JP5359925B2 - Manufacturing method of energy absorbing member having strength difference in member - Google Patents

Manufacturing method of energy absorbing member having strength difference in member Download PDF

Info

Publication number
JP5359925B2
JP5359925B2 JP2010037590A JP2010037590A JP5359925B2 JP 5359925 B2 JP5359925 B2 JP 5359925B2 JP 2010037590 A JP2010037590 A JP 2010037590A JP 2010037590 A JP2010037590 A JP 2010037590A JP 5359925 B2 JP5359925 B2 JP 5359925B2
Authority
JP
Japan
Prior art keywords
strength
cooling
manufacturing
less
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010037590A
Other languages
Japanese (ja)
Other versions
JP2011174115A (en
Inventor
薫 川崎
幸一 佐野
義仁 関戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010037590A priority Critical patent/JP5359925B2/en
Publication of JP2011174115A publication Critical patent/JP2011174115A/en
Application granted granted Critical
Publication of JP5359925B2 publication Critical patent/JP5359925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、部材内で強度差を有するエネルギ吸収部材の製造方法に関する。   The present invention relates to a method for manufacturing an energy absorbing member having a strength difference within the member.

従来、一つの部材の中で強度の異なる領域を有する部材を作製する方法として、例えばテーラードブランクにより強度の異なる鋼板を接合した後、プレス成形する方法が知られている。しかし、鋼成分によって接合部の強度が高くなり過ぎ、変形能の低下による成形性の劣化が懸念される。   Conventionally, as a method for producing a member having regions having different strengths in one member, for example, a method of press forming after joining steel plates having different strengths with a tailored blank is known. However, the strength of the joint becomes too high due to the steel component, and there is a concern about the deterioration of formability due to a decrease in deformability.

一方、熱間プレスにより、一つの部材の中で強度が異なる領域を有する部品を製造する方法として、特許文献1に記載されている。すなわち、鋼板を熱輻射により加熱する際に、鋼板に比べて熱伝導率の小さな断熱材を装着することにより、部分的にAc3点よりも低い温度域に入れることにより、その後に続くプレス加工及び冷却により得られる強度を変化させるものである。したがって、部材全体をAc3点よりも高い温度域まで加熱する本発明とは、全くその狙いが異なるものである。   On the other hand, Patent Document 1 discloses a method of manufacturing a part having regions having different strengths in one member by hot pressing. That is, when heating the steel sheet by heat radiation, by installing a heat insulating material having a smaller thermal conductivity than the steel sheet, by partially entering the temperature range lower than the Ac3 point, the subsequent press work and The strength obtained by cooling is changed. Therefore, the aim is completely different from the present invention in which the entire member is heated to a temperature range higher than the Ac3 point.

特開2009−61473号公報JP 2009-61473 A

自動車用部品、例えばフロントサイドメンバー等の部品は、衝突時にエネルギを効率良く吸収する部分と、耐力を確保し、変形せずに衝突時のエネルギを伝達させる部分とに分かれている。そのため、一体成形化する場合、例えばテーラードブランクによって必要な鋼板強度の鋼板を成形前に溶接した後、プレス成形が実施されている。   Parts for automobiles, such as front side members, are divided into a part that efficiently absorbs energy at the time of collision and a part that ensures proof strength and transmits energy at the time of collision without deformation. Therefore, when forming integrally, press molding is implemented, for example, after welding the steel plate of the required steel plate intensity | strength with a tailored blank before shaping | molding.

しかしながら、さらなる車体軽量化とエネルギ吸収特性の向上を図るためには、鋼板強度を上げる必要があることから、プレス成形がますます困難になるばかりでなく、とくにテーラードブランク材においては溶接部の強度が上がりやすいことから、成形時に溶接部での破断の危険性があるばかりでなく、同様の原因から衝突時変形特性の劣化も懸念される。   However, in order to further reduce the weight of the vehicle body and improve the energy absorption characteristics, it is necessary to increase the strength of the steel sheet, so not only press forming becomes more difficult, but especially with tailored blanks, the strength of the welded part Therefore, not only is there a risk of fracture at the weld during molding, but there is also a concern that the deformation characteristics at the time of collision may deteriorate due to the same cause.

したがって、一つの部品の中で溶接部分を含むことなく強度レベルの異なる部位を有する部品の製造方法が求められている。   Therefore, there is a need for a method for manufacturing a part having different strength levels without including a welded part in one part.

そこで、本発明者らはこうした実情に鑑み、一つの衝突用部材において、エネルギを効率良く吸収する部分と、耐力を確保する部分をプレス成形中に作り込む技術として、本発明を完成させた。
その要旨は以下の通りである。
Therefore, in view of such circumstances, the present inventors have completed the present invention as a technique for making a part for efficiently absorbing energy and a part for ensuring proof stress during press molding in one collision member.
The summary is as follows.

