましくは0.0007〜0.0015%である。   B is an element effective for ensuring hardenability. If it is less than 0.0005%, the effect of addition does not appear, and if it exceeds 0.002%, the effect of addition is saturated, so B is made 0.0005 to 0.002%. Preferably it is 0.0007 to 0.0015%.

Vは、組織を微細化し、靭性を確保するために添加する元素である。鋼板をAc3点以上に加熱した場合、微細なV炭化物が生成し、再結晶及び粒成長を抑制してオーステナイト粒を細粒にして、靭性を改善する。0.005%未満では、添加効果が得られず、0.1%を超えると、添加効果が飽和し、また、製造コストが上昇するので、Vは0.005〜0.1%とする。好ましくは0.01〜0.06%である。   V is an element added to refine the structure and ensure toughness. When the steel plate is heated to the Ac3 point or higher, fine V carbides are generated, which suppresses recrystallization and grain growth to make austenite grains fine and improve toughness. If it is less than 0.005%, the effect of addition cannot be obtained, and if it exceeds 0.1%, the effect of addition is saturated and the manufacturing cost increases, so V is set to 0.005 to 0.1%. Preferably it is 0.01 to 0.06%.

Moも、Ti、Nb及びVと同様に、鋼板をAc3点以上に加熱した場合、微細な炭化物を生成し、再結晶及び粒成長を抑制してオーステナイト粒を細粒にして、靭性を改善する。0.05%未満では、添加効果が得られず、0.5%を超えると、添加効果が飽和し、また、製造コストが上昇するので、Moは0.05〜0.5%とする。好ましくは0.08〜0.3%である。   Mo, like Ti, Nb, and V, when steel plate is heated to Ac3 point or higher, produces fine carbides, suppresses recrystallization and grain growth, refines austenite grains, and improves toughness. . If it is less than 0.05%, the effect of addition cannot be obtained, and if it exceeds 0.5%, the effect of addition is saturated and the manufacturing cost increases, so Mo is made 0.05 to 0.5%. Preferably it is 0.08 to 0.3%.

Pは、固溶強化元素で、比較的安価に鋼板の強度を高めることができるが、粒界に偏析し易く、強度が高い場合には、低温脆化を引き起こす元素である。本発明において、P量は限定しないが、0.015%以下が好ましい。Pは少ないほど好ましいが、0.001%より低減することは、脱Pコストの上昇を招くので、0.001%以上が好ましい。   P is a solid solution strengthening element and can increase the strength of the steel sheet relatively inexpensively, but is easily segregated at the grain boundary and causes low temperature embrittlement when the strength is high. In the present invention, the amount of P is not limited, but is preferably 0.015% or less. The smaller the amount of P, the better. However, a reduction from 0.001% leads to an increase in de-P cost, so 0.001% or more is preferable.

Alは、通常、脱酸のために添加する元素である。本発明において、Al量は限定しないが、0.005%未満では、脱酸が不十分となり、鋼中に酸化物が多量に残存して、局部変形能が劣化するので、0.005%以上が好ましい。一方、0.05%を超えると、鋼中にアルミナを主体とする酸化物が多量に残存し、局部変形能が劣化するので、0.05%以下が好ましい。   Al is an element usually added for deoxidation. In the present invention, the amount of Al is not limited, but if it is less than 0.005%, deoxidation becomes insufficient, a large amount of oxide remains in the steel, and local deformability deteriorates, so 0.005% or more Is preferred. On the other hand, if it exceeds 0.05%, a large amount of oxide mainly composed of alumina remains in the steel and local deformability deteriorates, so 0.05% or less is preferable.

Nは、不可避的不純物であり、少ないほど好ましい元素である。本発明において、N量は限定しないが、0.001%未満に低減することは、精錬コストの上昇を招くので、0.001%以上が好ましい。一方、0.003%を超えると、析出物が生成し、焼入れ後の靭性が劣化するので、0.003%以下が好ましい。   N is an inevitable impurity, and the smaller the number, the more preferable element. In the present invention, the amount of N is not limited, but a reduction to less than 0.001% increases the refining cost, so 0.001% or more is preferable. On the other hand, if it exceeds 0.003%, precipitates are generated and the toughness after quenching deteriorates, so 0.003% or less is preferable.

なお、本発明の鋼板は、製鋼段階においてスクラップ等から混入するCu、Cr、Sn、Ni、Mo等を、本発明の効果を損なわない範囲で含有してもよい。また、脱酸元素として使用したCaや、Ce等を含むREMを、本発明の効果を損なわない範囲で含有してもよい。   In addition, the steel plate of this invention may contain Cu, Cr, Sn, Ni, Mo etc. which mix from scraps etc. in the steelmaking stage in the range which does not impair the effect of this invention. Moreover, you may contain REM containing Ca used as a deoxidation element, Ce, etc. in the range which does not impair the effect of this invention.

