JP2004270029A - Galvanized steel sheet excellent in zinc volatility resistance - Google Patents

Galvanized steel sheet excellent in zinc volatility resistance Download PDF

Info

Publication number
JP2004270029A
JP2004270029A JP2004005101A JP2004005101A JP2004270029A JP 2004270029 A JP2004270029 A JP 2004270029A JP 2004005101 A JP2004005101 A JP 2004005101A JP 2004005101 A JP2004005101 A JP 2004005101A JP 2004270029 A JP2004270029 A JP 2004270029A
Authority
JP
Japan
Prior art keywords
steel sheet
zinc
plating
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004005101A
Other languages
Japanese (ja)
Inventor
Shinichi Suzuki
眞一 鈴木
Masaaki Mizutani
政昭 水谷
Itsuro Hiroshige
逸朗 弘重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004005101A priority Critical patent/JP2004270029A/en
Publication of JP2004270029A publication Critical patent/JP2004270029A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet excellent in surface characteristic (corrosion resistance) and zinc volatile resistance with which the volatilization of zinc can be prevented, even in the case of performing a hot-working (hot press) and quenching after working. <P>SOLUTION: The galvanized steel sheet is obtained by forming the plating layer containing ≥ 60 mass% Zn and ≥ 40g/m<SP>2</SP>Zn quantity on the surface of the steel sheet containing, by mass%, 0.01-0.30% C, 0.005-1.0% Si, 0.01-3.0% Mn, 0.005-0.10% P, ≤ 0.02% S, 0.010-0.500% Al and 0.001-0.01% N. In this galvanized layer, a standard generating free energy variation (ΔG<SP>O</SP>) of oxide is smaller than a standard generating free energy variation (ΔG<SP>O</SP><SB>Zn</SB>) of ZnO at the same temperature at ≤ 1,000°C, and the total element quantity except alkali metal is contained at ≥0.25 mol/m<SP>2</SP>. In this way, a film of these elements is formed on the galvanized surface during heating and thus, the volatilization of the zinc can be restrained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、高強度化及び耐食性向上を目的とした、耐亜鉛揮発性に優れた亜鉛系めっき鋼板に関するものである。なお本明細書において「鋼板」の語は、鋼板から製造された鋼管をも含むものとする。   The present invention relates to a galvanized steel sheet having excellent zinc volatility for the purpose of increasing strength and improving corrosion resistance. In this specification, the term "steel plate" includes a steel pipe manufactured from a steel plate.

近年、自動車の軽量化や安全性向上を目的として、自動車部品およびそれに使用される素材の高強度化が進められており、その代表的な素材である鋼板(鋼管を含む)も、高強度鋼板の使用比率が高まってきている。しかしながら、高強度鋼板は一般に高強度で硬いが故に、室温における加工に限界があり、加工金型の寿命が短くなる等の課題を有していた。   In recent years, for the purpose of reducing the weight and improving safety of automobiles, the strength of automobile parts and the materials used for them has been increased, and steel sheets (including steel pipes), which are representative materials, are also made of high-strength steel sheets. Is increasing. However, since high-strength steel sheets are generally high-strength and hard, there is a limit to processing at room temperature, and there have been problems such as shortening the life of a processing die.

これらの課題を解決するために鋼材からの改善も進められてきているが、近年、より一層の高強度部品を効率的に低コストで製造することを目的として、鋼板を800℃以上に加熱し柔らかくして加工し、同時に急速冷却して焼き入れ、非常に高強度の部品とする「熱間加工(ホットプレス)技術」や、室温での加工が可能な程度の(中)強度に造り込んでおいた鋼材を予め室温で加工し、その後に800℃以上に加熱してから急速に冷却し焼き入れ、非常に高強度の部品とする「加工後焼入れ技術」が、工業技術として使用されるようになってきた。   Improvements from steel materials have been promoted to solve these problems, but in recent years, steel sheets have been heated to 800 ° C or higher with the aim of producing even higher strength parts efficiently and at low cost. It is softened and processed at the same time as it is rapidly cooled and quenched to create a part with extremely high strength. "Pre-processing quenching technology" is used as an industrial technology in which pre-processed steel material is processed at room temperature in advance, then heated to 800 ° C or more, then rapidly cooled and quenched to obtain extremely high strength parts. It has become.

一方、自動車に代表される産業機械には、使用環境における耐食性が必要十分なため、コスト面で優れる亜鉛系めっき鋼板が広く使用されている。しかしながら、亜鉛の蒸気圧は200mmHg:788℃、400mmHg:844℃、760mmHg:907℃と低温度で大きいため、亜鉛系めっき鋼板を熱間加工しようとすると加温時に亜鉛が揮発するという問題がある。そこで特許文献1に記載されるように熱間加工用にはアルミめっき鋼板を使用しているのが現状であるが、耐食性やコスト面で満足できないものがあった。
特開2000−38640号公報
On the other hand, zinc-plated steel sheets, which are excellent in cost, are widely used for industrial machines typified by automobiles because corrosion resistance in a use environment is necessary and sufficient. However, since the vapor pressure of zinc is large at low temperatures of 200 mmHg: 788 ° C, 400 mmHg: 844 ° C, and 760 mmHg: 907 ° C, there is a problem that when hot working zinc-coated steel sheets, zinc is volatilized when heated. . Therefore, as described in Patent Document 1, aluminum-plated steel sheets are used for hot working at present, but there are some which are not satisfactory in terms of corrosion resistance and cost.
JP 2000-38640 A

本発明は上記した従来の問題点を解決し、「熱間加工(ホットプレス)」や「加工後焼入れ」を行った場合にも亜鉛の揮発を防止することができ、表面性状(耐食性)に優れた耐亜鉛揮発性に優れた亜鉛系めっき鋼板を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, and can prevent the volatilization of zinc even when “hot working (hot pressing)” or “hardening after working” is performed, thereby improving the surface properties (corrosion resistance). The purpose of the present invention is to provide a zinc-coated steel sheet having excellent zinc volatility.