(1)質量%で、C:0.19〜0.35%、Si:0.1〜0.5%、Mn:0.1〜1%、P:0.015%以下、S:0.01%以下、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti、Nb、V及びMoのうち1種以上をそれぞれTi:0.005〜0.1%、Nb:0.005〜0.02%、V:0.01〜0.1%、Mo:0.01〜0.1%の範囲で合計:0.005〜0.15%を含み、残部Fe及び不可避的不純物からなるスラブを加熱後に、順次に熱間圧延、冷間圧延および連続焼鈍の3工程のいずれかの製造工程までを行って得られた鋼板を、
Ac3点以上の温度域に加熱後冷却するに際し、Ar3〜300℃の温度域を200℃/s以上の冷却速度で冷却する急冷部分と、150℃/s未満の冷却速度で冷却する緩冷部分を有し、相対的に高強度の急冷部分と相対的に低強度の緩冷部分との強度差(ΔTS)が490MPa以上となることを特徴とする、部材内で強度差を有するエネルギ吸収部材の製造方法。
(1) By mass%, C: 0.19 to 0.35%, Si: 0.1 to 0.5%, Mn: 0.1 to 1%, P: 0.015% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: 0.001 In the range of Ti: Nb, V, and Mo, Ti: 0.005-0.1%, Nb: 0.005-0.02%, V: 0.01-0.1%, Mo: 0.01-0.1% In total: 0.005 to 0.15%, and after heating the slab composed of the balance Fe and inevitable impurities, it is obtained by sequentially performing any one of the three manufacturing steps of hot rolling, cold rolling and continuous annealing. Steel plate,
When cooling after heating to a temperature range of Ac3 or higher, a quenching part that cools the temperature range of Ar3 to 300 ° C at a cooling rate of 200 ° C / s or more, and a slow cooling part that cools at a cooling rate of less than 150 ° C / s An energy absorbing member having a difference in strength within the member, wherein a difference in strength (ΔTS) between a relatively high strength quenching portion and a relatively low strength slow cooling portion is 490 MPa or more Manufacturing method.

(2)上記(1)において、上記3工程のいずれかの製造工程までを終了後、更にメッキを施してから、Ac3点以上の温度域に加熱後冷却する上記の処理を行なうことを特徴とする、部材内で強度差を有するエネルギ吸収部材の製造方法。   (2) In the above (1), after completion of any one of the above three steps, further plating is performed, and then the above-described treatment of cooling to a temperature range higher than the Ac3 point is performed. The manufacturing method of the energy absorption member which has an intensity | strength difference within a member.

すなわち本発明は、所定の化学組成のスラブを熱間圧延→冷間圧延→連続焼鈍の3工程のいずれかの製造工程までを終了後、Ac3変態点以上に加熱後、所定温度域を部材領域によって異なる所定速度で冷却することによりミクロ組織を作り分け、一つの部材の中で強度の異なる領域を形成させる方法である。あるいは、上記3工程のいずれかの製造工程までを終了後、更にメッキ処理してから、上記の加熱・冷却を行なってもよい。   That is, in the present invention, a slab having a predetermined chemical composition is heated up to or above the Ac3 transformation point after completion of any one of the three steps of hot rolling → cold rolling → continuous annealing, and then the predetermined temperature range is set to the member region. This is a method in which a microstructure is formed separately by cooling at different predetermined speeds to form regions having different strengths in one member. Alternatively, after completion of any one of the above three steps, the above heating / cooling may be performed after further plating.

すなわち、部品の成形工程において、鋼板をAc3変態点以上の温度域に加熱後、Ar3変態点以上の温度域で成形を終了させ、直ちに冷却を施し、その際に強度の異なる部位を形成させることを特徴とするエネルギ吸収部材を製造する方法である。   That is, in the part forming process, after heating the steel sheet to a temperature range above the Ac3 transformation point, finish forming at a temperature range above the Ar3 transformation point and immediately cool it to form parts with different strengths. Is a method of manufacturing an energy absorbing member characterized by

本発明により、ホットスタンプ成形後に行う冷却条件を調整し、いわゆる焼分けを行うことにより一つの部材内において強度の異なるミクロ組織を作り分け、衝突時のエネルギ吸収性能を高めることにより、車体軽量化に寄与するものである。   By adjusting the cooling conditions to be performed after hot stamping according to the present invention, so-called firing is performed to create different microstructures in one member, and the energy absorption performance at the time of collision is reduced, thereby reducing the weight of the vehicle body It contributes to.

冷却速度の違いによる焼入れ性の違いを示す図である。It is a figure which shows the difference in the hardenability by the difference in cooling rate. 遅れ破壊特性試験片を示す図である。It is a figure which shows a delayed fracture characteristic test piece.

まず、本発明を完成させるに至った実験について説明する。
本発明者らは、表1に示す成分を有する板厚:1.6mmの冷延・焼鈍板を使用し、冷却速度とビッカース硬度(荷重:1kgf)との関係を調査した。得られた結果を図1に示す。
First, the experiment that led to the completion of the present invention will be described.
The present inventors used a cold-rolled / annealed plate having a thickness of 1.6 mm having the components shown in Table 1, and investigated the relationship between the cooling rate and the Vickers hardness (load: 1 kgf). The obtained results are shown in FIG.

