JP2008175554A - Corrosion resistance evaluation method of surface treated metal - Google Patents

Corrosion resistance evaluation method of surface treated metal Download PDF

Info

Publication number
JP2008175554A
JP2008175554A JP2007006852A JP2007006852A JP2008175554A JP 2008175554 A JP2008175554 A JP 2008175554A JP 2007006852 A JP2007006852 A JP 2007006852A JP 2007006852 A JP2007006852 A JP 2007006852A JP 2008175554 A JP2008175554 A JP 2008175554A
Authority
JP
Japan
Prior art keywords
corrosion resistance
processing
treated
test
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007006852A
Other languages
Japanese (ja)
Other versions
JP4788606B2 (en
Inventor
Katsuya Hoshino
克弥 星野
Daisuke Mizuno
大輔 水野
Sakae Fujita
栄 藤田
Shinji Otsuka
真司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007006852A priority Critical patent/JP4788606B2/en
Publication of JP2008175554A publication Critical patent/JP2008175554A/en
Application granted granted Critical
Publication of JP4788606B2 publication Critical patent/JP4788606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the corrosion resistance in a superposed structure part, when jointing a processed surface treated metal (surface-treated steel plate) to use it. <P>SOLUTION: In this corrosion resistance evaluation method of the surface-treated metal, the surfaces to be processed of two processed surface-treated metals are superimposed on each other to be jointed, and the corrosion test of the superposed structure part formed by the jointed part of both surfaces to be processed is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面処理金属の耐食性評価方法に関し、特に、成形加工後、重ね合わせた上で接合されて使用される部材に用いられる表面処理金属の合わせ構造部における耐食性を評価する方法に関するものである。   The present invention relates to a method for evaluating the corrosion resistance of a surface-treated metal, and more particularly to a method for evaluating the corrosion resistance in a mated structure portion of a surface-treated metal used for a member that is used after being formed and overlaid and joined. is there.

近年、自動車や家電製品、建築物、鋼構造物などの分野においては、製品等の長寿命化やライフサイクルコストの最小化を図ることが、社会的に求められるようになってきている。上記製品等は、素材金属同士を重ね合わせた上で、溶接等何らかの方法で接合されているのが普通であり、その接合部周辺の金属が重ね合わせられた部分(以降、この部分を「合わせ構造部」ともいう)の内部は、化成処理や電着塗装を完全に施すことが難しく、無処理に近い裸状態となっていることが多い。そのため、上記金属の合わせ構造部の内部は、腐食が起こり易く、製品等の寿命や耐久性に大きな影響を与えることになる。   In recent years, in the fields of automobiles, home electric appliances, buildings, steel structures, etc., it has become socially demanded to extend the life of products and minimize the life cycle cost. The above products are usually joined together by some method such as welding after overlapping the metal materials, and the part around the joint is overlapped (hereinafter referred to as “matching” The inside of the “structure part” is difficult to completely perform chemical conversion treatment or electrodeposition coating, and is often in a bare state almost untreated. For this reason, the inside of the metal mating structure portion is easily corroded, which greatly affects the life and durability of the product.

さらに、上記製品等には、表面処理を施した金属、例えば、亜鉛系やアルミ系の溶融めっきや電気めっき、あるいは、それらに合金化処理等を施した表面処理鋼板が多く用いられているが、斯かる表面処理金属は、曲げ加工、プレス加工あるいはそれらを組み合わせた複合成形等の種々の加工を施されてから使用されるのが普通である。   Furthermore, for the above products, surface-treated metals, for example, zinc-based or aluminum-based hot-dip plating or electroplating, or surface-treated steel sheets that have been subjected to alloying treatment or the like are often used. Such surface-treated metal is usually used after being subjected to various processes such as bending, pressing, or composite molding combining them.

上記加工により、表面処理金属の表面は、損傷を受けることが多い。そして、表面処理金属どうしの接合部分周辺の合わせ構造部の耐食性は、上記損傷の種類や度合いによって大きく影響され、また、製品としての耐久性は、上記合わせ構造部の耐久性によっても大きく影響される。したがって、斯かる合わせ構造部の耐食性を評価することは極めて重要である。   The surface of the surface-treated metal is often damaged by the above processing. The corrosion resistance of the mating structure around the joint between the surface-treated metals is greatly affected by the type and degree of damage, and the durability of the product is also greatly influenced by the durability of the mating structure. The Therefore, it is extremely important to evaluate the corrosion resistance of such a laminated structure.