熱延に供する鋼スラブを製造する方法は、連続鋳造方法に限定されるものではない。通常の連続鋳造方法や、厚さ100mm以下の薄スラブを鋳造する方法を採用することができる。   The method for producing a steel slab for hot rolling is not limited to the continuous casting method. A normal continuous casting method or a method of casting a thin slab having a thickness of 100 mm or less can be employed.

ここで、溶鋼中のフリー酸素量を10〜50ppmとするために、Alで予備脱酸を行い、Si又はTiと、REM又はMgにより複合脱酸を行う。この際に、10ppm未満では、水素のトラップサイトとして機能する硫酸化物の数が十分に確保されない。一方、50ppmを超えると、その数が多くなり過ぎるため50ppmを上限とする。   Here, in order to make the amount of free oxygen in the molten steel 10 to 50 ppm, preliminary deoxidation is performed with Al, and composite deoxidation is performed with Si or Ti and REM or Mg. At this time, if it is less than 10 ppm, the number of sulfur oxides functioning as hydrogen trap sites is not sufficiently ensured. On the other hand, if it exceeds 50 ppm, the number becomes too large, so 50 ppm is made the upper limit.

本発明において、ホットスタンプ後に得られる旧オーステナイト粒径は、所要の耐遅れ破壊特性と靭性を確保知る観点から、極力小さくする必要がある。旧オーステナイト粒径をできるだけ小さくするためには、熱間圧延条件の設定が重要である。   In the present invention, the prior austenite grain size obtained after hot stamping needs to be made as small as possible from the viewpoint of ensuring the required delayed fracture resistance and toughness. In order to make the prior austenite grain size as small as possible, the setting of hot rolling conditions is important.

熱延板段階の組織を微細化するためには、熱間圧延時の加熱温度は低い方が好ましい。そのため、加熱温度は1250℃以下とする。また、仕上げ温度も、極力低い方が好ましいが、圧延性を考慮して、Ar3点以上とする。そして、仕上圧延の際、最終スタンド及び1つ前のスタンドでの総圧下量を60%以上とし、さらに、仕上圧延終了後は、速やかに、1秒以内に冷却を開始する。   In order to refine the structure of the hot-rolled plate stage, it is preferable that the heating temperature during hot rolling is low. Therefore, heating temperature shall be 1250 degrees C or less. The finishing temperature is preferably as low as possible. However, considering the rolling property, the finishing temperature is set to Ar3 or higher. Then, at the time of finish rolling, the total reduction amount at the last stand and the previous stand is set to 60% or more, and further, cooling is started within one second immediately after finish rolling.

仕上圧延終了後は、1秒以内に冷却を開始し、熱延板を600℃以下の温度域で巻き取る。この一連の冷却−巻取りにより、ホットスタンプ後の旧オーステナイト粒径を6μm以下とすることができる。   After finishing rolling, cooling is started within 1 second, and the hot-rolled sheet is wound in a temperature range of 600 ° C. or lower. By this series of cooling and winding, the prior austenite grain size after hot stamping can be made 6 μm or less.

しかし、400℃未満で巻き取ると、熱延板強度が高くなり過ぎるので、巻取り温度は400℃以上が好ましいが、400℃未満で巻き取った後、軟質化を目的として、750℃以下の温度で再加熱してもよい。   However, since the hot-rolled sheet strength becomes too high when wound at less than 400 ° C., the winding temperature is preferably 400 ° C. or more. However, after winding at less than 400 ° C., it is 750 ° C. or less for the purpose of softening. You may reheat at temperature.

本発明において、熱間圧延に続く、冷間圧延、焼鈍、及び、メッキの各条件は、特に規定されるものではなく、通常の条件でよい。冷間圧延は、通常の冷延圧下率の範囲、例えば、40〜80%で実施すればよい。メッキは、熱間圧延後、冷間圧延後、又は、再結晶焼鈍後に実施するが、加熱条件や冷却条件は、特に規定されるものではない。   In the present invention, conditions for cold rolling, annealing, and plating following hot rolling are not particularly defined, and may be ordinary conditions. Cold rolling may be performed in a range of a normal cold rolling reduction ratio, for example, 40 to 80%. Plating is performed after hot rolling, after cold rolling, or after recrystallization annealing, but heating conditions and cooling conditions are not particularly defined.