Figure 0005359925
Figure 0005359925

すなわち、従来添加されていた焼入れ性を向上させる元素を低減、あるいは省くことにより、強度が冷却速度の影響を受け、A鋼(従来鋼)では、25℃/s未満の冷却速度まで緩冷却されないと強度差が出現しないのに対し、B鋼(本発明鋼)では、150℃/s未満の冷却速度で強度差が表われ、しかも冷却速度により強度調整が可能であることを知見した。
こうした実験事実をもとに本発明を完成させるに至った。
以下に本発明の限定理由について説明する。
まず、成分元素の含有量を限定する理由を説明する。
以下において、含有量に下限値がある成分元素は必須成分であり、下限値がない成分元素は不純物である。
In other words, the strength is affected by the cooling rate by reducing or omitting elements that have been added to improve the hardenability, and steel A (conventional steel) is not slowly cooled to a cooling rate of less than 25 ° C / s. On the other hand, it was found that the difference in strength appears in the steel B (the steel of the present invention) at a cooling rate of less than 150 ° C./s, and the strength can be adjusted by the cooling rate.
The present invention has been completed based on these experimental facts.
The reason for limitation of the present invention will be described below.
First, the reason for limiting the content of component elements will be described.
In the following, a component element having a lower limit in content is an essential component, and a component element having no lower limit is an impurity.

〔C:0.19〜0.35%〕
Cは、本発明において重要な役割を果たす元素であり、とくに焼入れ後の強度に与える影響が大きい。したがって、1470MPa以上の強度を得るには0.19%以上の添加が必要である。一方、0.35%を超えると、衝撃変形時に破断が生じやすくなるとともに、溶接性の劣化と溶接部の強度が低下するため、これを上限とする。
(C: 0.19-0.35%)
C is an element that plays an important role in the present invention, and has a great influence on the strength after quenching. Therefore, 0.19% or more of addition is necessary to obtain a strength of 1470 MPa or more. On the other hand, if it exceeds 0.35%, breakage tends to occur at the time of impact deformation, and weldability deteriorates and the strength of the welded portion decreases, so this is the upper limit.

〔Si:0.1〜0.5%〕
Siは、固溶強化元素であると同時に、セメンタイトの析出を抑制する元素でもあることから、0.1%以上添加する。一方、過度に添加すると後述するように、メッキを施す場合にはそのメッキ性が劣化するため、0.5%を上限とする。
(Si: 0.1-0.5%)
Si is not only a solid solution strengthening element but also an element that suppresses precipitation of cementite, so 0.1% or more is added. On the other hand, if excessively added, as described later, when plating is performed, the plating property deteriorates, so 0.5% is made the upper limit.

〔Mn:0.1〜1%〕
Mnは、焼入れ性の確保にとって重要な元素の一つであり、本発明における冷却速度においても0.1%以上の添加が必要である。一方、1%を超えて添加されると焼入れ性が高くなり、強度を低く抑えることができなくなることからこれを上限とする。
[Mn: 0.1-1%]
Mn is one of the important elements for ensuring hardenability, and it is necessary to add 0.1% or more even at the cooling rate in the present invention. On the other hand, if over 1% is added, the hardenability increases and the strength cannot be kept low, so this is the upper limit.

〔P:0.015%以下〕
Pは、固溶強化元素であり、比較的安価に鋼板の強度を上げることができるが、粒界に偏析し、強度が高い場合には低温脆化が問題になることから、0.015%を上限とする。一方、0.001%よりも低くすることは脱Pコストを極端に高めるため好ましくないことから、好ましくはこれを下限とする。
[P: 0.015% or less]
P is a solid solution strengthening element and can raise the strength of the steel sheet relatively inexpensively, but segregates at the grain boundary, and if the strength is high, low temperature embrittlement becomes a problem, so 0.015% is the upper limit. And On the other hand, lowering the content of less than 0.001% is not preferable because the cost for removing P is extremely increased, so this is preferably set as the lower limit.

〔S:0.01%以下〕
Sは鋼の熱間脆性に影響を与える元素であるとともに、とくに熱間での加工性を劣化させる元素でもあるばかりでなく、冷間での加工性を劣化させるため、少ない方が好ましい。そのため、0.01%を上限とする。しかし、0.001%未満とする場合には、脱硫コストの極端な上昇を招くため、好ましくはこれを下限とする。
なお、P、Sは共に本発明においては不可避的不純物の一部である。
[S: 0.01% or less]
S is an element that affects the hot brittleness of steel, and is not only an element that deteriorates the workability particularly in the hot state, but also decreases the workability in the cold state. Therefore, the upper limit is 0.01%. However, when the content is less than 0.001%, the desulfurization cost is extremely increased, so this is preferably set as the lower limit.
Note that P and S are both inevitable impurities in the present invention.

〔Al:0.005〜0.05%〕
Alは、脱酸のために添加されるものである。0.005%未満では脱酸が不十分となり、鋼中に酸化物が多量に残存し、とくに局部変形能が劣化するとともに、特性バラツキも大きくなる。一方、0.05%を超えて含有されると、鋼中にアルミナを主体とする酸化物が多く残存し、やはり局部変形能の劣化を招くため、好ましくない。
[Al: 0.005-0.05%]
Al is added for deoxidation. If it is less than 0.005%, deoxidation becomes insufficient, and a large amount of oxide remains in the steel. In particular, the local deformability deteriorates and the characteristic variation also increases. On the other hand, if the content exceeds 0.05%, a large amount of oxide mainly composed of alumina remains in the steel, which also causes deterioration of local deformability, which is not preferable.