しかしながら、製品の設計段階において、使用する表面処理金属を選定する際には、素材のまま、あるいは加工を施した状態での耐食性試験を実施することはあるものの、加工した表面処理金属を重ね合わせて接合した部分の重ね合わせ構造部の耐食性までは考慮していないのが普通である。例えば、非特許文献1には、各種亜鉛めっき鋼板(GI,EG,GA)を母材とするプレコート鋼板に、プレスによりリブ加工を施してから屋外暴露試験に供して、加工部の耐食性に及ぼすめっき皮膜の影響について評価した結果が開示されている。しかし、表面処理鋼板の合わせ構造部内部における耐食性を評価することまでは行われていない。
塩田、八内、壱岐島:CAMP−ISIJ vol.2(1989)p.608
However, when selecting the surface-treated metal to be used at the product design stage, the corrosion resistance test may be performed on the raw material or in the processed state, but the processed surface-treated metal is overlaid. In general, the corrosion resistance of the overlapping structure of the joined portions is not taken into consideration. For example, Non-Patent Document 1 describes that the pre-coated steel sheet using various galvanized steel sheets (GI, EG, GA) as a base material is subjected to rib processing by a press and then subjected to an outdoor exposure test to affect the corrosion resistance of the processed part. The result of having evaluated about the influence of a plating film is indicated. However, it has not been performed until the corrosion resistance inside the mating structure portion of the surface-treated steel sheet is evaluated.
Shioda, Hachiuchi, Ikijima: CAMP-ISIJ vol. 2 (1989) p. 608

上記のように、加工した表面処理金属、特に、加工を受けた表面処理鋼板を重ね合わせて接合して用いる部材の合わせ構造部の耐食性については、その評価が必要とされているにも拘らず、未だ十分な検討がなされておらず、その評価方法についても、開発されているとは言えないのが実情である。   As described above, the processed surface-treated metal, in particular, the corrosion resistance of the mating structure portion of the member used by superposing and joining the surface-treated steel sheets that have undergone the processing is evaluated despite the need for evaluation. However, it has not been fully examined, and the evaluation method is not developed.

本発明は、斯かる事情に鑑みてなされたものであり、その目的は、加工を受けた表面処理金属(表面処理鋼板)を接合して用いる場合の合わせ構造部における耐食性を評価する方法を提案することにある。   This invention is made | formed in view of such a situation, The objective has proposed the method of evaluating the corrosion resistance in the laminated structure part in the case of joining and using the surface treatment metal (surface treatment steel plate) which received the process. There is to do.

発明者らは、上記課題を解決すべく検討を重ねた。その結果、加工を受けた2つの表面処理金属表面を対向させて、それぞれの一部を重ね合わせて接合した試験片を作製し、その接合部の合わせ構造部を対象として、公知の腐食試験を行うことにより、表面処理金属の被加工面の耐食性を精度よく評価できることを見出し、本発明を完成させた。   The inventors have repeatedly studied to solve the above problems. As a result, two processed surface treated metal surfaces are made to face each other, and a test piece is produced by superimposing a part of each of the surfaces, and a known corrosion test is performed on the mating structure of the joint. As a result, it was found that the corrosion resistance of the processed surface of the surface-treated metal can be accurately evaluated, and the present invention has been completed.

すなわち、本発明は、加工を受けた2つの表面処理金属の被加工面どうしを重ね合わせて接合し、その接合部に形成された合わせ構造部の腐食試験を行う表面処理金属の耐食性評価方法である。   That is, the present invention is a method for evaluating the corrosion resistance of a surface-treated metal, in which the processed surfaces of two surface-treated metals that have undergone machining are overlapped and joined, and a corrosion test is performed on the mating structure formed at the joint. is there.

本発明の耐食性評価方法は、上記表面処理金属が、亜鉛めっき系のめっき処理を施した表面処理鋼板であることを特徴とする。   The corrosion resistance evaluation method of the present invention is characterized in that the surface-treated metal is a surface-treated steel sheet that has been subjected to galvanizing plating.

上記表面処理鋼板は、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板のいずれかであることを特徴とする。   The surface-treated steel sheet is any one of an electrogalvanized steel sheet, a hot dip galvanized steel sheet, and an alloyed hot dip galvanized steel sheet.

本発明の耐食性評価方法は、上記腐食試験が、SAE J2334に規定された複合サイクル腐食試験であることを特徴とする。   The corrosion resistance evaluation method of the present invention is characterized in that the corrosion test is a combined cycle corrosion test defined in SAE J2334.

本発明の耐食性評価方法は、上記加工が、ドロービード加工またはしごき加工による摺動加工、縮みフランジ加工、二軸引張り加工および伸びフランジ加工のいずれかであることを特徴とする。   The corrosion resistance evaluation method of the present invention is characterized in that the processing is any one of sliding processing by draw bead processing or ironing processing, shrinkage flange processing, biaxial tension processing, and stretch flange processing.

本発明の耐食性評価方法は、上記加工が、ドロービード加工またはしごき加工による摺動加工、縮みフランジ加工、二軸引張り加工および伸びフランジ加工のいずれか2以上の複合加工であることを特徴とする。   The corrosion resistance evaluation method of the present invention is characterized in that the processing is a combined processing of any two or more of sliding processing by draw bead processing or ironing processing, shrinkage flange processing, biaxial tension processing, and stretch flange processing.

本発明によれば、表面処理金属、特に、加工後の表面処理鋼板が重ね合わせられた合わせ構造部の耐食性を精度よく評価できるので、例えば、自動車の耐久性の評価試験として好適に用いることができる。   According to the present invention, it is possible to accurately evaluate the corrosion resistance of the laminated structure portion on which the surface-treated metal, in particular, the processed surface-treated steel sheet is superposed, and therefore, it can be suitably used as, for example, an automobile durability evaluation test. it can.

