JP2010024551A - Steel sheet to be hot-pressed - Google Patents

Steel sheet to be hot-pressed Download PDF

Info

Publication number
JP2010024551A
JP2010024551A JP2009246712A JP2009246712A JP2010024551A JP 2010024551 A JP2010024551 A JP 2010024551A JP 2009246712 A JP2009246712 A JP 2009246712A JP 2009246712 A JP2009246712 A JP 2009246712A JP 2010024551 A JP2010024551 A JP 2010024551A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
point
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009246712A
Other languages
Japanese (ja)
Other versions
JP5177119B2 (en
Inventor
Toshinobu Nishihata
敏伸 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009246712A priority Critical patent/JP5177119B2/en
Publication of JP2010024551A publication Critical patent/JP2010024551A/en
Application granted granted Critical
Publication of JP5177119B2 publication Critical patent/JP5177119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet to be hot-pressed having superior toughness and a TS of 1.8 GPa or higher. <P>SOLUTION: The steel sheet has a structure after having been hot-pressed mainly formed of a self-tempered martensite composed of former austenite grains with sizes of 10 μm or smaller. Therefore, the steel sheet has a chemical composition comprising 0.25 to 0.45% C and Mn+Cr: 0.5 to 3.0%, further comprising one or more selected from ≤0.5% Si, ≤2% Ni, ≤1% Cu, ≤1% V and ≤1% Al, and, if required comprising one or more selected from ≤0.01% B, ≤1.0% Nb, ≤1.0% Mo, 3.42N+0.001≤Ti≤3.42N+0.5, and 0.001 to 0.005% Ca, and in which, regarding impurities, the content of P is controlled to ≤0.005%, S to ≤0.005% and N to ≤0.002%. The manufacturing method comprises steps of: keeping the steel sheet at a temperature between an Ac<SB>3</SB>point and (Ac<SB>3</SB>point+100°C) for 5 minutes or shorter; hot-pressing it; and subsequently cooling it to the Ms point at a cooling rate of the upper critical cooling rate or higher, and then to 150°C from the Ms point at an average cooling rate of 10 to 500°C/s, so as to perform quenching. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車のボデー構造部品、足回り部品等を始めとする機械構造部品等に好適な、靱性に優れた高強度の熱間プレス鋼板部材およびその製造方法ならびにそのための熱間プレス用鋼板に関する。   The present invention relates to a high-strength hot-pressed steel sheet member excellent in toughness, suitable for machine structural parts such as automobile body structural parts and undercarriage parts, a manufacturing method thereof, and a hot-pressed steel sheet therefor About.

近年、自動車の軽量化のため、鋼材の高強度化を図り、使用重量を減ずる努力が進んでいる。自動車に広く使用される薄鋼板においては、鋼板強度の増加に伴って、プレス成形性が低下し、複雑な形状を製造することが困難になってきている。具体的には、延性が低下し、加工度が高い部位で破断が生じる、スプリングバックや壁反りが大きくなり、寸法精度が劣化する、といった問題が発生する。従って、高強度、特に780MPa級以上の引張強さを有する鋼板を用いて、プレス成形により部品を製造することは容易ではない。プレス成形ではなくロール成形によれば、高強度の鋼板の加工が可能であるが、長手方向に一様な断面を有する部品にしか適用できない。   In recent years, in order to reduce the weight of automobiles, efforts have been made to increase the strength of steel materials and reduce the weight used. In thin steel plates widely used in automobiles, press formability decreases with increasing steel plate strength, making it difficult to manufacture complex shapes. Specifically, there are problems that ductility is reduced, fracture occurs at a high degree of processing, springback and wall warp increase, and dimensional accuracy deteriorates. Therefore, it is not easy to produce a part by press molding using a steel plate having a high strength, particularly a tensile strength of 780 MPa or higher. According to roll forming instead of press forming, it is possible to process a high-strength steel sheet, but it can be applied only to parts having a uniform cross section in the longitudinal direction.

一方、特許文献1に示されているように、加熱した鋼板をプレス成形する熱間プレスと呼ばれる方法では、鋼板が高温で軟質、高延性になっているため、複雑な形状を寸法精度よく成形することが可能である。さらに、鋼板をオーステナイト域に加熱しておき、金型内で急冷(焼入れ)することにより、マルテンサイト変態による鋼板の高強度化が同時に達成できる。   On the other hand, as shown in Patent Document 1, in a method called hot press for press-forming a heated steel plate, the steel plate is soft and highly ductile at a high temperature, so that a complicated shape is formed with high dimensional accuracy. Is possible. Furthermore, the steel plate is heated in the austenite region and rapidly cooled (quenched) in the mold, so that the strength of the steel plate can be increased by martensitic transformation.

特許文献2には、室温で予め所定の形状に成形後、オーステナイト域に加熱し、金型内で急冷することによって、鋼板の高強度化と成形性を同時に達成する予プレスクエンチ法が開示されている。   Patent Document 2 discloses a pre-press quench method that simultaneously achieves high strength and formability of a steel sheet by forming into a predetermined shape at room temperature, heating to an austenite region, and quenching in a mold. ing.