上記の課題を解決するためになされた本発明は、1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素を1種または2種以上Znめっき中に含有し、その元素合計の含有量が0.25mol/m2以上で、めっき層のZnが質量%で60%以上、Zn量が40g/m2以上であり、鋼板の組成が質量%にて、C:0.01〜0.30 %、Si:0.005〜1.0 %、Mn:0.01〜3.0 %、P:0.005〜0.10 %、S:≦0.02 %、Al:0.010〜0.500%、N:0.001〜0.01 %を含有することを特徴とするものである。なお鋼板の成分元素として、質量%にて、B:2〜100ppm、Cr:0.02〜0.500 %、Mo:0.001〜0.500 %、Ni:0.001〜1.000%を含有することことが好ましく、さらに鋼板の成分元素として、質量%にて、Nb:0.005〜0.100%,V:0.005〜0.100%,Ti:0.005〜0.100%,Zr:0.005〜0.100%の中から選ばれた1種または2種以上を含有することが好ましい。 The present invention the assignment was made for solving of, at 1000 ° C. or less, the standard free energy change of the oxides at the same temperature than the standard free energy change of ZnO (△ G 0 Zn) ( △ G 0) Is small, and contains one or more elements other than alkali metals in Zn plating, the total content of the elements is 0.25 mol / m 2 or more, and Zn in the plating layer is 60% or more by mass%, The Zn content is 40 g / m 2 or more, and the composition of the steel sheet is, in mass%, C: 0.01 to 0.30%, Si: 0.005 to 1.0%, Mn: 0.01 to 3.0%, P: 0.005 to 0.10%, S: ≦ 0.02%, Al: 0.010 to 0.500%, N: 0.001 to 0.01%. In addition, it is preferable to contain B: 2 to 100 ppm, Cr: 0.02 to 0.500%, Mo: 0.001 to 0.500%, and Ni: 0.001 to 1.000% by mass% as a component element of the steel sheet. As an element, one or more elements selected from Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, Ti: 0.005 to 0.100%, Zr: 0.005 to 0.100% by mass% are contained. Is preferred.

また、1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素をZnめっき中に含有し、その元素のめっき含有量が15%以下であることが好ましく、1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素および、Zn以外の元素のZnめっき層中の含有率が質量%で5%以下であることが好ましい。さらに、上記した亜鉛系めっき鋼板の表面に、Ni,Co,Feを質量%で80%以上含有するめっきを、1g/m2以上10g/m2以下施すことができる。 Also, at 1000 ° C. or less, the standard free energy change of the oxides at the same temperature than the standard free energy change of ZnO (△ G 0 Zn) ( △ G 0) is small, and Zn plating elements except for alkali metal It is preferable that the plating content of the element is not more than 15%, and the standard free formation of oxide at the same temperature is not more than 1000 ° C. and the change in standard free energy of formation of ZnO (ΔG 0 Zn ). It is preferable that the energy change (ΔG 0 ) is small, and the content of elements other than alkali metal and elements other than Zn in the Zn plating layer is 5% or less by mass%. Further, the surface of the galvanized steel sheet as described above, Ni, Co, a plating containing 80% or more of Fe in mass%, it is possible to perform 1 g / m 2 or more 10 g / m 2 or less.

本発明の耐亜鉛揮発性に優れた亜鉛系めっき鋼板は、熱間加工や加工後焼入れを行った場合にも亜鉛の揮発を防止することができるので、従来から自動車や産業機械などで使われている防錆鋼板の亜鉛系めっきの使い勝手、性能にて、これらの材料の高強度化を部品の寸法精度良く飛躍的に図ることができる。このため、自動車、産業機械の軽量化、安全性向上、防錆向上を有利な価格で推し進めることに大きく貢献することができ、産業上の寄与は大きい。   The galvanized steel sheet having excellent zinc volatility resistance of the present invention can prevent the volatilization of zinc even in the case of hot working or quenching after working, so that it is conventionally used in automobiles and industrial machines. With the ease of use and performance of zinc-based plating of rust-proof steel sheets, the strength of these materials can be dramatically increased with high dimensional accuracy of parts. For this reason, it can greatly contribute to promoting weight reduction, safety improvement, and rust prevention of automobiles and industrial machines at an advantageous price, and the industrial contribution is great.

本発明者は、まず熱間加工での亜鉛の揮発を抑制することの重要性に鑑み、亜鉛の揮発を抑制するには、加熱時の急激な温度変化にも追従して被覆可能であり、かつ十分に沸点が高い皮膜を亜鉛系めっき層の表面に形成すればよいと考えた。そして鋭意検討の結果、1000℃以下でZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、かつアルカリ金属を除く元素を亜鉛めっき層中に含有させ、その元素の含有量を0.25mol/m2以上とすることで、この課題を解決できることを見出した。 The present inventor first considers the importance of suppressing the volatilization of zinc in hot working, and in order to suppress the volatilization of zinc, it is possible to coat even following a rapid temperature change during heating, In addition, it was considered that a film having a sufficiently high boiling point should be formed on the surface of the zinc-based plating layer. As a result of an intensive study, it was found that the elemental change in the standard free energy of formation (△ G 0 ) of the oxide at the same temperature is smaller than the change in the standard free energy of formation (OG 0 Zn ) of ZnO below 1000 ° C. It has been found that this problem can be solved by including in a zinc plating layer and setting the content of the element to 0.25 mol / m 2 or more.

つまり、亜鉛めっきに最初から皮膜を形成すると加熱時の伸び率の違いにより皮膜に欠損を生じ亜鉛が揮発するが、亜鉛メッキ中に亜鉛より酸化し易く、かつ酸化物の沸点が十分高い元素(アルカリ金属以外)を含有させると、加熱中に亜鉛めっき表面でこれら元素が酸化され皮膜を形成する。この皮膜は加熱中に亜鉛めっき表面で形成されるので、熱膨張、収縮などで皮膜に欠損を生じても再形成が可能であり、亜鉛の揮発を抑制することができる。このような効果はめっき表面積当りのこれら易酸化元素の量で決まり、元素合計の含有量が0.25mol/m2以上であれば効果は十分である。めっき層中のZnが質量%で60%未満の場合には後述の十分に沸点が高い皮膜をめっき層の表面に形成することが難しく、又Zn 量が40g/ m2未満では耐食性が不十分となり、自動車等の用途では望ましくない。1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く易酸化性元素の例としては、Mg,Al,Si,Ca,Ti,Zr,およびLa,Ceなどの希土類元素がある。 In other words, if a film is formed from the beginning on zinc plating, the film will be deficient due to the difference in elongation at the time of heating and zinc will be volatilized, but elements that are more easily oxidized than zinc and have a sufficiently high boiling point of oxide during zinc plating ( If an alkali metal (other than an alkali metal) is contained, these elements are oxidized on the zinc plating surface during heating to form a film. Since this film is formed on the galvanized surface during heating, it can be re-formed even if a defect occurs in the film due to thermal expansion, shrinkage, etc., and the volatilization of zinc can be suppressed. Such an effect is determined by the amount of these easily oxidizable elements per plating surface area, and the effect is sufficient if the total content of the elements is 0.25 mol / m 2 or more. When Zn in the plating layer is less than 60% by mass%, it is difficult to form a film having a sufficiently high boiling point on the surface of the plating layer as described later, and when the Zn content is less than 40 g / m 2 , the corrosion resistance is insufficient. Which is not desirable in applications such as automobiles. An example of an easily oxidizable element excluding an alkali metal, in which the standard change in free energy of formation (△ G 0 ) of an oxide at the same temperature is smaller than that of ZnO (自由 G 0 Zn ) at 1000 ° C. or less Examples include rare earth elements such as Mg, Al, Si, Ca, Ti, Zr, and La and Ce.