メッキは、主として、Znメッキ又はAlメッキが好ましい。Znメッキについては、合金化処理を行ってもよいし、行わなくてもよい。Alメッキについては、メッキ中にSiを含んでいても、本発明に影響を与えない。   Plating is mainly preferably Zn plating or Al plating. The Zn plating may or may not be alloyed. As for Al plating, even if Si is contained in the plating, the present invention is not affected.

熱延板、冷延板、及び、メッキ板の調質圧延は、形状を適切に調整するために、例えば、圧下率0.2〜3%で、適宜実施すればよい。   The temper rolling of the hot-rolled plate, cold-rolled plate, and plated plate may be appropriately performed at a rolling reduction of 0.2 to 3%, for example, in order to appropriately adjust the shape.

ホットスタンプを実施する際、熱延鋼板、冷延鋼板、又は、メッキ鋼板をAc3点以上に加熱する。加熱温度がAc3点未満であると、部分的にオーステナイト化しない領域ができる。この領域では、マルテンサイトが生成しないので、鋼板前提において十分な強度が得られないことになる。   When carrying out hot stamping, the hot-rolled steel sheet, cold-rolled steel sheet, or plated steel sheet is heated to Ac3 point or higher. When the heating temperature is less than the Ac3 point, a region that does not partially austenite is formed. In this region, since martensite is not generated, sufficient strength cannot be obtained on the assumption of the steel sheet.

ただし、加熱速度が5℃/秒未満である場合や、加熱温度が900℃を超える場合は、旧オーステナイト粒が粗大化して、6μm以下の旧オーステナイト粒径が得られないので、加熱速度は5℃/秒以上が好ましく、加熱温度は900℃以下が好ましい。   However, when the heating rate is less than 5 ° C./second or when the heating temperature exceeds 900 ° C., the prior austenite grains are coarsened, and the prior austenite grain size of 6 μm or less cannot be obtained. The heating temperature is preferably 900 ° C. or less.

本発明において、保熱時間は特に規定しないが、60秒以下が好ましい。Ar3〜300℃の温度域での冷却速度が50℃/秒未満となると、部材内で強度の変動が生じ易いので、Ar3〜300℃の温度域での冷却速度は50℃/秒以上が好ましい。   In the present invention, the heat retention time is not particularly defined, but is preferably 60 seconds or less. When the cooling rate in the temperature range of Ar3 to 300 ° C. is less than 50 ° C./second, the strength is likely to fluctuate in the member. Therefore, the cooling rate in the temperature range of Ar3 to 300 ° C. is preferably 50 ° C./second or more. .

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に示す成分組成の溶鋼を転炉から出鋼し、スラブとした後、本発明の熱延条件(加熱温度:1220℃、仕上げ温度:870℃、最終スタンド及び1つ前のスタンドでの総圧下量:65%、仕上圧延終了後、冷却開始までの時間:0.5秒、巻取温度:600℃)で熱間圧延を実施し、板厚3mmの熱延鋼板とした。
Example 1
After the molten steel having the composition shown in Table 1 is removed from the converter and made into a slab, the hot rolling conditions of the present invention (heating temperature: 1220 ° C., finishing temperature: 870 ° C., the final stand and the previous stand are used. Hot rolling was performed at a total rolling amount of 65%, the time from finish finish rolling to the start of cooling: 0.5 seconds, coiling temperature: 600 ° C. to obtain a hot-rolled steel sheet having a thickness of 3 mm.

Figure 2012237048
Figure 2012237048

Figure 2012237048
Figure 2012237048

この熱延鋼板を、冷間圧延で板厚1.4mmの冷延鋼板とし、その後、表2に示す条件で連続焼鈍、又は、焼鈍と焼鈍後にメッキ処理を実施した。メッキ処理は、溶融亜鉛メッキ(GI(合金化処理なし)/GA(合金化処理あり))、又は、Siを10%含む溶融アルミメッキ(Al)とした。   This hot-rolled steel sheet was made into a cold-rolled steel sheet having a thickness of 1.4 mm by cold rolling, and then subjected to plating under the conditions shown in Table 2 after continuous annealing or annealing and annealing. The plating treatment was hot dip galvanization (GI (no alloying treatment) / GA (with alloying treatment)) or hot dip aluminum plating (Al) containing 10% of Si.