〔N:0.001〜0.003%〕
Nも、極端に下げることはコストアップとなり好ましくないため、0.001%を下限とする。一方、0.003%を超えて含有されると、介在物を形成し、焼入れ後の靭性が劣化するため、これを上限とする。
[N: 0.001 to 0.003%]
Lowering N too much is not preferable because it increases costs, so 0.001% is set as the lower limit. On the other hand, if the content exceeds 0.003%, inclusions are formed and the toughness after quenching deteriorates, so this is the upper limit.

〔Ti, Nb, V, Moの合計:0.005〜0.15%〕
Ti、Nb、V、Moは、靭性確保の視点から、組織微細化のために添加される元素である。つまり、合計で0.005%未満ではその効果が得られない。一方、0.15%を超えて添加してもその効果が飽和し、コストアップになるため、これを上限とする。
[Total of Ti, Nb, V and Mo: 0.005 to 0.15%]
Ti, Nb, V, and Mo are elements added to refine the structure from the viewpoint of securing toughness. That is, if the total is less than 0.005%, the effect cannot be obtained. On the other hand, even if added over 0.15%, the effect is saturated and the cost increases, so this is the upper limit.

〔Ti:0.005〜0.1%〕
Tiは、鋼板をAc3点以上に加熱した場合、微細な炭化物の形成により、再結晶及び粒成長を抑制してオーステナイト粒を細粒にするため、靭性を改善する効果がある。そのため、0.005%を下限とする。一方、0.1%を超えて添加してもその効果が飽和するばかりでなく、コストアップを招くことからこれを上限とする。
[Ti: 0.005-0.1%]
Ti has the effect of improving toughness when the steel sheet is heated to the Ac3 point or higher, because fine carbides are formed to suppress recrystallization and grain growth to make austenite grains fine. Therefore, the lower limit is 0.005%. On the other hand, adding over 0.1% not only saturates the effect but also increases the cost, so this is the upper limit.

〔Nb:0.005〜0.02%〕
NbもTiと同様に、鋼板をAc3点以上に加熱した場合、微細な炭化物の形成により、再結晶及び粒成長を抑制してオーステナイト粒を細粒にするため、靭性を改善する効果がある。そのため、0.005%を下限とする。一方、0.02%を超えて添加してもその効果が飽和するばかりでなく、コストアップを招くことからこれを上限とする。
(Nb: 0.005-0.02%)
Nb, as well as Ti, has the effect of improving toughness when the steel sheet is heated to the Ac3 point or higher, because the formation of fine carbides suppresses recrystallization and grain growth and makes austenite grains fine. Therefore, the lower limit is 0.005%. On the other hand, adding over 0.02% not only saturates the effect but also increases costs, so this is the upper limit.

〔V:0.01〜0.1%〕
Vは、TiやNbと同様に、鋼板をAc3点以上に加熱した場合、微細な炭化物の形成により、再結晶及び粒成長を抑制してオーステナイト粒を細粒にするため、靭性を改善する効果がある。そのため、0.01%を下限とする。一方、0.1%を超えて添加してもその効果が飽和するばかりでなく、コストアップを招くことからこれを上限とする。
[V: 0.01 to 0.1%]
V, like Ti and Nb, has the effect of improving toughness, because when the steel sheet is heated to the Ac3 point or higher, the formation of fine carbides suppresses recrystallization and grain growth and makes austenite grains fine. There is. Therefore, 0.01% is made the lower limit. On the other hand, adding over 0.1% not only saturates the effect but also increases the cost, so this is the upper limit.

〔Mo:0.01〜0.1%〕
Moも、V、Ti及びNbと同様に、鋼板をAc3点以上に加熱した場合、微細な炭化物の形成により、再結晶及び粒成長を抑制してオーステナイト粒を細粒にするため、靭性を改善する効果がある。そのため、0.01%を下限とする。一方、0.1%を超えて添加してもその効果が飽和するばかりでなく、コストアップを招くことからこれを上限とする。
[Mo: 0.01-0.1%]
Similar to V, Ti, and Nb, Mo also improves toughness by heating the steel plate to Ac3 point or higher to suppress the recrystallization and grain growth and make the austenite grains fine by forming fine carbides. There is an effect to. Therefore, 0.01% is made the lower limit. On the other hand, adding over 0.1% not only saturates the effect but also increases the cost, so this is the upper limit.

〔不可避的不純物〕
Bは、焼入れ性を上げる元素のため、基本的には添加しないが、スクラップ等から混入する場合でも0.0002%未満とする必要がある。
[Inevitable impurities]
B is an element that enhances hardenability, so it is basically not added, but it needs to be less than 0.0002% even when it is mixed from scraps.