英国特許公報1490535号British Patent Publication No. 1490535 特開平10−96031号公報Japanese Patent Laid-Open No. 10-96031

このような熱間プレス法や予プレスクエンチ法は、部材の高強度化と成形性を同時に確保できる優れた成形方法である。しかし、現在においてはさらなる高強度化が求められてきており、従来からある技術思想の下では、部材の引張強さ(以下、TSとも表記する)が1.8GPa以上になってくると、靱性不足の問題が生じてくることが本発明者らの検討により初めて明らかとなった。実際、靱性を確保したまま熱間プレス後に1.8GPa以上のTSとなる部材の実用化例は皆無である。   Such a hot press method and a pre-press quench method are excellent molding methods that can ensure the high strength and formability of the member at the same time. However, at present, there has been a demand for higher strength. Under the conventional technical idea, when the tensile strength (hereinafter also referred to as TS) of a member becomes 1.8 GPa or more, toughness is increased. It became clear for the first time by the present inventors that a shortage problem arises. In fact, there is no practical example of a member that becomes a TS of 1.8 GPa or more after hot pressing while ensuring toughness.

従って、従来の熱間プレス成形では、実用可能なTSが1.8GPa以上の部材を作製するためには、靱性を確保するために、焼入れ後に焼き戻し処理が施されることになる。しかし、熱間プレス法において焼き戻し工程を追加することは、作業効率面や設備面からコストアップといった問題が出てくるため好ましくない。このように、熱間プレス法において、焼き戻しを行わずに、実用に耐えうるTSが1.8GPa以上の部材を提供することができる熱間プレス用鋼板がないのが現状である。   Therefore, in the conventional hot press molding, in order to produce a member having a practical TS of 1.8 GPa or more, a tempering process is performed after quenching in order to ensure toughness. However, it is not preferable to add a tempering step in the hot pressing method because of problems such as work efficiency and equipment cost increase. As described above, in the hot pressing method, there is no hot pressing steel sheet that can provide a member having a TS of 1.8 GPa or more that can be practically used without performing tempering.

本発明の具体的課題は、熱間プレス後靱性に優れたTSが1.8GPa以上の熱間プレス部材を比較的容易に製造することを可能にする、熱間プレス用鋼板、それにより得られる熱間プレス鋼板部材、ならびにその製造方法を提供することである。   A specific subject of the present invention is a steel sheet for hot pressing, which makes it possible to relatively easily produce a hot pressed member having a TS of 1.8 GPa or more excellent in toughness after hot pressing. It is to provide a hot-pressed steel sheet member and a manufacturing method thereof.

本発明者らは、熱間プレス後のTSが1.8GPa以上の熱間プレス部材の靱性を改善すべく鋭意検討を行った結果、鋼板成分を調整することにより、さらに必要により熱間プレス成形の際のヒートパターンの適正化、ならびにそれに先立つ加熱時のオーステナイト粒径細粒化により、靱性が大幅に改善されることを知見した。その知見に基づき完成させた本発明は、次の通りである。
質量%で、C:0.25〜0.45%、Mn+Cr:0.5〜3.0%およびNb:0.04〜1.0%を含有し、さらにSi:0.5%以下、Ni:2%以下、Cu:1%以下、V:1%以下およびAl:1%以下の1種または2種以上を含有し、残部Fe及び不純物からなる化学組成を有する引張強さが1.8GPa以上の熱間プレス鋼板部材用鋼板。
As a result of intensive studies to improve the toughness of a hot pressed member having a TS after hot pressing of 1.8 GPa or more, the present inventors have adjusted the steel plate components and further required hot press forming as necessary. It was found that the toughness is greatly improved by optimizing the heat pattern at the time of heating and by reducing the austenite grain size during heating prior to that. The present invention completed based on the knowledge is as follows.
In mass%, C: 0.25-0.45%, Mn + Cr: 0.5-3.0% and Nb: 0.04-1.0%, Si: 0.5% or less, Ni : 2% or less, Cu: 1% or less, V: 1% or less, and Al: 1% or less, containing one or more kinds, and having a tensile strength of 1.8 GPa having a chemical composition composed of the remaining Fe and impurities A steel sheet for hot-pressed steel sheets as described above.

前記化学組成が、Feの一部に代えて、質量%で、B:0.01%以下を含有してもよい。
前記化学組成が、Feの一部に代えて、質量%で、Mo:1.0%以下を含有してもよい。
The chemical composition may contain B: 0.01% or less in mass% instead of part of Fe.
The chemical composition may contain Mo: 1.0% or less in mass% instead of part of Fe.

本発明は、焼き戻しを行わずに熱間プレスのままで靱性に優れた、TSが1.8GPa以上の熱間プレス部材を作製できる熱間プレス用鋼板の実用化が初めて可能になるという、技術的に価値ある効果が達成される。   The present invention makes it possible for the first time to practically use a steel sheet for hot pressing that can produce a hot pressed member having a TS of 1.8 GPa or more, which is excellent in toughness without being tempered and remains hot pressed. A technically valuable effect is achieved.

臨界冷却速度測定用の試験片の形状の説明図である。It is explanatory drawing of the shape of the test piece for critical cooling rate measurement. ハット成形法の模式的説明図である。It is a typical explanatory view of a hat forming method.

次に、本発明において、各範囲に限定した理由について説明する。以後の説明で合金元素についての「%」は「質量%」を表す。
本発明における素地鋼板としての鋼板の化学組成については、以下のように規定する。
Next, the reason why the present invention is limited to each range will be described. In the following description, “%” for alloy elements represents “mass%”.
About the chemical composition of the steel plate as a base steel plate in this invention, it prescribes | regulates as follows.