上記処理を施した鋼板について、加熱炉で900℃に加熱した後、図1(a)に示す金型(ダイスB及びパッドCの表面に、水を噴出する給水口とその水を吸い込む排水口が配置されている)に、ブランクDの形状の鋼板を挟むと同時に、パッドCを矢印の方向に移動させてフランジを立て、その直後に水を噴射して、上記鋼板を室温まで冷却することにより、ホットスタンプでの熱履歴を模擬した。   About the steel plate which gave the said process, after heating at 900 degreeC with a heating furnace, the water supply port which ejects water on the surface of the metal mold | die (Dice B and the pad C) shown to Fig.1 (a), and the drain port which sucks the water Is placed between the steel plate in the shape of the blank D and at the same time, the pad C is moved in the direction of the arrow to raise the flange, and immediately after that water is sprayed to cool the steel plate to room temperature. This simulated the thermal history of hot stamping.

成形・熱処理後の鋼板については、伸びフランジ成形部(x部)における割れの有無を調査するとともに、非成形部(y部)の硬度を、ビッカース硬度Hv(荷重:10kgf)で測定した。結果を表2に併せて示す。   About the steel plate after shaping | molding and heat processing, while investigating the presence or absence of the crack in a stretch flange shaping | molding part (x part), the hardness of the non-forming part (y part) was measured by Vickers hardness Hv (load: 10 kgf). The results are also shown in Table 2.

耐遅れ破壊特性は、加工した試験片をそのまま使用し、室温にて、チオシアン酸アンモニウム3g/lを3%食塩水に溶かした水溶液に24時間浸漬させ、フランジ部での破断の有無で評価した(破断無し:○、破断有り:×)。   The delayed fracture resistance was evaluated by using the processed specimen as it was, immersing it in an aqueous solution in which 3 g / l of ammonium thiocyanate was dissolved in 3% saline at room temperature for 24 hours, and determining whether or not the flange portion had fractured. (No break: ○, with break: x).

低温脆性は、非成形部(y部)より試験片を採取し、−40℃でシャルピー試験を行って評価した。試験結果を板厚10mmに換算して評価し、100J/cm2以上のエネルギ吸収量を示す場合を合格(○)とした。 Low temperature brittleness was evaluated by collecting a test piece from a non-molded part (y part) and conducting a Charpy test at -40 ° C. The test result was evaluated by converting to a plate thickness of 10 mm, and a case showing an energy absorption amount of 100 J / cm 2 or more was regarded as acceptable (◯).

本発明に従う発明鋼(A鋼〜K鋼)においては、Hv:470〜670となり、引張強度で1470〜1970MPa相当の強度が得られているとともに、耐遅れ破壊特性や靭性に問題はない。   Invented steels (A steel to K steel) according to the present invention have Hv: 470 to 670, a tensile strength equivalent to 1470 to 1970 MPa is obtained, and there is no problem in delayed fracture resistance and toughness.

C量が低く本発明の範囲を外れたL鋼では、Hv:450(強度:1470MPaに相当)の強度に達していない。C量が高く本発明の範囲を外れたM鋼では、Hv:731となり、強度が高くなりすぎたため、耐遅れ破壊特性及び靭性の劣化が懸念される。   The L steel with a low C content and outside the scope of the present invention does not reach the strength of Hv: 450 (strength: equivalent to 1470 MPa). In steel M, which has a high C content and is out of the scope of the present invention, Hv is 731 and the strength is too high, so there is a concern about delayed fracture resistance and deterioration of toughness.

Ti又はNbが添加されていないN鋼、O鋼、R鋼、S鋼、及び、T鋼では、旧オーステナイト粒径が6μm超となり、靭性が悪い。REM及びMgが添加されていないP鋼や、Oが低く本発明の範囲を外れたQ鋼では、水素のトラップサイトとして機能する0.1μm以下の複合硫酸化物が十分に形成されないため、耐遅れ破壊特性が十分でない。   In N steel, O steel, R steel, S steel, and T steel to which no Ti or Nb is added, the prior austenite grain size is over 6 μm and the toughness is poor. In P steel to which REM and Mg are not added, and in Q steel that is low in O and out of the scope of the present invention, a composite sulfur oxide of 0.1 μm or less that functions as a hydrogen trap site is not sufficiently formed. Destructive properties are not sufficient.

OやREMが本発明の範囲から高く外れたU鋼及びW鋼では、複合硫酸化物が多量に生成し過ぎたため、熱間での伸びフランジ成形部に割れが生じるばかりでなく、靭性が不足している。   In U steel and W steel, in which O and REM deviate from the scope of the present invention, a large amount of composite sulfur oxide was generated, so not only cracking occurred in the hot stretch flange formed part, but also toughness was insufficient. ing.