次に鋼種について述べる。
本発明は亜鉛系めっきにおいて、熱間加工での焼き入れによって強度を得るものであるから、鋼板の組成が質量%にて、C:0.01〜0.30 %、Si:0.005〜1.5 %、Mn:0.01〜3.0 %、P:0.005〜0.10 %、S:≦0.02 %、Al:0.010〜0.500%、N:0.001〜0.01 %であることが必要で、その理由は以下のとおりである。
Next, steel types will be described.
Since the present invention obtains strength by quenching in hot working in zinc-based plating, the composition of the steel sheet is 0.01 to 0.30%, Si: 0.005 to 1.5%, and Mn: 0.01% by mass. ~ 3.0%, P: 0.005 ~ 0.10%, S: ≤0.02%, Al: 0.010 ~ 0.500%, N: 0.001 ~ 0.01%, for the following reasons.

まず、Cは、 0.01%未満であると、熱処理後に必要な十分な強度が確保できない。また、0.30%を超えると、硬度が高くなりすぎ、プレス加工性が悪化するため、0.01〜0.30%とした。Siは、0.005 %未満にしようとすると、熱処理後に必要な十分な強度が確保できず、また、製鋼でのコストアップになる。また、1.0%以下としたのは、それを超えると、亜鉛めっきのめっき濡れ性が低下し、めっき外観が低下する。   First, if C is less than 0.01%, sufficient strength required after heat treatment cannot be secured. On the other hand, if it exceeds 0.30%, the hardness becomes too high and the press workability deteriorates. If the content of Si is less than 0.005%, sufficient strength required after the heat treatment cannot be secured, and the cost in steelmaking increases. Further, when the content is set to 1.0% or less, if it exceeds this, the plating wettability of zinc plating is reduced, and the plating appearance is reduced.

Mnを、 0.01 %以上としたのは、それ未満だと熱処理後に必要な十分な強度が確保できないからである。3.0%以下としたのは、それを超えるとMnが鋼の強化元素であり、強度が高くなり、加工性を損なうためである。Pを、0.005 %未満としようとすると、製鋼でのコストアップになり、また、熱処理後に必要な十分な強度が確保できないからである。また、0.10 %以下としたのは、Pが少量でも鋼の強化元素であり、強度が高くなり、加工性を損なうためであり、しかも、Pは結晶粒界に濃化して、粒界脆化を起こしやすい元素であり、それを超えて添加することは加工性を損なうためである。   The reason why Mn is set to 0.01% or more is that if it is less than 0.01%, sufficient strength required after heat treatment cannot be secured. The reason for setting the content to 3.0% or less is that if it exceeds this value, Mn is a strengthening element of steel, and the strength is increased and workability is impaired. If the content of P is less than 0.005%, the cost of steelmaking is increased, and a sufficient strength required after the heat treatment cannot be secured. The content of 0.10% or less is because even a small amount of P is a strengthening element for steel and increases the strength and impairs the workability. In addition, P is concentrated at the crystal grain boundaries and the grain boundaries become brittle. Is an element that is liable to cause cracking, and if added in excess of this, workability is impaired.

Sを、0.02 %以下としたのは、Sは不純物であり、多すぎると熱間圧延時の割れを引き起こすばかりでなく、平均ランクフォード値の劣化を起こすので極力低減させるべきであるが、製鋼コストも考慮すると、0.02%以下が許容範囲となる。Alは溶鋼の脱酸材として有用な元素である。この効果を得るためには、少なくとも0.010%の含有量が必要である。しかし、含有量が0.500%を越えると鋼の清浄度が損なわれるとともに、表面疵が生じ易くなるので、0.500%を含有の上限とする。Nは、0.001%未満としようとすると、製鋼でのコストアップになる。また、0.01%以下としたのは、それを超えて添加すれば、Nによる時効が生じ、遅時効性が劣化する。   The reason why S is set to 0.02% or less is that S is an impurity, and if it is too much, it not only causes cracking at the time of hot rolling, but also deteriorates the average Rankford value, so it should be reduced as much as possible. Considering the cost, the allowable range is 0.02% or less. Al is an element useful as a deoxidizer for molten steel. To obtain this effect, a content of at least 0.010% is required. However, if the content exceeds 0.500%, the cleanliness of the steel is impaired and surface flaws are likely to occur, so the upper limit of the content is 0.500%. If N is set to less than 0.001%, the cost for steelmaking increases. The content of 0.01% or less means that if added in excess of that, aging due to N will occur and the delayed aging will deteriorate.

さらに、鋼成分のB,Cr,Mo,Niの1種または2種以上を質量%にて、B:2〜100ppm、Cr:0.02〜0.500 %、Mo:0.001〜0.500 %、Ni:0.001〜1.000%の範囲にすることで、加熱後の冷却時に緩やかな冷却を行っても、特段に焼き入れ性を向上し、熱間加工後の焼く入れで、大きく高強度化できる。   Further, one or more of the steel components B, Cr, Mo, and Ni are expressed in mass%, B: 2 to 100 ppm, Cr: 0.02 to 0.500%, Mo: 0.001 to 0.500%, Ni: 0.001 to 1.000. In the range of%, even if gradual cooling is performed at the time of cooling after heating, the hardenability is particularly improved, and the strength can be greatly increased by quenching after hot working.