C:0.25〜0.45%
Cは、鋼板の焼入れ性を高め、かつ焼入れ後強度を主に決定する非常に重要な元素である。特に、焼入れ後強度でTS1.8GPa以上を確保するためには、C含有量を少なくとも0.25%とする必要がある。一方で、C含有量が0.45%を超えると、焼入れ後の強度が高くなりすぎるため、靱性劣化が著しくなる。より望ましいC含有量は0.28〜0.33%である。
C: 0.25 to 0.45%
C is a very important element that enhances the hardenability of the steel sheet and mainly determines the strength after quenching. In particular, in order to ensure TS1.8 GPa or more in the strength after quenching, the C content needs to be at least 0.25%. On the other hand, if the C content exceeds 0.45%, the strength after quenching becomes too high, and the toughness deterioration becomes significant. A more desirable C content is 0.28 to 0.33%.

Mn+Cr:0.5〜3.0%
MnおよびCrは、鋼板の焼入れ性を高め、かつ焼入れ後強度を安定して確保するために、非常に効果のある元素である。しかしMnおよびCrの合計含有量(以下、「(Mn+Cr)含有量」ともいう。)が0.5%未満ではその効果は十分ではなく、一方で(Mn+Cr)含有量が3.0%を超えるとその効果は飽和し、逆に安定した強度確保が困難となる。より望ましい(Mn+Cr)含有量は0.8〜2.0%である。
Mn + Cr: 0.5 to 3.0%
Mn and Cr are very effective elements in order to increase the hardenability of the steel sheet and to ensure a stable strength after quenching. However, if the total content of Mn and Cr (hereinafter also referred to as “(Mn + Cr) content”) is less than 0.5%, the effect is not sufficient, while the (Mn + Cr) content exceeds 3.0%. And the effect is saturated, and on the contrary, it is difficult to secure a stable strength. A more desirable (Mn + Cr) content is 0.8 to 2.0%.

B:0.01%以下
Bは、任意添加元素であり、鋼板の焼入れ性を高め、かつ焼入れ後強度の安定確保効果をさらに高めるのに有効である。また、粒界に偏析して粒界強度を高め、靱性を向上させる点でも重要な元素である。さらに、加熱時のオーステナイト粒成長抑制効果も高い。しかし、B含有量が0.01%を超えるとその効果は飽和し、かつコスト増を招く。より望ましいB含有量は0.001〜0.0030%である。
B: 0.01% or less B is an optional additive element, and is effective for enhancing the hardenability of the steel sheet and further enhancing the effect of ensuring the stability of the strength after quenching. It is also an important element in that it segregates at grain boundaries to increase grain boundary strength and improve toughness. Furthermore, the austenite grain growth inhibitory effect at the time of a heating is also high. However, if the B content exceeds 0.01%, the effect is saturated and the cost is increased. A more desirable B content is 0.001 to 0.0030%.

Si:0.5%以下、Ni:2%以下、Cu:1%以下、V:1%以下、Al:1%以下
これらの元素は、鋼板の焼入れ性を高めかつ焼入れ後強度の安定確保に効果の有る元素である。しかし、上限値以上に含有させてもその効果は小さく、かついたずらにコスト増を招くため、各合金元素の含有量は上述の範囲とする。
Si: 0.5% or less, Ni: 2% or less, Cu: 1% or less, V: 1% or less, Al: 1% or less These elements enhance the hardenability of the steel sheet and ensure stable strength after quenching. It is an effective element. However, since the effect is small even if it contains more than an upper limit, and it causes a cost increase unnecessarily, the content of each alloy element is set to the above range.

Nb:1.0%以下
Nbは、任意添加元素であり、鋼板をAc3点以上に加熱したときに、再結晶を抑制しかつ微細な炭化物を形成してオーステナイト粒を細粒にするため、靱性を大きく改善する効果を有する。しかし、Nb含有量が1.0%超になると、その効果は飽和し、いたずらにコスト増を招く。より望ましいNb含有量は0.01〜0.2%であり、さらに望ましくは0.04〜0.15%である。
Nb: 1.0% or less Nb is an optional additive element that suppresses recrystallization and forms fine carbides to make austenite grains fine when the steel sheet is heated to Ac 3 point or higher. Has the effect of greatly improving toughness. However, when the Nb content exceeds 1.0%, the effect is saturated and the cost is increased unnecessarily. The Nb content is more preferably 0.01 to 0.2%, and further preferably 0.04 to 0.15%.

Mo:1.0%以下
Moは、任意添加元素であり、鋼板をAc3点以上に加熱したときに、微細な炭化物を形成してオーステナイト粒を細粒にするため、靱性を大きく改善する効果を有する。しかしMo含有量が1.0%超になると、その効果は飽和し、いたずらにコスト増を招く。より望ましいMo含有量は0.01〜0.2%であり、さらに望ましくは0.04〜0.15%である。
Mo: 1.0% or less Mo is an optional additive element. When the steel sheet is heated to Ac 3 point or higher, fine carbides are formed and the austenite grains are made finer, so that the toughness is greatly improved. Have However, when the Mo content exceeds 1.0%, the effect is saturated and the cost is increased unnecessarily. The more preferable Mo content is 0.01 to 0.2%, and still more preferably 0.04 to 0.15%.