Mn+Crが本発明の範囲から低く外れたV鋼では、強度に対してC量が高すぎることから、セメンタイトの析出が多く、靭性に問題がある。Siが本発明の範囲から高く外れたX鋼では、不メッキ部分がありメッキ性が悪い。Sが本発明の範囲から高く外れたY鋼では、Sを含む介在物が過剰に形成されて、熱間でのフランジ成形部に割れが生じるばかりでなく、靭性が悪い。   In the V steel in which Mn + Cr is out of the range of the present invention, the amount of C is too high for the strength, so there is much precipitation of cementite and there is a problem in toughness. In steel X where Si deviates from the scope of the present invention, there is an unplated portion and the plating property is poor. In Y steel in which S deviates significantly from the scope of the present invention, inclusions containing S are excessively formed and not only cracks occur in the hot flange-formed part, but also the toughness is poor.

(実施例2)
表1に示すD鋼及びE鋼を転炉で出鋼し、連続鋳造でスラブとした。その際に、脱酸工程において、Alで予備脱酸を行い、溶鋼中のフリー酸素を40ppmまで低減し、その後、Si又はTiとREM又はMgで複合脱酸を実施した。
(Example 2)
D steel and E steel shown in Table 1 were produced in a converter and slabs were obtained by continuous casting. At that time, in the deoxidation step, preliminary deoxidation was performed with Al to reduce the free oxygen in the molten steel to 40 ppm, and then composite deoxidation was performed with Si or Ti and REM or Mg.

本発明の範囲の熱延条件(加熱温度:1250℃、仕上げ温度:880℃、最終スタンド及び1つ前のスタンドでの総圧下量:60%、仕上圧延終了後、冷却開始までの時間:0.8秒、巻取温度:550℃)で、板厚2mmの熱延鋼板とし、酸洗後、そのまま880℃に加熱し、その後、実施例1で用いた金型と同じ金型で、ホットスタンプによる成形と熱履歴を模擬した。   Hot rolling conditions within the scope of the present invention (heating temperature: 1250 ° C., finishing temperature: 880 ° C., total rolling reduction at the last stand and the previous stand: 60%, time after finishing rolling and starting cooling: 0 8 seconds, coiling temperature: 550 ° C.), a hot-rolled steel sheet having a thickness of 2 mm, pickled, heated to 880 ° C. as it is, and then heated in the same mold as the mold used in Example 1. Stamp molding and thermal history were simulated.

さらに、酸洗後に、亜鉛(GI、GA)メッキ、又は、Siを10%含む溶融アルミメッキを施してから、同様のホットスタンプによる成形試験を実施した。   Further, after pickling, zinc (GI, GA) plating or molten aluminum plating containing 10% Si was performed, and then a similar hot stamping test was performed.

一方、本発明の範囲の熱延条件(加熱温度:1250℃、仕上げ温度:890℃、最終スタンド及び1つ前のスタンドでの総圧下量:65%、仕上圧延終了後、冷却開始までの時間:0.5秒、巻取温度:500℃)で、板厚3.2mmの熱延鋼板とし、酸洗後に、50%の冷延率で1.6mmの冷延鋼板とした。この冷延板を、加熱炉で900℃に加熱した後、実施例1で用いた金型と同じ金型で、ホットスタンプによる成形及び冷却を実施した。得られた成形品について、実施例1と同様に、材質特性を評価した。結果を表3に示す。いずれも本発明に従う鋼であるので、熱間での伸びフランジ成形性、耐遅れ破壊特性、及び、低温靭性に問題はなく、所望の特性が得られている。   On the other hand, the hot rolling conditions within the scope of the present invention (heating temperature: 1250 ° C., finishing temperature: 890 ° C., total rolling reduction at the final stand and the previous stand: 65%, time from the end of finish rolling to the start of cooling : 0.5 seconds, coiling temperature: 500 ° C.), a hot rolled steel sheet having a thickness of 3.2 mm, and after pickling, a cold rolled steel sheet having a cold rolling rate of 50% and 1.6 mm. After this cold-rolled sheet was heated to 900 ° C. in a heating furnace, molding and cooling by hot stamping were performed using the same mold as that used in Example 1. About the obtained molded product, the material characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 3. Since both are steels according to the present invention, there are no problems in hot stretch flange formability, delayed fracture resistance, and low temperature toughness, and desired characteristics are obtained.

Figure 2012237048
Figure 2012237048

前述したように、本発明によれば、ホットスタンプ時の複合成形性と打抜き性に優れ、かつ、ホットスタンプ後において、1470MPa以上の強度を有するとともに、加工部の耐遅れ破壊特性と靭性に優れたホットスタンプ用鋼板を提供することができる。   As described above, according to the present invention, the composite moldability and punchability at the time of hot stamping are excellent, and after hot stamping, it has a strength of 1470 MPa or more, and is excellent in delayed fracture resistance and toughness of a processed part. A hot stamping steel plate can be provided.