Bは、2ppm以上で焼き入れによる強度上昇効果を発揮し、100ppm以上では焼き入れによる強度上昇効果が飽和し、コストアップとなる。Cr は、 0.02 %未満では熱処理後に必要な十分な強度が確保できないためである。また、上限を0.500 %としたのはそれを超えるとCrが鋼の強化元素であり、強度が高くなりすぎ、加工性を損なうためであり、熱処理後の強度上昇性能も飽和してしまうためで、コスト的にも高価で経済的に不利になるためである。   B exhibits an effect of increasing the strength by quenching at 2 ppm or more, and saturates the effect of quenching at 100 ppm or more, resulting in an increase in cost. If Cr is less than 0.02%, sufficient strength required after heat treatment cannot be secured. Further, the upper limit is set to 0.500%, because if it exceeds that, Cr is a strengthening element of steel, and the strength becomes too high, impairing the workability, and the strength increasing performance after heat treatment is saturated. This is because the cost is high and it is economically disadvantageous.

Mo は、: 0.001 %未満では熱処理後に必要な十分な強度が確保できないためである。また、上限を0.500 %としたのはそれを超えるとMoが鋼の強化元素であり、強度が高くなりすぎ、加工性を損なうためであり、また、高価で経済的に不利になるためである。Ni は、 0.001 %未満では熱処理後に必要な十分な強度が確保できないためである。また、上限を1.000 %としたのはそれを超えると強度が高くなりすぎ、加工性を損なうためであり、熱処理後の強度上昇性能も飽和してしまうためで、コスト的にも高価で経済的に不利になるためである。   Mo: If less than 0.001%, sufficient strength required after heat treatment cannot be secured. Further, the upper limit is set to 0.500% because Mo is a strengthening element of steel when it exceeds this, because the strength becomes too high and the workability is impaired, and it is expensive and economically disadvantageous. . If Ni is less than 0.001%, sufficient strength required after heat treatment cannot be secured. Further, the upper limit is set to 1.000%, because if it exceeds this, the strength becomes too high and the workability is impaired, and the strength increasing performance after the heat treatment is saturated. Because it is disadvantageous to

Nb,V,Ti,Zr等の元素は、いずれも安定な炭窒化物を形成し、焼き入れ時の800℃以上の加熱において結晶粒の粗大化を抑制し、靭性の劣化を防止する等の有効な作用を呈する。このような作用を得るには、0.005%以上の含有量が必要となる。含有量が0.100%を越えると粗大な炭窒化物を形成し、逆に靭性の低下を招くこととなるため、それぞれの含有量の上限は0.100%とする。   Elements such as Nb, V, Ti, and Zr all form stable carbonitrides, suppress crystal grain coarsening during heating at 800 ° C or higher during quenching, and prevent deterioration of toughness. It has an effective action. To obtain such an effect, a content of 0.005% or more is required. If the content exceeds 0.100%, coarse carbonitrides are formed, and on the contrary, the toughness is reduced. Therefore, the upper limit of each content is set to 0.100%.

酸化に預からないこれら元素はZnとの合金を形成する一方、加熱時に地鉄から拡散されるFeとの合金を形成し易い性質があることを見出した。亜鉛系めっき鋼板の耐食性をより効果的に発揮するには、加熱後の鉄濃度が質量%で50%以下であることが望ましい。これら易酸化性元素が質量%で15%超では鉄の拡散が大きくなり、耐食性確保には多大な厚めっきのZnめっきが必要となることから、質量%で15%以下であることが望ましい。   It has been found that these elements which are not included in the oxidation form an alloy with Zn, but have a property of easily forming an alloy with Fe diffused from the base iron at the time of heating. In order to more effectively exhibit the corrosion resistance of the galvanized steel sheet, the iron concentration after heating is desirably 50% by mass or less. If the content of these easily oxidizable elements exceeds 15% by mass, the diffusion of iron becomes large, and a large thickness of Zn plating is required to secure corrosion resistance. Therefore, it is desirable that the mass% be 15% or less.

Znおよび易酸化性元素以外の元素との合金は、易酸化性元素の表面への拡散を阻害するので、易酸化性元素の酸化皮膜形成による亜鉛揮発抑制の効果を少ない易酸化性元素で得るには質量%で5%以下が望ましい。   Alloys with elements other than Zn and oxidizable elements hinder the diffusion of oxidizable elements to the surface, so the effect of suppressing the volatilization of zinc by forming an oxide film of oxidizable elements can be obtained with less oxidizable elements. Is preferably 5% by mass or less.

なお、亜鉛系めっきは融点が低く、加熱炉内での鋼板の移送での融着抑制が必要であるが、本方法には炉内研削装置など装置面での対応も可能ではあるが、Ni,Co,Feを質量%で80%以上含有するめっきを、1g/m2以上10g/m2以下施すことで、加温時にめっき層表面より合金化させ、Znの融点を上昇させ加熱炉内でのハンドリングをより有利にすることができる。上記めっき量は、下層の亜鉛めっき量にもよるが、1g/m2以上から効果があり、10g/m2を超えると融着抑制効果が飽和し、むしろ易酸化元素による皮膜形成効果を阻害しZnの揮発を促す。 In addition, zinc-based plating has a low melting point, and it is necessary to suppress fusion by transferring a steel sheet in a heating furnace.However, this method can be applied to equipment such as an in-furnace grinding device. By applying a plating containing 80% or more by mass of Co, Co and Fe in an amount of 1 g / m 2 or more and 10 g / m 2 or less, it alloys from the plating layer surface during heating, raises the melting point of Zn, and Handling can be made more advantageous. The above-mentioned plating amount depends on the amount of zinc plating of the lower layer, but the effect is from 1 g / m 2 or more, and if it exceeds 10 g / m 2 , the effect of suppressing fusion is saturated, and the film forming effect by the easily oxidizable element is rather hindered. And promotes the volatilization of Zn.

さらに本発明の亜鉛系めっき鋼板の表面に、必要に応じて、珪酸塩類や燐酸塩類、クロム酸化物類の処理を施し、めっきの亜鉛の揮発抑制の補助手段とすることや、耐食性、塗装密着性、プレス成形性、溶接性などの向上を図ることは、本発明の範囲を逸脱するものではない。またさらに、本発明で適用される鋼板は、通常の製法で製造される冷延鋼板、および熱延鋼板であって、粗度など製法の違いによりその効果が大きく変わるものではない。   Further, the surface of the zinc-based plated steel sheet of the present invention may be treated with silicates, phosphates, and chromium oxides, as necessary, to serve as an auxiliary means for suppressing the volatilization of zinc in the plating, and to provide corrosion resistance and paint adhesion. Attempts to improve the formability, press formability, weldability, etc. do not depart from the scope of the present invention. Still further, the steel sheet applied in the present invention is a cold-rolled steel sheet and a hot-rolled steel sheet manufactured by a normal manufacturing method, and the effect thereof does not largely change depending on a manufacturing method such as roughness.