3.42N+0.001≦Ti≦3.42N+0.5
Tiは、任意添加元素であり、鋼板をAc3点以上に加熱したときに、再結晶を抑制し微細な炭化物を形成してオーステナイト粒を細粒にするため、靱性を大きく改善する効果を有する。かかる効果を確実に得るためにTi含有量を(3.42N+0.001)以上とすることが好ましい。一方で、Ti含有量が(3.42N+0.5)超になると、その効果は飽和し、いたずらにコスト増を招く。より望ましいTi含有量は3.42N+0.02≦Ti≦3.42N+0.08である。
3.42N + 0.001 ≦ Ti ≦ 3.42N + 0.5
Ti is an optional additive element, and has the effect of greatly improving toughness because it suppresses recrystallization and forms fine carbides to make austenite grains fine when the steel sheet is heated to Ac 3 points or more. . In order to reliably obtain such an effect, the Ti content is preferably set to (3.42N + 0.001) or more. On the other hand, when the Ti content exceeds (3.42N + 0.5), the effect is saturated and the cost is unnecessarily increased. A more desirable Ti content is 3.42N + 0.02 ≦ Ti ≦ 3.42N + 0.08.

Ca:0.001〜0.005%
Caは、任意添加元素であり、鋼中の介在物を微細化し、焼入れ後の靱性を向上させる効果を有する。かかる効果を確実に得るためにCa含有量を0.001%以上とすることが好ましい。一方、Ca含有量が0.005%を超えるとその効果は飽和する。より望ましいCa含有量は0.002〜0.004%である。
Ca: 0.001 to 0.005%
Ca is an optional additive element, and has the effect of reducing the inclusions in the steel and improving the toughness after quenching. In order to ensure such an effect, the Ca content is preferably 0.001% or more. On the other hand, when the Ca content exceeds 0.005%, the effect is saturated. A more desirable Ca content is 0.002 to 0.004%.

P:0.005%以下
Pは、焼入れ後の靱性を大きく劣化させる元素であるため、0.005%以下とすることが好ましい。より望ましくは0.003%以下である。
P: 0.005% or less Since P is an element that greatly deteriorates the toughness after quenching, it is preferably 0.005% or less. More desirably, it is 0.003% or less.

S:0.005%以下
Sは、焼入れ後の靱性を大きく劣化させる元素であるため、0.005%以下とすることが好ましい。より望ましくは0.003%以下である。
S: 0.005% or less Since S is an element that greatly deteriorates the toughness after quenching, it is preferably 0.005% or less. More desirably, it is 0.003% or less.

N:0.002%以下
Nは、鋼中にて介在物を形成し、焼入れ後の靱性を劣化させる元素であるため、0.002%以下とすることが好ましい。より望ましくは0.001%以下である。
N: 0.002% or less N is an element that forms inclusions in the steel and deteriorates the toughness after quenching, and therefore is preferably 0.002% or less. More desirably, it is 0.001% or less.

本発明の熱間プレス鋼板部材は、TSが1.8GPa以上の強度下で靱性を確保するために、旧オーステナイト平均粒径を10μm以下にする。旧オーステナイト平均粒径は、望ましくは8μm以下、さらに望ましくは4μm以下である。旧オーステナイト平均粒径は、次に説明するように、熱間プレス前の加熱条件(保持温度および保持時間)に依存して変化する。   The hot pressed steel sheet member of the present invention has a prior austenite average grain size of 10 μm or less in order to ensure toughness under a strength of TS of 1.8 GPa or more. The prior austenite average particle size is desirably 8 μm or less, and more desirably 4 μm or less. The prior austenite average particle diameter changes depending on the heating conditions (holding temperature and holding time) before hot pressing, as will be described below.

本発明によれば、上記化学組成を有する鋼板に対して熱間プレス成形を行うが、そのときの熱間プレス前の加熱条件(保持温度及び保持時間)は次の通りである。
熱間プレス工程において焼入れを行い目的とする強度と靱性を得るために、熱間プレスに供する鋼板をAc3点以上、(Ac3点+100℃)以下の温度域で5分以下の時間保持する。保持温度の下限は一旦オーステナイト単相として目的とする強度を得るためであり、保持温度の上限および保持時間の上限は、焼入れ後の旧オーステナイト粒径を10μm以下に抑制し、TSが1.8GPa以上の強度下で靱性を確保するためである。保持温度を(Ac3点+100℃)超とするか、あるいは保持時間を5分超とすると、旧オーステナイト粒径は10μm以上となり、靱性が確保できなくなる場合がある。より望ましい保持温度は、Ac3点以上、(Ac3点+50℃)以下で、より望ましい保持時間は2分以下である。なお、旧オーステナイト粒径は細粒であればあるほど好ましいので、保持時間の下限は特に規定しない。
According to the present invention, hot press forming is performed on a steel sheet having the above chemical composition, and the heating conditions (holding temperature and holding time) before hot pressing at that time are as follows.
In order to obtain the desired strength and toughness by quenching in the hot pressing process, the steel sheet to be subjected to hot pressing is held for a period of 5 minutes or less in a temperature range of Ac 3 points or more and (Ac 3 points + 100 ° C.) or less. . The lower limit of the holding temperature is to obtain the desired strength once as an austenite single phase. The upper limit of the holding temperature and the upper limit of the holding time are to suppress the prior austenite grain size after quenching to 10 μm or less, and TS is 1.8 GPa. This is to ensure toughness under the above strength. If the holding temperature exceeds (Ac 3 point + 100 ° C.) or the holding time exceeds 5 minutes, the prior austenite grain size becomes 10 μm or more and toughness may not be ensured. A more desirable holding temperature is Ac 3 point or more and (Ac 3 point + 50 ° C.) or less, and a more desirable holding time is 2 minutes or less. In addition, since the older austenite particle size is so preferable that it is a fine particle, the minimum of holding | maintenance time is not prescribed | regulated in particular.