したがって、本発明によれば、ホットスタンプ技術で、伸びフランジ成形や穴拡げ加工を含む部品の加工が可能となり、加工し得る部品の形状の自由度が顕著に広がる。よって、本発明は、機械部品製造産業において利用可能性が高いものである。   Therefore, according to the present invention, it is possible to process parts including stretch flange molding and hole expansion processing with the hot stamping technique, and the degree of freedom of the shape of the parts that can be processed is significantly widened. Therefore, the present invention has high applicability in the machine component manufacturing industry.

A パンチ
B ダイス
C パッド
D ブランク
x 伸びフランジ成形部
y 非成形部
W ブランク幅
total ブランク中央部の全長
flat パンチとパッドに挟まれるブランク平坦部の中央の長さ
H フランジ高さ
R コーナー部の曲率半径
θ コーナー部の開き角
1 パンチ
1a パンチ保持台
2 ダイス
3 スペーサー
4 ストリッパー
5 バネ
6 位置決めピン
7 クッションピン
8 鋼板
9 基台
A Punch B Dies C Pad D Blank x Stretched flange molding part y Non-molding part W Blank width H total Overall length of blank center part H Flat length of blank flat part sandwiched between punch and pad H Flange height R Corner part Curvature radius θ Corner opening angle 1 Punch 1a Punch holding base 2 Die 3 Spacer 4 Stripper 5 Spring 6 Positioning pin 7 Cushion pin 8 Steel plate 9 Base

Claims (7)

質量%で、S:0.001〜0.005%、REM:0.005〜0.03%、及び、O:0.003〜0.007%を含むホットスタンプ用鋼板において、S、O、及び、REMの2種以上を含む直径0.1μm以下の球状介在物が分散していることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   In a steel sheet for hot stamping containing S: 0.001 to 0.005%, REM: 0.005 to 0.03%, and O: 0.003 to 0.007% by mass%, S, O, A hot stamping steel sheet excellent in hot composite formability and delayed fracture resistance at the punched portion, characterized in that spherical inclusions having a diameter of 0.1 μm or less including two or more types of REM are dispersed. 質量%で、S:0.001〜0.005%、Mg:0.005〜0.03%、及び、O:0.003〜0.007%を含むホットスタンプ用鋼板において、S、O、及び、Mgの2種以上を含む直径0.1μm以下の球状介在物が分散していることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   In the steel sheet for hot stamping containing S: 0.001 to 0.005%, Mg: 0.005 to 0.03%, and O: 0.003 to 0.007% by mass%, S, O, And a steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of the punched portion, characterized in that spherical inclusions having a diameter of 0.1 μm or less containing two or more kinds of Mg are dispersed. 前記ホットスタンプ用鋼板が、質量%で、C:0.20〜0.35%、Si:0.1〜0.5%、Mn+Cr:1〜3%、Ti:0.005〜0.1%、及び、Nb:0.005〜0.1%を含み、残部Fe及び不可避的不純物からなることを特徴とする請求項1又は2に記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   The steel sheet for hot stamping is mass%, C: 0.20 to 0.35%, Si: 0.1 to 0.5%, Mn + Cr: 1 to 3%, Ti: 0.005 to 0.1%. And Nb: 0.005 to 0.1%, comprising the balance Fe and unavoidable impurities, and hot composite formability and delayed fracture resistance of the punched portion according to claim 1, Excellent steel sheet for hot stamping. 前記ホットスタンプ用鋼板が、さらに、質量%で、B:0.0005〜0.002%、V:0.005〜0.1%、及び、Mo:0.05〜0.5%の1種又は2種以上を含むことを特徴とする請求項3に記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   The steel sheet for hot stamping is one type of B: 0.0005-0.002%, V: 0.005-0.1%, and Mo: 0.05-0.5%. Or a steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of a punched portion according to claim 3, comprising two or more kinds. 前記球状介在物が複合硫酸化物であることを特徴とする請求項1〜4のいずれか1項に記載の熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板。   The steel sheet for hot stamping according to any one of claims 1 to 4, wherein the spherical inclusion is a composite sulfate, and is excellent in hot composite formability and delayed fracture resistance of a punched portion. 請求項3又は4に記載の成分組成のスラブを1250℃以下の温度域に加熱して熱間圧延に供し、Ar3点以上の温度域で、最終スタンド及び1つ前のスタンドでの総圧下量を60%以上として仕上圧延を終了し、仕上圧延終了後、1秒以内に冷却を開始し、600℃以下の温度で巻き取ることを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板の製造方法。   The slab having the component composition according to claim 3 or 4 is heated to a temperature range of 1250 ° C. or less and subjected to hot rolling, and the total reduction amount at the final stand and the previous stand in a temperature range of Ar3 or higher. Finish rolling is finished with 60% or more, and after finishing rolling, cooling is started within 1 second, and it is wound at a temperature of 600 ° C. or lower, and hot composite formability and delayed fracture resistance of the punched part A method of manufacturing hot stamping steel plates with excellent characteristics. 請求項3又は4に記載の成分組成の溶鋼をAlで予備脱酸して、溶鋼中のフリー酸素を10〜50ppmまで低減し、次いで、Si又はTiとREM又はMgで複合脱酸することを特徴とする熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板の溶製方法。   The molten steel having the component composition according to claim 3 or 4 is pre-deoxidized with Al to reduce free oxygen in the molten steel to 10 to 50 ppm, and then combined deoxidation with Si or Ti and REM or Mg. A method for melting a hot stamping steel sheet having excellent hot composite formability and delayed fracture resistance of a punched portion.
JP2011108364A 2011-05-13 2011-05-13 Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method Active JP5652321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108364A JP5652321B2 (en) 2011-05-13 2011-05-13 Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108364A JP5652321B2 (en) 2011-05-13 2011-05-13 Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2012237048A true JP2012237048A (en) 2012-12-06
JP5652321B2 JP5652321B2 (en) 2015-01-14