本発明の亜鉛系めっき鋼鈑は、熱間加工された場合にも亜鉛の揮発を防止できることはもちろん、冷間加工後に焼き入れを行う場合にも亜鉛の揮発を防止することができる。冷間加工としては、プレス(曲げ、絞り)加工、ハイドロフォーム(曲げ、拡管、縮管、偏平)などを挙げることができる。その後に880〜1070℃で焼き入れが行われるが、亜鉛が揮発することはない。次に実施例について述べる。   The galvanized steel sheet of the present invention can prevent the volatilization of zinc even when hot worked, and can also prevent the volatilization of zinc when quenching is performed after cold working. Examples of the cold working include press (bending, drawing), hydroforming (bending, expanding, contracting, and flattening). After that, quenching is performed at 880-70 ° C, but zinc does not evaporate. Next, examples will be described.

通常製法にて作成した熱延鋼板、および冷延鋼板の鋼成分とその亜鉛系めっき構成と性能について実施例とともに比較例を表1〜表15に示す。これらの表は連続番号の3表が1セットであり、同一実施例の鋼種、めっき構成、性能が示してある。易酸化性元素のめっき層への添加は電気めっき法では困難な為、易酸化性元素をそれぞれZnを溶融しためっき浴に添加し、通常の溶融Znめっき方法にて作成した。表2の「めっき」欄の記号は、G:溶融亜鉛めっき、GA:合金化溶融亜鉛めっき、E:電気亜鉛めっき、EA:電気合金亜鉛めっきを示す。なお、Si>0.2%、Mn>1.5%、B>15ppmの鋼種については、めっき濡れが不十分なため、Feめっきを5g/m電気めっきにて下地めっきをし、溶融Znめっきを実施した。上層めっきについては、それぞれ下記、既存のめっき浴を用い電気めっきにて作成した。表1、表2、表3の%は質量%である。空白の欄は無添加を示す。 Tables 1 to 15 show comparative examples along with examples of steel components of hot-rolled steel sheets and cold-rolled steel sheets prepared by a normal production method and zinc-based plating configurations and performances thereof. In these tables, three tables of serial numbers are one set, and the steel type, plating configuration, and performance of the same embodiment are shown. Since it is difficult to add the oxidizable element to the plating layer by the electroplating method, each oxidizable element was added to a plating bath in which Zn was melted, and was prepared by a normal hot-dip Zn plating method. The symbols in the “plating” column in Table 2 indicate G: hot-dip galvanizing, GA: alloyed hot-dip galvanizing, E: electro-galvanizing, and EA: electro-alloy galvanizing. Incidentally, Si> 0.2%, Mn> 1.5%, the steels B> 15 ppm, since the plating wettability is insufficient, the base plating the Fe plating at 5 g / m 2 electroplating was performed molten Zn plating . The upper plating was prepared by electroplating using an existing plating bath as described below. % In Tables 1, 2, and 3 is% by mass. Blank columns indicate no addition.

電気Feめっき:硫酸第1鉄めっき浴
電気Fe-Zn合金めっき:硫酸第1鉄―硫酸亜鉛めっき浴 めっき組成:Fe85% Zn15%
Fe-Pめっき:硫酸鉄−次亜燐酸めっき浴 めっき組成:P0.1% 残り鉄
Fe-Niめっき:硫酸鉄−硫酸ニッケルめっき浴 めっき組成:Ni60% Fe40%
電気Niめっき:ワット浴
電気Ni-Znめっき:硫酸ニッケル−硫酸亜鉛浴 めっき組成:Ni95% Zn5%
Ni-Pめっき:ワット浴に次亜燐酸を添加しためっき浴 めっき組成:P8% 残りNi
電気Coめっき:硫酸コバルトめっき浴
Electric Fe plating: Ferrous sulfate plating bath Electric Fe-Zn alloy plating: Ferrous sulfate-zinc sulfate plating bath Plating composition: Fe85% Zn15%
Fe-P plating: Iron sulfate-hypophosphorous acid plating bath Plating composition: P0.1% Iron remaining
Fe-Ni plating: iron sulfate-nickel sulfate plating bath Plating composition: Ni60% Fe40%
Electric Ni plating: Watt bath Electric Ni-Zn plating: Nickel sulfate-zinc sulfate bath Plating composition: Ni95% Zn5%
Ni-P plating: plating bath with hypophosphorous acid added to watt bath Plating composition: P8% Ni remaining
Electric Co plating: Cobalt sulfate plating bath

熱間処理は大気雰囲気にて930℃で3分間鋼板を保持し、取り出後、水冷した。
めっき量および組成は蛍光X線法と5%塩酸により溶解しICP測定する溶解法を併用した。熱間加工後のめっき中のFe濃度およびめっきの減量は、熱間処理材を5%塩酸により溶解し、ICP測定し目付け量を算出後、元のめっき量との差を評価した。
In the hot treatment, the steel sheet was held at 930 ° C. for 3 minutes in an air atmosphere, taken out, and then cooled with water.
The plating amount and composition were used in combination with the fluorescent X-ray method and the dissolution method of dissolving with 5% hydrochloric acid and measuring the ICP. The Fe concentration in the plating after the hot working and the weight loss of the plating were determined by dissolving the hot-treated material with 5% hydrochloric acid, measuring the ICP, calculating the basis weight, and evaluating the difference from the original plating amount.

めっきの融着性は、2枚のめっき鋼板を重ね、5g/cm2の重石をのせて、同様に930℃、3分間保持後、断熱材上で放置徐冷し、室温になった後、鋼板を傾けて落下の有無を判定した。強度は、大気雰囲気にて930℃で3分間鋼板を保持し、取り出し、焼きいれ後の強度評価を厳しくするためガスジェットにより冷却した後、JIS5号引張試験片のL方向引張にて評価し、800MPaを超えるものを良好とした。 Fusing property of plating, two sheets of plated steel are stacked, 5g / cm 2 weight is placed on them, and after holding at 930 ° C for 3 minutes as well, it is left on the heat insulating material and gradually cooled down to room temperature. The steel plate was tilted to determine the presence or absence of a drop. The strength was measured by holding the steel plate at 930 ° C for 3 minutes in the air atmosphere, removing it, cooling it with a gas jet in order to strictly evaluate the strength after burning, and then evaluating the JIS No. 5 tensile test piece in the L direction, Those exceeding 800 MPa were regarded as good.