なお、上記に示す鋼成分は、製鋼段階においてスクラップを利用することによるCu,Cr,Sn,Ni,Mo等の元素が含まれる場合や、脱酸元素としてCaやCe等を含むREMを使用した場合についても、本発明における効果は何ら変わるものではない。また、連続鋳造方法もとくに規定されるものではなく、通常の連続鋳造方法やスラブ厚みが100mm以下の薄スラブ法によるものによっても、本発明における効果は何ら変わるものではない。   In addition, the steel components shown above used REM containing Ca, Ce, etc. as a deoxidizing element when elements such as Cu, Cr, Sn, Ni, Mo by using scraps in the steelmaking stage are contained. Even in the case, the effect of the present invention does not change at all. Further, the continuous casting method is not particularly specified, and the effect in the present invention is not changed by the normal continuous casting method or the thin slab method having a slab thickness of 100 mm or less.

次に、本発明の製造条件について説明する。
本発明における熱間圧延条件は通常実施される範囲でかまわない。すなわち、加熱温度は、その後に続く熱間圧延工程での圧延を可能とする変形抵抗が得られる条件であれば良い。また、仕上温度もAr3点以上の温度域で実施すれば良く、その後に続く冷却条件もとくに規定する必要はなく、750℃以下の温度域で巻取を実施する。しかし、400℃未満の温度で巻取ると熱延板強度が高くなり過ぎることから、これを下限とする。
Next, the manufacturing conditions of the present invention will be described.
The hot rolling conditions in the present invention may be within the range that is usually carried out. That is, the heating temperature should just be the conditions from which the deformation resistance which enables the rolling in the subsequent hot rolling process is obtained. Further, the finishing temperature may be carried out in the temperature range of Ar3 or higher, and the subsequent cooling conditions need not be specified, and the winding is carried out in a temperature range of 750 ° C. or lower. However, if the winding is performed at a temperature lower than 400 ° C., the hot-rolled sheet strength becomes too high, so this is the lower limit.

熱間圧延に続く冷間圧延条件、焼鈍条件及びメッキ条件についても、とくに本発明においては規定されるものではなく、通常の範囲で実施すれば良い。すなわち、冷間圧延は、通常実施されている冷延圧下率の範囲で実施するものとし、具体的には、40〜80%で実施するものとする。メッキは、熱間圧延後酸洗した後、あるいは冷間圧延まま、あるいは再結晶焼鈍を実施した後に実施するものであるが、加熱条件や冷却条件はとくに規定されるものではない。さらに、メッキ種についてもZnあるいはAlがメッキされるが、とくにZnメッキについては合金化の有無については限定しない。また、Alメッキについてはメッキ中にSiを含んでも本発明に何ら影響を与えるものではない。   The cold rolling conditions following the hot rolling, the annealing conditions, and the plating conditions are not particularly defined in the present invention, and may be carried out in a normal range. That is, the cold rolling is performed in the range of the cold rolling reduction that is normally performed, and specifically, it is performed at 40 to 80%. Plating is performed after pickling after hot rolling, or after cold rolling or after recrystallization annealing, but heating conditions and cooling conditions are not particularly specified. Furthermore, Zn or Al is also plated as the plating type, but the presence or absence of alloying is not particularly limited for Zn plating. As for Al plating, the inclusion of Si in the plating does not affect the present invention.

焼鈍後あるいはメッキ後の調質圧延についても、とくに規定するものではなく、形状を適切に調整するために実施するものである。その場合、過度に実施するとYPが増加するため、1%を上限とする。   The temper rolling after annealing or plating is not particularly specified, but is performed to adjust the shape appropriately. In that case, YP increases if implemented excessively, so the upper limit is 1%.

いずれの条件で得られた鋼板についても、鋼板内においてΔTSで490MPa以上の強度差を得るためには、Ar3点から300℃の間を200℃/s以上とする部分と、同温度範囲を150℃/s未満とする必要がある。すなわち、200℃/s以上とした部分はマルテンサイトのみの組織が得られるが、150℃/s未満ではマルテンサイトを全く含まない組織となることから、ΔTSで490MPa以上の強度差が得られる。   For steel plates obtained under any conditions, in order to obtain a strength difference of 490 MPa or more at ΔTS in the steel plate, the portion between Ar3 point and 300 ° C to 200 ° C / s and the same temperature range 150 Must be less than ° C / s. That is, a structure having only martensite is obtained at a portion set to 200 ° C./s or more, but a structure containing no martensite is obtained at less than 150 ° C./s, and thus a strength difference of 490 MPa or more is obtained in ΔTS.

表2に示す成分の鋼を転炉にて出鋼し、スラブとした後、望ましい熱延条件(加熱温度:1220℃、仕上温度:870℃、巻取温度:600℃)で熱間圧延を実施し、3mmの熱延鋼板とした。この熱延鋼板を1.4mmの冷延鋼板とした後、表3に示す条件で連続焼鈍を行うか、あるいは焼鈍後にメッキ処理を実施した。その際のメッキ処理は、溶融亜鉛メッキ(GI(合金化処理なし)/GA(合金化処理あり))あるいはSiを10%含む溶融アルミメッキ(Al)を施した。   After the steels with the components shown in Table 2 are produced in a converter and made into slabs, hot rolling is performed under the desired hot rolling conditions (heating temperature: 1220 ° C, finishing temperature: 870 ° C, winding temperature: 600 ° C). The result was a 3 mm hot rolled steel sheet. After making this hot-rolled steel sheet into a 1.4 mm cold-rolled steel sheet, continuous annealing was performed under the conditions shown in Table 3, or plating was performed after annealing. The plating treatment at that time was hot dip galvanization (GI (no alloying treatment) / GA (with alloying treatment)) or hot dip aluminum plating (Al) containing 10% of Si.