本発明における熱間プレス成形は、使用金型も含めてそれ自体特に制限されないが、熱間プレス成形後の冷却条件及びその方法は次の通りである。
TSが1.8GPa以上の強度下で靱性を少しでも改善するためには、焼入れ後の組織を、完全マルテンサイト組織とするのではなく、自動焼き戻しマルテンサイト組織することが肝要である。この自動焼き戻しマルテンサイト組織にするためには、Ms点までは拡散変態が起きないように上部臨界冷却速度以上で冷却し、そしてMs点から150℃までの温度範囲の平均冷却速度を10〜500℃/sという冷却速度にする。Ms点から150℃までの好ましい平均冷却速度は15〜200℃/sである。
The hot press molding in the present invention is not particularly limited, including the mold used, but the cooling conditions and the method after the hot press molding are as follows.
In order to improve the toughness as much as possible under a strength of TS of 1.8 GPa or more, it is important that the quenched structure is not a complete martensite structure but an automatic tempered martensite structure. In order to obtain this automatically tempered martensite structure, cooling is performed at an upper critical cooling rate or higher so that diffusion transformation does not occur up to the Ms point, and an average cooling rate in the temperature range from the Ms point to 150 ° C. is set to 10 to 10. The cooling rate is 500 ° C./s. A preferable average cooling rate from the Ms point to 150 ° C. is 15 to 200 ° C./s.

このように、Ms点から150℃までの温度範囲の平均冷却速度は、Ms点までの冷却速度より遅くするのであるが、Ms点到達以降はマルテンサイト変態による変態発熱が非常に大きいため、Ms点以上での冷却方法と同じ冷却方法では十分な冷却速度が実現できない場合がある。このため、Ms点までの冷却よりもMs点から150℃までの冷却を強く行う必要があり、具体的には以下に述べるようにすることが好ましい。   Thus, the average cooling rate in the temperature range from the Ms point to 150 ° C. is slower than the cooling rate to the Ms point, but since the transformation heat generated by the martensitic transformation is very large after reaching the Ms point, the Ms In some cases, a sufficient cooling rate cannot be achieved by the same cooling method as the cooling method above the point. For this reason, it is necessary to perform the cooling from the Ms point to 150 ° C. more strongly than the cooling to the Ms point. Specifically, it is preferable to perform the following.

熱間プレス法では、通常、常温または数十℃程度の鋼製金型により冷却が達成される。従って、冷却速度を変化させるためには、金型寸法を変え熱容量を変化させればよい。また金型材質を異種金属(例えば銅など)に変えることでも冷却速度を変化させることができる。金型寸法を変えられない場合、水冷型の金型を用いて冷却水量を変えることによっても、冷却速度を変えることができる。また、予め溝を数カ所切った金型を用い、プレス中にその溝に水を通すことによって冷却速度を変えたり、プレス途中でプレス機を上げ、その間に水を流すことでも、冷却速度を変えることができる。さらには、金型クリアランスを変え、鋼板との接触面積を変化させることでも冷却速度を変えることができる。例えばMs点前後で冷却速度を変える手段には、次のような手段が考えられる。   In the hot pressing method, cooling is usually achieved by a steel mold at room temperature or about several tens of degrees Celsius. Therefore, in order to change the cooling rate, the heat capacity may be changed by changing the die size. The cooling rate can also be changed by changing the mold material to a different metal (for example, copper). If the mold dimensions cannot be changed, the cooling rate can also be changed by changing the amount of cooling water using a water-cooled mold. You can also change the cooling rate by using a mold that has been cut into several grooves in advance and changing the cooling speed by passing water through the groove during pressing, or by raising the press machine during the press and flowing water between them. be able to. Further, the cooling rate can be changed by changing the mold clearance and changing the contact area with the steel plate. For example, the following means can be considered as means for changing the cooling rate around the Ms point.

(1)Ms点到達直後に、熱容量の異なる金型または室温状態の金型に移動させて、冷却速度を変える;
(2)水冷金型の場合、Ms点到達直後に金型中の流水量を変化させて、冷却速度を変える;
(3)Ms点到達直後に、金型と部材の間に水を流し、その水量を変化させることで、冷却速度を変える。
(1) Immediately after reaching the Ms point, it is moved to a mold having a different heat capacity or a mold at room temperature to change the cooling rate;
(2) In the case of a water-cooled mold, the cooling rate is changed by changing the amount of flowing water in the mold immediately after reaching the Ms point;
(3) Immediately after reaching the Ms point, the cooling rate is changed by flowing water between the mold and the member and changing the amount of water.

本発明における熱間プレス法における成形の形態としては、前述のように特に制限されないが、例示すれば、曲げ加工、絞り成形、張出し成形、穴拡げ成形、フランジ成形がある。目的とする熱間プレス鋼板部材の種類によって適宜選べばよい。熱間プレス鋼板部材の代表例として、自動車用補強部品であるドアガードバーやバンパーレインフォースメントなどを挙げることができる。また、成形と同時または直後に鋼板を冷却する手段を備えていれば、プレス以外の成形法、例えばロール成形に適用してもよい。   The form of molding in the hot press method of the present invention is not particularly limited as described above, but examples include bending, drawing, stretch forming, hole expansion molding, and flange molding. What is necessary is just to select suitably according to the kind of target hot press steel plate member. Representative examples of hot-pressed steel sheet members include door guard bars and bumper reinforcements that are reinforcing parts for automobiles. Further, as long as a means for cooling the steel sheet is provided at the same time as or immediately after forming, it may be applied to a forming method other than pressing, for example, roll forming.