化成処理性は、熱間処理は大気雰囲気にて930℃で3分間鋼板を保持し、取り出後、水冷した鋼板を、脱脂、およびパルボンドLA35(日本パーカーライジング社製)にて、メーカー処方通り化成処理を行い、SEMの1000倍にて観察を行い化成処理皮膜のスケの有無を観察した。耐食性は、上記化成処理を行った試験片にさらにカチオン電着塗装(パワーニクス110:日本ペイント社製)を15μm実施し、クロスカットを施した後、アメリカ自動車工業会規格SAE-J2334腐食試験条件にて180サイクル実施後のクロスカット部からの塗膜フクレ巾(片側)を測定した。   The chemical conversion treatment is as follows: For hot treatment, hold the steel sheet at 930 ° C for 3 minutes in the air atmosphere, take out, water-cooled steel sheet, degrease, and use Palbond LA35 (manufactured by Nippon Parker Rising Co., Ltd.) as specified by the manufacturer A chemical conversion treatment was performed, and observation was performed at 1000 times the SEM to observe the presence or absence of invisibility of the chemical conversion treatment film. Corrosion resistance was determined by applying a 15 μm cationic electrodeposition coating (Powernics 110: manufactured by Nippon Paint Co., Ltd.) to the test piece subjected to the chemical conversion treatment and performing a cross-cut, followed by the SAE-J2334 American Automobile Manufacturers Association standard corrosion test conditions. The width (one side) of the coating film from the cross cut portion after 180 cycles was measured.

Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029
Figure 2004270029

以上記載の如く、本発明は、従来から自動車や産業機械などで使われている防錆鋼板の亜鉛系めっきの使い勝手、性能にて、これらの材料の高強度化を部品の寸法精度良く飛躍的に図れ、自動車、産業機械の軽量化、安全性向上、防錆向上を有利な価格で推し進めることに大きく貢献できるものと考えられ、産業上の寄与は大きい。   As described above, the present invention dramatically improves the strength of these materials by improving the dimensional accuracy of parts with the ease of use and performance of zinc-based plating of rust-proof steel sheets conventionally used in automobiles and industrial machines. Therefore, it is thought that it is possible to greatly contribute to promoting weight reduction, improvement of safety, and improvement of rust prevention of automobiles and industrial machines at an advantageous price, and the industrial contribution is great.

Claims (6)

1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素を1種または2種以上Znめっき中に含有し、その元素合計の含有量が0.25mol/m2以上で、めっき層のZnが質量%で60%以上、Zn量が40g/m2以上であり、鋼板の組成が質量%にて、C:0.01〜0.30 %、Si:0.005〜1.0 %、Mn:0.01〜3.0 %、P:0.005〜0.10 %、S:≦0.02 %、Al:0.010〜0.500%、N:0.001〜0.01 %を含有することを特徴とする耐亜鉛揮発性に優れた亜鉛系めっき鋼板。 At 1000 ° C. or less, the standard free energy change of ZnO standard free energy change of the oxides from the same temperature (△ G 0 Zn) (△ G 0) is small, and one of the elements except for alkali metal or 2 contained in the seed or Zn plating, in a content of the element total 0.25 mol / m 2 or more, Zn plating layer on a mass% of 60% or more, Zn weight of 40 g / m 2 or more, the composition of the steel sheet % By mass, C: 0.01 to 0.30%, Si: 0.005 to 1.0%, Mn: 0.01 to 3.0%, P: 0.005 to 0.10%, S: ≦ 0.02%, Al: 0.010 to 0.500%, N: 0.001 A zinc-based plated steel sheet having excellent zinc volatility, characterized by containing about 0.01%. さらに、鋼板の成分元素として、質量%にて、B:2〜100ppm、Cr:0.02〜0.500 %、Mo:0.001〜0.500 %、Ni:0.001〜1.000%を含有することを特徴とする請求項1記載の耐亜鉛揮発性に優れた亜鉛系めっき鋼板。   2. The steel sheet according to claim 1, further comprising, by mass%, B: 2 to 100 ppm, Cr: 0.02 to 0.500%, Mo: 0.001 to 0.500%, and Ni: 0.001 to 1.000% as mass elements. A zinc-coated steel sheet having excellent zinc volatility described. さらに、鋼板の成分元素として、質量%にて、Nb:0.005〜0.100%,V:0.005〜0.100%,Ti:0.005〜0.100%,Zr:0.005〜0.100%の中から選ばれた1種または2種以上を含有することを特徴とする請求項1または2記載の耐亜鉛揮発性に優れた亜鉛系めっき鋼板。   Further, as a component element of the steel sheet, in mass%, one or two selected from Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, Ti: 0.005 to 0.100%, Zr: 0.005 to 0.100% The galvanized steel sheet having excellent zinc volatility resistance according to claim 1 or 2, which contains at least one kind. 1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素をZnめっき中に含有し、その元素のめっき含有量が質量%で15%以下であることを特徴とする請求項1〜3の何れかに記載の耐亜鉛揮発性に優れた亜鉛系めっき鋼板。 At 1000 ° C. or less, the standard free energy change of the oxides at the same temperature than the standard free energy change of ZnO (△ G 0 Zn) ( △ G 0) is small, and the elements except for alkali metal in Zn plating The galvanized steel sheet having excellent zinc volatility resistance according to any one of claims 1 to 3, wherein the galvanized steel sheet contains a plating content of the element of 15% or less by mass%. 1000℃以下で、ZnOの標準生成自由エネルギー変化(△G0 Zn)より同じ温度での酸化物の標準生成自由エネルギー変化(△G0)が小さく、且つアルカリ金属を除く元素および、Zn以外の元素のZnめっき層中の含有率が質量%で5%以下であることを特徴とする請求項1〜4のいずれかに記載の耐亜鉛揮発性に優れた亜鉛系めっき鋼板。 At 1000 ° C. or less, the standard free energy change of the oxides at the same temperature than the standard free energy change of ZnO (△ G 0 Zn) ( △ G 0) is small, elements and, other than Zn and excluding alkali metal The galvanized steel sheet according to any one of claims 1 to 4, wherein a content of the element in the Zn plating layer is 5% or less by mass%. 請求項1〜5のいずれかに記載の亜鉛系めっき鋼板の表面に、Ni,Co,Feを質量%で80%以上含有するめっきを、1g/m2以上10g/m2以下施した耐亜鉛揮発性に優れた亜鉛系めっき鋼板。 On the surface of the galvanized steel sheet according to any one of claims 1 to 5, Ni, resistant zinc Co, a plating containing 80% or more of Fe in mass%, was applied 1 g / m 2 or more 10 g / m 2 or less Galvanized steel sheet with excellent volatility.
JP2004005101A 2003-02-18 2004-01-13 Galvanized steel sheet excellent in zinc volatility resistance Withdrawn JP2004270029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004005101A JP2004270029A (en) 2003-02-18 2004-01-13 Galvanized steel sheet excellent in zinc volatility resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003039579 2003-02-18
JP2004005101A JP2004270029A (en) 2003-02-18 2004-01-13 Galvanized steel sheet excellent in zinc volatility resistance