本発明の表面処理金属の耐食性評価方法は、加工を受けた2つの表面処理金属の被加工面どうしを対向して重ね合わせて接合して合わせ構造部を形成し、この合わせ構造部を対象として腐食試験を行うことを特徴とする。   In the method for evaluating corrosion resistance of surface-treated metal according to the present invention, the processed surfaces of two surface-treated metals that have undergone processing are opposed to each other and overlapped to form a bonded structure portion. It is characterized by conducting a corrosion test.

本発明が対象とする表面処理金属には、鋼、アルミ、銅、それらの合金等からなる板や形材、棒線等が含まれ、制限はない。しかし、実用上は、合わせ構造部の耐食性の評価に対する要望が最も強い、自動車や家電製品等に多く使用されている鋼板類、中でも、亜鉛系めっき処理を施した表面処理鋼板、例えば、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板などに、本発明の耐食性評価方法を適用するのが好ましい。また、接合させる2つの表面処理金属の種類は、自動車や家電製品等に実用されている合わせ構造部の状況に合わせて選択すればよく、同種であっても異種であってよい。   The surface-treated metal targeted by the present invention includes a plate, a profile, a bar wire and the like made of steel, aluminum, copper, alloys thereof, and the like, and is not limited. However, in practical use, steel sheets that are used most frequently in automobiles and home appliances, etc., which have the strongest demands for evaluating the corrosion resistance of laminated structures, especially surface-treated steel sheets that have been subjected to zinc-based plating treatment, such as electrolytic zinc It is preferable to apply the corrosion resistance evaluation method of the present invention to a plated steel sheet, a hot dip galvanized steel sheet, an alloyed hot dip galvanized steel sheet, and the like. Moreover, what is necessary is just to select the kind of two surface treatment metals to join according to the condition of the matching structure part currently utilized for a motor vehicle, household appliances, etc., and it may be same or different.

次に、本発明が腐食試験に用いる試験片は、本発明の目的が、加工を受けた表面処理面の耐食性、特に、それらが重ね合わされて接合され、合わせ構造部を形成している部分の耐食性を評価することにあることから、斯かる条件を具備したものであることが必要である。そこで、本発明では、加工を受けた金属の表面処理面を対向して重ね合わせてから、スポット溶接等で接合して合わせ構造部を形成し、それをそのまま、あるいは、必要に応じて適当な大きさに切断後、腐食試験に供するものとする。   Next, the test piece used in the corrosion test according to the present invention is an object of the present invention in which the corrosion resistance of the surface-treated surface subjected to the processing, in particular, the portion where they are overlapped and joined to form a laminated structure portion. Since it is in evaluating corrosion resistance, it is necessary to satisfy such conditions. Therefore, in the present invention, the processed surface of the processed metal is overlapped facing each other, and then joined by spot welding or the like to form a combined structure portion, which is used as it is or as necessary. After cutting to size, it shall be subjected to a corrosion test.

上記、腐食試験方法については、金属材料の腐食試験法として古くから用いられている、暴露試験や塩水噴霧試験等を用いることができ、特に制限はない。なお、本発明を、自動車鋼板に適用する場合には、自動車用外観腐食試験法として内外で規格化されている試験法、例えば、国内では、JASOM 609−91で規定された試験法、米国では、米国自動車技術会で定めたSAE J2334などの複合サイクル試験法を用いることができる。ただし、発明者らの調査結果によれば、SAE J2334に規定された腐食試験の結果は、実車試験における鋼板合わせ部の腐食試験の結果とよく一致していることが明らかとなっている。そこで、自動車用鋼板には、SAE J2334に規定された複合サイクル腐食試験法を適用するのが好ましい。   As the above-described corrosion test method, an exposure test, a salt spray test, and the like that have been used for a long time as a corrosion test method for metal materials can be used, and there is no particular limitation. When the present invention is applied to an automobile steel sheet, a test method standardized internally and externally as an automotive external corrosion test method, for example, a test method defined in JASOM 609-91 in Japan, A combined cycle test method such as SAE J2334 defined by the American Society of Automotive Engineers can be used. However, according to the investigation results of the inventors, it is clear that the result of the corrosion test specified in SAE J2334 is in good agreement with the result of the corrosion test of the steel sheet mating part in the actual vehicle test. Therefore, it is preferable to apply the combined cycle corrosion test method defined in SAE J2334 to automobile steel sheets.

また、本発明において、表面処理金属に施される加工方法としては、特に制限はなく、例えば、表面処理金属が鋼板である場合には、曲げ加工、深絞り加工、張り出し加工、フランジ加工、ドロービード加工またはしごき加工による摺動加工、縮みフランジ加工、伸びフランジ加工、二軸引張り加工等を挙げることができる。また、上記加工方法は1種類に制限されるものではなく、2以上の加工方法が組み合わされた複合加工であってもよい。   In the present invention, the processing method applied to the surface-treated metal is not particularly limited. For example, when the surface-treated metal is a steel plate, bending processing, deep drawing processing, overhanging processing, flange processing, draw beading are performed. Examples thereof include sliding processing by processing or ironing, shrinking flange processing, stretch flange processing, biaxial tension processing, and the like. Moreover, the said processing method is not restrict | limited to 1 type, The composite processing by which the 2 or more processing method was combined may be sufficient.