本発明にかかる製品は靱性をも確保することが特徴であるが、そのときの実用に耐えうる靱性としては、−120℃でのシャルピー衝撃値として30J/cm2以上であることが望ましい。 The product according to the present invention is characterized by securing toughness, but the toughness to withstand practical use at that time is preferably 30 J / cm 2 or more as the Charpy impact value at −120 ° C.

熱間プレス後は、通常、スケール除去目的でショットブラスト処理が施される。このショットブラスト処理には、表面に圧縮応力を導入する効果があるため、遅れ破壊が抑制され、また疲労強度が向上するという利点がある。   After hot pressing, shot blasting is usually performed for scale removal purposes. This shot blasting has the effect of introducing a compressive stress on the surface, so that delayed fracture is suppressed and the fatigue strength is improved.

なお、予成形を伴わない熱間プレス時には、加熱の際にオーステナイト温度域に加熱し、オーステナイト変態をさせるため、加熱前の室温での機械的性質は重要ではなく、加熱前の金属組織については特に規定しない。つまり、素地鋼板として、熱延鋼板、冷延鋼板(フルハード材、焼鈍材)、めっき鋼板のいずれを使用してもよく、その製造方法については特に限定はしない。例えばめっき鋼板には、アルミニウム系めっき鋼板や亜鉛系めっき鋼板等が挙げられる。   In addition, during hot pressing without pre-forming, the mechanical properties at room temperature before heating are not important because the austenite is heated to the austenite temperature range during heating, and the metal structure before heating is not important. Not specified. That is, any of a hot-rolled steel plate, a cold-rolled steel plate (full hard material, an annealed material), and a plated steel plate may be used as the base steel plate, and the manufacturing method is not particularly limited. For example, examples of the plated steel sheet include an aluminum-based plated steel sheet and a zinc-based plated steel sheet.

一方、予成形を伴う熱間プレス時には、鋼板の種類やその組織は限定されないが、できるだけ軟質で延性のある鋼板であることが望ましい。例えば、TSとして590MPa以下程度が望ましい。熱延鋼板における熱延巻取温度は、軟質鋼板を得るために450℃以上とし、スケールロスを減らすために700℃以下とすることが好ましい。冷延鋼板においては、軟質鋼板を得るために焼鈍を行うことが好ましく、焼鈍温度は、再結晶温度以上900℃以下が好ましい。また、焼鈍後の室温までの平均冷却速度は、上部臨界冷却速度以下であることが好ましい。   On the other hand, during hot pressing with pre-forming, the type and structure of the steel plate are not limited, but it is desirable that the steel plate be as soft and ductile as possible. For example, TS is preferably about 590 MPa or less. The hot rolling coiling temperature in the hot rolled steel sheet is preferably 450 ° C. or higher in order to obtain a soft steel plate and 700 ° C. or lower in order to reduce scale loss. In the cold-rolled steel sheet, it is preferable to perform annealing in order to obtain a soft steel sheet, and the annealing temperature is preferably a recrystallization temperature or higher and 900 ° C. or lower. Moreover, it is preferable that the average cooling rate to room temperature after annealing is below an upper critical cooling rate.

以下に本発明の実施例について説明する。
表1に示した化学組成を有する鋼板(板厚:1.6mm)を素地鋼板とした。これらの鋼板は、実験室にて溶製したスラブを、熱間圧延、冷間圧延により製造した鋼板である。さらに、めっきシミュレーターを用いて、鋼種No.1にはAlめっき(片面あたりのめっき付着量は120g/m2)、No.2には溶融亜鉛めっき(片面あたりのめっき付着量は60g/m2)を施した。さらに、No.2には合金化処理(めっき皮膜中のFe含有量は15質量%)を行った。めっきシミュレーターにおける焼鈍温度は、800℃であり、800℃からMs点までの平均冷却速度は5℃/sあった。No.1、No.2以外の鋼板は、冷間圧延まま(フルハード)で以下の試験に供した。
Examples of the present invention will be described below.
A steel plate (plate thickness: 1.6 mm) having the chemical composition shown in Table 1 was used as the base steel plate. These steel plates are steel plates manufactured by hot rolling and cold rolling of a slab melted in a laboratory. Furthermore, using a plating simulator, steel plate No. 1 has Al plating (plating adhesion amount on one side is 120 g / m 2 ), and No. 2 has hot dip galvanization (plating adhesion amount on one side is 60 g / m 2). ). Furthermore, No. 2 was alloyed (Fe content in the plating film was 15% by mass). The annealing temperature in the plating simulator was 800 ° C., and the average cooling rate from 800 ° C. to the Ms point was 5 ° C./s. Steel plates other than No. 1 and No. 2 were subjected to the following tests as they were cold-rolled (full hard).

これらの鋼板を、1.6t×100w×200L(mm)の寸法に切断し、大気雰囲気の加熱炉内で、表1の条件にて加熱して、加熱炉より取り出し、その直後に平板の鋼製金型を用いて、熱間プレスを行った。保持時間とは、炉に装入後Ac3点に達した時から、炉から取り出すまでの時間をいう。また鋼板に熱電対を貼付し、冷却速度測定も行った。 These steel plates are cut into dimensions of 1.6 t × 100 w × 200 L (mm), heated in a heating furnace in the air atmosphere under the conditions shown in Table 1, and taken out from the heating furnace. Hot pressing was performed using a metal mold. The holding time refers to the time from when the Ac 3 point is reached after charging into the furnace to when it is removed from the furnace. A thermocouple was attached to the steel plate, and the cooling rate was also measured.