Figure 0005359925
Figure 0005359925

Figure 0005359925
Figure 0005359925

これらの鋼板について、実験室の加熱炉で900℃に加熱後、表面から水が噴出する給水口とその水を吸い込む排水口を有する金型に挟み込み、水を噴射させることにより室温まで冷却を行った。その際に、部分的に水の噴出を止めた部分を作り、金型に挟んだままで室温まで冷却した。   After heating these steel sheets to 900 ° C in a laboratory heating furnace, they are sandwiched in a mold having a water supply outlet from which water is spouted and a drain outlet for sucking the water, and cooled to room temperature by injecting water. It was. At that time, a part where water ejection was partially stopped was made and cooled to room temperature while being sandwiched between molds.

Ar3〜300℃の温度域での冷却速度は、水を噴射させた水冷部で300℃/s、水の噴射を止めた非水冷部で100℃/sであった。測定方法は下記のとおりである。   The cooling rate in the temperature range of Ar3 to 300 ° C. was 300 ° C./s in the water-cooled part where water was injected, and 100 ° C./s in the non-water-cooled part where water injection was stopped. The measuring method is as follows.

<冷却速度の測定方法>
冷却速度は、放射温度計を使用し、プレス成形前後の鋼板表面温度を測定し、成形時間(5s)から求めた。
<Measurement method of cooling rate>
The cooling rate was obtained from the forming time (5 s) by measuring the surface temperature of the steel sheet before and after press forming using a radiation thermometer.

熱処理後の強度の評価は、それぞれ冷却条件の異なる部位よりサンプルを切り出し、JIS Z 2201に記載の5号試験片に加工し、JIS Z 2241に記載の試験方法にしたがって実施した引張試験を行った。得られた結果を同表に示す。   Evaluation of strength after heat treatment was performed by cutting a sample from a part with different cooling conditions, processing it into a No. 5 test piece described in JIS Z 2201, and conducting a tensile test performed according to the test method described in JIS Z 2241. . The obtained results are shown in the same table.

また、水冷部(高強度部分)については、遅れ破壊特性と低温靭性の評価もあわせて実施した。   For the water-cooled part (high-strength part), delayed fracture characteristics and low-temperature toughness were also evaluated.

遅れ破壊特性特性については、図2に示すようなVノッチを付与した試験片を使用し、室温にてチオシアン酸アンモニウム3g/lを3%食塩水に溶かした水溶液に24h浸漬させ、破断の有無により判定した(破断無し:○、破断有り:×)。   For delayed fracture characteristics, use specimens with V-notches as shown in Fig. 2 and immerse them in an aqueous solution of 3 g / l of ammonium thiocyanate in 3% saline at room temperature for 24 hours. (No breakage: ○, with breakage: ×).

一方、低温脆性については、-40℃でシャルピー試験を行い、50%以上の延性破面率が得られた場合を合格(○)とし、50%未満では不合格(×)とした。   On the other hand, for low-temperature brittleness, a Charpy test was conducted at -40 ° C., and a case where a ductile fracture surface ratio of 50% or more was obtained was determined to be acceptable (◯), and if it was less than 50%, it was determined to be unacceptable (x).

本発明に従った鋼(A鋼〜S鋼)において、水を噴射させた部分(水冷部)については、TS:1470〜1960MPaの強度が得られ、水の噴出を止めた部分(非水冷部)では、980MPa(100kgf/mm2)未満の強度となり、一つの部材内で強度差(ΔTS)が490MPa以上となっている。 In the steel (A steel to S steel) according to the present invention, the portion where water was injected (water cooling portion), TS: strength of 1470 to 1960 MPa was obtained, and the portion where water ejection was stopped (non-water cooling portion) ), The strength is less than 980 MPa (100 kgf / mm 2 ), and the strength difference (ΔTS) within one member is 490 MPa or more.

一方、C量が低く外れたT鋼では、水を噴射させた部分においても1490MPa未満の強度しか得られていない。   On the other hand, T steel with a low C content has only obtained a strength of less than 1490 MPa even in the area where water was injected.

また、C量が高く外れたU鋼では、ΔTSが490MPa以上となるものの、強度が2450MPaとなり、水の噴出を止めた部分でも1180MPaを超えている。そのため、遅れ破壊特性や低温脆性の劣化が懸念される。   In addition, in U steel with a high C content, ΔTS is 490 MPa or more, but the strength is 2450 MPa, and even in the part where water ejection is stopped, it exceeds 1180 MPa. Therefore, there are concerns about delayed fracture characteristics and low temperature brittleness degradation.

Siが1%を超えて高く外れたV及びW鋼では、メッキ性が悪い(×)。   In V and W steels with Si exceeding 1%, plating performance is poor (×).