表1に示した冷延鋼板(SPC)と、その鋼板の表面に6種類の表面処理を施した表面処理鋼板(ZnNi30,GA45,EG50,GI100,GA45+有機被覆、EG50+有機被覆)の合計7種類の試験用鋼板を準備し、これらの鋼板から、幅:80mm×長さ:350mmの1次試験片をそれぞれ2枚ずつ採取し、これに、図1に示したようなダイスとビードを模した冶具を用いて高速ドロービード加工を施し、鋼板の表面処理面とダイス肩およびビード部との間で長さ150mm以上の摺動を起こさせ、図2に示したような形状の2次試験片を得た。なお、上記試験は、用いた冶具のダイス肩およびビード部の局率半径はそれぞれ2mmRおよび5mmR、ダイスの押付け圧力は5.88×104N/m、ドロービード加工の引き抜き速度は2m/minで行った。また、試験片には、潤滑油(プレトン303P:スギムラ化学製)を両面で3g/m塗布した。 A total of 7 types of cold-rolled steel plate (SPC) shown in Table 1 and surface-treated steel plates (ZnNi30, GA45, EG50, GI100, GA45 + organic coating, EG50 + organic coating) whose surface is subjected to six types of surface treatment. Two test specimens each having a width of 80 mm and a length of 350 mm were collected from each of these steel sheets, and a die and a bead as shown in FIG. 1 were imitated. A high-speed draw bead processing is performed using a jig, and a slide having a length of 150 mm or more is caused between the surface-treated surface of the steel sheet and the die shoulder and the bead portion, and a secondary test piece having a shape as shown in FIG. Obtained. Note that the above tests were performed at a die shoulder and bead radius of 2 mmR and 5 mmR, a die pressing pressure of 5.88 × 104 N / m 2 , and a draw bead drawing speed of 2 m / min. It was. Further, 3 g / m 2 of lubricating oil (Preton 303P: manufactured by Sugimura Chemical) was applied to the test piece on both sides.

Figure 2008175554
Figure 2008175554

次いで、上記2枚の2次試験片の摺動面(ビード通過部)から、幅:50mm×長さ:100mmの3次試験片を切断採取し、同種の鋼板の被加工面(摺動面)どうしを重ね合わせてスポット溶接して接合し、図3に示したような耐食試験用の試験片とした。その後、この耐食試験用試験片に化成処理と電着塗装処理を施したのち耐食試験に供した。なお、上記化成処理は、日本パーカライジング社製のパルボルトを使用し、35℃で2分間浸漬する条件で行い、付着量は片面当たり2.5g/mとした。また、電着塗装は、自動車用の電着塗料を使用し、170℃で25分の焼付処理を行う条件で行い、電着塗装膜厚は20μmとした。なお、表1に示した6種類の表面処理鋼板については、比較材として、ドロービード加工を施さない1次試験片を用いて、上記と同様にして3次試験片を切断採取し、スポット溶接して、耐食性試験片を作製した。 Next, from the sliding surface (bead passage portion) of the two secondary test pieces, a tertiary test piece of width: 50 mm × length: 100 mm was cut and collected, and the work surface (sliding surface) of the same type of steel plate ) The two were overlapped and spot welded and joined to obtain a test piece for corrosion resistance test as shown in FIG. Thereafter, the test piece for corrosion resistance test was subjected to a chemical conversion treatment and an electrodeposition coating treatment, and then subjected to a corrosion resistance test. In addition, the said chemical conversion treatment was performed on the conditions immersed for 2 minutes at 35 degreeC using the pal bolt made from Nippon Parkerizing, and the adhesion amount was 2.5 g / m < 2 > per side. The electrodeposition coating was performed under the condition that an electrodeposition coating for automobiles was used and a baking treatment was performed at 170 ° C. for 25 minutes, and the thickness of the electrodeposition coating was 20 μm. For the six types of surface-treated steel sheets shown in Table 1, as a comparative material, a primary test piece not subjected to draw bead processing was used, and the third test piece was cut and collected in the same manner as described above and spot-welded. Thus, a corrosion resistance test piece was prepared.

次いで、上記のようにして得た耐食性試験片について、SAE J2334に規定された、乾燥・湿潤・塩水シャワーの工程からなる複合サイクル腐食試験(図4参照)を行った。なお、各鋼板の耐食性は、試験後の試験片の合わせ構造部から腐食生成物を除去したのち、合わせ構造部に生じた最大浸食深さをポイントマイクロメータで測定することで評価した。   Next, a combined cycle corrosion test (see FIG. 4) consisting of drying / wetting / salt water shower steps defined in SAE J2334 was performed on the corrosion resistance test piece obtained as described above. The corrosion resistance of each steel sheet was evaluated by measuring the maximum erosion depth generated in the mating structure portion with a point micrometer after removing the corrosion products from the mating structure portion of the test piece after the test.

上記測定の結果を、図5に示した。図5から、ZnNi30、GA45および表面に有機被覆したGA45およびEG50の鋼板は、摺動(ドロービード)加工による耐食性の劣化が大きいが、他のEG50およびGI100は、摺動(ドロービード)加工の影響が小さいことがわかる。   The results of the above measurement are shown in FIG. FIG. 5 shows that ZnNi30, GA45 and GA45 and EG50 steel coated organically have a large deterioration in corrosion resistance due to sliding (draw bead) processing, but other EG50 and GI100 are affected by sliding (draw bead) processing. I understand that it is small.