Family

ID=47460203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108364A Active JP5652321B2 (en) 2011-05-13 2011-05-13 Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5652321B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding
WO2015147216A1 (en) * 2014-03-26 2015-10-01 新日鐵住金株式会社 High-strength hot-formed steel sheet member
KR20160106677A (en) 2014-01-14 2016-09-12 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and process for producing same
WO2016152163A1 (en) * 2015-03-25 2016-09-29 Jfeスチール株式会社 Cold-rolled steel sheet and manufacturing method therefor
KR20180119616A (en) 2016-03-29 2018-11-02 제이에프이 스틸 가부시키가이샤 Steel plate for hot press, method of manufacturing the same, and hot press member and manufacturing method thereof
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor
EP3564401A1 (en) 2016-03-29 2019-11-06 JFE Steel Corporation Hot-press forming part and method of manufacturing same
JP2022513667A (en) * 2018-12-18 2022-02-09 アルセロールミタル Press-cured parts with high resistance to delayed fracture and their manufacturing methods
US11884998B2 (en) 2017-03-31 2024-01-30 Nippon Steel Corporation Surface treated steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288534A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Steel sheet prevented from deterioration of material in weld zone and heat-affected zone
JP2006009116A (en) * 2004-06-29 2006-01-12 Nippon Steel Corp Steel sheet for hot pressing
JP2006212663A (en) * 2005-02-02 2006-08-17 Nippon Steel Corp Method for producing member made of hot-pressed high strength steel having excellent formability
JP2006316313A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Thin steel sheet having extremely reduced variation in material, and method for smelting molten steel for thin steel sheet
WO2011158818A1 (en) * 2010-06-14 2011-12-22 新日本製鐵株式会社 Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288534A (en) * 2000-04-05 2001-10-19 Nippon Steel Corp Steel sheet prevented from deterioration of material in weld zone and heat-affected zone
JP2006009116A (en) * 2004-06-29 2006-01-12 Nippon Steel Corp Steel sheet for hot pressing
JP2006212663A (en) * 2005-02-02 2006-08-17 Nippon Steel Corp Method for producing member made of hot-pressed high strength steel having excellent formability
JP2006316313A (en) * 2005-05-12 2006-11-24 Nippon Steel Corp Thin steel sheet having extremely reduced variation in material, and method for smelting molten steel for thin steel sheet
WO2011158818A1 (en) * 2010-06-14 2011-12-22 新日本製鐵株式会社 Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122076A (en) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp Hot stamping molding excellent in balance of strength and toughness, method for manufacturing the same, and method for manufacturing steel plate for hot stamping molding
KR20160106677A (en) 2014-01-14 2016-09-12 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and process for producing same
KR101837883B1 (en) 2014-03-26 2018-03-12 신닛테츠스미킨 카부시키카이샤 High-strength hot-formed steel sheet member
WO2015147216A1 (en) * 2014-03-26 2015-10-01 新日鐵住金株式会社 High-strength hot-formed steel sheet member
US10060005B2 (en) 2014-03-26 2018-08-28 Nippon Steel & Sumitomo Metal Corporation High-strength hot-formed steel sheet member
CN106103782A (en) * 2014-03-26 2016-11-09 新日铁住金株式会社 High-strength hot forming steel board member
JPWO2015147216A1 (en) * 2014-03-26 2017-04-13 新日鐵住金株式会社 High strength hot-formed steel sheet
EP3124637A4 (en) * 2014-03-26 2017-08-30 Nippon Steel & Sumitomo Metal Corporation High-strength hot-formed steel sheet member
EP3276022A4 (en) * 2015-03-25 2018-04-25 JFE Steel Corporation Cold-rolled steel sheet and manufacturing method therefor
CN107429349A (en) * 2015-03-25 2017-12-01 杰富意钢铁株式会社 Cold-rolled steel sheet and its manufacture method
JPWO2016152163A1 (en) * 2015-03-25 2017-04-27 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
WO2016152163A1 (en) * 2015-03-25 2016-09-29 Jfeスチール株式会社 Cold-rolled steel sheet and manufacturing method therefor
US10870902B2 (en) 2015-03-25 2020-12-22 Jfe Steel Corporation Cold-rolled steel sheet and manufacturing method therefor
US10858718B2 (en) 2016-03-29 2020-12-08 Jfe Steel Corporation Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
EP3564401A1 (en) 2016-03-29 2019-11-06 JFE Steel Corporation Hot-press forming part and method of manufacturing same
KR20180119616A (en) 2016-03-29 2018-11-02 제이에프이 스틸 가부시키가이샤 Steel plate for hot press, method of manufacturing the same, and hot press member and manufacturing method thereof
US11293075B2 (en) 2016-03-29 2022-04-05 Jfe Steel Corporation Hot-press forming part and method of manufacturing same
EP3486346A4 (en) * 2016-09-28 2019-07-03 JFE Steel Corporation Steel sheet and production method therefor
US11268164B2 (en) 2016-09-28 2022-03-08 Jfe Steel Corporation Steel sheet and method for producing the same
US11884998B2 (en) 2017-03-31 2024-01-30 Nippon Steel Corporation Surface treated steel sheet
JP2022513667A (en) * 2018-12-18 2022-02-09 アルセロールミタル Press-cured parts with high resistance to delayed fracture and their manufacturing methods
JP7137015B2 (en) 2018-12-18 2022-09-13 アルセロールミタル Press-hardened parts with high resistance to delayed fracture and method for manufacturing the same
US11725255B2 (en) 2018-12-18 2023-08-15 Arcelormittal Press hardened part with high resistance to delayed fracture and a manufacturing process thereof