得られた熱間プレス部材については、切断法による旧オーステナイト粒径測定、引張試験(JIS5号試験片)に供した。
また1.6tの鋼板を6枚積層してネジ止めした後、Vノッチ試験片を作製し、シャルピー衝撃試験に供した。靱性評価としては、−120℃での衝撃値が30J/cm2以上となる場合に合格として○とした。それに達しないのは「×」とした。
About the obtained hot press member, it used for the prior austenite particle size measurement by a cutting method, and a tensile test (JIS No. 5 test piece).
Moreover, after stacking six 1.6-t steel plates and screwing them, V-notch test pieces were prepared and subjected to a Charpy impact test. As toughness evaluation, when the impact value at −120 ° C. is 30 J / cm 2 or more, the result is “good”. If it did not reach that, it was marked “x”.

各鋼種のAc3点、Ms点及び上部臨界冷却速度は、次記方法にて測定した。すなわち、熱延鋼板から直径3.0mm、長さ10mmの円柱試験片(図1)を切り出し、大気中で900℃まで10℃/sの昇温速度にて加熱し、その温度で5分間保持したのち、種々の冷却速度で室温まで冷却した。そのときの加熱、冷却中の試験片の熱膨張変化を測定することにより、Ac3点、Ms点を測定した。また、得られた試験片のビッカース硬度測定(荷重49N、測定数:3)及び組織観察を行い、それらの結果から上部臨界冷却速度を見積もった。 The Ac 3 point, Ms point, and upper critical cooling rate of each steel type were measured by the following methods. That is, a cylindrical test piece (FIG. 1) having a diameter of 3.0 mm and a length of 10 mm was cut out from a hot-rolled steel sheet, heated to 900 ° C. at a heating rate of 10 ° C./s, and held at that temperature for 5 minutes. After that, it was cooled to room temperature at various cooling rates. The Ac 3 point and Ms point were measured by measuring the thermal expansion change of the test piece during heating and cooling at that time. Moreover, the Vickers hardness measurement (load 49N, the number of measurements: 3) and structure | tissue observation of the obtained test piece were performed, and the upper critical cooling rate was estimated from those results.

これらの結果は、表2に示す。
本発明例である鋼種No.1〜13は、引張強さが1.8GPa以上でかつ靱性値も良好であることがわかる。一方、比較例である鋼種No.14及び15は、本発明範囲を満足しないため、靱性値が不芳である。
These results are shown in Table 2.
It can be seen that the steel types Nos. 1 to 13 as examples of the present invention have a tensile strength of 1.8 GPa or more and a good toughness value. On the other hand, steel types Nos. 14 and 15 as comparative examples do not satisfy the scope of the present invention, and therefore have poor toughness values.

本発明例として、鋼種No.2の鋼板について、大気雰囲気の加熱炉内で900℃到達後、1分保持して、加熱炉より取り出し、ハット型の熱間プレス成形(ブランクサイズ:1.0t×80w×320Lmm)を行った。図2は、ハット成形法の模式的説明図である。このときの熱間プレス成形条件は、成形高さ70mm、Rd(ダイス肩部R)8mm、Rp(パンチ肩部R)8mm、クリアランス1.0mm、しわ押さえ力12.7kNとした。   As an example of the present invention, a steel plate of steel type No. 2 reached 900 ° C. in a heating furnace in an atmospheric atmosphere, held for 1 minute, taken out from the heating furnace, and hot-pressed with a hat type (blank size: 1.0 t) × 80 w × 320 Lmm). FIG. 2 is a schematic explanatory view of the hat forming method. The hot press molding conditions at this time were a molding height of 70 mm, Rd (die shoulder R) 8 mm, Rp (punch shoulder R) 8 mm, clearance 1.0 mm, and wrinkle holding force 12.7 kN.

このハット成形品に対して、低温衝撃試験を行った。部材を−40℃に冷却した後、高さ1000mmより重さ2450N(250kgf)の錘体を部材に衝突させ、割れの有無を調査した。その結果、割れ発生がなく、十分な靱性を有していることが判明した。   The hat molded product was subjected to a low temperature impact test. After cooling the member to −40 ° C., a weight body having a weight of 2450 N (250 kgf) from a height of 1000 mm was collided with the member, and the presence or absence of cracks was investigated. As a result, it was found that there was no occurrence of cracking and sufficient toughness.

Figure 2010024551
Figure 2010024551

Figure 2010024551
Figure 2010024551

Claims (6)