表面処理鋼板の耐食性に及ぼす縮みフランジ加工の影響を調査するため、表1に示した7種類の鋼板のそれぞれから、図6(a)に示したような、ブランク径が100mmφの円盤状の1次試験片を2枚ずつ採取し、次いで、これらの1次試験片に、50mmφの円柱ポンチを用いて、成形高さ10mmの深絞り成形を行い、円盤状の1次試験片の周辺部に縮みフランジ変形を起こさせ、図6(b)に示したような形状の2次試験片とした。なお、深絞り成形するに当たり、1次試験片には、潤滑油(プレトン303P:スギムラ化学製)を両面で3g/m塗布した。 In order to investigate the influence of shrinkage flange processing on the corrosion resistance of the surface-treated steel sheet, a disc-shaped 1 having a blank diameter of 100 mmφ as shown in FIG. 6 (a) was obtained from each of the seven types of steel sheets shown in Table 1. Two next test specimens were collected, and then these primary test specimens were deep-drawn to a molding height of 10 mm using a 50 mmφ cylindrical punch, and the disk-shaped primary test specimen was placed on the periphery. Shrinkage flange deformation was caused to obtain a secondary test piece having a shape as shown in FIG. In deep drawing, lubricating oil (Preton 303P: manufactured by Sugimura Chemical) was applied to the primary test piece at 3 g / m 2 on both sides.

次いで、上記同種鋼板の2個の2次試験片の被加工面(縮みフランジ部)どうしを、図7に示したように重ね合わせてスポット溶接して接合し、その後、この接合したサンプルには、実施例1と同様にして化成処理と電着塗装処理を施して耐食性試験片とし、同じく、実施例1と同様の条件でSAE J2334に規定された複合サイクル腐食試験を行った。なお、表1に示した6種類の表面処理鋼板については、比較材として、縮みフランジ加工を施さない1次試験片を用いて、上記と同様にして耐食性試験片を作製し、同様の化成処理と電着塗装処理を施し、耐食性試験に供した。   Next, the processed surfaces (contracted flange portions) of the two secondary test pieces of the same type steel plate are overlapped and spot-welded as shown in FIG. Then, a chemical conversion treatment and an electrodeposition coating treatment were performed in the same manner as in Example 1 to obtain a corrosion resistance test piece, and similarly, a combined cycle corrosion test defined in SAE J2334 was conducted under the same conditions as in Example 1. For the six types of surface-treated steel sheets shown in Table 1, a corrosion resistance test piece was prepared in the same manner as described above using a primary test piece not subjected to shrinkage flange processing as a comparative material, and the same chemical conversion treatment was performed. And subjected to electrodeposition coating treatment and subjected to a corrosion resistance test.

上記試験の結果を、図8に示した。図8から、縮みフランジ加工による耐食性の劣化の程度は、表面処理鋼板の種類にかかわらずほぼ同じであることがわかる。   The results of the above test are shown in FIG. It can be seen from FIG. 8 that the degree of deterioration of corrosion resistance due to shrinkage flange processing is almost the same regardless of the type of the surface-treated steel sheet.

表面処理鋼板の耐食性に及ぼす二軸引張加工の影響を調査するため、表1に示した7種類の鋼板のそれぞれから、200mm×200mmの1次試験片を2枚ずつ採取し、これらの1次試験片を、エリクセン試験機を用いて、先端径150mmφの円錐台ポンチで成形高さ10mmの張り出し加工を行い、図9に示したような形状の2次試験片とした。なお、1次試験片には、潤滑油(プレトン303P:スギムラ化学製)を両面で3g/m塗布した。 In order to investigate the effect of biaxial tension processing on the corrosion resistance of the surface-treated steel sheet, two primary test pieces of 200 mm × 200 mm were collected from each of the seven types of steel sheets shown in Table 1, and these primary samples were collected. The test piece was stretched to a molding height of 10 mm with a truncated cone punch having a tip diameter of 150 mm using an Erichsen tester to obtain a secondary test piece having a shape as shown in FIG. The primary test piece was coated with 3 g / m 2 of lubricating oil (Preton 303P: manufactured by Sugimura Chemical) on both sides.

次いで、上記同種鋼板の2枚の張り出し加工した2次試験片の被加工面(ポンチ底)どうしを、図10に示したように重ね合わせてスポット溶接により接合して耐食性試験片とし、その後、この耐食性試験片には、実施例1と同様にして化成処理と電着塗装処理を施してから、実施例1と同様の条件でSAE J2334に規定された複合サイクル腐食試験を行った。なお、表1に示した6種類の表面処理鋼板については、比較材として、二軸引張加工を施さない1次試験片を用いて、上記と同様にして耐食性試験片を作製し、同様の化成処理と電着塗装処理を施し、耐食性試験に供した。   Next, the processed surfaces (punch bottoms) of the two stretched secondary test pieces of the same type of steel plate are overlapped as shown in FIG. 10 and joined by spot welding to obtain a corrosion resistance test piece. This corrosion resistance test piece was subjected to chemical conversion treatment and electrodeposition coating treatment in the same manner as in Example 1, and then subjected to a combined cycle corrosion test specified in SAE J2334 under the same conditions as in Example 1. For the six types of surface-treated steel sheets shown in Table 1, corrosion test specimens were prepared in the same manner as described above using primary test specimens that were not subjected to biaxial tensile processing as comparative materials. Treatment and electrodeposition coating treatment were performed and subjected to a corrosion resistance test.