Also Published As

Publication number Publication date
JP5652321B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5652321B2 (en) Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method
JP5114691B2 (en) Hot stamping molded body, hot stamping steel plate manufacturing method, and hot stamping molded body manufacturing method
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP5732906B2 (en) Hot-pressed steel, hot-pressed steel and hot-pressed steel manufacturing method
JP6314520B2 (en) High-strength steel sheet having a maximum tensile strength of 1300 MPa or more, excellent formability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP4575799B2 (en) Manufacturing method of hot-pressed high-strength steel members with excellent formability
KR102059052B1 (en) Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
KR102119373B1 (en) Steel sheet for hot press and method of manufacturing same, and hot-press forming part and method of manufacturing same
JP4427465B2 (en) Manufacturing method of hot-pressed high-strength steel members with excellent productivity
JP5194986B2 (en) Manufacturing method of high-strength parts and high-strength parts
WO2019208556A1 (en) Steel member and method for producing same
CN110042321B9 (en) HPF molded member having bendability and method for producing same
JP5803836B2 (en) Hot pressed steel plate member, its manufacturing method and hot pressed steel plate
JP2017002384A (en) Steel plate superior in spot weld zone fracture resistance characteristics and production method thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO2017168948A1 (en) Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor
JP6573050B1 (en) Hot-pressed steel sheet member and manufacturing method thereof
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP5359925B2 (en) Manufacturing method of energy absorbing member having strength difference in member
JP2010024551A (en) Steel sheet to be hot-pressed
JP2015145521A (en) High strength cold rolled steel sheet and method for producing the same
WO2022080489A1 (en) Steel plate for hot stamping, method for manufacturing same, hot stamp member, and method for manufacturing same
JPWO2020203979A1 (en) Covered steel members, coated steel sheets and their manufacturing methods
JP6801823B1 (en) Hot pressed member and its manufacturing method, and manufacturing method of steel sheet for hot pressed member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R151 Written notification of patent or utility model registration

Ref document number: 5652321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350