質量%で、C:0.25〜0.45%、Mn+Cr:0.5〜3.0%およびNb:0.04〜1.0%を含有し、さらにSi:0.5%以下、Ni:2%以下、Cu:1%以下、V:1%以下およびAl:1%以下の1種または2種以上を含有し、残部Fe及び不純物からなる化学組成を有する引張強さが1.8GPa以上の熱間プレス鋼板部材用鋼板。   In mass%, C: 0.25-0.45%, Mn + Cr: 0.5-3.0% and Nb: 0.04-1.0%, Si: 0.5% or less, Ni : 2% or less, Cu: 1% or less, V: 1% or less, and Al: 1% or less, containing one or more kinds, and having a tensile strength of 1.8 GPa having a chemical composition composed of the remaining Fe and impurities A steel sheet for hot-pressed steel sheets as described above. 前記化学組成が、Feの一部に代えて、質量%で、B:0.01%以下を含有する、請求項1に記載の熱間プレス用鋼板。   The steel sheet for hot press according to claim 1, wherein the chemical composition contains B: 0.01% or less in mass% instead of part of Fe. 前記化学組成が、Feの一部に代えて、質量%で、Mo:1.0%以下を含有する、請求項1または2に記載の熱間プレス用鋼板。   The steel sheet for hot press according to claim 1 or 2, wherein the chemical composition contains Mo: 1.0% or less in mass% instead of part of Fe. 前記化学組成が、Feの一部に代えて、下記式(1)を満たす量のTiを含有する、請求項1〜3のいずれかに記載の熱間プレス用鋼板。
3.42N+0.001≦Ti≦3.42N+0.5 (1)
ここで、式中のTiおよびNは鋼中の各元素の含有量(単位:質量%)を示す。
The steel sheet for hot press according to any one of claims 1 to 3, wherein the chemical composition contains Ti in an amount satisfying the following formula (1) instead of a part of Fe.
3.42N + 0.001 ≦ Ti ≦ 3.42N + 0.5 (1)
Here, Ti and N in a formula show content (unit: mass%) of each element in steel.
前記化学組成が、Feの一部に代えて、質量%で、Ca:0.001〜0.005%を含有する、請求項1〜4のいずれかに記載の熱間プレス用鋼板。   The steel sheet for hot press according to any one of claims 1 to 4, wherein the chemical composition contains Ca: 0.001 to 0.005% in mass% instead of part of Fe. 前記化学組成が、不純物であるP、SおよびNの1種または2種以上を、質量%で、P:0.005%以下、S:0.005%以下およびN:0.002%以下の1条件または2条件以上を満足するものであることを特徴とする請求項1〜5のいずれかに記載の熱間プレス用鋼板。   The chemical composition is one or more of P, S and N which are impurities, in mass%, P: 0.005% or less, S: 0.005% or less and N: 0.002% or less. The steel sheet for hot pressing according to any one of claims 1 to 5, which satisfies one condition or two conditions or more.
JP2009246712A 2004-10-29 2009-10-27 Steel sheet for hot press Active JP5177119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246712A JP5177119B2 (en) 2004-10-29 2009-10-27 Steel sheet for hot press

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004316336 2004-10-29
JP2004316336 2004-10-29
JP2009246712A JP5177119B2 (en) 2004-10-29 2009-10-27 Steel sheet for hot press

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005065541A Division JP4513608B2 (en) 2004-10-29 2005-03-09 Hot-pressed steel sheet member and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010024551A true JP2010024551A (en) 2010-02-04
JP5177119B2 JP5177119B2 (en) 2013-04-03

Family

ID=41730637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246712A Active JP5177119B2 (en) 2004-10-29 2009-10-27 Steel sheet for hot press

Country Status (1)

Country Link
JP (1) JP5177119B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007129676A1 (en) * 2006-05-10 2009-09-17 住友金属工業株式会社 Hot press-formed steel sheet member and manufacturing method thereof
JP2013040390A (en) * 2011-08-18 2013-02-28 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot-pressed member
JP2013079441A (en) * 2011-06-10 2013-05-02 Kobe Steel Ltd Hot press molded article, method for producing the same, and thin steel sheet for hot press molding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512373B2 (en) 2019-03-20 2022-11-29 Nippon Steel Corporation Hot-stamping formed body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147499A (en) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd Steel sheet for hot press, and production method therefor
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007129676A1 (en) * 2006-05-10 2009-09-17 住友金属工業株式会社 Hot press-formed steel sheet member and manufacturing method thereof
JP5176954B2 (en) * 2006-05-10 2013-04-03 新日鐵住金株式会社 Steel sheet for hot pressed steel sheet member and method for producing hot pressed steel sheet
JP2013079441A (en) * 2011-06-10 2013-05-02 Kobe Steel Ltd Hot press molded article, method for producing the same, and thin steel sheet for hot press molding
JP2013040390A (en) * 2011-08-18 2013-02-28 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot-pressed member

Also Published As

Publication number Publication date
JP5177119B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP4513608B2 (en) Hot-pressed steel sheet member and its manufacturing method
JP5387720B2 (en) Hot-pressed steel plate member, hot-pressed steel plate member, and method for producing them
JP6428970B1 (en) Hot-pressed member and manufacturing method thereof
JP6237884B2 (en) High strength hot-formed steel sheet
JP6315087B2 (en) Hot forming steel plate
JP5521818B2 (en) Steel material and manufacturing method thereof
WO2019208556A1 (en) Steel member and method for producing same
JP6380658B2 (en) Steel plate for heat treatment
JP5585623B2 (en) Hot-formed steel plate member and manufacturing method thereof
WO2004106573A1 (en) Method for hot forming and hot formed member
CN114438418A (en) Hot-formed member and method for manufacturing same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP7277836B2 (en) hot stamped body
JP7277837B2 (en) hot stamped body
JP2008308732A (en) Hardened steel plate member, steel plate for hardening, and their manufacturing methods
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JP5177119B2 (en) Steel sheet for hot press
KR20200108067A (en) High carbon cold rolled steel sheet and manufacturing method thereof
JP7067578B2 (en) Manufacturing method of steel plate and steel plate and members
JP6801823B1 (en) Hot pressed member and its manufacturing method, and manufacturing method of steel sheet for hot pressed member
WO2023199776A1 (en) Hot stamp molded body
TWI513829B (en) A hot-pressed steel sheet member, a method for manufacturing the same, and a steel sheet for hot pressing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R151 Written notification of patent or utility model registration

Ref document number: 5177119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160118

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350