上記試験の結果を、図11に示した。図11から、GA45およびEG50に有機被覆を施した表面処理鋼板は、他の鋼板と比較して、等二軸引張加工による耐食性の劣化が大きいことがわかる。   The results of the above test are shown in FIG. From FIG. 11, it can be seen that the surface-treated steel sheet in which GA45 and EG50 are coated with an organic coating is greatly deteriorated in corrosion resistance due to equal biaxial tensile processing as compared with other steel sheets.

表面処理金属の耐食性に及ぼす伸びフランジ加工の影響を調査するため、ブランク径が200mmφで中央に30mmφの打抜き孔を有するドーナツ状の1次試験片を、表1に示した7種類の鋼板のそれぞれから2枚ずつ採取し、これらの1次試験片に、直径が150mmφの円柱状ポンチで成形高さ50mmの加工を施して、打抜き孔の周縁部に伸びフランジ変形を起こさせ、図12に示したような形状の2次試験片とした。なお、1次試験片には、潤滑油(プレトン303P:スギムラ化学製)を両面で3g/m塗布した。 In order to investigate the effect of stretch flange processing on the corrosion resistance of the surface-treated metal, a donut-shaped primary test piece having a blank diameter of 200 mmφ and a punched hole of 30 mmφ in the center was used for each of the seven types of steel plates shown in Table 1. Two pieces were collected from each of these, and these primary test pieces were processed with a cylindrical punch having a diameter of 150 mmφ to a forming height of 50 mm to cause stretch flange deformation at the peripheral edge of the punched hole, as shown in FIG. The secondary test piece was shaped like this. The primary test piece was coated with 3 g / m 2 of lubricating oil (Preton 303P: manufactured by Sugimura Chemical) on both sides.

次いで、上記同種鋼板の伸びフランジ加工した2枚の2次試験片の被加工面(ポンチ底部分)どうしを、図13に示したように重ね合わせてスポット溶接により接合して耐食性試験片とした。その後、この耐食性次試験片には、実施例1と同様にして化成処理と電着塗装処理を施してから、実施例1と同様の条件でSAE J2334に規定された複合サイクル腐食試験を行った。なお、表1に示した6種類の表面処理鋼板については、比較材として、伸びフランジ加工を施さない1次試験片を用いて、上記と同様にして耐食性試験片を作製し、同様の化成処理と電着塗装処理を施し、耐食性試験に供した。   Next, the processed surfaces (punch bottom portions) of the two secondary test pieces of the same type steel plate stretched flange processed were overlapped and joined by spot welding as shown in FIG. 13 to obtain a corrosion resistance test piece. . Thereafter, the next test piece for corrosion resistance was subjected to chemical conversion treatment and electrodeposition coating treatment in the same manner as in Example 1 and then subjected to a combined cycle corrosion test defined in SAE J2334 under the same conditions as in Example 1. . For the six types of surface-treated steel sheets shown in Table 1, a corrosion resistance test piece was prepared in the same manner as described above using a primary test piece not subjected to stretch flange processing as a comparative material, and the same chemical conversion treatment was performed. And subjected to electrodeposition coating treatment and subjected to a corrosion resistance test.

上記試験の結果を、図14に示した。図14から、伸びフランジ加工が表面処理金属の耐食性に及ぼす影響は小さいことがわかる。   The results of the above test are shown in FIG. FIG. 14 shows that the effect of stretch flange processing on the corrosion resistance of the surface-treated metal is small.

本発明の技術は、自動車または家電製品等の防錆仕様を決める防錆鋼板の選定あるいは防錆鋼板の開発に適用することができる。   The technology of the present invention can be applied to the selection of a rust-proof steel plate that determines rust-proof specifications for automobiles or home appliances or the development of a rust-proof steel plate.