また、Mnが高く外れたX及びY鋼や、Bが混入したZ鋼では、水の噴出を止めた部分でも1470MPaの強度が出ており、ΔTSが490MPa未満となることから、本発明の範囲外である。   In addition, the X and Y steels with high Mn and the Z steel mixed with B have a strength of 1470 MPa even at the part where the water ejection is stopped, and ΔTS is less than 490 MPa. Outside.

表2のC鋼、K鋼及びO鋼について、望ましい熱延条件(加熱温度:1250℃、仕上温度:880℃、巻取温度:550℃)で板厚:2mmの熱延鋼板とした後に酸洗を行い、そのまま実験室の加熱炉で930℃に加熱後、表面から水が噴出する給水口とその水を吸い込む排水口を有する金型に挟み込み、水を噴射させることにより室温まで冷却を行った。その際に、実施例1と同様に、部分的に水の噴出を止めた部分を作り、金型に挟んだままで室温まで冷却した。さらに、酸洗の後に亜鉛(GI、GA)あるいはSiを10%含む溶融アルミメッキを施してから、同様の加熱-冷却処理を施した。一方、望ましい熱延条件(加熱温度:1250℃、仕上温度:890℃、巻取温度:500℃)で板厚:3.2mmの熱延鋼板とした後、同様の酸洗後に50%の冷延率で1.6mmの冷延鋼板としてから、実験室の加熱炉で900℃に加熱後、上記と同様の金型による冷却を行う際に、部分的に水の噴出を止めた部分を作り、金型に挟んだままで室温まで冷却した。得られた鋼板について、実施例1と同様の材質特性を評価し、得られた結果を表4に示す。いずれも本発明に従った鋼であることから、遅れ破壊特性や低温靭性に問題は無く、本発明での特性が得られている。   For steel C, steel K and steel O shown in Table 2, a hot-rolled steel sheet having a thickness of 2 mm under the desired hot-rolling conditions (heating temperature: 1250 ° C., finishing temperature: 880 ° C., coiling temperature: 550 ° C.) is used. After washing and heating to 930 ° C in a laboratory heating furnace as it is, it is sandwiched in a mold that has a water supply port from which water spouts and a drain port that sucks in the water, and cools to room temperature by injecting water. It was. At that time, similarly to Example 1, a part where water ejection was partially stopped was made and cooled to room temperature while being sandwiched between molds. Further, after pickling, hot-cooling treatment similar to that described above was performed after hot-dip aluminum plating containing 10% of zinc (GI, GA) or Si was performed. On the other hand, after forming a hot rolled steel sheet having a thickness of 3.2 mm under desirable hot rolling conditions (heating temperature: 1250 ° C., finishing temperature: 890 ° C., coiling temperature: 500 ° C.), 50% cold rolling after similar pickling 1.6mm cold rolled steel sheet, heated to 900 ° C in a laboratory heating furnace, and then cooled by a mold similar to the above, a part where water was partially stopped was created, It was cooled to room temperature while sandwiched between molds. About the obtained steel plate, the material characteristic similar to Example 1 was evaluated, and the obtained result is shown in Table 4. Since both are steels according to the present invention, there are no problems with delayed fracture characteristics and low temperature toughness, and the characteristics according to the present invention are obtained.

Figure 0005359925
Figure 0005359925

本発明により、Ac3点以上の温度域に加熱後冷却する際の冷却工程で、冷却速度を部分的に変化させることにより部材内で強度を変化させることで、優れたエネルギ吸収特性を有する部材の製造が可能となる。   According to the present invention, in the cooling step when cooling after heating to a temperature range of Ac3 point or higher, by changing the strength within the member by partially changing the cooling rate, the member having excellent energy absorption characteristics Manufacture is possible.

Claims (2)

質量%で、C:0.19〜0.35%、Si:0.1〜0.5%、Mn:0.1〜1%、P:0.015%以下、S:0.01%以下、Al:0.005〜0.05%、N:0.001〜0.003%を含みかつ、Ti、Nb、V及びMoのうち1種以上をそれぞれTi:0.005〜0.1%、Nb:0.005〜0.02%、V:0.01〜0.1%、Mo:0.01〜0.1%の範囲で合計:0.005〜0.15%を含み、残部Fe及び不可避的不純物からなるスラブを加熱後に順次に熱間圧延、冷間圧延および連続焼鈍の3工程のいずれかの製造工程までを行って得られた鋼板を、
Ac3点以上の温度域に加熱後冷却するに際し、Ar3〜300℃の温度域を200℃/s以上の冷却速度で冷却する急冷部分と、150℃/s未満の冷却速度で冷却する緩冷部分を有し、相対的に高強度の急冷部分と相対的に低強度の緩冷部分との強度差(ΔTS)が490MPa以上となることを特徴とする、部材内で強度差を有するエネルギ吸収部材の製造方法。
In mass%, C: 0.19 to 0.35%, Si: 0.1 to 0.5%, Mn: 0.1 to 1%, P: 0.015% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: 0.001 to 0.003% And one or more of Ti, Nb, V, and Mo are totaled in the ranges of Ti: 0.005-0.1%, Nb: 0.005-0.02%, V: 0.01-0.1%, Mo: 0.01-0.1%, respectively: A steel plate obtained by performing up to one of the three manufacturing steps of hot rolling, cold rolling and continuous annealing after heating a slab containing 0.005 to 0.15% and the balance Fe and inevitable impurities.
When cooling after heating to a temperature range of Ac3 or higher, a quenching part that cools the temperature range of Ar3 to 300 ° C at a cooling rate of 200 ° C / s or more, and a slow cooling part that cools at a cooling rate of less than 150 ° C / s An energy absorbing member having a difference in strength within the member, wherein a difference in strength (ΔTS) between a relatively high strength quenching portion and a relatively low strength slow cooling portion is 490 MPa or more Manufacturing method.
請求項1において、上記3工程のいずれかの製造工程までを終了後、更にメッキを施してから、Ac3点以上の温度域に加熱後冷却する上記の処理を行なうことを特徴とする、部材内で強度差を有するエネルギ吸収部材の製造方法。   2. The process according to claim 1, wherein after the process up to any one of the above three steps is completed, the plating is further performed, and then the above-described treatment of heating and cooling to a temperature range of the Ac3 point or higher is performed. The manufacturing method of the energy absorption member which has an intensity | strength difference.
JP2010037590A 2010-02-23 2010-02-23 Manufacturing method of energy absorbing member having strength difference in member Active JP5359925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037590A JP5359925B2 (en) 2010-02-23 2010-02-23 Manufacturing method of energy absorbing member having strength difference in member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037590A JP5359925B2 (en) 2010-02-23 2010-02-23 Manufacturing method of energy absorbing member having strength difference in member