Publications (1)

Publication Number Publication Date
JP2004270029A true JP2004270029A (en) 2004-09-30

Family

ID=33134079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004005101A Withdrawn JP2004270029A (en) 2003-02-18 2004-01-13 Galvanized steel sheet excellent in zinc volatility resistance

Country Status (1)

Country Link
JP (1) JP2004270029A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152427A (en) * 2004-10-29 2006-06-15 Sumitomo Metal Ind Ltd Hot-pressed steel sheet member, manufacturing method therefor and steel sheet to be hot-pressed
JP2006200020A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Steel member for vehicle and manufacturing method therefor
JP2006219741A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High strength automobile member having excellent uniformity of hardness in the member and its production method
JP2006265706A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Hot dip galvanized steel sheet for heat treatment working having excellent phosphate treatability and post-painting corrosion resistance and method for manufacturing the same
JP2007291508A (en) * 2006-03-29 2007-11-08 Kobe Steel Ltd Hot dip galvanized steel sheet for hot press, hot dip galvanized steel sheet, and hot-pressed material
JP2008175554A (en) * 2007-01-16 2008-07-31 Jfe Steel Kk Corrosion resistance evaluation method of surface treated metal
JP2010024551A (en) * 2004-10-29 2010-02-04 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed
JP2010519415A (en) * 2007-02-23 2010-06-03 コラス・スタール・ベー・ブイ Cold rolled and continuously annealed high strength steel strip and method for producing the steel
JP2010202972A (en) * 2009-02-03 2010-09-16 Sumitomo Metal Ind Ltd Galvanized heat-treated steel member, and method for producing the same
EP2270257A1 (en) * 2008-04-22 2011-01-05 Nippon Steel Corporation Plated steel sheet and method of hot-pressing plated steel sheet
JP2011117086A (en) * 2011-03-18 2011-06-16 Nippon Steel Corp High-strength hardened body having excellent corrosion resistance and fatigue resistance
JP2011184797A (en) * 2011-03-18 2011-09-22 Nippon Steel Corp High strength hardened molded body having excellent corrosion resistance and fatigue resistance
JP2013515863A (en) * 2009-12-29 2013-05-09 ポスコ Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
US20150024234A1 (en) * 2012-03-30 2015-01-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-press formed steel-member, and the hot-press formed steel-member
WO2016159298A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Hot-dip galvanized steel sheet
WO2016159300A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Galvanized steel sheet
CN107177772A (en) * 2017-05-12 2017-09-19 山东钢铁股份有限公司 The Adding Way of antimony during a kind of steel smelting containing antimony
KR20170118844A (en) 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
KR20170118860A (en) 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
WO2020049833A1 (en) * 2018-09-07 2020-03-12 Jfeスチール株式会社 Steel sheet for hot pressing
JP2020152985A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel sheet and coated steel sheet processing method
JP2021031745A (en) * 2019-08-27 2021-03-01 株式会社神戸製鋼所 Low-strength hot stamping steel sheet, hot stamp component, and method for manufacturing hot stamp component