ドロービード加工に用いた冶具と加工方法を説明する図である。It is a figure explaining the jig used for draw bead processing, and a processing method. ドロービード加工後の2次試験片の形状を示した図である。It is the figure which showed the shape of the secondary test piece after draw bead processing. ドロービード加工した耐食性試験片を説明する図である。It is a figure explaining the corrosion resistance test piece which carried out the draw bead processing. SAE J2334の腐食試験サイクルを説明する図である。It is a figure explaining the corrosion test cycle of SAE J2334. ドロービード加工が表面処理鋼板の耐食性に及ぼす影響を示す図である。It is a figure which shows the influence which draw bead processing has on the corrosion resistance of a surface-treated steel plate. 深絞り加工に用いた1次試験片と加工後の2次試験片を説明する図である。It is a figure explaining the primary test piece used for deep drawing, and the secondary test piece after a process. 深絞り加工した耐食性試験片を説明する図である。It is a figure explaining the corrosion resistance test piece which carried out the deep drawing process. 深絞り加工が表面処理鋼板の耐食性に及ぼす影響を示す図である。It is a figure which shows the influence which deep drawing processing has on the corrosion resistance of a surface-treated steel plate. 張り出し加工に用いた1次試験片と加工後の2次試験片を説明する図である。It is a figure explaining the primary test piece used for the overhang | projection process, and the secondary test piece after a process. 張り出し加工した耐食性試験片を説明する図である。It is a figure explaining the corrosion-resistant test piece which carried out the overhanging process. 張り出し加工が表面処理鋼板の耐食性に及ぼす影響を示す図である。It is a figure which shows the influence which an overhanging process has on the corrosion resistance of a surface-treated steel plate. 伸びフランジ加工に用いた1次試験片と加工後の2次試験片を説明する図である。It is a figure explaining the primary test piece used for the stretch flange process, and the secondary test piece after a process. 伸びフランジ加工した耐食性試験片を説明する図である。It is a figure explaining the corrosion resistance test piece which carried out stretch flange processing. 伸びフランジ加工が表面処理鋼板の耐食性に及ぼす影響を示す図である。It is a figure which shows the influence which stretch flange processing has on the corrosion resistance of a surface-treated steel plate.

Claims (6)

加工を受けた2つの表面処理金属の被加工面どうしを重ね合わせて接合し、その接合部に形成された合わせ構造部の腐食試験を行う表面処理金属の耐食性評価方法。 A method for evaluating the corrosion resistance of a surface-treated metal, in which the processed surfaces of two surface-treated metals that have undergone processing are overlapped and joined to each other, and a corrosion test is performed on a mating structure formed at the joint. 上記表面処理金属は、亜鉛めっき系のめっき処理を施した表面処理鋼板であることを特徴とする請求項1に記載の耐食性評価方法。 2. The corrosion resistance evaluation method according to claim 1, wherein the surface-treated metal is a surface-treated steel sheet that has been subjected to galvanizing. 上記表面処理鋼板は、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板のいずれかであることを特徴とする請求項1または2に記載の耐食性評価方法。 The corrosion resistance evaluation method according to claim 1, wherein the surface-treated steel sheet is any one of an electrogalvanized steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet. 上記腐食試験が、SAE J2334に規定された複合サイクル腐食試験であることを特徴とする請求項1〜3のいずれか1項に記載の耐食性評価方法。 The corrosion resistance evaluation method according to any one of claims 1 to 3, wherein the corrosion test is a combined cycle corrosion test defined in SAE J2334. 上記加工が、ドロービード加工またはしごき加工による摺動加工、縮みフランジ加工、二軸引張り加工、伸びフランジ加工のいずれかであることを特徴とする請求項1〜4のいずれか1項に記載の耐食性評価方法。 The corrosion resistance according to any one of claims 1 to 4, wherein the processing is any one of sliding processing by draw bead processing or ironing processing, shrink flange processing, biaxial tension processing, and stretch flange processing. Evaluation methods. 上記加工が、ドロービード加工またはしごき加工による摺動加工、縮みフランジ加工、二軸引張り加工および伸びフランジ加工のいずれか2以上の複合加工であることを特徴とする請求項1〜4のいずれか1項に記載の耐食性評価方法。
5. The process according to claim 1, wherein the process is a combined process of any two or more of a sliding process using a draw bead process or an ironing process, a shrinking flange process, a biaxial tension process, and an extension flange process. The corrosion resistance evaluation method according to Item.
JP2007006852A 2007-01-16 2007-01-16 Method for evaluating corrosion resistance of surface-treated metals Expired - Fee Related JP4788606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006852A JP4788606B2 (en) 2007-01-16 2007-01-16 Method for evaluating corrosion resistance of surface-treated metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006852A JP4788606B2 (en) 2007-01-16 2007-01-16 Method for evaluating corrosion resistance of surface-treated metals

Publications (2)

Publication Number Publication Date
JP2008175554A true JP2008175554A (en) 2008-07-31
JP4788606B2 JP4788606B2 (en) 2011-10-05

Family

ID=39702696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006852A Expired - Fee Related JP4788606B2 (en) 2007-01-16 2007-01-16 Method for evaluating corrosion resistance of surface-treated metals

Country Status (1)