Publications (2)

Publication Number Publication Date
JP2011174115A JP2011174115A (en) 2011-09-08
JP5359925B2 true JP5359925B2 (en) 2013-12-04

Family

ID=44687234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037590A Active JP5359925B2 (en) 2010-02-23 2010-02-23 Manufacturing method of energy absorbing member having strength difference in member

Country Status (1)

Country Link
JP (1) JP5359925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611873B1 (en) 2015-04-17 2016-04-15 동국제강주식회사 Manufacturing apparatus of steel sheet having different properties and manufavturing method of steel sheet having different properties thereof and steel sheet having different properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326761B2 (en) * 2013-10-23 2018-05-23 新日鐵住金株式会社 Hot stamping steel manufacturing method, hot stamping steel plate manufacturing method and hot stamping steel plate
JP6424195B2 (en) * 2016-11-14 2018-11-14 株式会社豊田中央研究所 Hot press forming method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11192501A (en) * 1997-12-26 1999-07-21 Nippon Steel Corp Tailored steel strip for press forming and its production
JP4135397B2 (en) * 2002-05-13 2008-08-20 日産自動車株式会社 Method and apparatus for quenching pressed parts
JP2005342776A (en) * 2004-06-07 2005-12-15 Nippon Steel Corp Method for manufacturing high-strength component, and high-strength component
JP5137323B2 (en) * 2006-04-26 2013-02-06 新日鐵住金株式会社 Bumper reinforcing member manufacturing method
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5119475B2 (en) * 2008-05-14 2013-01-16 新日鐵住金株式会社 Center pillar reinforcing member and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101611873B1 (en) 2015-04-17 2016-04-15 동국제강주식회사 Manufacturing apparatus of steel sheet having different properties and manufavturing method of steel sheet having different properties thereof and steel sheet having different properties

Also Published As

Publication number Publication date
JP2011174115A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
JP5114691B2 (en) Hot stamping molded body, hot stamping steel plate manufacturing method, and hot stamping molded body manufacturing method
KR102059052B1 (en) Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
US10253388B2 (en) Steel sheet for hot press formed product having superior bendability and ultra-high strength, hot press formed product using same, and method for manufacturing same
JP6208246B2 (en) High formability ultra-high strength hot-dip galvanized steel sheet and method for producing the same
JP5857909B2 (en) Steel sheet and manufacturing method thereof
JP5742697B2 (en) Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body
CN111936651A (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP2015503023A (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP5652321B2 (en) Steel sheet for hot stamping excellent in hot composite formability and delayed fracture resistance of punched parts, and its manufacturing method
JP2013227614A (en) High strength steel sheet having high toughness, high workability, high moldability, and excellent delayed fracture property caused by hydrogen embrittlement, and method for manufacturing the same
MX2014009571A (en) Cold-rolled steel sheet, plated steel sheet, method for producing cold-rolled steel sheet, and method for producing plated steel sheet.
JP7111252B2 (en) Coated steel member, coated steel plate and manufacturing method thereof
KR20140013333A (en) The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same
JP5359925B2 (en) Manufacturing method of energy absorbing member having strength difference in member
JPH03257124A (en) Production of cold rolled steel sheet for deep drawing having baking hardenability
JP7151878B2 (en) HOT STAMP MOLDED PRODUCT, HOT STAMP STEEL STEEL, AND METHOD OF MANUFACTURING THEM
JP4428075B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and method for producing the same
JP4178940B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP2003193186A (en) High strength steel sheet and high strength electroplated steel sheet having excellent ductility, stretch-flanging property and impact absorbing property and production method therefor
WO2020204027A1 (en) Hot-stamping molded article and method for manufacturing same
JP5092908B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP2004285435A (en) Hot dip galvanized steel sheet, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350