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024551A (en) * 2004-10-29 2010-02-04 Sumitomo Metal Ind Ltd Steel sheet to be hot-pressed
JP4513608B2 (en) * 2004-10-29 2010-07-28 住友金属工業株式会社 Hot-pressed steel sheet member and its manufacturing method
JP2006152427A (en) * 2004-10-29 2006-06-15 Sumitomo Metal Ind Ltd Hot-pressed steel sheet member, manufacturing method therefor and steel sheet to be hot-pressed
JP2006200020A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Steel member for vehicle and manufacturing method therefor
JP2006219741A (en) * 2005-02-14 2006-08-24 Nippon Steel Corp High strength automobile member having excellent uniformity of hardness in the member and its production method
JP4630099B2 (en) * 2005-03-25 2011-02-09 株式会社神戸製鋼所 Hot-dip hot-dip galvanized steel sheet with excellent phosphatability and post-coating corrosion resistance and method for producing the same
JP2006265706A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Hot dip galvanized steel sheet for heat treatment working having excellent phosphate treatability and post-painting corrosion resistance and method for manufacturing the same
JP2007291508A (en) * 2006-03-29 2007-11-08 Kobe Steel Ltd Hot dip galvanized steel sheet for hot press, hot dip galvanized steel sheet, and hot-pressed material
JP2008175554A (en) * 2007-01-16 2008-07-31 Jfe Steel Kk Corrosion resistance evaluation method of surface treated metal
JP2010519415A (en) * 2007-02-23 2010-06-03 コラス・スタール・ベー・ブイ Cold rolled and continuously annealed high strength steel strip and method for producing the steel
EP2270257A4 (en) * 2008-04-22 2011-05-11 Nippon Steel Corp Plated steel sheet and method of hot-pressing plated steel sheet
US8453482B2 (en) 2008-04-22 2013-06-04 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet and method of hot-stamping plated steel sheet
US9074277B2 (en) 2008-04-22 2015-07-07 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet and method of hot-stamping plated steel sheet
EP2270257A1 (en) * 2008-04-22 2011-01-05 Nippon Steel Corporation Plated steel sheet and method of hot-pressing plated steel sheet
AU2009238926B2 (en) * 2008-04-22 2012-03-29 Nippon Steel Corporation Plated steel sheet and method of hot-pressing plated steel sheet
JP2010202972A (en) * 2009-02-03 2010-09-16 Sumitomo Metal Ind Ltd Galvanized heat-treated steel member, and method for producing the same
US9068255B2 (en) 2009-12-29 2015-06-30 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
JP2013515863A (en) * 2009-12-29 2013-05-09 ポスコ Hot-pressed galvanized steel sheet with excellent surface characteristics, hot-press formed parts using the same, and manufacturing method thereof
JP2014221943A (en) * 2009-12-29 2014-11-27 ポスコ Galvanized steel sheet for hot pressing which is excellent in surface characteristic, hot press forming part using galvanized steel sheet and production method of hot press forming part
US9945020B2 (en) 2009-12-29 2018-04-17 Posco Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
US11952652B2 (en) 2009-12-29 2024-04-09 Posco Co., Ltd Zinc-plated steel sheet for hot pressing having outstanding surface characteristics, hot-pressed moulded parts obtained using the same, and a production method for the same
JP2011184797A (en) * 2011-03-18 2011-09-22 Nippon Steel Corp High strength hardened molded body having excellent corrosion resistance and fatigue resistance
JP2011117086A (en) * 2011-03-18 2011-06-16 Nippon Steel Corp High-strength hardened body having excellent corrosion resistance and fatigue resistance
US20150024234A1 (en) * 2012-03-30 2015-01-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing hot-press formed steel-member, and the hot-press formed steel-member
US10029294B2 (en) * 2012-03-30 2018-07-24 Kobe Steel, Ltd. Method for manufacturing hot-press formed steel-member, and the hot-press formed steel-member
US10406780B2 (en) 2013-04-26 2019-09-10 Kobe Steel, Ltd. Hot-dip galvannealed steel sheet for hot stamping and method for manufacturing steel part
WO2016159298A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Hot-dip galvanized steel sheet
US10851465B2 (en) 2015-03-31 2020-12-01 Nippon Steel Corporation Zinc-based plated steel sheet
KR20170118860A (en) 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet
KR20170120636A (en) 2015-03-31 2017-10-31 신닛테츠스미킨 카부시키카이샤 Hot-dip galvanized steel sheet
CN107406958A (en) * 2015-03-31 2017-11-28 新日铁住金株式会社 Electrogalvanized steel plate
KR20170118844A (en) 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
KR20170118845A (en) 2015-03-31 2017-10-25 신닛테츠스미킨 카부시키카이샤 Galvanized steel plate
CN107406958B (en) * 2015-03-31 2019-08-13 日本制铁株式会社 Electrogalvanized steel plate
JPWO2016159300A1 (en) * 2015-03-31 2017-09-14 新日鐵住金株式会社 Galvanized steel sheet
US10549506B2 (en) 2015-03-31 2020-02-04 Nippon Steel Corporation Hot-dip zinc-based plated steel sheet
WO2016159300A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Galvanized steel sheet
US10987695B2 (en) 2015-03-31 2021-04-27 Nippon Steel Corporation Hot-dip zinc-based plated steel sheet
CN107177772A (en) * 2017-05-12 2017-09-19 山东钢铁股份有限公司 The Adding Way of antimony during a kind of steel smelting containing antimony
JPWO2020049833A1 (en) * 2018-09-07 2020-09-10 Jfeスチール株式会社 Steel plate for hot pressing
WO2020049833A1 (en) * 2018-09-07 2020-03-12 Jfeスチール株式会社 Steel sheet for hot pressing
JP2020152985A (en) * 2019-03-22 2020-09-24 日鉄日新製鋼株式会社 Coated steel sheet and coated steel sheet processing method
JP7248889B2 (en) 2019-03-22 2023-03-30 日本製鉄株式会社 Surface-treated steel sheet for hot stamping and method for processing surface-treated steel sheet for hot stamping
JP2021031745A (en) * 2019-08-27 2021-03-01 株式会社神戸製鋼所 Low-strength hot stamping steel sheet, hot stamp component, and method for manufacturing hot stamp component
WO2021039499A1 (en) * 2019-08-27 2021-03-04 株式会社神戸製鋼所 Low-strength steel sheet for hot stamping, hot-stamped component, and method for manufacturing hot-stamped component
CN114258434A (en) * 2019-08-27 2022-03-29 株式会社神户制钢所 Low-strength steel sheet for hot stamping, hot stamped component, and method for producing hot stamped component
JP7235621B2 (en) 2019-08-27 2023-03-08 株式会社神戸製鋼所 Steel plate for low-strength hot stamping, hot stamped parts, and method for manufacturing hot stamped parts

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
JP2004270029A (en) Galvanized steel sheet excellent in zinc volatility resistance
JP4825882B2 (en) High-strength quenched molded body and method for producing the same
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
JP6042445B2 (en) Hot-pressed plated steel sheet, hot-pressing method of plated steel sheet, and automotive parts
JP5499663B2 (en) High-strength cold-rolled steel sheet having a maximum tensile strength of 900 MPa or more excellent in mechanical cutting characteristics and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
EP1878811A1 (en) Process for manufacturing iron-carbon-manganese austenitic steel sheet with excellent resistance to delayed cracking, and sheet thus produced
JP2019506523A (en) Aluminum-iron alloy plated steel sheet for hot forming excellent in delayed hydrogen fracture resistance, peel resistance, and weldability, and hot formed member using the same
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
CN108430662B (en) Hot press molded article having excellent corrosion resistance and method for producing same
JP6822616B2 (en) Covered steel members, coated steel sheets and their manufacturing methods
EP2527483A1 (en) High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
US20190366686A1 (en) Alloyed al plated steel sheet for hot stamping and hot stamped steel member
JP6897757B2 (en) Surface-treated steel sheet
JP2006037141A (en) Steel sheet for heat treatment having excellent liquid metal brittleness resistance
JP2006009116A (en) Steel sheet for hot pressing
CN111247266B (en) Al-plated welded pipe for quenching, Al-plated hollow member, and method for producing same
JP4601502B2 (en) Manufacturing method of high strength ERW steel pipe
JP7255634B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JP2010018856A (en) High-strength automobile component excellent in corrosion resistance after coating, and plated steel sheet for hot press
JP5009035B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance
JP7215518B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JP7215519B2 (en) HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF
JP6962452B2 (en) High-strength alloyed hot-dip galvanized steel sheet and its manufacturing method
JP2021179002A (en) Hot press member and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403