Country Link
JP (1) JP4788606B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107213A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp Device and method for measuring corrosion depth in metal plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125783B2 (en) * 2007-09-20 2013-01-23 Jfeスチール株式会社 Test piece preparation method and corrosion resistance evaluation method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601593A (en) * 1983-06-17 1985-01-07 株式会社東芝 Pit cover for upper section of reactor
JPS6462286A (en) * 1987-09-02 1989-03-08 Toyoda Automatic Loom Works Resistance welding method for steel sheet
JPH0357571A (en) * 1989-07-22 1991-03-12 Nisshin Steel Co Ltd Structure of resistance weld zone of stainless steel
JPH06228773A (en) * 1993-02-05 1994-08-16 Nkk Corp Zn-cr composite plated steel sheet excellent in corrosion resistance after working and its production
JPH08184549A (en) * 1994-12-28 1996-07-16 Nkk Corp Method for evaluating corrosion resistance of metal material
JPH0953166A (en) * 1995-06-05 1997-02-25 Nippon Steel Corp Production of rust preventive steel sheet for fuel tank excellent in press workability and corrosion resistance
JPH10245666A (en) * 1997-03-07 1998-09-14 Toyota Motor Corp Plated steel sheet for fuel tank excellent in press formability, corrosion resistance, and weldability, and the fuel tank
JP2001064759A (en) * 1999-08-27 2001-03-13 Nippon Steel Corp Hot-dip metal coated steel product excellent in workability
JP2001192798A (en) * 2000-01-12 2001-07-17 Nippon Steel Corp Aluminum plated steel sheet excellent in corrosion resistance in worked area, and its manufacturing method
JP2002029270A (en) * 2000-07-14 2002-01-29 Nisshin Steel Co Ltd Automobile fuel tank superior in corrosion resistance
JP2002211255A (en) * 2001-01-15 2002-07-31 Toyota Motor Corp Fuel tank for automobile
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance
JP2005181102A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for evaluating resistance to corrosion of steel product
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601593A (en) * 1983-06-17 1985-01-07 株式会社東芝 Pit cover for upper section of reactor
JPS6462286A (en) * 1987-09-02 1989-03-08 Toyoda Automatic Loom Works Resistance welding method for steel sheet
JPH0357571A (en) * 1989-07-22 1991-03-12 Nisshin Steel Co Ltd Structure of resistance weld zone of stainless steel
JPH06228773A (en) * 1993-02-05 1994-08-16 Nkk Corp Zn-cr composite plated steel sheet excellent in corrosion resistance after working and its production
JPH08184549A (en) * 1994-12-28 1996-07-16 Nkk Corp Method for evaluating corrosion resistance of metal material
JPH0953166A (en) * 1995-06-05 1997-02-25 Nippon Steel Corp Production of rust preventive steel sheet for fuel tank excellent in press workability and corrosion resistance
JPH10245666A (en) * 1997-03-07 1998-09-14 Toyota Motor Corp Plated steel sheet for fuel tank excellent in press formability, corrosion resistance, and weldability, and the fuel tank
JP2001064759A (en) * 1999-08-27 2001-03-13 Nippon Steel Corp Hot-dip metal coated steel product excellent in workability
JP2001192798A (en) * 2000-01-12 2001-07-17 Nippon Steel Corp Aluminum plated steel sheet excellent in corrosion resistance in worked area, and its manufacturing method
JP2002029270A (en) * 2000-07-14 2002-01-29 Nisshin Steel Co Ltd Automobile fuel tank superior in corrosion resistance
JP2002211255A (en) * 2001-01-15 2002-07-31 Toyota Motor Corp Fuel tank for automobile
JP2004270029A (en) * 2003-02-18 2004-09-30 Nippon Steel Corp Galvanized steel sheet excellent in zinc volatility resistance
JP2005181102A (en) * 2003-12-19 2005-07-07 Jfe Steel Kk Method for evaluating resistance to corrosion of steel product
JP2007146199A (en) * 2005-11-25 2007-06-14 Nisshin Steel Co Ltd Rust-preventive structure for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010107213A (en) * 2008-10-28 2010-05-13 Jfe Steel Corp Device and method for measuring corrosion depth in metal plate

Also Published As

Publication number Publication date
JP4788606B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP6694876B2 (en) Use of sulphate and method for producing steel parts by molding in a molding machine
CN101128614A (en) Coated steel sheet or coil
JP4788606B2 (en) Method for evaluating corrosion resistance of surface-treated metals
JP5272518B2 (en) Zinc-based galvanized steel sheet, galvanized steel sheet cutting method and die for cutting
JP2009274105A (en) Method for evaluating strength of joining boundary in lap fillet joint
Pinger et al. Investigation on the corrosion and mechanical behavior of thin film batch galvanized thick plate components in clinch joints
JP5304122B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets
KR20170099998A (en) Steel plate for fuel tank
Bretz et al. Adhesive bonding and corrosion protection of a die cast magnesium automotive door
JP2009069029A (en) Corrosion resistance evaluation method of surface treated metal
JP5125783B2 (en) Test piece preparation method and corrosion resistance evaluation method
KR20210069457A (en) Bonded steel sheet having excellent corrosion resistance and method for manufacturing thereof
JP2008180694A (en) Configuration determination method of structure
JP2013189671A (en) HOT-DIP Al-Zn BASED PLATED STEEL SHEET
JP2009265089A (en) Corrosion resistance evaluation method for surface-treated steel sheet
Prange et al. Application of laser-beam-welded sheet metal
Evin et al. Some tribological aspects of fe-zn coated steel sheets at stamping processes
Van Schaik et al. MagiZinc-the new high performance coating for steel in the BIW and closures
JP5217637B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets
JP5286883B2 (en) Method for evaluating corrosion resistance of surface-treated steel sheets for automobile side sills
KR101329203B1 (en) Fatigue testing method of aluminum alloys tartaric sulfuric acid anodized
KR100574403B1 (en) A method for evaluating surface pop-up defect on a galvanized steel sheet
JP2010122203A (en) Corrosion resistance evaluation method of surface treated steel sheet
JP2017510718A (en) Non-phosphorus coating method for plastic working metal materials for cold heading
Angeli et al. The new family of European ZM coatings–a promising option for the automotive industry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4788606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees