WO2020204027A1 - Hot-stamping molded article and method for manufacturing same - Google Patents

Hot-stamping molded article and method for manufacturing same Download PDF

Info

Publication number
WO2020204027A1
WO2020204027A1 PCT/JP2020/014822 JP2020014822W WO2020204027A1 WO 2020204027 A1 WO2020204027 A1 WO 2020204027A1 JP 2020014822 W JP2020014822 W JP 2020014822W WO 2020204027 A1 WO2020204027 A1 WO 2020204027A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
less
steel sheet
temperature
hot stamping
Prior art date
Application number
PCT/JP2020/014822
Other languages
French (fr)
Japanese (ja)
Inventor
純 芳賀
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020217026339A priority Critical patent/KR102633542B1/en
Priority to CN202080016590.0A priority patent/CN113490759B/en
Priority to JP2021512149A priority patent/JP7127735B2/en
Publication of WO2020204027A1 publication Critical patent/WO2020204027A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to a hot stamp molded product and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-070212 filed in Japan on April 1, 2019, the contents of which are incorporated herein by reference.
  • press molding which is the process of forming automobile body members
  • the thinner the steel sheet used the more likely it is that cracks and wrinkles will occur. Therefore, steel sheets for automobiles are also required to have excellent press formability.
  • Patent Document 1 a technique of press-forming a heated steel sheet using a low-temperature press die has been proposed. .. This technology is called hot stamping or hot pressing, and since steel sheets that have become soft when heated to a high temperature are press-formed, it is possible to manufacture members with complex shapes with high dimensional accuracy. it can. In addition, since the steel sheet is rapidly cooled by contact with the mold, it is possible to significantly increase the strength at the same time as press molding by quenching. For example, Patent Document 1 describes that a member having a tensile strength of 1400 MPa or more can be obtained by hot stamping a steel sheet having a tensile strength of 500 to 600 MPa.
  • skeletal structural parts such as center pillars and side members are often provided with a hard part and a soft part in the member in order to control the deformation state of the member when an automobile collides.
  • Patent Document 2 discloses a method in which the heating temperature of a steel sheet is partially changed by induction heating or infrared heating to soften the portion heated to a low temperature.
  • Patent Document 3 discloses a method in which a heat insulating material is attached to a part of a steel sheet when the steel sheet is heated in a furnace, and the heating temperature is partially lowered to soften the steel sheet.
  • Patent Document 4 and Patent Document 5 disclose a method of partially changing the cooling rate of a steel sheet by changing the contact area between the steel sheet and the mold during molding to soften the portion having a low cooling rate.
  • Patent Document 6 discloses a technique of hot stamping using a so-called tailored blank material in which two base plates are welded and connected.
  • the strength of martensite is increased by forming a single structure of martensite by heating the steel sheet to the austenite region and then cooling it at a cooling rate higher than the critical cooling rate.
  • the heating temperature or cooling rate of the steel sheet is partially lowered, and a structure other than martensite is partially generated to soften the steel sheet.
  • the methods of Patent Documents 2 to 5 have a problem that the strength of the soft portion is not stable.
  • Patent Document 6 a soft portion can be formed under certain heating and cooling conditions by using a steel plate having a low hardenability for one of the base plates.
  • the metallographic structure and strength characteristics of the soft portion largely depend on the composition of the steel sheet, Patent Document 6 does not give any consideration to the composition of the steel sheet having low hardenability.
  • Patent Documents 7 and 8 disclose a method for stabilizing the strength of a soft portion in a hot stamp member composed of a hard portion and a soft portion, or an overall soft hot stamp member. Has been done.
  • Patent Document 7 describes a height for 600 to 1200 MPa class automobiles in which the C content is limited to a low level and the quenching element is contained in a certain amount or more to suppress the formation of ferrite, pearlite and martensite during cooling.
  • a strength member and a method for manufacturing the same are disclosed.
  • Patent Document 8 discloses a hot stamping member having a tensile strength of 500 MPa or more and a method for producing the same, in which the C content is limited to a low level and Ti is contained to control the amount of martensite produced. ..
  • Patent Documents 7 and 8 it is possible to improve the uniformity of strength and elongation in the member.
  • the metal structure contains a hard structure such as bainite and martensite, the thermal stability is low and the member is coated and baked. It was found that the strength may decrease when the treatment is applied. Since paint baking treatment is often performed on automobile parts, there is room for improvement in the techniques described in Patent Documents 7 and 8.
  • Japanese Patent Application Laid-Open No. 2002-102980 Japanese Patent Application Laid-Open No. 2005-193287 Japanese Patent Application Laid-Open No. 2009-61473 Japanese Patent Application Laid-Open No. 2003-328031 International Publication No. 2006/38868 Japanese Patent Application Laid-Open No. 2004-58082 Japanese Patent Application Laid-Open No. 2005-248320 International Publication No. 2008/132303
  • the present invention solves the above-mentioned problems and is excellent in thermal stability, more specifically, the variation in strength (tensile strength) before and after the coating baking treatment accompanying the coating baking treatment is small, and the tensile strength is 440 MPa.
  • the present invention has been made to solve the above problems, and the gist of the following hot stamp molded product and its manufacturing method is.
  • the metal structure is% by area, ferrite: more than 50.0%, tempered martensite: 5.0% or more and less than 50.0%, martensite: 0% or more and less than 10.0%, bainite: ⁇ TS, which includes 0% or more and less than 20.0%, has a tensile strength of 440 MPa or more and less than 700 MPa, and is the amount of decrease in the tensile strength when heat-treated at 170 ° C. for 20 minutes. It is 100 MPa or less.
  • the hot stamped product according to (1) above has a chemical composition of mass%, Ti: 0.001 to 0.300%, Nb: 0.001 to 0.300%, V: 0.
  • the hot stamp molded product according to (1) or (2) above may have a plating layer on its surface.
  • the heating step of heating to a temperature exceeding the above temperature and the hot stamping of the hot stamping steel plate after the heating step are started at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points, and then 90. It includes a hot stamping step of cooling to a temperature lower than ° C., and a reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes.
  • a reheating step of heating the molded product to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
  • a steel plate for hot stamping which is a method for producing the hot stamped product according to (3) above, has the chemical composition according to (1) or (2) above, and has a plating layer on the surface.
  • the starting a heating process of heating to a temperature above the Ac 3 point, with respect to the hot stamping steel sheet after the heating step, a hot stamp (Ar 3 point -200 ° C.) or higher, Ar less than 3 points temperature
  • a steel sheet for hot stamping which is a method for producing the hot stamped product according to (3) above, has the chemical composition according to (1) or (2) above, and has a plating layer on the surface.
  • the present invention it is possible to obtain a hot stamped product having a portion having a tensile strength of 440 MPa or more and less than 700 MPa, in which the fluctuation of the strength due to the coating baking treatment is small (excellent in thermal stability).
  • FIG. 1 It is a schematic diagram which shows the shape of the hot stamp molded article manufactured in Example 1.
  • FIG. 2 It is a schematic diagram which shows the shape of the hot stamp molded article manufactured in Example 2.
  • FIG. 1 It is a schematic diagram which shows the shape of the hot stamp molded article manufactured in Example 1.
  • the present inventors have diligently studied a method for suppressing a decrease in strength at the time of coating baking for a hot stamped product having a tensile strength of 440 MPa or more and less than 700 MPa. As a result, the following findings were obtained.
  • hot stamping is started in a temperature range in which ferrite and austenite coexist, and the hot stamped molded product after the hot stamping step is reheated in a predetermined temperature range. , The decrease in tensile strength due to the coating baking process is suppressed.
  • the present inventors started hot stamping in a temperature range in which ferrite and austenite coexist using a steel sheet containing a desired amount of B (boron), and further.
  • B boron
  • the hot stamped molded product After reheating the hot stamped molded product after the hot stamping process, it has a metal structure mainly composed of ferrite, at least a part of which has a tensile strength of less than 700 MPa, is excellent in thermal stability, and is coated. It has been found that a hot stamped product with a small decrease in strength due to the baking process can be produced.
  • All or part of the hot stamped article according to this embodiment has the following chemical composition.
  • the reasons for limiting each element are as follows. In the following description, all "%" for the content of the chemical composition mean "mass%".
  • the hot stamped product includes a portion having a tensile strength of less than 700 MPa and a portion having a tensile strength of 700 MPa or more, at least the portion having a tensile strength of less than 700 MPa has the following chemical composition. You just have to do it.
  • C 0.001% or more and less than 0.090%
  • C is an element having an effect of increasing the tensile strength of the steel sheet after hot stamping (the steel sheet provided in the hot stamped product). If the C content is less than 0.001%, the tensile strength cannot be expected to increase due to hot stamping. Therefore, the C content is set to 0.001% or more.
  • the preferred C content is 0.020% or higher, 0.030% or higher, 0.040% or higher, or 0.050% or higher.
  • the C content is 0.090% or more, the area ratio of tempered martensite, martensite, and / or bainite increases in the metal structure after hot stamping, and the tensile strength of the hot stamped product increases.
  • the C content is set to less than 0.090%.
  • Preferred C content is less than 0.085%, less than 0.080%, less than 0.075%, or less than 0.070%.
  • Si Less than 0.50% Si is an element contained as an impurity in steel. When the Si content is 0.50% or more, it becomes difficult to secure the thermal stability of the hot stamped product even if the hot stamped product is reheated as described later. Therefore, the Si content is set to less than 0.50%. Preferred Si content is less than 0.40%, less than 0.20%, less than 0.10%, or less than 0.05%. When a plated steel sheet is used as the hot stamping steel sheet, the Si content is preferably less than 0.40% and more preferably less than 0.30% in order to ensure the plating property. The lower limit of the Si content is not particularly limited, but an excessive decrease in the Si content causes an increase in steelmaking cost.
  • the Si content is preferably 0.001% or more. Further, since Si has an effect of increasing the tensile strength of the steel sheet after hot stamping, it may be positively contained. From the viewpoint of increasing the strength, the Si content is preferably 0.10% or more, or 0.20% or more.
  • Mn 0.50% or more and less than 1.70%
  • Mn is an element that improves the hardenability of steel, and is contained in an amount of 0.50% or more in order to obtain a metallographic structure containing ferrite and tempered martensite.
  • the preferred Mn content is 0.60% or more, or 0.70% or more.
  • the Mn content is set to less than 1.70%.
  • the Mn content is preferably less than 1.50%, less than 1.20%, less than 1.00%, or less than 0.80%.
  • P 0.200% or less
  • P is an element contained as an impurity in steel. If the P content exceeds 0.200%, the weldability and toughness after hot stamping are significantly deteriorated, so the P content is set to 0.200% or less.
  • the preferred P content is 0.100% or less, 0.050% or less, or 0.020% or less.
  • the lower limit of the P content is not particularly limited, but excessively lowering the P content causes an increase in steelmaking cost. Therefore, the P content is preferably 0.001% or more.
  • the preferable P content is 0.010% or more, 0.020% or more, or 0.030% or more.
  • the P content is preferably 0.050% or less, and more preferably 0.040% or less in order to ensure the plating property.
  • S 0.0200% or less
  • S is an element contained in steel as an impurity and embrittles the steel. Therefore, the smaller the S content is, the more preferable it is, but if the S content exceeds 0.0200%, the embrittlement of the steel becomes remarkable, so the S content is set to 0.0200% or less.
  • the preferred S content is 0.0100% or less, 0.0050% or less, or 0.0030% or less.
  • the lower limit of the S content is not particularly limited, but an excessive decrease in the S content causes an increase in steelmaking cost. Therefore, the S content is preferably 0.0001% or more.
  • Al 0.001 to 2.500%
  • Al is an element having an action of deoxidizing molten steel. sol. If the Al content (acid-soluble Al content) is less than 0.001%, deoxidation becomes insufficient. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.005% or more, 0.010% or more, or 0.020% or more. On the other hand, sol. If the Al content is too high, the transformation point rises and it becomes difficult to heat the steel sheet to a temperature exceeding 3 points in the hot stamp heating step. Therefore, sol. The Al content is 2.500% or less. sol. The Al content is preferably less than 0.500%, less than 0.100%, less than 0.050%, or less than 0.040%.
  • N 0.0200% or less
  • N is an element contained as an impurity in steel and forming a nitride during continuous casting of steel. Since this nitride deteriorates the toughness after hot stamping, it is preferable that the N content is low. When the N content is more than 0.0200%, the deterioration of toughness becomes remarkable. Therefore, the N content is set to 0.0200% or less.
  • the N content is preferably less than 0.0100%, less than 0.0080%, or less than 0.0050%.
  • the lower limit of the N content is not particularly limited, but it is preferable that the N content is 0.0010% or more because excessively lowering the N content causes an increase in steelmaking cost.
  • B 0.0002 to 0.0200%
  • B is an element having an action of improving the thermal stability of a hot stamped product having a metal structure containing ferrite and tempered martensite. If the B content is less than 0.0002%, the effect of the above action cannot be sufficiently obtained. Therefore, the B content is 0.0002% or more.
  • the preferred B content is 0.0006% or higher, 0.0010% or higher, or 0.0015% or higher.
  • the B content exceeds 0.0200%, the tensile strength of the steel sheet after hot stamping becomes too high, and the thermal stability of the hot stamped product deteriorates. Therefore, the B content is 0.0200% or less.
  • the preferred B content is less than 0.0050%, less than 0.0030%, or less than 0.0020%.
  • Ti, Nb, V and Zr are elements that have the effect of increasing the tensile strength of the hot stamped product by refining the metal structure.
  • one or more selected from Ti, Nb, V and Zr may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
  • the Ti content is more preferably 0.020% or more, and particularly preferably 0.030% or more.
  • Nb is contained, the Nb content is more preferably 0.020% or more, and particularly preferably 0.030% or more.
  • V it is more preferable that the V content is 0.020% or more.
  • Zr it is more preferable that the Zr content is 0.010% or more.
  • the Ti content is preferably less than 0.060%, more preferably less than 0.040%.
  • the Nb content is preferably less than 0.060%, more preferably less than 0.040%.
  • the V content is preferably less than 0.200%, more preferably less than 0.100%.
  • the Zr content is preferably less than 0.200%, more preferably less than 0.100%.
  • Cr 0 to 2.00% Mo: 0 to 2.00%
  • Cu 0 to 2.00%
  • Ni 0 to 2.00% Cr, Mo, Cu and Ni have the effect of increasing the tensile strength of the hot stamped product (steel plate after hot stamping). Therefore, one or more selected from Cr, Mo, Cu and Ni may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
  • each of one or more selected from Cr, Mo, Cu and Ni is 0.001% or more of each of one or more selected from Cr, Mo, Cu and Ni.
  • the preferred Cr content is 0.05% or higher
  • the preferred Mo content is 0.05% or higher
  • the preferred Cu content is 0.10% or higher
  • the preferred Ni content is 0.10% or higher. is there.
  • the contents of Cr, Mo, Cu and Ni each exceed 2.00%, the tensile strength of the steel sheet after hot stamping becomes too high, and the thermal stability of the hot stamped product deteriorates. To do. Therefore, even when the above elements are contained, the contents of Cr, Mo, Cu and Ni are set to 2.00% or less, respectively.
  • the preferred Cr content is less than 0.50% or less than 0.20%
  • the preferred Mo content is less than 0.50% or less than 0.20%
  • the preferred Cu content is less than 1.00%.
  • the preferred Ni content is less than 1.00%.
  • Ca, Mg and REM are elements that have the effect of improving toughness after hot stamping by adjusting the shape of inclusions. Therefore, one or more selected from Ca, Mg and REM may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
  • the above effect is desired, it is preferable to contain 0.0001% or more of each of one or more selected from Ca, Mg and REM.
  • the content of Ca or Mg is more than 0.0100%, or when the content of REM is more than 0.1000%, the above effect is saturated and the manufacturing cost of the steel sheet is increased. Therefore, even when the above elements are contained, the Ca and Mg contents are 0.0100% or less, and the REM content is 0.1000% or less.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the REM content means the total content of these elements.
  • Lanthanoids are industrially added in the form of misch metal.
  • Bi 0-0.0500% Bi is an element having an action of improving toughness after hot stamping by refining the solidified structure. Therefore, Bi may be contained as needed. Since Bi does not have to be contained, the lower limit of the Bi content is 0%.
  • the Bi content is preferably 0.0001% or more.
  • the Bi content is more preferably 0.0003% or more, still more preferably 0.0005% or more.
  • the Bi content exceeds 0.0500%, the above effect is saturated and the manufacturing cost of the steel sheet increases. Therefore, even when Bi is contained, the Bi content is 0.0500% or less.
  • the Bi content is preferably 0.0100% or less, more preferably 0.0050% or less.
  • the balance is Fe and impurities.
  • impurity is a component mixed by various factors of raw materials such as ore and scrap, and various factors in the manufacturing process when the steel sheet is industrially manufactured, and has an adverse effect on the hot stamped product according to the present embodiment. Means what is allowed within the range that does not give.
  • the chemical composition of the hot stamped product described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrum
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • the metal structure of the hot stamp molded product according to this embodiment will be described. All or part of the hot stamped article according to this embodiment has a metallographic structure containing the following amounts of ferrite, tempered martensite, martensite, and bainite. In the following description of the metallographic structure, "%" means “area%”.
  • the area ratio of ferrite is set to more than 50.0%.
  • the area ratio of ferrite is preferably more than 60.0%, more preferably more than 70.0%, and even more preferably more than 80.0%.
  • the upper limit of the area ratio of ferrite does not need to be set in particular, but it is preferably less than 95.0%, more preferably less than 90.0%, in order to increase the strength of the hot stamped product, 85. More preferably, it is less than 0.0%.
  • the ferrite includes, in addition to the polygonal ferrite, a pseudo-polygonal ferrite having a higher dislocation density than the polygonal ferrite, a granular bainitic ferrite, and an acidic ferrite having a serrated grain boundary.
  • the ratio of polygonal ferrite to the entire ferrite is preferably 5.0% or more in terms of area ratio.
  • Tempering martensite 5.0% or more and less than 50.0% Tempering martensite is a structure having an action of increasing the strength of a hot stamped product while maintaining the thermal stability of the hot stamped product. If the area ratio of the tempered martensite is less than 5.0%, the effect of the above action cannot be sufficiently obtained, and the thermal stability of the hot stamped product and / or the strength of the hot stamped product should be ensured. Becomes difficult. Therefore, the area ratio of tempered martensite is set to 5.0% or more. The area ratio of tempered martensite is preferably 8.0% or more, more preferably 10.0% or more, still more preferably 12.0% or more.
  • the area ratio of tempered martensite is set to less than 50.0%.
  • the area ratio of tempered martensite is preferably less than 40.0%, more preferably less than 30.0%, still more preferably less than 20.0%.
  • Martensite 0% or more and less than 10.0%
  • Bainite 0% or more and less than 20.0%
  • Metallographic (microstructure) is martensite (refers to untempered martensite, also called fresh martensite) And when a large amount of bainite is contained, the thermal stability of the hot stamped product deteriorates. Therefore, the area ratio of martensite is less than 10.0%, and the area ratio of bainite is less than 20.0%.
  • the area ratio of martensite is preferably less than 5.0%, more preferably less than 2.0%, and even more preferably less than 1.0%.
  • the area ratio of bainite is preferably less than 10.0%, more preferably less than 5.0%, and even more preferably less than 2.0%.
  • the lower limit of the area ratio of martensite and bainite is 0%.
  • martensite and bainite have an effect of increasing the strength of the hot stamped product, they may be contained in the metal structure as long as they are within the above range. If the area ratios of martensite and bainite are both less than 0.1%, the effect of the above action cannot be sufficiently obtained. Therefore, when increasing the strength, the lower limit of the area ratio of martensite and bainite is preferably 0.1% or more, and more preferably 0.5% or more.
  • the rest of the metallographic structure may contain pearlite or retained austenite, and may further contain precipitates such as cementite. Since it is not necessary to positively contain pearlite, retained austenite and precipitates, the lower limit of the area ratio of pearlite, retained austenite and precipitates is 0%.
  • the area ratio of pearlite is preferably 1.0% or more, more preferably 2.0% or more. It is preferably 5.0% or more, and more preferably 5.0% or more.
  • the area ratio of pearlite is preferably 20.0% or less, and more preferably 10.0% or less.
  • Residual austenite has the effect of improving the shock absorption of hot stamped articles. Therefore, when this effect is obtained, the area ratio of retained austenite is preferably 0.5% or more, and more preferably 1.0% or more. On the other hand, if the retained austenite is excessively contained, the toughness after hot stamping decreases. Therefore, the area ratio of retained austenite is preferably less than 3.0%, more preferably less than 2.0%.
  • the area ratio of each metal structure is calculated as follows. First, a test piece is collected from a hot stamped product, and the sheet thickness cross section (vertical cross section of the steel sheet) is polished. Then, in the case of a non-plated steel sheet, the depth position is 1/4 of the sheet thickness of the steel sheet (steel plate).
  • the plate of the steel plate that is the base material from the boundary between the steel plate of the base material and the plating layer Structure observation at 1/4 depth position of thickness (1/8 depth from the boundary to 1/8 depth of the base steel plate thickness to 3/8 depth from the boundary to the base steel plate thickness)
  • a test piece is collected from the portion where the tensile strength is less than 700 MPa and observed. I do.
  • the structure is observed using an optical microscope and a scanning electron microscope (SEM), and the obtained tissue photograph is image-analyzed. , Ferrite, pearlite, baynite, and tempered martensite, respectively. Then, after repeller corrosion at the same observation position, tissue observation is performed using an optical microscope and a scanning electron microscope (SEM), and image analysis is performed on the obtained tissue photograph to obtain retained austenite and Calculate the total area ratio of martensite.
  • SEM scanning electron microscope
  • the area ratio of retained austenite is measured using an SEM equipped with an electron backscatter pattern analyzer (EBSP).
  • EBSP electron backscatter pattern analyzer
  • Tempering martensite can be distinguished from martensite by the presence of iron carbide inside, and can be distinguished from bainite by the fact that iron carbide existing inside extends in multiple directions. Can be done.
  • All or part of the hot stamped article according to this embodiment has a tensile strength of 440 MPa or more and less than 700 MPa.
  • the tensile strength of all or part of the base steel sheet of the hot stamped product according to the present embodiment is 440 MPa or more and less than 700 MPa. If the tensile strength is 700 MPa or more, the thermal stability of the hot stamped product cannot be ensured. Therefore, the tensile strength of all or part of the hot stamped product is set to less than 700 MPa.
  • the tensile strength of all or part of the hot stamped article is less than 650 MPa or less than 600 MPa.
  • the tensile strength of all or part of the hot stamped product is set to 440 MPa or more.
  • the tensile strength of all or part of the hot stamped product is 460 MPa or more, 490 MPa or more, or 540 MPa or more.
  • a soft portion having a tensile strength of 440 MPa or more and less than 700 MPa and a hard portion having a tensile strength of 700 MPa or more may coexist in the hot stamp molded product. ..
  • portions having different strengths it is possible to control the deformed state of the hot stamped molded product at the time of collision, and it is possible to improve the impact absorption of the hot stamped molded product.
  • a hot stamped product having parts having different strengths can be produced by joining two or more types of steel sheets having different chemical compositions and then hot stamping.
  • the hot stamp molded product according to the present embodiment has a decrease in tensile strength ( ⁇ TS) of 100 MPa or less with respect to the tensile strength before the heat treatment when the heat treatment is performed at 170 ° C. for 20 minutes.
  • ⁇ TS is preferably 60 MPa or less, and more preferably 30 MPa or less.
  • the lower limit of ⁇ TS is not particularly limited, but is preferably 1 MPa or more, 5 MPa or more, or 10 MPa or more from the viewpoint of steel sheet manufacturability.
  • the reason why the strength decreases during paint baking is that the solid-dissolved carbon present in the ferrite is removed by the paint baking process. It is considered that this is due to the precipitation as coarse iron charcoal and the change of fine iron charcoal or fine iron carbon clusters present in the ferrite to coarse iron charcoal by the heat treatment at the time of coating baking. Although it is not easy to directly and quantitatively evaluate the existence state of this solid solution carbon and fine iron carbides or fine iron carbon clusters, the tensile strength when heat-treated at 170 ° C. for 20 minutes. It can be evaluated indirectly by the amount of decrease in ( ⁇ TS). When ⁇ TS is 100 MPa or less, the amount of solid solution carbon in ferrite and the amount of fine iron carbides or fine iron carbon clusters produced are low, and it is judged that the thermal stability is excellent.
  • Tensile strength is obtained by collecting a JIS13B tensile test piece and performing a tensile test at a tensile speed of 10 mm / min.
  • the hot stamp molded product according to the present embodiment may have a plating layer on the surface.
  • a plating layer By providing a plating layer on the surface, it is possible to prevent scale formation during hot stamping and further improve the corrosion resistance of the hot stamped molded product.
  • the type of plating is not particularly limited as long as it is suitable for the above purpose.
  • a hot stamped product having a plated layer can be obtained by hot stamping using a plated steel sheet, as will be described later.
  • Examples of hot stamped products having a plating layer include zinc-based galvanized steel sheets or aluminum-based plated steel sheets, specifically, for example, hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, hot-dip aluminum-plated steel sheets, and hot-dip Zn-Al alloy plating.
  • An example is a hot stamped product having an aluminum-based plating layer.
  • the plating layer may be formed on one side or both sides.
  • the metal structure of the steel plate for hot stamping according to the present embodiment contains iron carbide, and the chemical composition of the iron carbide (Mn content and Cr content in the iron carbide) satisfies the following formula (i).
  • the thermal stability of the steel sheet after hot stamping can be further improved.
  • the lvalue of the above equation (i) is preferably more than 3.0, more preferably more than 4.0.
  • the lvalue of the above equation (i) is preferably less than 20.0, and more preferably less than 10.0.
  • the chemical composition of iron carbide is measured by the following procedure. First, a test piece is taken from an arbitrary position of the steel plate, and a plate thickness cross section (longitudinal cross section) parallel to the rolling direction of the steel plate is polished, and then a 1/4 depth position from the steel plate surface (from the steel plate surface to the plate). Precipitates are extracted by the replica method at a depth of 1/8 of the thickness to a region of 3/8 of the thickness from the surface of the steel sheet). This precipitate is observed using a transmission electron microscope (TEM), and the precipitate is identified and composed by electron diffraction and energy dispersive X-ray analysis (EDS).
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray analysis
  • the iron carbide includes cementite that exists isolated in the metal structure in addition to cementite that constitutes pearlite.
  • the depth position is 1/4 of the plate thickness from the steel plate surface (1/8 depth from the steel plate surface to the plate thickness from the steel plate surface). (3/8 depth region), in the case of plated steel sheet, from the boundary between the base steel plate and the plating layer to the 1/4 depth position of the base steel plate thickness (from the above boundary to the base steel plate)
  • the above-mentioned metal structure is defined in the region from 1/8 depth of the plate thickness to 3/4 depth of the plate thickness of the steel plate as the base material from the boundary.
  • the area ratio of iron carbide does not need to be specified, but the area ratio of iron carbide is preferably 1% or more in order to finely granulate the metal structure after hot stamping and increase the tensile strength. Is more preferable. On the other hand, if the area ratio of the iron carbide becomes excessive, the tensile strength of the steel sheet after hot stamping becomes too high and the thermal stability is impaired. Therefore, the area ratio of iron carbide is preferably 20% or less, and more preferably 15% or less.
  • the metal structure of the steel plate for hot stamping according to the present embodiment is preferably mainly ferrite, but may contain martensite, tempered martensite, bainite and retained austenite as the balance, and other than iron carbides. May contain a precipitate of.
  • martensite, tempered martensite, bainite and retained austenite deteriorate the toughness after hot stamping, so a smaller area ratio of these tissues is preferable.
  • the area ratios of martensite, tempered martensite, bainite and retained austenite are all preferably less than 1.0%, more preferably less than 0.5%.
  • the area ratio of the hot stamped steel sheet in the metal structure can be obtained by the same method as in the case of the hot stamped product.
  • the tensile strength of the steel sheet for hot stamping is not particularly limited, but it is preferably 300 MPa or more or 340 MPa or more from the viewpoint of steel sheet manufacturability, and 650 MPa or less or less than 590 MPa from the viewpoint of steel sheet cutability. preferable.
  • the method for producing a hot stamped product includes a heating step of heating a hot stamping steel sheet having the above-mentioned chemical composition, hot stamping the heated hot stamping steel sheet, and then cooling. It includes a hot stamping step and a reheating step of reheating the molded product after the hot stamping step. In the hot stamping step, molding and cooling are performed by a mold to obtain a hot stamped product.
  • the heating temperature is set to more than 3 points of Ac.
  • the Ac 3 points are the temperatures at which ferrite disappears in the metal structure when the material steel sheet is heated, and can be obtained from the thermal expansion change of the steel sheet in the heating step.
  • the heating temperature is preferably (Ac 3 points + 20 ° C.) or higher, and more preferably (Ac 3 points + 40 ° C.) or higher.
  • the steel sheet for hot stamping to be heated preferably has the above-mentioned structure.
  • the upper limit of the heating temperature is not particularly limited, but if the heating temperature is too high, the austenite becomes coarse and the strength of the hot stamped product decreases. Therefore, the heating temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower, and even more preferably 900 ° C. or lower.
  • the holding time of the preferable hot stamp at the heating temperature is 1 to 5 minutes.
  • the starting temperature of hot stamping is (Ar 3 points-200 ° C.) or more and less than Ar 3 points.
  • the Ar 3 points are the temperatures at which ferrite begins to be formed in the metal structure when the material steel sheet is cooled from a temperature exceeding Ac 3 points.
  • Ar 3 points are obtained from the change in thermal expansion when the steel sheet is cooled after the heating step.
  • the hot stamping start temperature is Ar 3 points or more, the amount of dislocations introduced into the ferrite is insufficient, and the thermal stability of the hot stamped product is impaired.
  • the hot stamping start temperature is less than (Ar 3 points ⁇ 200 ° C.), the area ratio of tempered martensite in the metal structure of the hot stamped product decreases, and the strength of the hot stamped product becomes insufficient.
  • the preferred upper limit of the hot stamping start temperature is less than (Ar 3 points -20 ° C), less than (Ar 3 points -40 ° C), or less than (Ar 3 points -60 ° C).
  • the preferable lower limit of the hot stamp start temperature is (Ar 3 points-170 ° C) or higher, (Ar 3 points-140 ° C) or higher, or (Ar 3 points-110 ° C) or higher.
  • the molded product After molding by hot stamping, the molded product is held in the mold and / or the molded product is taken out from the mold and cooled by an arbitrary method to bring the molded product to a temperature of less than 90 ° C. Cooling.
  • the cooling stop temperature is 90 ° C. or higher, the area ratio of tempered martensite decreases in the metal structure of the hot stamped product, and the strength of the hot stamped product becomes insufficient.
  • the cooling stop temperature is preferably less than 50 ° C., more preferably room temperature. In order to increase productivity, it is preferable to keep the temperature in the mold below 90 ° C.
  • the reheating temperature is set to 100 to 140 ° C., and the holding time at the reheating temperature is set to 3 to 120 minutes. If the reheating temperature is less than 100 ° C., fine iron carbides or fine iron carbon clusters are formed, and the thermal stability of the hot stamped product deteriorates. On the other hand, if the reheating temperature exceeds 140 ° C., the strength of the hot stamped product decreases.
  • the holding time is preferably adjusted according to the reheating temperature, and when the reheating temperature is 100 ° C. or higher and lower than 120 ° C., the holding time is preferably more than 60 minutes, more than 70 minutes, or more than 80 minutes. Also, the retention time is preferably less than 110 minutes, less than 100 minutes, or less than 90 minutes.
  • the retention time is preferably greater than 5 minutes, greater than 7 minutes, or greater than 9 minutes, and the retention time is preferably less than 30 minutes, less than 20 minutes, or less than 15 minutes. is there. From the viewpoint of productivity, the reheating temperature is preferably 120 to 140 ° C.
  • another method for producing the hot stamped product according to the present embodiment includes a joining step of joining a steel plate having the above-mentioned chemical composition (a steel plate for hot stamping) to a steel plate for joining to form a joined steel plate, and the above-mentioned joining step.
  • the joining method include a method in which a hot stamping steel plate and a joining steel plate are butted or overlapped and joined by welding.
  • the above-mentioned bonded steel sheet is heated to a temperature exceeding Ac 3 points of the hot stamping steel sheet, and hot stamping is started at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points of the hot stamping steel sheet. Cool to a temperature below 90 ° C. Then, the hot stamped product is reheated to a temperature of 100 to 140 ° C. and held at that temperature for 3 to 120 minutes.
  • the chemical composition and mechanical properties of the steel sheet for joining are not particularly limited. However, in order to increase the impact absorption energy of the hot stamped product, the steel sheet for joining preferably has a tensile strength of 700 MPa or more after reheating. A more preferable tensile strength of the steel sheet for joining after reheating is more than 1000 MPa, more than 1200 MPa, or more than 1500 MPa.
  • the C content of the joining steel sheet is preferably 0.090% or more. More preferably, it is 0.100% or more, 0.120% or more, or 0.200% or more.
  • the Mn content of the joining steel sheet is preferably 0.50% or more. More preferably, it is 0.80% or more, 1.00% or more, or 1.20% or more.
  • the steel sheet used as the above material is preferably subjected to hot-rolled sheet annealing as described later. After hot-rolled sheet annealing, cold rolling, or cold rolling and continuous annealing may be further performed.
  • the steel sheet for joining a hot-rolled steel sheet, a cold-rolled steel sheet obtained by cold-rolling a hot-rolled steel sheet, a hot-rolled annealed steel sheet obtained by annealing a hot-rolled steel sheet, and a cold-rolled steel sheet obtained by quenching a cold-rolled steel sheet. Any of the hardened steel sheets may be used.
  • a plated steel plate having a plated surface may be used as the hot stamping steel plate and the joining steel plate.
  • the type of the plated steel sheet is not particularly limited, but is a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, a hot-dip aluminum-plated steel sheet, a hot-dip Zn-Al alloy plated steel sheet, a hot-dip Zn-Al-Mg alloy-plated steel sheet, and a hot-dip Zn-Al-. Examples thereof include Mg—Si alloy plated steel sheets, electrogalvanized steel sheets, and electric Ni—Zn alloy plated steel sheets.
  • the hot stamping steel sheet according to the present embodiment is subjected to a hot rolling step of hot rolling a slab having the above-mentioned chemical composition and then winding it in a temperature range of 800 ° C. or lower to obtain a hot rolled steel sheet. It is preferable that the hot-rolled steel sheet is manufactured by a manufacturing method including a hot-rolled sheet annealing step of subjecting the hot-rolled steel sheet to a temperature range exceeding 650 ° C. to obtain a hot-rolled annealed steel sheet.
  • the winding temperature after hot rolling is 800 ° C. or lower.
  • the winding temperature exceeds 800 ° C., the metal structure of the hot-rolled steel sheet becomes excessively coarse, and the tensile strength of the steel sheet after hot stamping decreases.
  • More preferred take-up temperatures are less than 650 ° C, less than 600 ° C, or less than 550 ° C.
  • the winding temperature is preferably 400 ° C. or higher.
  • the slab manufacturing method used in the hot stamping steel sheet manufacturing method according to the present embodiment is not particularly limited.
  • the steel having the above-mentioned composition (chemical composition) is melted by a known means and then made into an ingot by a continuous casting method, or an arbitrary casting method. It is made into a steel piece by a method such as ingot rolling after making it into a steel ingot.
  • the continuous casting step it is preferable to generate an external additional flow such as electromagnetic agitation in the molten steel in the mold in order to suppress the occurrence of surface defects caused by inclusions.
  • the ingot or piece of steel may be reheated once cooled and subjected to hot rolling, and the ingot in a high temperature state after continuous casting or the piece of steel in a high temperature state after ingot rolling may be used as it is. Alternatively, it may be kept warm or supplementarily heated for hot rolling. In the present embodiment, such ingots and steel pieces are collectively referred to as "slabs" as materials for hot rolling.
  • the temperature of the slab to be subjected to hot rolling is preferably less than 1250 ° C., more preferably less than 1200 ° C. in order to prevent coarsening of austenite.
  • the hot rolling is preferably completed in a temperature range of Ar 3 points or more in order to miniaturize the metal structure of the hot-rolled steel sheet by transforming austenite after the rolling is completed.
  • the rough rolled material may be heated between rough rolling and finish rolling in order to complete the finish rolling at the above temperature. At this time, it is desirable to suppress the temperature fluctuation over the entire length of the rough-rolled material at the start of finish rolling to 140 ° C. or lower by heating the rear end of the rough-rolled material so that the temperature is higher than that of the tip. As a result, the uniformity of product characteristics in the coil after the winding process is improved.
  • the method for heating the rough-rolled material may be performed by using a known means.
  • a solenoid type induction heating device is provided between the rough rolling mill and the finish rolling mill, and the heating temperature is controlled based on the temperature distribution in the longitudinal direction of the rough rolled material on the upstream side of the induction heating device. You may.
  • the hot-rolled and wound steel sheet is annealed after being degreased or the like according to a known method, if necessary.
  • the annealing applied to the hot-rolled steel sheet is called hot-rolled sheet annealing, and the steel sheet after hot-rolled sheet annealing is called hot-rolled annealed steel sheet.
  • descaling may be performed by pickling or the like.
  • the heating temperature in the hot-rolled plate annealing step is preferably over 650 ° C. This is to increase the Mn content and Cr content in the iron carbide in the metal structure of the hot-rolled annealed steel sheet.
  • the heating temperature in the hot-rolled plate annealing step is more preferably more than 680 ° C, and even more preferably more than 700 ° C.
  • the upper limit of the heating temperature in the hot-rolled plate annealing step is more preferably less than 750 ° C., and even more preferably less than 720 ° C.
  • the holding time at the heating temperature in the hot-rolled plate annealing step is preferably less than 10 hours, more preferably less than 5 hours, and even more preferably less than 2 hours.
  • the hot-rolled annealed steel sheet is cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 2.8 mm or less.
  • the thickness of the cold-rolled steel sheet is more preferably 2.3 mm or less, further preferably 2.0 mm or less, and particularly preferably 1.8 mm or less. It is even more preferably 1.6 mm or less. Further, from the viewpoint of steel sheet manufacturability, the thickness of the cold-rolled steel sheet is preferably 0.6 mm or more.
  • Cold rolling may be performed according to a conventional method, and descaling may be performed by pickling or the like before cold rolling.
  • the cold rolling ratio (cumulative rolling reduction in cold rolling) is preferably 30% or more, preferably 40% or more, in order to refine the metal structure after hot stamping and increase the tensile strength. Is more preferable. If the cold pressure ratio is too high, the toughness after hot stamping deteriorates. Therefore, the cold pressure ratio is preferably 65% or less, and more preferably 60% or less.
  • the cold pressure ratio is preferably 60% or more, more preferably 70% or more in order to refine the metal structure of the annealed steel sheet. ..
  • the cold-rolled steel sheet may be continuously annealed to obtain an annealed steel sheet.
  • the continuous annealing may be carried out according to a conventional method, and a treatment such as degreasing may be performed by a known method before the continuous annealing.
  • the soaking temperature in continuous annealing is preferably 600 ° C. or higher, 650 ° C. or higher, or 700 ° C. or higher.
  • the average heating rate to the soaking temperature in annealing is preferably 1 ° C./sec or more, the soaking temperature is preferably 800 ° C. or lower, or 760 ° C. or lower, and the soaking time is less than 300 seconds. Alternatively, it is preferably less than 120 seconds.
  • the hot-rolled annealed steel sheet, cold-rolled steel sheet, and annealed steel sheet thus obtained may be temper-rolled according to a conventional method.
  • the steel sheet for hot stamping may be provided with a plating layer on the surface layer for the purpose of preventing scale formation during hot stamping and improving the corrosion resistance of the steel sheet after hot stamping.
  • the type of plating is not particularly limited as long as it meets the above-mentioned purpose, but is not particularly limited, but is limited to hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, hot-dip aluminum-plated steel sheet, hot-dip Zn-Al alloy-plated steel sheet, and hot-dip Zn-Al-. Examples thereof include Mg alloy plated steel sheets, molten Zn—Al—Mg—Si alloy plated steel sheets, electrogalvanized steel sheets, and electric Ni—Zn alloy plated steel sheets.
  • the hot-rolled annealed steel sheet, the cold-rolled steel sheet or the annealed steel sheet manufactured by the above method may be used as the material steel sheet and plated according to a conventional method.
  • the soaking temperature in the annealing process of continuous hot-dip galvanizing is set to 600 ° C. or higher, 650 ° C. or higher, or 700 ° C. or higher in order to refine the metal structure of the plated steel sheet by recrystallization. Is preferable.
  • the soaking temperature in the annealing process of continuous hot dip galvanizing is 800 ° C. or lower or 760 ° C. The following is preferable. After hot dip galvanizing, the steel sheet may be reheated for alloying treatment.
  • a hot-rolled annealed steel sheet, a cold-rolled steel sheet or an annealed steel sheet manufactured by the above method is used as a material steel sheet, and if necessary, a well-known pretreatment for surface cleaning and adjustment is performed. After the application, electroplating may be performed according to a conventional method.
  • the plated steel sheet thus obtained may be temper-rolled according to a conventional method.
  • Example 1 Molten steel was cast using a vacuum melting furnace to produce steels A to N having the chemical compositions shown in Table 1.
  • the points Ac 1 and Ac 3 in Table 1 were determined from the changes in thermal expansion when the cold-rolled steel sheets of steels A to N were heated at 2 ° C./sec.
  • the Ar 3 points in Table 1 were obtained from the change in thermal expansion when the cold-rolled steel sheets of steels A to N were heated to 920 ° C. and then cooled at 10 ° C./sec.
  • Steels A to N were heated to 1200 ° C. and held for 60 minutes, and then hot rolled under the hot rolling conditions shown in Table 2.
  • steels A to N were rolled for 10 passes in a temperature range of 3 points or more in Ar to obtain a hot-rolled steel sheet having a thickness of 3.6 mm.
  • the hot-rolled steel sheet is cooled to 540 to 580 ° C. with a water spray, the cooling end temperature is set as the winding temperature, and the hot-rolled steel sheet is charged into an electric heating furnace maintained at this winding temperature.
  • the hot-rolled steel sheet was furnace-cooled to room temperature at an average cooling rate of 20 ° C./hour to simulate slow cooling after winding.
  • hot-rolled steel sheets were annealed. Specifically, the hot-rolled steel sheet is heated to 710 ° C. at an average heating rate of 50 ° C./hour using an electric heating furnace, held for 1 hour, and then cooled at an average cooling rate of 20 ° C./hour. It was made into a hot-spread annealed steel sheet.
  • the hot-rolled steel sheet and the hot-rolled annealed steel sheet were pickled to form a base material for cold rolling, and cold-rolled at a cold pressure ratio of 61% to obtain a cold-rolled steel sheet having a thickness of 1.4 mm.
  • Some cold-rolled steel sheets were heated to the annealing temperature of table 2 at an average heating rate of 10 ° C./sec using a continuous annealing simulator, and the heat was equalized for 60 seconds. Subsequently, it was cooled to 400 ° C. and held for 180 seconds, and then cooled to room temperature to obtain an annealed steel sheet.
  • the obtained annealed steel sheet was described as "ACR” in the "Steel type” column and "-” in the "Plating type” column in Table 3.
  • For cold-rolled steel sheets "CR” was described in the "Steel type” column and "-” was described in the "Plating type” column in Table 3.
  • the structure is obtained from the cold-rolled steel sheet, the tempered steel sheet, the hot-dip galvanized steel sheet, the alloyed hot-dip galvanized steel sheet, and the hot-dip aluminum-plated steel sheet (these steel sheets are collectively called the hot stamping steel sheet) obtained in this manner.
  • a test piece for observation was collected and the tissue was observed.
  • the precipitate was extracted and the iron carbide was identified using TEM.
  • a base plate for hot stamping having a width of 240 mm and a length of 170 mm was collected, and a hat member having a shape shown in FIG. 1 was manufactured by hot stamping.
  • the base plate was heated at the heating temperature shown in Table 4 for 4 minutes using a gas heating furnace, then taken out from the heating furnace and allowed to cool, and a cooling device was provided at the starting temperature shown in Table 4. It was sandwiched between molds to form a hat, and then cooled in the mold to the cooling stop temperature shown in Table 4.
  • some of the hat members were reheated using an electric heating furnace under the conditions shown in Table 4.
  • the RT of the hot stamping condition in Table 4 indicates that the temperature is room temperature, and “-” indicates that the reheating step was not performed.
  • Some hat members were heat-treated at 170 ° C for 20 minutes using an electric heating furnace.
  • a test piece for SEM observation is taken from the vertical wall of the hat member before heat treatment, and a sheet thickness section parallel to the rolling direction of the steel plate of this test piece is polished, and then nightal corrosion and repeller corrosion are applied to this sheet thickness cross section.
  • the depth position from the surface of the steel sheet to the depth of 1/4 of the thickness of the steel sheet (the region from the surface of the steel plate to the depth of 1/8 to the surface of the steel plate to the depth of 3/8 of the thickness).
  • the depth position is 1/4 of the thickness of the base steel plate from the boundary between the base steel plate and the plating layer (1/8 depth from the boundary to the thickness of the base steel plate).
  • the metallographic structure in the region of 3/8 depth of the thickness of the steel plate as the base material was observed from the above boundary.
  • the area ratios of ferrite, pearlite, retained austenite, tempered martensite, martensite and bainite were measured by image processing using the method described above. The results are shown in Table 4.
  • the rest of the tissue shown in Table 4 was pearlite, retained austenite and / or precipitates.
  • the ratio of polygonal ferrite in the ferrite was 5.0% or more in the metal structure of the hot stamped molded product.
  • JIS13B tensile test pieces were collected from the vertical wall of the hat member before and after the heat treatment along the longitudinal direction of the member, and a tensile test was performed at a tensile speed of 10 mm / min to determine the tensile strength.
  • the difference ( ⁇ TS) between the tensile strength of the hat member that has not been heat-treated and the tensile strength of the hat member that has been heat-treated is determined. If ⁇ TS is 100 MPa or less, the thermal stability of the hat member is good. It was judged.
  • Table 4 shows the results of observing the metallographic structure of the hat member and the results of evaluating the mechanical properties of the hat member.
  • the underlined values mean that they are outside the scope of the present invention or that they are outside the preferred manufacturing conditions.
  • Test numbers 1 to 3, 9 to 11, 14 to 17 and 25 to 33 which satisfy the provisions of the present invention, all have good strength characteristics, with the tensile strength of the hot stamped product being 440 MPa or more and less than 700 MPa.
  • ⁇ TS is 100 MPa or less, indicating good thermal stability.
  • the ⁇ TS of the hot-stamped product was 30 MPa or less, and the thermal stability was particularly good. Met.
  • the tensile strength of the hot stamped product was less than 440 MPa, and the strength characteristics were inferior or , ⁇ TS was 100 MPa or more, and the thermal stability was inferior.
  • test number 20 using steel D the Mn content of the steel was too high, so the tensile strength of the hot stamped product was 700 MPa or more, and ⁇ TS was large.
  • Test No. 23 using steel G had a large ⁇ TS because the Si content of the steel was too high.
  • Test number 24 using steel H had a large ⁇ TS because the B content of steel was too low.
  • Test numbers 4 to 8, 12, 13, 18 and 19 of Comparative Examples in which the chemical composition is within the scope of the present invention but the production conditions of the hot stamped article are outside the scope of the present invention are the tensile strength of the hot stamped article.
  • the strength was less than 440 MPa and the strength characteristics were inferior, or the ⁇ TS was 100 MPa or more and the thermal stability was inferior.
  • the tensile strength of the hot stamped product was low because the holding time in the reheating step was too long or the reheating temperature was too high.
  • Test No. 6 using steel A had a low tensile strength because the heating temperature in the heating step was too low.
  • Test numbers 7 and 8 using steel A had low tensile strength because the forming start temperature in the hot stamping process was too low or the cooling stop temperature was too high.
  • Test number 18 using steel C had a large ⁇ TS because the molding start temperature in the hot stamping process was too high.
  • Test No. 19 using steel C the tempered martensite area ratio was insufficient and ⁇ TS was large because the reheating step was not performed.
  • Example 2 Molten steel was cast using a vacuum melting furnace to produce steels A to C having the chemical compositions shown in Table 1 in Example 1. Using steels A to C, hot rolling, hot rolling plate annealing, cold rolling, and annealing are performed under the conditions shown in Table 5 in the same manner as in Example 1, and then plating treatment is performed to obtain a hot-dip zinc-plated steel sheet. , An alloyed hot-dip zinc-plated steel sheet and a hot-stamped steel sheet (steel for hot stamping) were manufactured.
  • Table 6 shows the results of observing the metallographic structure of the hot stamping steel sheet and the results of investigating the mechanical properties of the hot stamping steel sheet.
  • hot stamping base plates having a thickness of 1.4 mm, a width of 240 mm, and a length of 170 mm were collected.
  • This base plate was joined to a steel plate for joining having the same dimensions by laser welding to prepare a joined steel plate having a thickness of 1.4 mm, a width of 240 mm, and a length of 340 mm.
  • the steel sheet for joining has a chemical composition of 0.21% C-0.13% Si-1.31% Mn-0.012% P-0.0018% S-0.043% sol.
  • a cold-rolled steel sheet having Al-0.0030% N-0.21% Cr-0.0018% B was used.
  • the joined steel plate was hot stamped under the conditions shown in Table 7 in the same manner as in Example 1, and a hat member having the shape shown in FIG. 2 was manufactured. Then, some of the hat members were heat-treated at 170 ° C. for 20 minutes using an electric heating furnace.
  • Example 7 shows the results of observing the metallographic structure of the hat member (hot stamp molded product) and the results of evaluating the mechanical properties of the hat member.
  • the tensile strength of the hot stamped product was 440 MPa or more and less than 700 MPa, and the ⁇ TS was 100 MPa or less, showing good strength characteristics and thermal stability. ..
  • the tensile strength of the steel plate portion for joining of the hat member was 1545 MPa, 1540 MPa, and 1536 MPa, respectively, with respect to the test numbers 34 to 36.
  • a hot stamped product having excellent thermal stability, having a portion having a tensile strength of 440 MPa or more and less than 700 MPa, in which the fluctuation of the strength due to the coating baking treatment is small. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

This hot-stamping molded article has a predetermined chemical composition. The metal structure of the hot-stamping molded article includes, in area%, more than 50.0% of ferrite, not less than 5.0% but less than 50.0% of tempered martensite, 0% or more but less than 10.0% of martensite, and 0% or more but less than 20.0% of bainite. The hot-stamping molded article has a tensile strength not less than 440 MPa but less than 700 MPa, and has a ΔTS, which is the reduction level of the tensile strength, of 100 MPa or less when being subjected to a heating process for 20 minutes at 170°C.

Description

ホットスタンプ成形品およびその製造方法Hot stamp molded product and its manufacturing method
 本発明は、ホットスタンプ成形品およびその製造方法に関する。
 本願は、2019年4月1日に、日本に出願された特願2019-070212号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot stamp molded product and a method for producing the same.
The present application claims priority based on Japanese Patent Application No. 2019-070212 filed in Japan on April 1, 2019, the contents of which are incorporated herein by reference.
 産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。例えば自動車用鋼板に関しては、地球環境への配慮から、車体軽量化による燃費の向上のために、高い強度が求められている。高強度鋼板を自動車の車体に適用した場合、鋼板の板厚を薄くして車体を軽量化しながら、所望の強度を車体に付与することができる。 Today, the industrial technology field is highly divided, and the materials used in each technology field are required to have special and high performance. For example, steel sheets for automobiles are required to have high strength in order to improve fuel efficiency by reducing the weight of the vehicle body in consideration of the global environment. When a high-strength steel plate is applied to the vehicle body of an automobile, the desired strength can be imparted to the vehicle body while reducing the thickness of the steel plate to reduce the weight of the vehicle body.
 しかしながら、自動車の車体部材を形成する工程であるプレス成形においては、使用される鋼板の厚さが薄いほど割れおよびしわが発生しやすくなる。そのため、自動車用鋼板には、優れたプレス成形性も必要とされる。 However, in press molding, which is the process of forming automobile body members, the thinner the steel sheet used, the more likely it is that cracks and wrinkles will occur. Therefore, steel sheets for automobiles are also required to have excellent press formability.
 プレス成形性の確保と鋼板の高強度化とは相反する要素であるので、これらの特性を同時に満足させることは困難である。また、高強度鋼板をプレス成形すると、部材を金型から取り出した際にスプリングバックにより部材の形状が大きく変化するので、部材の寸法精度を確保することが困難となる。このように、プレス成形により高強度の車体部材を製造することは容易ではない。 Ensuring press formability and increasing the strength of the steel sheet are contradictory factors, so it is difficult to satisfy these characteristics at the same time. Further, when the high-strength steel sheet is press-formed, the shape of the member is significantly changed by the springback when the member is taken out from the mold, so that it becomes difficult to secure the dimensional accuracy of the member. As described above, it is not easy to manufacture a high-strength vehicle body member by press molding.
 これまでに、超高強度の車体部材を製造する方法として、例えば、特許文献1に開示されているように、加熱した鋼板を低温のプレス金型を用いてプレス成形する技術が提案されている。この技術はホットスタンプまたは熱間プレス等と呼ばれており、高温に加熱されることで軟質な状態となった鋼板をプレス成形するので、複雑な形状の部材を高い寸法精度で製造することができる。また、金型との接触により鋼板が急冷されるので、焼入れにより、プレス成形と同時に強度を大幅に高めることが可能となる。例えば特許文献1には、引張強さが500~600MPaである鋼板をホットスタンプすることで、引張強さが1400MPa以上である部材が得られることが記載されている。 So far, as a method for manufacturing an ultra-high strength vehicle body member, for example, as disclosed in Patent Document 1, a technique of press-forming a heated steel sheet using a low-temperature press die has been proposed. .. This technology is called hot stamping or hot pressing, and since steel sheets that have become soft when heated to a high temperature are press-formed, it is possible to manufacture members with complex shapes with high dimensional accuracy. it can. In addition, since the steel sheet is rapidly cooled by contact with the mold, it is possible to significantly increase the strength at the same time as press molding by quenching. For example, Patent Document 1 describes that a member having a tensile strength of 1400 MPa or more can be obtained by hot stamping a steel sheet having a tensile strength of 500 to 600 MPa.
 車体部材の中でも、センターピラーおよびサイドメンバーといった骨格構造部品では、自動車が衝突した際の部材の変形状態を制御するために、部材内に硬質な部位と軟質な部位とが設けられることが多い。 Among body members, skeletal structural parts such as center pillars and side members are often provided with a hard part and a soft part in the member in order to control the deformation state of the member when an automobile collides.
 ホットスタンプによって軟質部を有する部材を製造する方法として、特許文献2には、誘導加熱または赤外線加熱により鋼板の加熱温度を部分的に変化させ、低温に加熱した部分を軟質化する方法が開示されている。
 特許文献3には、鋼板を炉加熱する際に鋼板の一部に断熱材を装着し、部分的に加熱温度を低下させて軟質化する方法が開示されている。
As a method for manufacturing a member having a soft portion by hot stamping, Patent Document 2 discloses a method in which the heating temperature of a steel sheet is partially changed by induction heating or infrared heating to soften the portion heated to a low temperature. ing.
Patent Document 3 discloses a method in which a heat insulating material is attached to a part of a steel sheet when the steel sheet is heated in a furnace, and the heating temperature is partially lowered to soften the steel sheet.
 特許文献4および特許文献5には、成形時の鋼板と金型との接触面積を変えることによって鋼板の冷却速度を部分的に変化させ、冷却速度の低い部分を軟質化する方法が開示されている。
 特許文献6には、二枚の素板を溶接して連結させた、いわゆるテーラードブランク材を用いてホットスタンプする技術が開示されている。
Patent Document 4 and Patent Document 5 disclose a method of partially changing the cooling rate of a steel sheet by changing the contact area between the steel sheet and the mold during molding to soften the portion having a low cooling rate. There is.
Patent Document 6 discloses a technique of hot stamping using a so-called tailored blank material in which two base plates are welded and connected.
 ホットスタンプでは、通常、鋼板をオーステナイト域まで加熱した後、臨界冷速以上の冷却速度で冷却することにより、マルテンサイト単一の組織を形成することで高強度化させる。一方、特許文献2~5に記載される方法では、上述の通り部分的に鋼板の加熱温度または冷却速度を低下させ、部分的にマルテンサイト以外の組織を生成させて軟質化を図っている。しかしながら、マルテンサイト以外の組織の分率は、加熱温度および冷却速度に敏感に反応して変化するので、特許文献2~5の方法では、軟質部の強度が安定しないという課題がある。 In hot stamping, the strength of martensite is increased by forming a single structure of martensite by heating the steel sheet to the austenite region and then cooling it at a cooling rate higher than the critical cooling rate. On the other hand, in the methods described in Patent Documents 2 to 5, as described above, the heating temperature or cooling rate of the steel sheet is partially lowered, and a structure other than martensite is partially generated to soften the steel sheet. However, since the fraction of the tissue other than martensite changes in response to the heating temperature and the cooling rate, the methods of Patent Documents 2 to 5 have a problem that the strength of the soft portion is not stable.
 特許文献6に記載される技術では、一方の素板に焼入れ性が低い鋼板を使用することにより、一定の加熱冷却条件の下で軟質部を形成することができる。しかしながら、軟質部の金属組織および強度特性は、鋼板の成分組成に大きく依存するにもかかわらず、特許文献6では、焼入れ性の低い鋼板の成分組成について何ら配慮がなされていない。 In the technique described in Patent Document 6, a soft portion can be formed under certain heating and cooling conditions by using a steel plate having a low hardenability for one of the base plates. However, although the metallographic structure and strength characteristics of the soft portion largely depend on the composition of the steel sheet, Patent Document 6 does not give any consideration to the composition of the steel sheet having low hardenability.
 このような課題に対し、特許文献7および8には、硬質部と軟質部とからなるホットスタンプ部材、または、全体的に軟質なホットスタンプ部材において、軟質部の強度を安定化させる方法が開示されている。 In response to such problems, Patent Documents 7 and 8 disclose a method for stabilizing the strength of a soft portion in a hot stamp member composed of a hard portion and a soft portion, or an overall soft hot stamp member. Has been done.
 具体的には、特許文献7には、C含有量を低めに制限するとともに焼入れ元素を一定量以上含有させ、冷却中にフェライト、パーライトおよびマルテンサイトの形成を抑制した600~1200MPa級自動車用高強度部材およびその製造方法が開示されている。
 また、特許文献8には、C含有量を低めに制限するとともにTiを含有させ、マルテンサイトの生成量を制御した、引張強さが500MPa以上のホットスタンプ部材およびその製造方法が開示されている。
Specifically, Patent Document 7 describes a height for 600 to 1200 MPa class automobiles in which the C content is limited to a low level and the quenching element is contained in a certain amount or more to suppress the formation of ferrite, pearlite and martensite during cooling. A strength member and a method for manufacturing the same are disclosed.
Further, Patent Document 8 discloses a hot stamping member having a tensile strength of 500 MPa or more and a method for producing the same, in which the C content is limited to a low level and Ti is contained to control the amount of martensite produced. ..
 特許文献7および8に記載される技術によれば、部材内における強度および伸びの均一性を高めることが可能となる。しかしながら、本発明者らの検討によると、特許文献7および8に記載される技術では、金属組織にベイナイト、マルテンサイト等の硬質組織が含まれるので、熱的安定性が低く、部材に塗装焼付処理を施した際に強度が低下する場合があることが分かった。自動車部材では、塗装焼付処理が行われることが多いので、特許文献7および8に記載の技術には、改善の余地が残されている。 According to the techniques described in Patent Documents 7 and 8, it is possible to improve the uniformity of strength and elongation in the member. However, according to the study by the present inventors, in the techniques described in Patent Documents 7 and 8, since the metal structure contains a hard structure such as bainite and martensite, the thermal stability is low and the member is coated and baked. It was found that the strength may decrease when the treatment is applied. Since paint baking treatment is often performed on automobile parts, there is room for improvement in the techniques described in Patent Documents 7 and 8.
日本国特開2002-102980号公報Japanese Patent Application Laid-Open No. 2002-102980 日本国特開2005-193287号公報Japanese Patent Application Laid-Open No. 2005-193287 日本国特開2009-61473号公報Japanese Patent Application Laid-Open No. 2009-61473 日本国特開2003-328031号公報Japanese Patent Application Laid-Open No. 2003-328031 国際公開第2006/38868号International Publication No. 2006/38868 日本国特開2004-58082号公報Japanese Patent Application Laid-Open No. 2004-58082 日本国特開2005-248320号公報Japanese Patent Application Laid-Open No. 2005-248320 国際公開第2008/132303号International Publication No. 2008/132303
 上述のように、ホットスタンプによって軟質な部材または軟質部を含む部材を製造することは容易ではない。特に、ホットスタンプによって、一部または全部に軟質部を含む、熱的安定性に優れた低強度のホットスタンプ部材(成形品)を製造することは、従来技術においては困難であった。 As mentioned above, it is not easy to manufacture a soft member or a member including a soft part by hot stamping. In particular, it has been difficult in the prior art to produce a low-strength hot stamping member (molded product) having excellent thermal stability, which includes a soft portion in part or in whole by hot stamping.
 本発明は、上記の課題を解決し、熱的安定性に優れる、より具体的には塗装焼付処理に伴う塗装焼付処理前後での強度(引張強さ)の変動が小さい、引張強さが440MPa以上、700MPa未満である部分を有するホットスタンプ成形品およびその製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems and is excellent in thermal stability, more specifically, the variation in strength (tensile strength) before and after the coating baking treatment accompanying the coating baking treatment is small, and the tensile strength is 440 MPa. As mentioned above, it is an object of the present invention to provide a hot stamp molded product having a portion of less than 700 MPa and a method for producing the same.
 本発明は、上記課題を解決するためになされたものであり、下記のホットスタンプ成形品およびその製造方法を要旨とする。 The present invention has been made to solve the above problems, and the gist of the following hot stamp molded product and its manufacturing method is.
 (1)ホットスタンプ成形品であって、前記ホットスタンプ成形品の全部または一部が、質量%で、C:0.001%以上、0.090%未満、Si:0.50%未満、Mn:0.50%以上、1.70%未満、P:0.200%以下、S:0.0200%以下、sol.Al:0.001~2.500%、N:0.0200%以下、B:0.0002~0.0200%、Ti:0~0.300%、Nb:0~0.300%、V:0~0.300%、Zr:0~0.300%、Cr:0~2.00%、Mo:0~2.00%、Cu:0~2.00%、Ni:0~2.00%、Ca:0~0.0100%、Mg:0~0.0100%、REM:0~0.1000%、Bi:0~0.0500%、並びに、残部:Feおよび不純物である化学組成を有し、金属組織が、面積%で、フェライト:50.0%超、焼戻しマルテンサイト:5.0%以上、50.0%未満、マルテンサイト:0%以上、10.0%未満、ベイナイト:0%以上、20.0%未満、を含み、引張強さが、440MPa以上、700MPa未満であり、170℃で20分間の熱処理を施した際の、前記引張強さの低下量であるΔTSが100MPa以下である。
 (2)上記(1)に記載のホットスタンプ成形品は、前記化学組成が、質量%で、Ti:0.001~0.300%、Nb:0.001~0.300%、V:0.001~0.300%、Zr:0.001~0.300%、Cr:0.001~2.00%、Mo:0.001~2.00%、Cu:0.001~2.00%、Ni:0.001~2.00%、Ca:0.0001~0.0100%、Mg:0.0001~0.0100%、REM:0.0001~0.1000%、および、Bi:0.0001~0.0500%からなる群から選択される1種または2種以上を含有してもよい。
 (3)上記(1)または(2)に記載のホットスタンプ成形品は、表面にめっき層を有してもよい。
 (4)上記(1)または(2)に記載のホットスタンプ成形品を製造する方法であって、上記(1)または(2)に記載の化学組成を有するホットスタンプ用鋼板を、Ac点を超える温度まで加熱する加熱工程と、前記加熱工程後の前記ホットスタンプ用鋼板に対して、(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える。
 (5)上記(1)または(2)に記載のホットスタンプ成形品を製造する方法であって、上記(1)または(2)に記載の化学組成を有するホットスタンプ用鋼板を、接合用鋼板と接合して接合鋼板とする接合工程と、前記接合工程後の接合鋼板を前記ホットスタンプ用鋼板のAc点を超える温度まで加熱する加熱工程と、前記加熱工程後の前記接合鋼板に対して、前記ホットスタンプ用鋼板の(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える。
 (6)上記(3)に記載のホットスタンプ成形品を製造する方法であって、上記(1)または(2)に記載の化学組成を有し、かつ表面にめっき層を有するホットスタンプ用鋼板を、Ac点を超える温度まで加熱する加熱工程と、前記加熱工程後の前記ホットスタンプ用鋼板に対して、(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える。
 (7)上記(3)に記載のホットスタンプ成形品を製造する方法であって、上記(1)または(2)に記載の化学組成を有し、かつ表面にめっき層を有するホットスタンプ用鋼板を、接合用鋼板と接合して接合鋼板とする接合工程と、前記接合工程後の接合鋼板を、前記ホットスタンプ用鋼板のAc点を超える温度まで加熱する加熱工程と、前記加熱工程後の前記接合鋼板に対して、前記ホットスタンプ用鋼板の(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える。
(1) A hot stamped product, all or part of the hot stamped product, in mass%, C: 0.001% or more, less than 0.090%, Si: less than 0.50%, Mn. : 0.50% or more and less than 1.70%, P: 0.200% or less, S: 0.0200% or less, sol. Al: 0.001 to 2.500%, N: 0.0200% or less, B: 0.0002 to 0.0200%, Ti: 0 to 0.300%, Nb: 0 to 0.300%, V: 0 to 0.300%, Zr: 0 to 0.300%, Cr: 0 to 2.00%, Mo: 0 to 2.00%, Cu: 0 to 2.00%, Ni: 0 to 2.00 %, Ca: 0 to 0.0100%, Mg: 0 to 0.0100%, REM: 0 to 0.1000%, Bi: 0 to 0.0500%, and the balance: Fe and chemical composition of impurities. The metal structure is% by area, ferrite: more than 50.0%, tempered martensite: 5.0% or more and less than 50.0%, martensite: 0% or more and less than 10.0%, bainite: ΔTS, which includes 0% or more and less than 20.0%, has a tensile strength of 440 MPa or more and less than 700 MPa, and is the amount of decrease in the tensile strength when heat-treated at 170 ° C. for 20 minutes. It is 100 MPa or less.
(2) The hot stamped product according to (1) above has a chemical composition of mass%, Ti: 0.001 to 0.300%, Nb: 0.001 to 0.300%, V: 0. .001 to 0.300%, Zr: 0.001 to 0.300%, Cr: 0.001 to 2.00%, Mo: 0.001 to 2.00%, Cu: 0.001 to 2.00 %, Ni: 0.001 to 2.00%, Ca: 0.0001 to 0.0100%, Mg: 0.0001 to 0.0100%, REM: 0.0001 to 0.1000%, and Bi: It may contain one or more selected from the group consisting of 0.0001 to 0.0500%.
(3) The hot stamp molded product according to (1) or (2) above may have a plating layer on its surface.
(4) Ac 3 points of a hot stamping steel plate having the chemical composition according to the above (1) or (2), which is a method for producing the hot stamping molded product according to the above (1) or (2). The heating step of heating to a temperature exceeding the above temperature and the hot stamping of the hot stamping steel plate after the heating step are started at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points, and then 90. It includes a hot stamping step of cooling to a temperature lower than ° C., and a reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes.
(5) A hot stamping steel plate having the chemical composition according to the above (1) or (2), which is a method for producing the hot stamping molded product according to the above (1) or (2), is used as a joining steel plate. A joining step of joining with and forming a joined steel plate, a heating step of heating the joined steel plate after the joining step to a temperature exceeding Ac 3 points of the hot stamping steel plate, and a heating step of the joined steel plate after the heating step. the hot stamping of the steel plate (Ar 3 point -200 ° C.) or higher, to start a hot stamp at a temperature of Ar less than 3 points, and hot stamping step of subsequently cooled to a temperature below 90 ° C., after the hot stamping process A reheating step of heating the molded product to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
(6) A steel plate for hot stamping, which is a method for producing the hot stamped product according to (3) above, has the chemical composition according to (1) or (2) above, and has a plating layer on the surface. the starting a heating process of heating to a temperature above the Ac 3 point, with respect to the hot stamping steel sheet after the heating step, a hot stamp (Ar 3 point -200 ° C.) or higher, Ar less than 3 points temperature Then, a hot stamping step of cooling to a temperature of less than 90 ° C., and a reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding at that temperature for 3 to 120 minutes. , Equipped with.
(7) A steel sheet for hot stamping, which is a method for producing the hot stamped product according to (3) above, has the chemical composition according to (1) or (2) above, and has a plating layer on the surface. A joining step of joining the steel sheet for joining to form a joined steel sheet, a heating step of heating the joined steel sheet after the joining step to a temperature exceeding Ac 3 points of the hot stamping steel sheet, and a heating step after the heating step. with respect to the bonding steel plate, wherein (Ar 3 point -200 ° C.) of the hot stamping steel plate or to initiate hot stamping at a temperature of Ar less than 3 points, followed by hot stamping step of cooling to a temperature below 90 ° C. and A reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
 本発明によれば、塗装焼付処理に伴う強度の変動が小さい(熱的安定性に優れる)、引張強さが440MPa以上、700MPa未満である部分を有するホットスタンプ成形品を得ることができる。 According to the present invention, it is possible to obtain a hot stamped product having a portion having a tensile strength of 440 MPa or more and less than 700 MPa, in which the fluctuation of the strength due to the coating baking treatment is small (excellent in thermal stability).
実施例1で製造したホットスタンプ成形品の形状を示す模式図である。It is a schematic diagram which shows the shape of the hot stamp molded article manufactured in Example 1. FIG. 実施例2で製造したホットスタンプ成形品の形状を示す模式図である。It is a schematic diagram which shows the shape of the hot stamp molded article manufactured in Example 2. FIG.
 本発明者らは、引張強さが440MPa以上、700MPa未満であるホットスタンプ成形品について、塗装焼付時の強度低下を抑制する方法を鋭意検討した。その結果、以下の知見を得た。 The present inventors have diligently studied a method for suppressing a decrease in strength at the time of coating baking for a hot stamped product having a tensile strength of 440 MPa or more and less than 700 MPa. As a result, the following findings were obtained.
 (A)ホットスタンプ成形品の金属組織にマルテンサイトまたはベイナイト等の硬質組織が多量に含まれると、塗装焼付処理により成形品の引張強さが大きく低下する。これは、硬質組織が焼戻されて軟質化するためと考えられる。 (A) If the metal structure of the hot stamped product contains a large amount of hard structure such as martensite or bainite, the tensile strength of the molded product is greatly reduced by the coating baking process. It is considered that this is because the hard structure is tempered and softened.
 (B)一方、硬質組織の分率が低く、フェライトを含む軟質組織を主体とする金属組織を有するホットスタンプ成形品であっても、化学組成やホットスタンプ条件によっては塗装焼付処理により引張強さが大きく低下する場合がある。 (B) On the other hand, even a hot stamped product having a low fraction of hard structure and a metal structure mainly composed of a soft structure containing ferrite has tensile strength due to coating baking treatment depending on the chemical composition and hot stamping conditions. May drop significantly.
 (C)ホットスタンプを行う工程において、フェライトとオーステナイトとが共存する温度域でホットスタンプを開始すること、および、ホットスタンプ工程後のホットスタンプ成形品に所定の温度域で再加熱を施すことにより、塗装焼付処理に伴う引張強さの低下が抑制される。 (C) In the step of performing hot stamping, hot stamping is started in a temperature range in which ferrite and austenite coexist, and the hot stamped molded product after the hot stamping step is reheated in a predetermined temperature range. , The decrease in tensile strength due to the coating baking process is suppressed.
 この理由は明らかではないが、本発明者らは、次の理由に起因すると推測する。(a)ホットスタンプ成形品において、フェライト中に含まれる固溶状態の炭素は、塗装焼付時に粗大な鉄炭化物として析出し、フェライトの強度が低下する原因となる。(b)ホットスタンプ成形品において、微細な鉄炭化物または微細な鉄炭素クラスターは、塗装焼付時に粗大な鉄炭化物に変化し、フェライトの強度が低下する原因となる。(c)フェライトが存在する状態でホットスタンプを行うと、ホットスタンプ成形品において、フェライト中に転位が導入される。(d)ホットスタンプ成形品を再加熱すると、フェライト中の固溶炭素が転位上に析出し、固溶炭素量が減少するとともに、微細な鉄炭化物または微細な鉄炭素クラスターが粗大化する。 The reason for this is not clear, but the present inventors presume that it is due to the following reason. (A) In a hot stamped product, carbon in a solid solution state contained in ferrite is precipitated as coarse iron carbide during coating and baking, which causes a decrease in ferrite strength. (B) In the hot stamped molded product, fine iron carbides or fine iron carbon clusters change to coarse iron carbides during coating baking, which causes a decrease in ferrite strength. (C) When hot stamping is performed in the presence of ferrite, dislocations are introduced into the ferrite in the hot stamped product. (D) When the hot stamped product is reheated, the solid solution carbon in ferrite is precipitated on the dislocations, the amount of solid solution carbon is reduced, and fine iron carbides or fine iron carbon clusters are coarsened.
 (D)化学組成にB(ホウ素)を含有させると、塗装焼付処理に伴う引張強さの低下が抑制される。この理由は明らかではないが、Bを含有させると、ホットスタンプ成形品において、フェライトに導入される転位の量が増加し、再加熱による炭化物の析出が促進され、固溶炭素量がより減少すること、および、鉄炭化物または鉄炭素クラスターの粗大化が促進されること、に起因すると推定される。 (D) When B (boron) is contained in the chemical composition, the decrease in tensile strength due to the coating baking treatment is suppressed. The reason for this is not clear, but when B is contained, the amount of dislocations introduced into ferrite increases in the hot stamped product, the precipitation of carbides due to reheating is promoted, and the amount of solid solution carbon decreases further. It is presumed that this is due to the fact that the coarsening of iron carbides or iron carbon clusters is promoted.
 以上(A)~(D)の知見から、本発明者らは、所望量のB(ホウ素)を含有させた鋼板を用い、フェライトとオーステナイトとが共存する温度域でホットスタンプを開始し、さらに、ホットスタンプ工程後のホットスタンプ成形品に再加熱を行うことにより、フェライトを主体とする金属組織を有し、少なくとも一部の引張強さが700MPa未満であり、熱的安定性に優れ、塗装焼付処理による強度低下が小さいホットスタンプ成形品を製造できることを見出した。 Based on the above findings (A) to (D), the present inventors started hot stamping in a temperature range in which ferrite and austenite coexist using a steel sheet containing a desired amount of B (boron), and further. By reheating the hot stamped molded product after the hot stamping process, it has a metal structure mainly composed of ferrite, at least a part of which has a tensile strength of less than 700 MPa, is excellent in thermal stability, and is coated. It has been found that a hot stamped product with a small decrease in strength due to the baking process can be produced.
 以下、本発明の一実施形態に係るホットスタンプ成形品(本実施形態に係るホットスタンプ成形品)およびその製造方法の各要件について詳しく説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 Hereinafter, each requirement of the hot stamped product (hot stamped product according to the present embodiment) and the manufacturing method thereof according to the embodiment of the present invention will be described in detail. However, the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
 <ホットスタンプ成形品の化学組成>
 本実施形態に係るホットスタンプ成形品の全部または一部は、以下に示す化学組成を有する。各元素の限定理由は下記のとおりである。以下の説明において、化学組成の含有量についての「%」は全て、「質量%」を意味する。ホットスタンプ成形品が、700MPa未満の引張強さを有する部分と、700MPa以上の引張強さを有する部分とを備えている場合、少なくとも引張強さが700MPa未満となる部分が以下の化学組成を有していればよい。
<Chemical composition of hot stamped products>
All or part of the hot stamped article according to this embodiment has the following chemical composition. The reasons for limiting each element are as follows. In the following description, all "%" for the content of the chemical composition mean "mass%". When the hot stamped product includes a portion having a tensile strength of less than 700 MPa and a portion having a tensile strength of 700 MPa or more, at least the portion having a tensile strength of less than 700 MPa has the following chemical composition. You just have to do it.
 C:0.001%以上、0.090%未満
 Cは、ホットスタンプ後の鋼板(ホットスタンプ成形品が備える鋼板)の引張強さを上昇させる効果を有する元素である。C含有量が0.001%未満では、ホットスタンプによる引張強さの上昇が望めない。そのため、C含有量を0.001%以上とする。好ましいC含有量は0.020%以上、0.030%以上、0.040%以上、または0.050%以上である。
 一方、C含有量が0.090%以上であると、ホットスタンプ後の金属組織において焼戻しマルテンサイト、マルテンサイト、および/またはベイナイトの面積率が増加して、ホットスタンプ成形品の引張強さが700MPa以上となり、また、ホットスタンプ成形品の熱的安定性を確保することができなくなる。したがって、C含有量は0.090%未満とする。好ましいC含有量は0.085%未満、0.080%未満、0.075%未満、または0.070%未満である。
C: 0.001% or more and less than 0.090% C is an element having an effect of increasing the tensile strength of the steel sheet after hot stamping (the steel sheet provided in the hot stamped product). If the C content is less than 0.001%, the tensile strength cannot be expected to increase due to hot stamping. Therefore, the C content is set to 0.001% or more. The preferred C content is 0.020% or higher, 0.030% or higher, 0.040% or higher, or 0.050% or higher.
On the other hand, when the C content is 0.090% or more, the area ratio of tempered martensite, martensite, and / or bainite increases in the metal structure after hot stamping, and the tensile strength of the hot stamped product increases. It becomes 700 MPa or more, and the thermal stability of the hot stamped molded product cannot be ensured. Therefore, the C content is set to less than 0.090%. Preferred C content is less than 0.085%, less than 0.080%, less than 0.075%, or less than 0.070%.
 Si:0.50%未満
 Siは、鋼中に不純物として含有される元素である。Si含有量が0.50%以上であると、後述するようにホットスタンプ成形品に再加熱処理を施しても、ホットスタンプ成形品の熱的安定性を確保することが困難となる。そのため、Si含有量は0.50%未満とする。好ましいSi含有量は0.40%未満、0.20%未満、0.10%未満、または0.05%未満である。ホットスタンプ用鋼板としてめっき鋼板を用いる場合は、めっき性を確保するためにSi含有量を0.40%未満とすることが好ましく、0.30%未満とすることがより好ましい。
 Si含有量の下限は特に限定しないが、Si含有量を過度に低下させることは製鋼コストの上昇を引き起こす。そのため、Si含有量を0.001%以上とすることが好ましい。また、Siは、ホットスタンプ後の鋼板の引張強さを高める作用を有するので、積極的に含有させてもよい。高強度化の観点からは、Si含有量は0.10%以上、または0.20%以上であることが好ましい。
Si: Less than 0.50% Si is an element contained as an impurity in steel. When the Si content is 0.50% or more, it becomes difficult to secure the thermal stability of the hot stamped product even if the hot stamped product is reheated as described later. Therefore, the Si content is set to less than 0.50%. Preferred Si content is less than 0.40%, less than 0.20%, less than 0.10%, or less than 0.05%. When a plated steel sheet is used as the hot stamping steel sheet, the Si content is preferably less than 0.40% and more preferably less than 0.30% in order to ensure the plating property.
The lower limit of the Si content is not particularly limited, but an excessive decrease in the Si content causes an increase in steelmaking cost. Therefore, the Si content is preferably 0.001% or more. Further, since Si has an effect of increasing the tensile strength of the steel sheet after hot stamping, it may be positively contained. From the viewpoint of increasing the strength, the Si content is preferably 0.10% or more, or 0.20% or more.
 Mn:0.50%以上、1.70%未満
 Mnは、鋼の焼入れ性を向上させる元素であり、フェライトおよび焼戻しマルテンサイトを含む金属組織を得るために0.50%以上含有させる。好ましいMn含有量は0.60%以上、または0.70%以上である。
 一方、Mn含有量が1.70%以上であると、後述するようにホットスタンプ成形品に再加熱処理を施しても、ホットスタンプ成形品の熱的安定性を確保することが困難となる。したがって、Mn含有量は1.70%未満とする。Mn含有量は好ましくは1.50%未満、1.20%未満、1.00%未満、または0.80%未満である。
Mn: 0.50% or more and less than 1.70% Mn is an element that improves the hardenability of steel, and is contained in an amount of 0.50% or more in order to obtain a metallographic structure containing ferrite and tempered martensite. The preferred Mn content is 0.60% or more, or 0.70% or more.
On the other hand, when the Mn content is 1.70% or more, it becomes difficult to secure the thermal stability of the hot stamped product even if the hot stamped product is reheated as described later. Therefore, the Mn content is set to less than 1.70%. The Mn content is preferably less than 1.50%, less than 1.20%, less than 1.00%, or less than 0.80%.
 P:0.200%以下
 Pは、鋼中に不純物として含有される元素である。P含有量が0.200%を超えると溶接性およびホットスタンプ後の靭性が著しく劣化するので、P含有量は0.200%以下とする。好ましいP含有量は0.100%以下、0.050%以下、または0.020%以下である。
 P含有量の下限は特に限定しないが、P含有量を過度に低下させることは製鋼コストの上昇を引き起こす。そのため、P含有量を0.001%以上とすることが好ましい。また、Pは、ホットスタンプ後の成形品の引張強さを高める作用を有するので、積極的に含有させてもよい。高強度化の観点からは、好ましいP含有量は0.010%以上、0.020%以上、または0.030%以上である。ホットスタンプ用鋼板としてめっき鋼板を用いる場合は、めっき性を確保するためにP含有量を0.050%以下とすることが好ましく、0.040%以下とすることがより好ましい。
P: 0.200% or less P is an element contained as an impurity in steel. If the P content exceeds 0.200%, the weldability and toughness after hot stamping are significantly deteriorated, so the P content is set to 0.200% or less. The preferred P content is 0.100% or less, 0.050% or less, or 0.020% or less.
The lower limit of the P content is not particularly limited, but excessively lowering the P content causes an increase in steelmaking cost. Therefore, the P content is preferably 0.001% or more. Further, since P has an effect of increasing the tensile strength of the molded product after hot stamping, it may be positively contained. From the viewpoint of increasing the strength, the preferable P content is 0.010% or more, 0.020% or more, or 0.030% or more. When a plated steel sheet is used as the hot stamping steel sheet, the P content is preferably 0.050% or less, and more preferably 0.040% or less in order to ensure the plating property.
 S:0.0200%以下
 Sは、鋼中に不純物として含有され、鋼を脆化させる元素である。そのため、S含有量は少ないほど好ましいが、S含有量が0.0200%を超えると鋼の脆化が顕著となるので、S含有量は0.0200%以下とする。好ましいS含有量は0.0100%以下、0.0050%以下、または0.0030%以下である。
 S含有量の下限は特に限定しないが、S含有量を過度に低下させることは製鋼コストの上昇を引き起こす。そのため、S含有量を0.0001%以上とすることが好ましい。
S: 0.0200% or less S is an element contained in steel as an impurity and embrittles the steel. Therefore, the smaller the S content is, the more preferable it is, but if the S content exceeds 0.0200%, the embrittlement of the steel becomes remarkable, so the S content is set to 0.0200% or less. The preferred S content is 0.0100% or less, 0.0050% or less, or 0.0030% or less.
The lower limit of the S content is not particularly limited, but an excessive decrease in the S content causes an increase in steelmaking cost. Therefore, the S content is preferably 0.0001% or more.
 sol.Al:0.001~2.500%
 Alは、溶鋼を脱酸する作用を有する元素である。sol.Al含有量(酸可溶Al含有量)が0.001%未満であると脱酸が不十分となる。そのため、sol.Al含有量を0.001%以上とする。sol.Al含有量は好ましくは、0.005%以上、0.010%以上、または0.020%以上である。
 一方、sol.Al含有量が高すぎると、変態点が上昇しホットスタンプの加熱工程でAc点を超える温度に鋼板を加熱することが困難となる。そのため、sol.Al含有量は2.500%以下とする。sol.Al含有量は好ましくは0.500%未満、0.100%未満、0.050%未満、または0.040%未満である。
sol. Al: 0.001 to 2.500%
Al is an element having an action of deoxidizing molten steel. sol. If the Al content (acid-soluble Al content) is less than 0.001%, deoxidation becomes insufficient. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.005% or more, 0.010% or more, or 0.020% or more.
On the other hand, sol. If the Al content is too high, the transformation point rises and it becomes difficult to heat the steel sheet to a temperature exceeding 3 points in the hot stamp heating step. Therefore, sol. The Al content is 2.500% or less. sol. The Al content is preferably less than 0.500%, less than 0.100%, less than 0.050%, or less than 0.040%.
 N:0.0200%以下
 Nは、鋼中に不純物として含有され、鋼の連続鋳造中に窒化物を形成する元素である。この窒化物はホットスタンプ後の靭性を劣化させるので、N含有量は低い方が好ましい。N含有量が0.0200%超であると、靭性の劣化が顕著となる。そのため、N含有量は0.0200%以下とする。N含有量は好ましくは0.0100%未満、0.0080%未満、または0.0050%未満である。
 N含有量の下限は特に限定しないが、N含有量を過度に低下させることは製鋼コストの上昇を引き起こすので、N含有量を0.0010%以上とすることが好ましい。
N: 0.0200% or less N is an element contained as an impurity in steel and forming a nitride during continuous casting of steel. Since this nitride deteriorates the toughness after hot stamping, it is preferable that the N content is low. When the N content is more than 0.0200%, the deterioration of toughness becomes remarkable. Therefore, the N content is set to 0.0200% or less. The N content is preferably less than 0.0100%, less than 0.0080%, or less than 0.0050%.
The lower limit of the N content is not particularly limited, but it is preferable that the N content is 0.0010% or more because excessively lowering the N content causes an increase in steelmaking cost.
 B:0.0002~0.0200%
 Bは、フェライトおよび焼戻しマルテンサイトを含む金属組織を有するホットスタンプ成形品の熱的安定性を向上させる作用を有する元素である。B含有量が0.0002%未満である場合、上記作用による効果が十分に得られない。したがって、B含有量は0.0002%以上とする。好ましいB含有量は、0.0006%以上、0.0010%以上、または0.0015%以上である。
 一方、B含有量が0.0200%を超える場合、ホットスタンプ後の鋼板の引張強さが高くなりすぎ、ホットスタンプ成形品の熱的安定性が劣化する。したがって、B含有量は0.0200%以下とする。好ましいB含有量は、0.0050%未満、0.0030%未満、または0.0020%未満である。
B: 0.0002 to 0.0200%
B is an element having an action of improving the thermal stability of a hot stamped product having a metal structure containing ferrite and tempered martensite. If the B content is less than 0.0002%, the effect of the above action cannot be sufficiently obtained. Therefore, the B content is 0.0002% or more. The preferred B content is 0.0006% or higher, 0.0010% or higher, or 0.0015% or higher.
On the other hand, when the B content exceeds 0.0200%, the tensile strength of the steel sheet after hot stamping becomes too high, and the thermal stability of the hot stamped product deteriorates. Therefore, the B content is 0.0200% or less. The preferred B content is less than 0.0050%, less than 0.0030%, or less than 0.0020%.
 Ti:0~0.300%
 Nb:0~0.300%
 V:0~0.300%
 Zr:0~0.300%
 Ti、Nb、VおよびZrは金属組織を微細化することで、ホットスタンプ成形品の引張強さを上昇させる作用を有する元素である。この効果を得るために、Ti、Nb、VおよびZrから選択される1種以上を必要に応じて含有させてもよい。これらの元素は含有させなくてもよいため、これらの元素の含有量の下限は0%である。
Ti: 0 to 0.300%
Nb: 0 to 0.300%
V: 0 to 0.300%
Zr: 0 to 0.300%
Ti, Nb, V and Zr are elements that have the effect of increasing the tensile strength of the hot stamped product by refining the metal structure. In order to obtain this effect, one or more selected from Ti, Nb, V and Zr may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
 上記の効果を得たい場合には、Ti、Nb、VおよびZrから選択される1種以上を、それぞれ0.001%以上含有させることが好ましい。また、0.005%以上のTi、0.005%以上のNb、0.010%以上のV、および0.005%以上のZrのうちいずれか1種以上を含有させることがより好ましい。 When the above effect is desired, it is preferable to contain 0.001% or more of each of one or more selected from Ti, Nb, V and Zr. Further, it is more preferable to contain any one or more of 0.005% or more Ti, 0.005% or more Nb, 0.010% or more V, and 0.005% or more Zr.
 Tiを含有させる場合には、Ti含有量を0.020%以上とすることがさらに好ましく、0.030%以上とすることが特に好ましい。
 Nbを含有させる場合には、Nb含有量を0.020%以上とすることがさらに好ましく、0.030%以上とすることが特に好ましい。
 Vを含有させる場合には、V含有量を0.020%以上とすることがさらに好ましい。
 Zrを含有させる場合には、Zr含有量を0.010%以上とすることがさらに好ましい。
When Ti is contained, the Ti content is more preferably 0.020% or more, and particularly preferably 0.030% or more.
When Nb is contained, the Nb content is more preferably 0.020% or more, and particularly preferably 0.030% or more.
When V is contained, it is more preferable that the V content is 0.020% or more.
When Zr is contained, it is more preferable that the Zr content is 0.010% or more.
 一方、Ti、Nb、VおよびZrの含有量が、それぞれ0.300%を超える場合、効果が飽和する上、鋼板の製造コストが上昇する。そのため、これらの元素を含有させる場合でも、Ti、Nb、VおよびZrの含有量は、それぞれ0.300%以下とする。 On the other hand, when the contents of Ti, Nb, V and Zr each exceed 0.300%, the effect is saturated and the manufacturing cost of the steel sheet increases. Therefore, even when these elements are contained, the contents of Ti, Nb, V and Zr are set to 0.300% or less, respectively.
 また、Ti、Nb、VおよびZrの含有量が多い場合、これらの元素の炭化物が多量に析出してホットスタンプ後の靭性が損なわれる場合がある。
 したがって、Ti含有量は好ましくは0.060%未満、さらに好ましくは0.040%未満である。
 Nb含有量は好ましくは0.060%未満、さらに好ましくは0.040%未満である。
 V含有量は好ましくは0.200%未満、さらに好ましくは0.100%未満である。
 Zr含有量は好ましくは0.200%未満、さらに好ましくは0.100%未満である。
Further, when the contents of Ti, Nb, V and Zr are large, a large amount of carbides of these elements may be precipitated to impair the toughness after hot stamping.
Therefore, the Ti content is preferably less than 0.060%, more preferably less than 0.040%.
The Nb content is preferably less than 0.060%, more preferably less than 0.040%.
The V content is preferably less than 0.200%, more preferably less than 0.100%.
The Zr content is preferably less than 0.200%, more preferably less than 0.100%.
 Cr:0~2.00%
 Mo:0~2.00%
 Cu:0~2.00%
 Ni:0~2.00%
 Cr、Mo、CuおよびNiは、ホットスタンプ成形品(ホットスタンプ後の鋼板)の引張強さを高める作用を有する。したがって、Cr、Mo、CuおよびNiから選択される1種以上を必要に応じて含有させてもよい。これらの元素は含有させなくてもよいため、これらの元素の含有量の下限は0%である。
Cr: 0 to 2.00%
Mo: 0 to 2.00%
Cu: 0 to 2.00%
Ni: 0 to 2.00%
Cr, Mo, Cu and Ni have the effect of increasing the tensile strength of the hot stamped product (steel plate after hot stamping). Therefore, one or more selected from Cr, Mo, Cu and Ni may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
 上記の効果を得たい場合には、Cr、Mo、CuおよびNiから選択される1種以上をそれぞれ0.001%以上含有させることが好ましい。好ましいCr含有量は0.05%以上であり、好ましいMo含有量は0.05%以上であり、好ましいCu含有量は0.10%以上であり、好ましいNi含有量は0.10%以上である。 When the above effect is desired, it is preferable to contain 0.001% or more of each of one or more selected from Cr, Mo, Cu and Ni. The preferred Cr content is 0.05% or higher, the preferred Mo content is 0.05% or higher, the preferred Cu content is 0.10% or higher, and the preferred Ni content is 0.10% or higher. is there.
 一方、Cr、Mo、CuおよびNiの含有量が、それぞれ2.00%を超えると、ホットスタンプ後の鋼板の引張強さが高くなりすぎ、また、ホットスタンプ成形品の熱的安定性が劣化する。
 そのため、上記元素を含有させる場合でも、Cr、Mo、CuおよびNiの含有量は、それぞれ2.00%以下とする。好ましいCr含有量は0.50%未満、または0.20%未満であり、好ましいMo含有量は0.50%未満、または0.20%未満であり、好ましいCu含有量は1.00%未満であり、好ましいNi含有量は1.00%未満である。
On the other hand, if the contents of Cr, Mo, Cu and Ni each exceed 2.00%, the tensile strength of the steel sheet after hot stamping becomes too high, and the thermal stability of the hot stamped product deteriorates. To do.
Therefore, even when the above elements are contained, the contents of Cr, Mo, Cu and Ni are set to 2.00% or less, respectively. The preferred Cr content is less than 0.50% or less than 0.20%, the preferred Mo content is less than 0.50% or less than 0.20%, and the preferred Cu content is less than 1.00%. The preferred Ni content is less than 1.00%.
 Ca:0~0.0100%
 Mg:0~0.0100%
 REM:0~0.1000%
 Ca、MgおよびREMは、介在物の形状を調整することによりホットスタンプ後の靭性を向上させる作用を有する元素である。そのため、Ca、MgおよびREMから選択される1種以上を必要に応じて含有させてもよい。これらの元素は含有させなくてもよいため、これらの元素の含有量の下限は0%である。
Ca: 0 to 0.0100%
Mg: 0 to 0.0100%
REM: 0 to 0.1000%
Ca, Mg and REM are elements that have the effect of improving toughness after hot stamping by adjusting the shape of inclusions. Therefore, one or more selected from Ca, Mg and REM may be contained as required. Since these elements do not have to be contained, the lower limit of the content of these elements is 0%.
 上記の効果を得たい場合には、Ca、MgおよびREMから選択される1種以上を、それぞれ0.0001%以上含有させることが好ましい。
 一方、CaもしくはMgの含有量が0.0100%超である場合、またはREMの含有量が0.1000%超である場合、上記効果が飽和して、鋼板の製造コストが上昇する。したがって、上記元素を含有させる場合でも、CaおよびMgの含有量はそれぞれ0.0100%以下とし、REM含有量は0.1000%以下とする。
When the above effect is desired, it is preferable to contain 0.0001% or more of each of one or more selected from Ca, Mg and REM.
On the other hand, when the content of Ca or Mg is more than 0.0100%, or when the content of REM is more than 0.1000%, the above effect is saturated and the manufacturing cost of the steel sheet is increased. Therefore, even when the above elements are contained, the Ca and Mg contents are 0.0100% or less, and the REM content is 0.1000% or less.
 本実施形態において、REMはSc、Yおよびランタノイドの合計17元素を指し、REM含有量はこれらの元素の合計含有量を意味する。ランタノイドは、工業的には、ミッシュメタルの形で添加される。 In the present embodiment, REM refers to a total of 17 elements of Sc, Y and lanthanoid, and the REM content means the total content of these elements. Lanthanoids are industrially added in the form of misch metal.
 Bi:0~0.0500%
 Biは、凝固組織を微細化することにより、ホットスタンプ後の靭性を向上させる作用を有する元素である。そのため、Biを必要に応じて含有させてもよい。Biは含有させなくてもよいため、Bi含有量の下限は0%である。
Bi: 0-0.0500%
Bi is an element having an action of improving toughness after hot stamping by refining the solidified structure. Therefore, Bi may be contained as needed. Since Bi does not have to be contained, the lower limit of the Bi content is 0%.
 上記の効果を得たい場合には、Bi含有量は0.0001%以上であることが好ましい。Bi含有量は、より好ましくは0.0003%以上であり、さらに好ましくは0.0005%以上である。
 一方、Bi含有量が0.0500%を超える場合、上記効果が飽和して、鋼板の製造コストが上昇する。したがって、Biを含有させる場合でも、Bi含有量は0.0500%以下とする。Bi含有量は、好ましくは0.0100%以下であり、より好ましくは0.0050%以下である。
When the above effect is desired, the Bi content is preferably 0.0001% or more. The Bi content is more preferably 0.0003% or more, still more preferably 0.0005% or more.
On the other hand, when the Bi content exceeds 0.0500%, the above effect is saturated and the manufacturing cost of the steel sheet increases. Therefore, even when Bi is contained, the Bi content is 0.0500% or less. The Bi content is preferably 0.0100% or less, more preferably 0.0050% or less.
 上記の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼板を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本実施形態に係るホットスタンプ成形品に悪影響を与えない範囲で許容されるものを意味する。 In the above chemical composition, the balance is Fe and impurities. Here, the "impurity" is a component mixed by various factors of raw materials such as ore and scrap, and various factors in the manufacturing process when the steel sheet is industrially manufactured, and has an adverse effect on the hot stamped product according to the present embodiment. Means what is allowed within the range that does not give.
 上述したホットスタンプ成形品の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。 The chemical composition of the hot stamped product described above may be measured by a general analysis method. For example, ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrum) may be used for measurement. In addition, sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid. C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
 <ホットスタンプ成形品の金属組織>
 本実施形態に係るホットスタンプ成形品の金属組織について説明する。本実施形態に係るホットスタンプ成形品の全部または一部は、以下に示す量のフェライト、焼戻しマルテンサイト、マルテンサイト、およびベイナイトを含む金属組織を有する。金属組織に関する以下の説明において、「%」は、「面積%」を意味する。
<Metal structure of hot stamped products>
The metal structure of the hot stamp molded product according to this embodiment will be described. All or part of the hot stamped article according to this embodiment has a metallographic structure containing the following amounts of ferrite, tempered martensite, martensite, and bainite. In the following description of the metallographic structure, "%" means "area%".
 フェライト:50.0%超
 フェライトの面積率が50.0%以下であると、ホットスタンプ後の成形品の引張強さが700MPa以上となり、熱的安定性を確保することができない。そのため、フェライトの面積率を50.0%超とする。フェライトの面積率は、好ましくは60.0%超、より好ましくは70.0%超、さらに好ましくは80.0%超である。
 フェライトの面積率の上限は特に定める必要がないが、ホットスタンプ成形品の強度を上昇させるために、95.0%未満とすることが好ましく、90.0%未満とすることがより好ましく、85.0%未満とすることがさらに好ましい。
Ferrite: More than 50.0% When the area ratio of ferrite is 50.0% or less, the tensile strength of the molded product after hot stamping becomes 700 MPa or more, and thermal stability cannot be ensured. Therefore, the area ratio of ferrite is set to more than 50.0%. The area ratio of ferrite is preferably more than 60.0%, more preferably more than 70.0%, and even more preferably more than 80.0%.
The upper limit of the area ratio of ferrite does not need to be set in particular, but it is preferably less than 95.0%, more preferably less than 90.0%, in order to increase the strength of the hot stamped product, 85. More preferably, it is less than 0.0%.
 本実施形態において、フェライトには、ポリゴナルフェライトのほかに、ポリゴナルフェライトより転位密度の高い擬ポリゴナルフェライトおよびグラニュラーベイニティックフェライト、鋸歯状の粒界を有するアシキュラーフェライトが含まれる。熱的安定性の観点から、フェライト全体に対するポリゴナルフェライトの割合が、面積率で5.0%以上であることが好ましい。 In the present embodiment, the ferrite includes, in addition to the polygonal ferrite, a pseudo-polygonal ferrite having a higher dislocation density than the polygonal ferrite, a granular bainitic ferrite, and an acidic ferrite having a serrated grain boundary. From the viewpoint of thermal stability, the ratio of polygonal ferrite to the entire ferrite is preferably 5.0% or more in terms of area ratio.
 焼戻しマルテンサイト:5.0%以上、50.0%未満
 焼戻しマルテンサイトは、ホットスタンプ成形品の熱的安定性を維持しながら、ホットスタンプ成形品の強度を高める作用を有する組織である。焼戻しマルテンサイトの面積率が5.0%未満であると、上記作用による効果が十分に得られず、ホットスタンプ成形品の熱的安定性、および/またはホットスタンプ成形品の強度を確保することが困難となる。そのため、焼戻しマルテンサイトの面積率を5.0%以上とする。焼戻しマルテンサイトの面積率は、好ましくは8.0%以上、より好ましくは10.0%以上、さらに好ましくは12.0%以上である。
Tempering martensite: 5.0% or more and less than 50.0% Tempering martensite is a structure having an action of increasing the strength of a hot stamped product while maintaining the thermal stability of the hot stamped product. If the area ratio of the tempered martensite is less than 5.0%, the effect of the above action cannot be sufficiently obtained, and the thermal stability of the hot stamped product and / or the strength of the hot stamped product should be ensured. Becomes difficult. Therefore, the area ratio of tempered martensite is set to 5.0% or more. The area ratio of tempered martensite is preferably 8.0% or more, more preferably 10.0% or more, still more preferably 12.0% or more.
 一方、焼戻しマルテンサイトの面積率が50.0%以上であると、ホットスタンプ後の鋼板の引張強さが高くなりすぎ、ホットスタンプ成形品の熱的安定性が劣化する。そのため、焼戻しマルテンサイトの面積率を50.0%未満とする。焼戻しマルテンサイトの面積率は、好ましくは40.0%未満、より好ましくは30.0%未満、さらに好ましくは20.0%未満である。 On the other hand, if the area ratio of tempered martensite is 50.0% or more, the tensile strength of the steel sheet after hot stamping becomes too high, and the thermal stability of the hot stamped product deteriorates. Therefore, the area ratio of tempered martensite is set to less than 50.0%. The area ratio of tempered martensite is preferably less than 40.0%, more preferably less than 30.0%, still more preferably less than 20.0%.
 マルテンサイト:0%以上、10.0%未満
 ベイナイト:0%以上、20.0%未満
 金属組織(ミクロ組織)がマルテンサイト(焼戻されていないマルテンサイトをさし、フレッシュマルテンサイトともいう)およびベイナイトを多量に含むと、ホットスタンプ成形品の熱的安定性が劣化する。そのため、マルテンサイトの面積率は10.0%未満とし、ベイナイトの面積率は20.0%未満とする。マルテンサイトの面積率は、5.0%未満とすることが好ましく、2.0%未満とすることがより好ましく、1.0%未満とすることがさらに好ましい。ベイナイトの面積率は、10.0%未満とすることが好ましく、5.0%未満とすることがより好ましく、2.0%未満とすることがさらに好ましい。
Martensite: 0% or more and less than 10.0% Bainite: 0% or more and less than 20.0% Metallographic (microstructure) is martensite (refers to untempered martensite, also called fresh martensite) And when a large amount of bainite is contained, the thermal stability of the hot stamped product deteriorates. Therefore, the area ratio of martensite is less than 10.0%, and the area ratio of bainite is less than 20.0%. The area ratio of martensite is preferably less than 5.0%, more preferably less than 2.0%, and even more preferably less than 1.0%. The area ratio of bainite is preferably less than 10.0%, more preferably less than 5.0%, and even more preferably less than 2.0%.
 マルテンサイトおよびベイナイトは必ずしも含有される必要がないので、マルテンサイトおよびベイナイトの面積率の下限はいずれも0%である。
 しかしながら、マルテンサイトおよびベイナイトは、ホットスタンプ成形品の強度を上昇させる作用を有するので、上記範囲内であれば金属組織に含まれていてもよい。マルテンサイトおよびベイナイトの面積率がいずれも0.1%未満であると、上記作用による効果が十分に得られない。そのため、強度を上昇させる場合には、マルテンサイトおよびベイナイトの面積率の下限値を、いずれも0.1%以上とすることが好ましく、0.5%以上とすることがより好ましい。
Since martensite and bainite do not necessarily have to be contained, the lower limit of the area ratio of martensite and bainite is 0%.
However, since martensite and bainite have an effect of increasing the strength of the hot stamped product, they may be contained in the metal structure as long as they are within the above range. If the area ratios of martensite and bainite are both less than 0.1%, the effect of the above action cannot be sufficiently obtained. Therefore, when increasing the strength, the lower limit of the area ratio of martensite and bainite is preferably 0.1% or more, and more preferably 0.5% or more.
 金属組織の残部は、パーライトまたは残留オーステナイトを含んでいてもよく、さらに、セメンタイトなどの析出物を含んでいてもよい。パーライト、残留オーステナイトおよび析出物を積極的に含有する必要はないので、パーライト、残留オーステナイトおよび析出物の面積率の下限はいずれも0%である。 The rest of the metallographic structure may contain pearlite or retained austenite, and may further contain precipitates such as cementite. Since it is not necessary to positively contain pearlite, retained austenite and precipitates, the lower limit of the area ratio of pearlite, retained austenite and precipitates is 0%.
 パーライトはホットスタンプ成形品の強度を上昇させる作用を有するので、強度を上昇させる場合には、パーライトの面積率を1.0%以上とすることが好ましく、2.0%以上とすることがより好ましく、5.0%以上とすることがさらに好ましい。
 一方、パーライトを過剰に含有する場合、ホットスタンプ後の靭性が劣化する。そのため、パーライトの面積率を20.0%以下とすることが好ましく、10.0%以下とすることがより好ましい。
Since pearlite has an effect of increasing the strength of the hot stamped molded product, when increasing the strength, the area ratio of pearlite is preferably 1.0% or more, more preferably 2.0% or more. It is preferably 5.0% or more, and more preferably 5.0% or more.
On the other hand, when pearlite is excessively contained, the toughness after hot stamping deteriorates. Therefore, the area ratio of pearlite is preferably 20.0% or less, and more preferably 10.0% or less.
 残留オーステナイトはホットスタンプ成形品の衝撃吸収性を向上させる作用を有する。そのため、この効果を得る場合、残留オーステナイトの面積率を0.5%以上とすることが好ましく、1.0%以上とすることがより好ましい。
 一方、残留オーステナイトを過剰に含有すると、ホットスタンプ後の靱性が低下する。そのため、残留オーステナイトの面積率を3.0%未満とすることが好ましく、2.0%未満とすることがより好ましい。
Residual austenite has the effect of improving the shock absorption of hot stamped articles. Therefore, when this effect is obtained, the area ratio of retained austenite is preferably 0.5% or more, and more preferably 1.0% or more.
On the other hand, if the retained austenite is excessively contained, the toughness after hot stamping decreases. Therefore, the area ratio of retained austenite is preferably less than 3.0%, more preferably less than 2.0%.
 本実施形態において、各金属組織の面積率は以下のように求める。
 まず、ホットスタンプ成形品から試験片を採取し、板厚断面(鋼板の縦断面)を研磨した後、非めっき鋼板の場合は、鋼板表面から鋼板の板厚の1/4深さ位置(鋼板表面から板厚の1/8深さ~鋼板表面から板厚の3/8深さの領域)、めっき鋼板の場合は、基材の鋼板とめっき層との境界から基材である鋼板の板厚の1/4深さ位置(上記境界から基材である鋼板の板厚の1/8深さ~上記境界から基材である鋼板の板厚の3/8深さの領域)において組織観察する。ホットスタンプ成形品が、700MPa未満の引張強さを有する部分と、700MPa以上の引張強さを有する部分とを備えている場合、引張強さが700MPa未満となる部分から試験片を採取して観察を行う。
In the present embodiment, the area ratio of each metal structure is calculated as follows.
First, a test piece is collected from a hot stamped product, and the sheet thickness cross section (vertical cross section of the steel sheet) is polished. Then, in the case of a non-plated steel sheet, the depth position is 1/4 of the sheet thickness of the steel sheet (steel plate). From the surface to the depth of 1/8 of the plate thickness to the region of the steel plate surface to the depth of 3/8 of the plate thickness), in the case of a plated steel plate, the plate of the steel plate that is the base material from the boundary between the steel plate of the base material and the plating layer Structure observation at 1/4 depth position of thickness (1/8 depth from the boundary to 1/8 depth of the base steel plate thickness to 3/8 depth from the boundary to the base steel plate thickness) To do. When the hot stamped product has a portion having a tensile strength of less than 700 MPa and a portion having a tensile strength of 700 MPa or more, a test piece is collected from the portion where the tensile strength is less than 700 MPa and observed. I do.
 具体的には、研磨した板厚断面をナイタール腐食または電解研磨した後、光学顕微鏡および走査電子顕微鏡(SEM)を用いて組織観察を行い、得られた組織写真に対して画像解析を行うことによって、フェライト、パーライト、ベイナイト、および焼戻しマルテンサイトのそれぞれの面積率を得る。その後、同様の観察位置に対し、レペラー腐食をした後、光学顕微鏡および走査電子顕微鏡(SEM)を用いて組織観察を行い、得られた組織写真に対して画像解析を行うことによって、残留オーステナイトおよびマルテンサイトの合計の面積率を算出する。 Specifically, after the polished plate thickness cross section is subjected to nital corrosion or electrolytic polishing, the structure is observed using an optical microscope and a scanning electron microscope (SEM), and the obtained tissue photograph is image-analyzed. , Ferrite, pearlite, baynite, and tempered martensite, respectively. Then, after repeller corrosion at the same observation position, tissue observation is performed using an optical microscope and a scanning electron microscope (SEM), and image analysis is performed on the obtained tissue photograph to obtain retained austenite and Calculate the total area ratio of martensite.
 また、同様の観察位置について、板厚断面を電解研磨した後、電子線後方散乱パターン解析装置(EBSP)を備えたSEMを用いて、残留オーステナイトの面積率を測定する。 Also, at the same observation position, after electropolishing the thick cross section, the area ratio of retained austenite is measured using an SEM equipped with an electron backscatter pattern analyzer (EBSP).
 これらの結果に基づいて、フェライト、パーライト、ベイナイト、焼戻しマルテンサイト、マルテンサイト、および残留オーステナイトのそれぞれの面積率を得る。
 なお、焼戻しマルテンサイトは、内部に鉄炭化物が存在する点でマルテンサイトと区別することができ、また、内部に存在する鉄炭化物が複数の方向に伸長している点で、ベイナイトと区別することができる。
Based on these results, the area ratios of ferrite, pearlite, bainite, tempered martensite, martensite, and retained austenite are obtained.
Tempering martensite can be distinguished from martensite by the presence of iron carbide inside, and can be distinguished from bainite by the fact that iron carbide existing inside extends in multiple directions. Can be done.
 <ホットスタンプ成形品の強度>
 本実施形態に係るホットスタンプ成形品の全部または一部は、引張強さが440MPa以上、700MPa未満である。このためには、本実施形態に係るホットスタンプ成形品の母材鋼板の全部または一部の引張強さが440MPa以上、700MPa未満であることが必要である。引張強さが700MPa以上であるとホットスタンプ成形品の熱的安定性を確保することができなくなる。そのため、ホットスタンプ成形品の全部または一部の引張強さを700MPa未満とする。好ましくは、ホットスタンプ成形品の全部または一部において、引張強さが650MPa未満、または600MPa未満である。一方、ホットスタンプ成形品の衝撃吸収性を向上させるために、ホットスタンプ成形品の全部または一部の引張強さを440MPa以上とする。好ましくは、ホットスタンプ成形品の全部または一部において、引張強さが460MPa以上、490MPa以上、または540MPa以上である。
<Strength of hot stamped products>
All or part of the hot stamped article according to this embodiment has a tensile strength of 440 MPa or more and less than 700 MPa. For this purpose, it is necessary that the tensile strength of all or part of the base steel sheet of the hot stamped product according to the present embodiment is 440 MPa or more and less than 700 MPa. If the tensile strength is 700 MPa or more, the thermal stability of the hot stamped product cannot be ensured. Therefore, the tensile strength of all or part of the hot stamped product is set to less than 700 MPa. Preferably, the tensile strength of all or part of the hot stamped article is less than 650 MPa or less than 600 MPa. On the other hand, in order to improve the impact absorption of the hot stamped product, the tensile strength of all or part of the hot stamped product is set to 440 MPa or more. Preferably, the tensile strength of all or part of the hot stamped product is 460 MPa or more, 490 MPa or more, or 540 MPa or more.
 本実施形態に係るホットスタンプ成形品は、ホットスタンプ成形品内に引張強さが440MPa以上、700MPa未満である軟質部と、引張強さが700MPa以上である硬質部とが混在していてもよい。強度の異なる部位を設けることで、衝突時のホットスタンプ成形品の変形状態を制御することが可能となり、ホットスタンプ成形品の衝撃吸収性を向上させることができる。強度の異なる部位を有するホットスタンプ成形品は、後述するように、化学組成が異なる二種類以上の鋼板を接合した後、ホットスタンプすることにより製造することができる。 In the hot stamped product according to the present embodiment, a soft portion having a tensile strength of 440 MPa or more and less than 700 MPa and a hard portion having a tensile strength of 700 MPa or more may coexist in the hot stamp molded product. .. By providing the portions having different strengths, it is possible to control the deformed state of the hot stamped molded product at the time of collision, and it is possible to improve the impact absorption of the hot stamped molded product. As will be described later, a hot stamped product having parts having different strengths can be produced by joining two or more types of steel sheets having different chemical compositions and then hot stamping.
<ホットスタンプ成形品の熱的安定性>
 本実施形態に係るホットスタンプ成形品は、170℃で20分間の熱処理を施した際の、熱処理前の引張強さに対する引張強さの低下量(ΔTS)が100MPa以下である。ΔTSは、60MPa以下であることが好ましく、30MPa以下であることがより好ましい。ΔTSの下限は特に限定しないが、鋼板の製造性の観点から、1MPa以上、5MPa以上、または10MPa以上であることが好ましい。
<Thermal stability of hot stamped products>
The hot stamp molded product according to the present embodiment has a decrease in tensile strength (ΔTS) of 100 MPa or less with respect to the tensile strength before the heat treatment when the heat treatment is performed at 170 ° C. for 20 minutes. ΔTS is preferably 60 MPa or less, and more preferably 30 MPa or less. The lower limit of ΔTS is not particularly limited, but is preferably 1 MPa or more, 5 MPa or more, or 10 MPa or more from the viewpoint of steel sheet manufacturability.
 フェライトを主体(面積率で50.0%超)とする組織を有するホットスタンプ成形品において、塗装焼付時に強度が低下する理由は、塗装焼付処理により、フェライト中に存在する固溶状態の炭素が粗大な鉄炭化物として析出すること、およびフェライト中に存在する微細な鉄炭化物または微細な鉄炭素クラスターが、塗装焼付時の熱処理により粗大な鉄炭化物に変化することによると考えられる。この固溶炭素および微細な鉄炭化物または微細な鉄炭素クラスターの存在状態を直接的に定量的に評価することは容易ではないが、170℃で20分間の熱処理を施した際の、引張強さの低下量(ΔTS)によって間接的に評価することができる。ΔTSが100MPa以下であれば、フェライト中における固溶炭素量および微細な鉄炭化物または微細な鉄炭素クラスターの生成量が低く、熱的安定性に優れると判断される。 In a hot stamped product having a structure mainly composed of ferrite (over 50.0% in area ratio), the reason why the strength decreases during paint baking is that the solid-dissolved carbon present in the ferrite is removed by the paint baking process. It is considered that this is due to the precipitation as coarse iron charcoal and the change of fine iron charcoal or fine iron carbon clusters present in the ferrite to coarse iron charcoal by the heat treatment at the time of coating baking. Although it is not easy to directly and quantitatively evaluate the existence state of this solid solution carbon and fine iron carbides or fine iron carbon clusters, the tensile strength when heat-treated at 170 ° C. for 20 minutes. It can be evaluated indirectly by the amount of decrease in (ΔTS). When ΔTS is 100 MPa or less, the amount of solid solution carbon in ferrite and the amount of fine iron carbides or fine iron carbon clusters produced are low, and it is judged that the thermal stability is excellent.
 引張強さは、JIS13B号引張試験片を採取し、10mm/分の引張速度で引張試験を行うことで得る。 Tensile strength is obtained by collecting a JIS13B tensile test piece and performing a tensile test at a tensile speed of 10 mm / min.
 <めっき層>
 本実施形態に係るホットスタンプ成形品は、表面にめっき層を有していてもよい。表面にめっき層を備えることで、ホットスタンプ時におけるスケールの生成を防止し、さらにホットスタンプ成形品の耐食性を向上させることが可能になる。めっきの種類は、前記目的に適うものであればよく、特に限定されない。めっき層を有するホットスタンプ成形品は、後述するように、めっき鋼板を用いてホットスタンプすることにより得ることができる。めっき層を有するホットスタンプ成形品として、亜鉛系めっき鋼板またはアルミニウム系めっき鋼板、具体的には、例えば、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板、溶融Zn-Al合金めっき鋼板、溶融Zn-Al-Mg合金めっき鋼板、溶融Zn-Al-Mg-Si合金めっき鋼板、電気亜鉛めっき鋼板、および電気Ni-Zn合金めっき鋼板等を用いてホットスタンプした、亜鉛系めっき層またはアルミニウム系めっき層を有するホットスタンプ成形品が例示される。めっき層は片面に形成されていてもよく、両面に形成されていてもよい。
<Plating layer>
The hot stamp molded product according to the present embodiment may have a plating layer on the surface. By providing a plating layer on the surface, it is possible to prevent scale formation during hot stamping and further improve the corrosion resistance of the hot stamped molded product. The type of plating is not particularly limited as long as it is suitable for the above purpose. A hot stamped product having a plated layer can be obtained by hot stamping using a plated steel sheet, as will be described later. Examples of hot stamped products having a plating layer include zinc-based galvanized steel sheets or aluminum-based plated steel sheets, specifically, for example, hot-dip galvanized steel sheets, alloyed hot-dip galvanized steel sheets, hot-dip aluminum-plated steel sheets, and hot-dip Zn-Al alloy plating. A galvanized layer or a galvanized layer hot-stamped using a steel sheet, a hot-dip Zn-Al-Mg alloy plated steel sheet, a hot-dip Zn-Al-Mg-Si alloy plated steel sheet, an electrogalvanized steel sheet, an electric Ni-Zn alloy plated steel sheet, or the like. An example is a hot stamped product having an aluminum-based plating layer. The plating layer may be formed on one side or both sides.
 次に、上記のホットスタンプ成形品を製造するのに好適なホットスタンプ用鋼板について説明する。 Next, a steel sheet for hot stamping suitable for manufacturing the above hot stamped product will be described.
<ホットスタンプ用鋼板の化学組成>
 ホットスタンプによって化学組成は実質的に変化しないので、ホットスタンプ用鋼板の化学組成は、上述したホットスタンプ成形品と同じ化学組成を有する。
<Chemical composition of steel sheet for hot stamping>
Since the chemical composition is not substantially changed by hot stamping, the chemical composition of the hot stamping steel sheet has the same chemical composition as the above-mentioned hot stamping molded product.
 <ホットスタンプ用鋼板の金属組織>
 本実施形態に係るホットスタンプ用鋼板の金属組織は、鉄炭化物を含み、鉄炭化物の化学組成(鉄炭化物中のMn含有量およびCr含有量)が下記(i)式を満足することが好ましい。
<Metal structure of steel plate for hot stamping>
It is preferable that the metal structure of the steel plate for hot stamping according to the present embodiment contains iron carbide, and the chemical composition of the iron carbide (Mn content and Cr content in the iron carbide) satisfies the following formula (i).
 [Mn]θ+[Cr]θ>1.7   ・・・(i)
 但し、上記式中の各記号の意味は以下のとおりである。
 [Mn]θ:鉄炭化物に含まれるFe、MnおよびCrの合計含有量を100原子%としたときの、鉄炭化物中のMn含有量(原子%)
 [Cr]θ:鉄炭化物に含まれるFe、MnおよびCrの合計含有量を100原子%としたときの、鉄炭化物中のCr含有量(原子%)
[Mn] θ + [Cr] θ > 1.7 ... (i)
However, the meaning of each symbol in the above formula is as follows.
[Mn] θ : Mn content (atomic%) in iron carbide when the total content of Fe, Mn and Cr contained in iron carbide is 100 atomic%.
[Cr] θ : Cr content (atomic%) in iron carbide when the total content of Fe, Mn and Cr contained in iron carbide is 100 atomic%.
 ホットスタンプ用鋼板の金属組織に含まれる鉄炭化物の化学組成が、上記(i)式を満足することによって、ホットスタンプ後の鋼板の熱的安定性をさらに向上させることが可能となる。上記(i)式の左辺値は、3.0超であることが好ましく、4.0超であることがより好ましい。 If the chemical composition of the iron carbide contained in the metal structure of the steel sheet for hot stamping satisfies the above formula (i), the thermal stability of the steel sheet after hot stamping can be further improved. The lvalue of the above equation (i) is preferably more than 3.0, more preferably more than 4.0.
 一方、鉄炭化物中におけるMn含有量およびCr含有量を高めるためには、後述する熱延板焼鈍工程において、熱延鋼板を高温で焼鈍する必要が生じるため、鋼板の製造性が損なわれる。そのため、上記(i)式の左辺値は、20.0未満であることが好ましく、10.0未満であることがより好ましい。 On the other hand, in order to increase the Mn content and Cr content in the iron carbide, it is necessary to anneal the hot-rolled steel sheet at a high temperature in the hot-rolled sheet annealing step described later, which impairs the manufacturability of the steel sheet. Therefore, the lvalue of the above equation (i) is preferably less than 20.0, and more preferably less than 10.0.
 本実施形態において、鉄炭化物の化学組成は以下の手順により測定する。
 まず、鋼板の任意の位置から試験片を採取し、鋼板の圧延方向に平行な板厚断面(縦断面)を研磨した後、鋼板表面から板厚の1/4深さ位置(鋼板表面から板厚の1/8深さ~鋼板表面から板厚の3/8深さの領域)においてレプリカ法により析出物を抽出する。この析出物を、透過型電子顕微鏡(TEM)を用いて観察し、電子線回折およびエネルギー分散型X線分析(EDS)により析出物の同定および組成分析を行う。
In this embodiment, the chemical composition of iron carbide is measured by the following procedure.
First, a test piece is taken from an arbitrary position of the steel plate, and a plate thickness cross section (longitudinal cross section) parallel to the rolling direction of the steel plate is polished, and then a 1/4 depth position from the steel plate surface (from the steel plate surface to the plate). Precipitates are extracted by the replica method at a depth of 1/8 of the thickness to a region of 3/8 of the thickness from the surface of the steel sheet). This precipitate is observed using a transmission electron microscope (TEM), and the precipitate is identified and composed by electron diffraction and energy dispersive X-ray analysis (EDS).
 EDSによる鉄炭化物の定量分析は、Fe、MnおよびCrの3元素について行い、それらの合計含有量を100原子%としたときの、Mn含有量(原子%)およびCr含有量(原子%)を、それぞれ[Mn]θおよび[Cr]θとして求める。この定量分析を複数の鉄炭化物に対して行い、その平均値をその鋼板における鉄炭化物中のMn含有量およびCr含有量とする。測定する鉄炭化物の数は10個以上とし、測定数は多いほど好ましい。鉄炭化物とは、パーライトを構成するセメンタイトのほかに、金属組織中に孤立して存在するセメンタイトを含む。 Quantitative analysis of iron carbide by EDS was carried out for three elements, Fe, Mn and Cr, and the Mn content (atomic%) and Cr content (atomic%) were determined when the total content thereof was 100 atomic%. , Obtained as [Mn] θ and [Cr] θ , respectively. This quantitative analysis is performed on a plurality of iron carbides, and the average value thereof is taken as the Mn content and Cr content in the iron carbides of the steel sheet. The number of iron carbides to be measured is 10 or more, and the larger the number, the more preferable. The iron carbide includes cementite that exists isolated in the metal structure in addition to cementite that constitutes pearlite.
 本実施形態では、熱延焼鈍鋼板、冷延鋼板または焼鈍鋼板の場合は鋼板表面から板厚の1/4深さ位置(鋼板表面から板厚の1/8深さ~鋼板表面から板厚の3/8深さの領域)、めっき鋼板の場合は基材である鋼板とめっき層との境界から基材である鋼板の板厚の1/4深さ位置(上記境界から基材である鋼板の板厚の1/8深さ~上記境界から基材である鋼板の板厚の3/8深さの領域)において、上述の金属組織を規定する。 In the present embodiment, in the case of a hot-rolled tempered steel plate, a cold-rolled steel plate, or a tempered steel plate, the depth position is 1/4 of the plate thickness from the steel plate surface (1/8 depth from the steel plate surface to the plate thickness from the steel plate surface). (3/8 depth region), in the case of plated steel sheet, from the boundary between the base steel plate and the plating layer to the 1/4 depth position of the base steel plate thickness (from the above boundary to the base steel plate) The above-mentioned metal structure is defined in the region from 1/8 depth of the plate thickness to 3/4 depth of the plate thickness of the steel plate as the base material from the boundary.
 鉄炭化物の面積率は特に定める必要がないが、ホットスタンプ後の金属組織を細粒化して引張強さを高めるために、鉄炭化物の面積率は1%以上とすることが好ましく、3%以上とすることがより好ましい。
 一方、鉄炭化物の面積率が過剰となると、ホットスタンプ後の鋼板の引張強さが高くなりすぎるとともに、熱的安定性が損なわれる。したがって、鉄炭化物の面積率は20%以下とすることが好ましく、15%以下とすることがより好ましい。
The area ratio of iron carbide does not need to be specified, but the area ratio of iron carbide is preferably 1% or more in order to finely granulate the metal structure after hot stamping and increase the tensile strength. Is more preferable.
On the other hand, if the area ratio of the iron carbide becomes excessive, the tensile strength of the steel sheet after hot stamping becomes too high and the thermal stability is impaired. Therefore, the area ratio of iron carbide is preferably 20% or less, and more preferably 15% or less.
 本実施形態に係るホットスタンプ用鋼板の金属組織は、フェライトを主体とすることが好ましいが、残部として、マルテンサイト、焼戻しマルテンサイト、ベイナイトおよび残留オーステナイトを含んでいてもよく、さらに、鉄炭化物以外の析出物を含んでいてもよい。ただし、マルテンサイト、焼戻しマルテンサイト、ベイナイトおよび残留オーステナイトは、ホットスタンプ後の靭性を劣化させるので、これらの組織の面積率は少ないほど好ましい。マルテンサイト、焼戻しマルテンサイト、ベイナイトおよび残留オーステナイトの面積率は、いずれも1.0%未満であることが好ましく、0.5%未満であることがより好ましい。 The metal structure of the steel plate for hot stamping according to the present embodiment is preferably mainly ferrite, but may contain martensite, tempered martensite, bainite and retained austenite as the balance, and other than iron carbides. May contain a precipitate of. However, martensite, tempered martensite, bainite and retained austenite deteriorate the toughness after hot stamping, so a smaller area ratio of these tissues is preferable. The area ratios of martensite, tempered martensite, bainite and retained austenite are all preferably less than 1.0%, more preferably less than 0.5%.
 ホットスタンプ用鋼板の金属組織における面積率は、ホットスタンプ成形品の場合と同じ方法で求めることができる。
 ホットスタンプ用鋼板の引張強さは特に限定しないが、鋼板の製造性の観点からは300MPa以上または340MPa以上とすることが好ましく、鋼板の切断性の観点からは650MPa以下または590MPa未満とすることが好ましい。
The area ratio of the hot stamped steel sheet in the metal structure can be obtained by the same method as in the case of the hot stamped product.
The tensile strength of the steel sheet for hot stamping is not particularly limited, but it is preferably 300 MPa or more or 340 MPa or more from the viewpoint of steel sheet manufacturability, and 650 MPa or less or less than 590 MPa from the viewpoint of steel sheet cutability. preferable.
 <製造方法>
 本実施形態に係るホットスタンプ成形品および本実施形態に係るホットスタンプ用鋼板の好ましい製造方法について説明する。
<Manufacturing method>
A preferred method for producing a hot stamped product according to the present embodiment and a steel sheet for hot stamping according to the present embodiment will be described.
 [ホットスタンプ成形品の製造方法]
 本実施形態に係るホットスタンプ成形品の製造方法は、上述の化学組成を有するホットスタンプ用鋼板を加熱する加熱工程と、加熱されたホットスタンプ用鋼板に対してホットスタンプを行い、続いて冷却するホットスタンプ工程と、ホットスタンプ工程後の成形品を再加熱する再加熱工程と、を含む。ホットスタンプ工程では、金型による成形及び冷却が行われ、ホットスタンプ成形品が得られる。
[Manufacturing method of hot stamped products]
The method for producing a hot stamped product according to the present embodiment includes a heating step of heating a hot stamping steel sheet having the above-mentioned chemical composition, hot stamping the heated hot stamping steel sheet, and then cooling. It includes a hot stamping step and a reheating step of reheating the molded product after the hot stamping step. In the hot stamping step, molding and cooling are performed by a mold to obtain a hot stamped product.
 ホットスタンプ用鋼板を加熱する加熱工程では、加熱温度をAc点超とする。Ac点とは、素材鋼板を加熱した際に金属組織中でフェライトが消失する温度であり、加熱工程における鋼板の熱膨張変化から求めることができる。加熱温度がAc点以下であると、加熱中の炭化物の溶解が不十分となり、ホットスタンプ成形品の強度が低下する。加熱温度は(Ac点+20℃)以上であることが好ましく、(Ac点+40℃)以上であることがより好ましい。
 また、加熱に供するホットスタンプ用鋼板は、上記の組織を有していることが好ましい。
In the heating step of heating the hot stamping steel sheet, the heating temperature is set to more than 3 points of Ac. The Ac 3 points are the temperatures at which ferrite disappears in the metal structure when the material steel sheet is heated, and can be obtained from the thermal expansion change of the steel sheet in the heating step. When the heating temperature is Ac 3 points or less, the dissolution of carbides during heating becomes insufficient, and the strength of the hot stamped molded product decreases. The heating temperature is preferably (Ac 3 points + 20 ° C.) or higher, and more preferably (Ac 3 points + 40 ° C.) or higher.
Further, the steel sheet for hot stamping to be heated preferably has the above-mentioned structure.
 加熱温度の上限は特に限定しないが、加熱温度が高すぎるとオーステナイトが粗大化し、ホットスタンプ成形品の強度が低下する。そのため、加熱温度は1000℃以下であることが好ましく、950℃以下であることがより好ましく、900℃以下であることがさらに好ましい。
 また、好ましいホットスタンプの加熱温度での保持時間は、1~5分間である。
The upper limit of the heating temperature is not particularly limited, but if the heating temperature is too high, the austenite becomes coarse and the strength of the hot stamped product decreases. Therefore, the heating temperature is preferably 1000 ° C. or lower, more preferably 950 ° C. or lower, and even more preferably 900 ° C. or lower.
The holding time of the preferable hot stamp at the heating temperature is 1 to 5 minutes.
 加熱されたホットスタンプ用鋼板に対してホットスタンプを実施するホットスタンプ工程では、ホットスタンプの開始温度は、(Ar点-200℃)以上、Ar点未満とする。Ar点とは、素材鋼板をAc点超の温度から冷却した際に金属組織中にフェライトが生成し始める温度である。Ar点は、加熱工程の後、鋼板を冷却する際の熱膨張変化から求められる。ホットスタンプ開始温度がAr点以上であると、フェライト中に導入される転位の量が不足し、ホットスタンプ成形品の熱的安定性が損なわれる。ホットスタンプ開始温度が(Ar点-200℃)未満であると、ホットスタンプ成形品の金属組織において焼戻しマルテンサイトの面積率が減少し、ホットスタンプ成形品の強度が不足する。ホットスタンプ開始温度の好ましい上限は、(Ar点-20℃)未満、(Ar点-40℃)未満、または(Ar点-60℃)未満である。ホットスタンプ開始温度の好ましい下限は、(Ar点-170℃)以上、(Ar点-140℃)以上、または(Ar点-110℃)以上である。 In the hot stamping step of performing hot stamping on the heated steel sheet for hot stamping, the starting temperature of hot stamping is (Ar 3 points-200 ° C.) or more and less than Ar 3 points. The Ar 3 points are the temperatures at which ferrite begins to be formed in the metal structure when the material steel sheet is cooled from a temperature exceeding Ac 3 points. Ar 3 points are obtained from the change in thermal expansion when the steel sheet is cooled after the heating step. When the hot stamping start temperature is Ar 3 points or more, the amount of dislocations introduced into the ferrite is insufficient, and the thermal stability of the hot stamped product is impaired. If the hot stamping start temperature is less than (Ar 3 points −200 ° C.), the area ratio of tempered martensite in the metal structure of the hot stamped product decreases, and the strength of the hot stamped product becomes insufficient. The preferred upper limit of the hot stamping start temperature is less than (Ar 3 points -20 ° C), less than (Ar 3 points -40 ° C), or less than (Ar 3 points -60 ° C). The preferable lower limit of the hot stamp start temperature is (Ar 3 points-170 ° C) or higher, (Ar 3 points-140 ° C) or higher, or (Ar 3 points-110 ° C) or higher.
 ホットスタンプにより成形を行った後、金型内で成形品を保持すること、および/または、金型から成形品を取り出して任意の方法で冷却することにより、成形品を90℃未満の温度まで冷却する。冷却停止温度が90℃以上であると、ホットスタンプ成形品の金属組織において、焼戻しマルテンサイトの面積率が減少し、ホットスタンプ成形品の強度が不足する。冷却停止温度は50℃未満であることが好ましく、室温であることがより好ましい。生産性を高めるためには、90℃未満の温度まで金型内で保持することが好ましい。 After molding by hot stamping, the molded product is held in the mold and / or the molded product is taken out from the mold and cooled by an arbitrary method to bring the molded product to a temperature of less than 90 ° C. Cooling. When the cooling stop temperature is 90 ° C. or higher, the area ratio of tempered martensite decreases in the metal structure of the hot stamped product, and the strength of the hot stamped product becomes insufficient. The cooling stop temperature is preferably less than 50 ° C., more preferably room temperature. In order to increase productivity, it is preferable to keep the temperature in the mold below 90 ° C.
 上記のホットスタンプ成形品に対して再加熱を実施する再加熱工程では、再加熱温度を100~140℃とし、再加熱温度での保持時間を3~120分とする。再加熱温度が100℃未満であると、微細な鉄炭化物または微細な鉄炭素クラスターが生成し、ホットスタンプ成形品の熱的安定性が劣化する。一方、再加熱温度が140℃超であると、ホットスタンプ成形品の強度が低下する。 In the reheating step of reheating the hot stamped molded product, the reheating temperature is set to 100 to 140 ° C., and the holding time at the reheating temperature is set to 3 to 120 minutes. If the reheating temperature is less than 100 ° C., fine iron carbides or fine iron carbon clusters are formed, and the thermal stability of the hot stamped product deteriorates. On the other hand, if the reheating temperature exceeds 140 ° C., the strength of the hot stamped product decreases.
 保持時間が3分未満であると、ホットスタンプ成形品の金属組織においてフェライト中に固溶炭素が多量に残存し、ホットスタンプ成形品の熱的安定性が劣化する。一方、保持時間が120分を超えると、ホットスタンプ成形品の強度が低下する。保持時間は、再加熱温度に応じて調整することが好ましく、再加熱温度が100℃以上、120℃未満の場合は、保持時間は好ましくは60分超、70分超、または80分超であり、また、保持時間は好ましくは110分未満、100分未満、または90分未満である。再加熱温度が120~140分の場合は、保持時間は好ましくは5分超、7分超、または9分超であり、保持時間は好ましくは30分未満、20分未満、または15分未満である。生産性の観点からは、再加熱温度を120~140℃とすることが好ましい。 If the holding time is less than 3 minutes, a large amount of solute carbon remains in the ferrite in the metal structure of the hot stamped product, and the thermal stability of the hot stamped product deteriorates. On the other hand, if the holding time exceeds 120 minutes, the strength of the hot stamped product decreases. The holding time is preferably adjusted according to the reheating temperature, and when the reheating temperature is 100 ° C. or higher and lower than 120 ° C., the holding time is preferably more than 60 minutes, more than 70 minutes, or more than 80 minutes. Also, the retention time is preferably less than 110 minutes, less than 100 minutes, or less than 90 minutes. When the reheating temperature is 120-140 minutes, the retention time is preferably greater than 5 minutes, greater than 7 minutes, or greater than 9 minutes, and the retention time is preferably less than 30 minutes, less than 20 minutes, or less than 15 minutes. is there. From the viewpoint of productivity, the reheating temperature is preferably 120 to 140 ° C.
 また、本実施形態に係るホットスタンプ成形品の他の製造方法は、上述の化学組成を有する鋼板(ホットスタンプ用鋼板)を、接合用鋼板と接合して接合鋼板とする接合工程と、上記の接合鋼板を加熱する工程と、その後に、上記の加熱された接合鋼板に対してホットスタンプを行い、続いて冷却する工程と、ホットスタンプ工程後のホットスタンプ成形品を再加熱する工程と、を含む。接合方法としては、例えばホットスタンプ用鋼板と接合用鋼板とを突合せて、または重ね合わせて、溶接により接合する方法が挙げられる。 Further, another method for producing the hot stamped product according to the present embodiment includes a joining step of joining a steel plate having the above-mentioned chemical composition (a steel plate for hot stamping) to a steel plate for joining to form a joined steel plate, and the above-mentioned joining step. A step of heating the joined steel sheet, a step of performing hot stamping on the above-mentioned heated joined steel sheet and subsequently cooling, and a step of reheating the hot stamped molded product after the hot stamping step. Including. Examples of the joining method include a method in which a hot stamping steel plate and a joining steel plate are butted or overlapped and joined by welding.
 上記の接合鋼板を、ホットスタンプ用鋼板のAc点を超える温度まで加熱し、ホットスタンプ用鋼板の(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却する。その後、ホットスタンプ成形品を100~140℃の温度まで再加熱し、その温度で3~120分保持する。接合鋼板を加熱する工程における好ましい加熱温度、接合鋼板をホットスタンプする工程における好ましいホットスタンプ開始温度および好ましい冷却停止温度、並びに、ホットスタンプ成形品を再加熱する工程における好ましい再加熱温度および好ましい保持時間は、接合工程を含まないホットスタンプ成形品の製造方法と同じであり、それらの理由も、接合鋼板を含まない場合と同じである。 The above-mentioned bonded steel sheet is heated to a temperature exceeding Ac 3 points of the hot stamping steel sheet, and hot stamping is started at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points of the hot stamping steel sheet. Cool to a temperature below 90 ° C. Then, the hot stamped product is reheated to a temperature of 100 to 140 ° C. and held at that temperature for 3 to 120 minutes. A preferable heating temperature in the step of heating the bonded steel plate, a preferable hot stamping start temperature and a preferable cooling stop temperature in the step of hot stamping the bonded steel plate, and a preferable reheating temperature and a preferable holding time in the step of reheating the hot stamped product. Is the same as the method for manufacturing a hot stamped product that does not include a joining step, and the reasons for these are the same as those that do not include a joined steel plate.
 接合用鋼板の化学組成および機械特性については特に限定しない。しかしながら、ホットスタンプ成形品の衝撃吸収エネルギーを高めるために、接合用鋼板は、再加熱後の引張強さが700MPa以上であることが好ましい。さらに好ましい再加熱後の接合用鋼板の引張強さは、1000MPa超、1200MPa超、または1500MPa超である。 The chemical composition and mechanical properties of the steel sheet for joining are not particularly limited. However, in order to increase the impact absorption energy of the hot stamped product, the steel sheet for joining preferably has a tensile strength of 700 MPa or more after reheating. A more preferable tensile strength of the steel sheet for joining after reheating is more than 1000 MPa, more than 1200 MPa, or more than 1500 MPa.
 ホットスタンプ後の接合用鋼板の引張強さを確保するために、接合用鋼板のC含有量は、0.090%以上であることが好ましい。より好ましくは、0.100%以上、0.120%以上、または0.200%以上である。同様の理由から、接合用鋼板のMn含有量は、0.50%以上であることが好ましい。より好ましくは、0.80%以上、1.00%以上、または1.20%以上である。 In order to secure the tensile strength of the joining steel sheet after hot stamping, the C content of the joining steel sheet is preferably 0.090% or more. More preferably, it is 0.100% or more, 0.120% or more, or 0.200% or more. For the same reason, the Mn content of the joining steel sheet is preferably 0.50% or more. More preferably, it is 0.80% or more, 1.00% or more, or 1.20% or more.
 上記の素材として用いられる鋼板(ホットスタンプ用鋼板)は、後述するように熱延板焼鈍が施されていることが好ましい。熱延板焼鈍の後に、さらに冷間圧延、または冷間圧延および連続焼鈍が行われていてもよい。一方、接合用鋼板としては、熱延鋼板、熱延鋼板に冷間圧延を施した冷延鋼板、熱延鋼板に焼鈍を施した熱延焼鈍鋼板、および冷延鋼板に焼鈍を施した冷延焼鈍鋼板のいずれを使用してもよい。 The steel sheet used as the above material (steel sheet for hot stamping) is preferably subjected to hot-rolled sheet annealing as described later. After hot-rolled sheet annealing, cold rolling, or cold rolling and continuous annealing may be further performed. On the other hand, as the steel sheet for joining, a hot-rolled steel sheet, a cold-rolled steel sheet obtained by cold-rolling a hot-rolled steel sheet, a hot-rolled annealed steel sheet obtained by annealing a hot-rolled steel sheet, and a cold-rolled steel sheet obtained by quenching a cold-rolled steel sheet. Any of the hardened steel sheets may be used.
 ホットスタンプ成形品の耐食性を向上させるために、ホットスタンプ用鋼板および接合用鋼板には、表面にめっきが施されためっき鋼板を使用してもよい。めっき鋼板の種類は特に限定しないが、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板、溶融Zn-Al合金めっき鋼板、溶融Zn-Al-Mg合金めっき鋼板、溶融Zn-Al-Mg-Si合金めっき鋼板、電気亜鉛めっき鋼板、および電気Ni-Zn合金めっき鋼板等が例示される。 In order to improve the corrosion resistance of the hot stamped molded product, a plated steel plate having a plated surface may be used as the hot stamping steel plate and the joining steel plate. The type of the plated steel sheet is not particularly limited, but is a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, a hot-dip aluminum-plated steel sheet, a hot-dip Zn-Al alloy plated steel sheet, a hot-dip Zn-Al-Mg alloy-plated steel sheet, and a hot-dip Zn-Al-. Examples thereof include Mg—Si alloy plated steel sheets, electrogalvanized steel sheets, and electric Ni—Zn alloy plated steel sheets.
 [ホットスタンプ用鋼板の製造方法]
 本実施形態に係るホットスタンプ用鋼板は、上述の化学組成を有するスラブに対して、熱間圧延を施した後、800℃以下の温度域で巻取って熱延鋼板とする熱間圧延工程と、上記熱延鋼板を、650℃を超える温度域まで加熱する熱延板焼鈍を施して熱延焼鈍鋼板とする熱延板焼鈍工程と、を含む製造方法によって製造されることが好ましい。
[Manufacturing method of steel sheet for hot stamping]
The hot stamping steel sheet according to the present embodiment is subjected to a hot rolling step of hot rolling a slab having the above-mentioned chemical composition and then winding it in a temperature range of 800 ° C. or lower to obtain a hot rolled steel sheet. It is preferable that the hot-rolled steel sheet is manufactured by a manufacturing method including a hot-rolled sheet annealing step of subjecting the hot-rolled steel sheet to a temperature range exceeding 650 ° C. to obtain a hot-rolled annealed steel sheet.
 熱間圧延工程では、熱間圧延後の巻取温度を800℃以下とすることが好ましい。巻取温度が800℃超であると、熱延鋼板の金属組織が過度に粗大化し、ホットスタンプ後の鋼板の引張強さが低下する。さらに好ましい巻取温度は650℃未満、600℃未満、または550℃未満である。また、巻取温度が低すぎると、熱延鋼板が硬質化し冷間圧延が困難となるため、巻取温度は400℃以上であることが好ましい。 In the hot rolling step, it is preferable that the winding temperature after hot rolling is 800 ° C. or lower. When the winding temperature exceeds 800 ° C., the metal structure of the hot-rolled steel sheet becomes excessively coarse, and the tensile strength of the steel sheet after hot stamping decreases. More preferred take-up temperatures are less than 650 ° C, less than 600 ° C, or less than 550 ° C. Further, if the winding temperature is too low, the hot-rolled steel sheet becomes hard and cold rolling becomes difficult. Therefore, the winding temperature is preferably 400 ° C. or higher.
 なお、本実施形態に係るホットスタンプ用鋼板の製造方法に供されるスラブの製造方法は、特に限定されない。例示されるスラブの好ましい製造方法では、上述した成分組成(化学組成)を有する鋼は、公知の手段により溶製された後に、連続鋳造法により鋼塊とされるか、または、任意の鋳造法により鋼塊とした後に分塊圧延する方法等により鋼片とされる。連続鋳造工程では、介在物に起因する表面欠陥の発生を抑制するために、鋳型内にて電磁攪拌等の外部付加的な流動を溶鋼に生じさせることが好ましい。鋼塊または鋼片は、一旦冷却されたものを再加熱して熱間圧延に供してもよく、連続鋳造後の高温状態にある鋼塊または分塊圧延後の高温状態にある鋼片をそのまま、あるいは保温して、あるいは補助的な加熱を行って熱間圧延に供してもよい。本実施形態では、このような鋼塊および鋼片を、熱間圧延の素材として「スラブ」と総称する。 The slab manufacturing method used in the hot stamping steel sheet manufacturing method according to the present embodiment is not particularly limited. In the preferred method for producing the slab exemplified, the steel having the above-mentioned composition (chemical composition) is melted by a known means and then made into an ingot by a continuous casting method, or an arbitrary casting method. It is made into a steel piece by a method such as ingot rolling after making it into a steel ingot. In the continuous casting step, it is preferable to generate an external additional flow such as electromagnetic agitation in the molten steel in the mold in order to suppress the occurrence of surface defects caused by inclusions. The ingot or piece of steel may be reheated once cooled and subjected to hot rolling, and the ingot in a high temperature state after continuous casting or the piece of steel in a high temperature state after ingot rolling may be used as it is. Alternatively, it may be kept warm or supplementarily heated for hot rolling. In the present embodiment, such ingots and steel pieces are collectively referred to as "slabs" as materials for hot rolling.
 熱間圧延に供するスラブの温度は、オーステナイトの粗大化を防止するために、1250℃未満とすることが好ましく、1200℃未満とすることがより好ましい。熱間圧延は、圧延完了後にオーステナイトを変態させることにより熱延鋼板の金属組織を微細化するために、Ar点以上の温度域で完了させることが好ましい。 The temperature of the slab to be subjected to hot rolling is preferably less than 1250 ° C., more preferably less than 1200 ° C. in order to prevent coarsening of austenite. The hot rolling is preferably completed in a temperature range of Ar 3 points or more in order to miniaturize the metal structure of the hot-rolled steel sheet by transforming austenite after the rolling is completed.
 熱間圧延が粗圧延と仕上圧延とからなる場合には、仕上圧延を上記温度で完了するために、粗圧延と仕上圧延との間で粗圧延材を加熱してもよい。この際、粗圧延材の後端が先端よりも高温となるように加熱することにより仕上圧延の開始時における粗圧延材の全長にわたる温度の変動を140℃以下に抑制することが望ましい。これにより、巻取工程後のコイル内の製品特性の均一性が向上する。 When the hot rolling consists of rough rolling and finish rolling, the rough rolled material may be heated between rough rolling and finish rolling in order to complete the finish rolling at the above temperature. At this time, it is desirable to suppress the temperature fluctuation over the entire length of the rough-rolled material at the start of finish rolling to 140 ° C. or lower by heating the rear end of the rough-rolled material so that the temperature is higher than that of the tip. As a result, the uniformity of product characteristics in the coil after the winding process is improved.
 粗圧延材の加熱方法は公知の手段を用いて行えばよい。例えば、粗圧延機と仕上圧延機との間にソレノイド式誘導加熱装置を設けておき、この誘導加熱装置の上流側における粗圧延材長手方向の温度分布等に基づいて加熱昇温量を制御してもよい。 The method for heating the rough-rolled material may be performed by using a known means. For example, a solenoid type induction heating device is provided between the rough rolling mill and the finish rolling mill, and the heating temperature is controlled based on the temperature distribution in the longitudinal direction of the rough rolled material on the upstream side of the induction heating device. You may.
 熱間圧延され、巻取られた鋼板は、必要に応じて公知の方法にしたがって脱脂等の処理が施された後、焼鈍されることが好ましい。熱延鋼板に施す焼鈍を熱延板焼鈍といい、熱延板焼鈍後の鋼板を熱延焼鈍鋼板という。熱延板焼鈍の前に、酸洗等により脱スケールを行ってもよい。 It is preferable that the hot-rolled and wound steel sheet is annealed after being degreased or the like according to a known method, if necessary. The annealing applied to the hot-rolled steel sheet is called hot-rolled sheet annealing, and the steel sheet after hot-rolled sheet annealing is called hot-rolled annealed steel sheet. Before annealing the hot-rolled plate, descaling may be performed by pickling or the like.
 熱延板焼鈍工程における加熱温度は650℃超とすることが好ましい。これは、熱延焼鈍鋼板の金属組織において、鉄炭化物中のMn含有量およびCr含有量を高めるためである。熱延板焼鈍工程における加熱温度は680℃超であることがより好ましく、700℃超であることがさらに好ましい。一方、熱延板焼鈍工程における加熱温度が高くなりすぎると、熱延焼鈍鋼板の金属組織が粗大化し、ホットスタンプ後の引張強さが低下する。したがって、熱延板焼鈍工程における加熱温度の上限値は750℃未満であることがより好ましく、720℃未満であることがさらに好ましい。 The heating temperature in the hot-rolled plate annealing step is preferably over 650 ° C. This is to increase the Mn content and Cr content in the iron carbide in the metal structure of the hot-rolled annealed steel sheet. The heating temperature in the hot-rolled plate annealing step is more preferably more than 680 ° C, and even more preferably more than 700 ° C. On the other hand, if the heating temperature in the hot-rolled sheet annealing step becomes too high, the metal structure of the hot-rolled annealed steel sheet becomes coarse and the tensile strength after hot stamping decreases. Therefore, the upper limit of the heating temperature in the hot-rolled plate annealing step is more preferably less than 750 ° C., and even more preferably less than 720 ° C.
 熱延板焼鈍の効果を十分に得るためには、加熱温度で30分以上保持することが好ましい。一方、保持時間が長くなりすぎると、熱延焼鈍鋼板の金属組織が粗大化し、ホットスタンプ後の引張強さが低下する。したがって、熱延板焼鈍工程における加熱温度での保持時間は10時間未満であることが好ましく、5時間未満であるとより好ましく、2時間未満であることがさらに好ましい。 In order to obtain the sufficient effect of hot-rolled sheet annealing, it is preferable to keep it at the heating temperature for 30 minutes or more. On the other hand, if the holding time is too long, the metal structure of the hot-rolled annealed steel sheet becomes coarse and the tensile strength after hot stamping decreases. Therefore, the holding time at the heating temperature in the hot-rolled plate annealing step is preferably less than 10 hours, more preferably less than 5 hours, and even more preferably less than 2 hours.
 上述した熱延板焼鈍工程の後、熱延焼鈍鋼板に冷間圧延を施して板厚が2.8mm以下である冷延鋼板とすることが好ましい。ホットスタンプ成形品を軽量化するために、冷延鋼板の板厚は2.3mm以下であることがより好ましく、2.0mm以下であることがさらに好ましく、1.8mm以下であると特に好ましく、1.6mm以下であるとより一層好ましい。また、鋼板の製造性の観点から、冷延鋼板の板厚は、0.6mm以上であることが好ましい。 After the hot-rolled sheet annealing step described above, it is preferable that the hot-rolled annealed steel sheet is cold-rolled to obtain a cold-rolled steel sheet having a plate thickness of 2.8 mm or less. In order to reduce the weight of the hot stamped product, the thickness of the cold-rolled steel sheet is more preferably 2.3 mm or less, further preferably 2.0 mm or less, and particularly preferably 1.8 mm or less. It is even more preferably 1.6 mm or less. Further, from the viewpoint of steel sheet manufacturability, the thickness of the cold-rolled steel sheet is preferably 0.6 mm or more.
 冷間圧延は常法にしたがって行えばよく、冷間圧延の前に酸洗等により脱スケールを行ってもよい。冷間圧延は、ホットスタンプ後の金属組織を微細化し、引張強さを高めるために、冷圧率(冷間圧延における累積圧下率)を30%以上とすることが好ましく、40%以上とすることがより好ましい。冷圧率が高すぎると、ホットスタンプ後の靭性が劣化する。そのため、冷圧率を65%以下とすることが好ましく、60%以下とすることがより好ましい。後述するように、冷間圧延後に連続焼鈍を行う場合は、焼鈍鋼板の金属組織を微細化するために、冷圧率を60%以上とすることが好ましく、70%以上とすることがより好ましい。 Cold rolling may be performed according to a conventional method, and descaling may be performed by pickling or the like before cold rolling. In cold rolling, the cold rolling ratio (cumulative rolling reduction in cold rolling) is preferably 30% or more, preferably 40% or more, in order to refine the metal structure after hot stamping and increase the tensile strength. Is more preferable. If the cold pressure ratio is too high, the toughness after hot stamping deteriorates. Therefore, the cold pressure ratio is preferably 65% or less, and more preferably 60% or less. As will be described later, when continuous annealing is performed after cold rolling, the cold pressure ratio is preferably 60% or more, more preferably 70% or more in order to refine the metal structure of the annealed steel sheet. ..
 冷延鋼板に連続焼鈍を施して焼鈍鋼板としてもよい。連続焼鈍は常法にしたがって行えばよく、連続焼鈍を行う前に、公知の方法により脱脂等の処理を施してもよい。再結晶により焼鈍鋼板の金属組織を微細化するために、連続焼鈍における均熱温度を600℃以上、650℃以上、または700℃以上とすることが好ましい。 The cold-rolled steel sheet may be continuously annealed to obtain an annealed steel sheet. The continuous annealing may be carried out according to a conventional method, and a treatment such as degreasing may be performed by a known method before the continuous annealing. In order to refine the metal structure of the annealed steel sheet by recrystallization, the soaking temperature in continuous annealing is preferably 600 ° C. or higher, 650 ° C. or higher, or 700 ° C. or higher.
 一方、連続焼鈍時の加熱速度が遅すぎたり、均熱温度が高すぎたり、均熱時間が長すぎたりすると、粒成長により焼鈍鋼板の金属組織が粗大化し、ホットスタンプ後の引張強さが低下する。そのため、焼鈍における均熱温度までの平均加熱速度を1℃/秒以上とすることが好ましく、均熱温度を800℃以下、または760℃以下とすることが好ましく、均熱時間を300秒未満、または120秒未満とすることが好ましい。 On the other hand, if the heating rate during continuous annealing is too slow, the soaking temperature is too high, or the soaking time is too long, the metal structure of the annealed steel sheet becomes coarse due to grain growth, and the tensile strength after hot stamping increases. descend. Therefore, the average heating rate to the soaking temperature in annealing is preferably 1 ° C./sec or more, the soaking temperature is preferably 800 ° C. or lower, or 760 ° C. or lower, and the soaking time is less than 300 seconds. Alternatively, it is preferably less than 120 seconds.
 このようにして得られた熱延焼鈍鋼板、冷延鋼板および焼鈍鋼板には、常法にしたがって調質圧延を行ってもよい。 The hot-rolled annealed steel sheet, cold-rolled steel sheet, and annealed steel sheet thus obtained may be temper-rolled according to a conventional method.
 本実施形態に係るホットスタンプ用鋼板は、ホットスタンプ時におけるスケールの生成防止およびホットスタンプ後の鋼板の耐食性向上を目的に、表層にめっき層を備えていてもよい。めっきの種類は、前記目的に適うものであればよく、特に限定されないが、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融アルミニウムめっき鋼板、溶融Zn-Al合金めっき鋼板、溶融Zn-Al-Mg合金めっき鋼板、溶融Zn-Al-Mg-Si合金めっき鋼板、電気亜鉛めっき鋼板、および電気Ni-Zn合金めっき鋼板等が例示される。 The steel sheet for hot stamping according to the present embodiment may be provided with a plating layer on the surface layer for the purpose of preventing scale formation during hot stamping and improving the corrosion resistance of the steel sheet after hot stamping. The type of plating is not particularly limited as long as it meets the above-mentioned purpose, but is not particularly limited, but is limited to hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, hot-dip aluminum-plated steel sheet, hot-dip Zn-Al alloy-plated steel sheet, and hot-dip Zn-Al-. Examples thereof include Mg alloy plated steel sheets, molten Zn—Al—Mg—Si alloy plated steel sheets, electrogalvanized steel sheets, and electric Ni—Zn alloy plated steel sheets.
 溶融めっき鋼板を製造する場合は、上述した方法で製造された熱延焼鈍鋼板、冷延鋼板または焼鈍鋼板を素材鋼板として、常法にしたがってめっきを行えばよい。素材鋼板に冷延鋼板を用いる場合、再結晶によりめっき鋼板の金属組織を微細化するために、連続溶融めっきの焼鈍過程における均熱温度を、600℃以上、650℃以上または700℃以上とすることが好ましい。 When the hot-rolled plated steel sheet is manufactured, the hot-rolled annealed steel sheet, the cold-rolled steel sheet or the annealed steel sheet manufactured by the above method may be used as the material steel sheet and plated according to a conventional method. When a cold-rolled steel sheet is used as the material steel sheet, the soaking temperature in the annealing process of continuous hot-dip galvanizing is set to 600 ° C. or higher, 650 ° C. or higher, or 700 ° C. or higher in order to refine the metal structure of the plated steel sheet by recrystallization. Is preferable.
 一方、均熱温度が高すぎると、粒成長により焼鈍鋼板の金属組織が粗大化するために、素材鋼板の種類にかかわらず、連続溶融めっきの焼鈍過程における均熱温度を800℃以下または760℃以下とすることが好ましい。溶融めっき後に鋼板を再加熱して合金化処理を行ってもよい。 On the other hand, if the soaking temperature is too high, the metal structure of the annealed steel sheet becomes coarse due to grain growth. Therefore, regardless of the type of the material steel sheet, the soaking temperature in the annealing process of continuous hot dip galvanizing is 800 ° C. or lower or 760 ° C. The following is preferable. After hot dip galvanizing, the steel sheet may be reheated for alloying treatment.
 電気めっき鋼板を製造する場合は、上述した方法で製造された熱延焼鈍鋼板、冷延鋼板または焼鈍鋼板を素材鋼板として、必要に応じて表面の清浄化および調整のための周知の前処理を施した後、常法にしたがって電気めっきを行えばよい。このようにして得られためっき鋼板には、常法にしたがって調質圧延を行ってもよい。 When an electroplated steel sheet is manufactured, a hot-rolled annealed steel sheet, a cold-rolled steel sheet or an annealed steel sheet manufactured by the above method is used as a material steel sheet, and if necessary, a well-known pretreatment for surface cleaning and adjustment is performed. After the application, electroplating may be performed according to a conventional method. The plated steel sheet thus obtained may be temper-rolled according to a conventional method.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 (実施例1)
 真空溶解炉を用いて溶鋼を鋳造し、表1に示す化学組成を有する鋼A~Nを製造した。表1中のAc点およびAc点は、鋼A~Nの冷延鋼板を2℃/秒で加熱した際の熱膨張変化から求めた。また、表1中のAr点は、鋼A~Nの冷延鋼板を920℃に加熱した後10℃/秒で冷却した際の熱膨張変化から求めた。鋼A~Nを1200℃に加熱し60分間保持した後、表2に示す熱延条件で熱間圧延を行った。
(Example 1)
Molten steel was cast using a vacuum melting furnace to produce steels A to N having the chemical compositions shown in Table 1. The points Ac 1 and Ac 3 in Table 1 were determined from the changes in thermal expansion when the cold-rolled steel sheets of steels A to N were heated at 2 ° C./sec. The Ar 3 points in Table 1 were obtained from the change in thermal expansion when the cold-rolled steel sheets of steels A to N were heated to 920 ° C. and then cooled at 10 ° C./sec. Steels A to N were heated to 1200 ° C. and held for 60 minutes, and then hot rolled under the hot rolling conditions shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 具体的には、Ar点以上の温度域で、鋼A~Nに10パスの圧延を施し、厚さ3.6mmの熱延鋼板とした。熱間圧延後、水スプレーで、熱延鋼板を540~580℃まで冷却し、冷却終了温度を巻取温度とし、この巻取温度に保持した電気加熱炉中に熱延鋼板を装入して60分間保持し、その後、熱延鋼板を20℃/時間の平均冷却速度で室温まで炉冷却して、巻取り後の徐冷をシミュレートした。 Specifically, steels A to N were rolled for 10 passes in a temperature range of 3 points or more in Ar to obtain a hot-rolled steel sheet having a thickness of 3.6 mm. After hot rolling, the hot-rolled steel sheet is cooled to 540 to 580 ° C. with a water spray, the cooling end temperature is set as the winding temperature, and the hot-rolled steel sheet is charged into an electric heating furnace maintained at this winding temperature. After holding for 60 minutes, the hot-rolled steel sheet was furnace-cooled to room temperature at an average cooling rate of 20 ° C./hour to simulate slow cooling after winding.
 徐冷後、一部の熱延鋼板に対し、熱延板焼鈍を施した。具体的には、熱延鋼板を、電気加熱炉を用いて50℃/時の平均加熱速度で710℃まで加熱した後、1時間保持し、続いて20℃/時の平均冷却速度で冷却して熱延焼鈍鋼板とした。 After slow cooling, some hot-rolled steel sheets were annealed. Specifically, the hot-rolled steel sheet is heated to 710 ° C. at an average heating rate of 50 ° C./hour using an electric heating furnace, held for 1 hour, and then cooled at an average cooling rate of 20 ° C./hour. It was made into a hot-spread annealed steel sheet.
 熱延鋼板および熱延焼鈍鋼板を酸洗して冷間圧延用の母材とし、冷圧率61%で冷間圧延を施して、厚さ1.4mmの冷延鋼板とした。一部の冷延鋼板を、連続焼鈍シミュレーターを用いて、10℃/秒の平均加熱速度で表2に示す焼鈍の均熱温度まで加熱し60秒間均熱した。続いて400℃まで冷却し180秒間保持した後、室温まで冷却して焼鈍鋼板とした。得られた焼鈍鋼板については、表3中の「鋼種」の欄に「ACR」と記載し、「めっき種」の欄に「-」と記載した。なお、冷延鋼板については、表3中の「鋼種」の欄に「CR」と記載し、「めっき種」の欄に「-」と記載した。 The hot-rolled steel sheet and the hot-rolled annealed steel sheet were pickled to form a base material for cold rolling, and cold-rolled at a cold pressure ratio of 61% to obtain a cold-rolled steel sheet having a thickness of 1.4 mm. Some cold-rolled steel sheets were heated to the annealing temperature of table 2 at an average heating rate of 10 ° C./sec using a continuous annealing simulator, and the heat was equalized for 60 seconds. Subsequently, it was cooled to 400 ° C. and held for 180 seconds, and then cooled to room temperature to obtain an annealed steel sheet. The obtained annealed steel sheet was described as "ACR" in the "Steel type" column and "-" in the "Plating type" column in Table 3. For cold-rolled steel sheets, "CR" was described in the "Steel type" column and "-" was described in the "Plating type" column in Table 3.
 また、一部の冷延鋼板を、溶融めっきシミュレーターを用いて、10℃/秒の平均加熱速度で表2に示す焼鈍の均熱温度まで加熱し60秒間均熱した。続いて冷却し、溶融亜鉛めっき浴または溶融アルミニウムめっき浴に浸漬して、溶融亜鉛めっきまたは溶融アルミニウムめっきを施し、溶融亜鉛めっき鋼板または溶融アルミニウムめっき鋼板とした。一部の鋼板には、溶融亜鉛めっきの後、520℃まで加熱して合金化処理を施し、合金化溶融亜鉛めっき鋼板とした。得られためっき鋼板については、表3中の「鋼種」の欄に「ACR」と記載し、「めっき種」の欄に「GI」、「GA」または「AL」と記載した。 In addition, some cold-rolled steel sheets were heated to the annealing temperature equalizing temperature shown in Table 2 at an average heating rate of 10 ° C./sec using a hot-dip galvanizing simulator, and the heat was equalized for 60 seconds. Subsequently, it was cooled and immersed in a hot-dip galvanized bath or a hot-dip aluminum plating bath to be subjected to hot-dip galvanizing or hot-dip aluminum plating to obtain a hot-dip galvanized steel sheet or a hot-dip aluminum-plated steel sheet. After hot-dip galvanizing, some steel sheets were heated to 520 ° C. and alloyed to obtain alloyed hot-dip galvanized steel sheets. The obtained plated steel sheet was described as "ACR" in the "Steel type" column and "GI", "GA" or "AL" in the "Plating type" column in Table 3.
 このようにして得られた冷延鋼板、焼鈍鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および、溶融アルミニウムめっき鋼板(これらの鋼板を総称してホットスタンプ用鋼板と呼ぶ)から、組織観察用試験片を採取し、組織観察を行った。 The structure is obtained from the cold-rolled steel sheet, the tempered steel sheet, the hot-dip galvanized steel sheet, the alloyed hot-dip galvanized steel sheet, and the hot-dip aluminum-plated steel sheet (these steel sheets are collectively called the hot stamping steel sheet) obtained in this manner. A test piece for observation was collected and the tissue was observed.
 具体的には、非めっき鋼板(冷延鋼板および焼鈍鋼板)の場合は、圧延方向に平行な板厚断面を研磨した後、鋼板表面から鋼板の板厚の1/4深さ位置(鋼板表面から板厚の1/8深さ~鋼板表面から板厚の3/8深さの領域)、めっき鋼板の場合は、基材の鋼板とめっき層との境界から基材である鋼板の板厚の1/4深さ位置(上記境界から基材である鋼板の板厚の1/8深さ~上記境界から基材である鋼板の板厚の3/8深さの領域)からレプリカ法により析出物を抽出し、TEMを用いて鉄炭化物を同定した。10個の鉄炭化物に対し、EDSを用いてFe、MnおよびCrの3元素について定量分析を行った。Fe、MnおよびCrの含有量の合計を100原子%としたときの、鉄炭化物中のMn含有量(原子%)およびCr含有量(原子%)をそれぞれ[Mn]θおよび[Cr]θとし、[Mn]θと[Cr]θとの和の平均値を求めた。 Specifically, in the case of non-plated steel sheets (cold-rolled steel sheets and tempered steel sheets), after polishing the sheet thickness section parallel to the rolling direction, the depth position from the steel sheet surface to 1/4 of the sheet thickness of the steel sheet (steel surface surface) From 1/8 depth of the plate thickness to 3/8 depth of the plate thickness from the surface of the steel plate), in the case of plated steel plate, from the boundary between the steel plate of the base material and the plating layer, the plate thickness of the steel plate which is the base material From the 1/4 depth position (1/8 depth from the boundary to the thickness of the base steel plate as the base material to 3/8 depth from the boundary to the thickness of the steel plate as the base material) by the replica method. The precipitate was extracted and the iron carbide was identified using TEM. Quantitative analysis of three elements, Fe, Mn and Cr, was performed on 10 iron carbides using EDS. When the total content of Fe, Mn and Cr is 100 atomic%, the Mn content (atomic%) and Cr content (atomic%) in the iron carbide are [Mn] θ and [Cr] θ , respectively. , The average value of the sum of [Mn] θ and [Cr] θ was calculated.
 また、上記ホットスタンプ用鋼板から、圧延方向に直行する方向に沿ってJIS13B号引張試験片を採取し、10mm/分の引張速度で引張試験を行い、引張強さを求めた。表3に、ホットスタンプ用鋼板の金属組織を観察した結果、および、ホットスタンプ用鋼板の機械特性を調査した結果を示す。 Further, from the above-mentioned steel sheet for hot stamping, a JIS13B tensile test piece was taken along the direction orthogonal to the rolling direction, and a tensile test was performed at a tensile speed of 10 mm / min to determine the tensile strength. Table 3 shows the results of observing the metallographic structure of the hot stamping steel sheet and the results of investigating the mechanical properties of the hot stamping steel sheet.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記ホットスタンプ用鋼板から、幅240mm、長さ170mmのホットスタンプ用素板を採取し、ホットスタンプにより図1に示す形状のハット部材を製造した。ホットスタンプ工程では、ガス加熱炉を用いて、素板を表4に示す加熱温度で4分間加熱した後、加熱炉から取り出して放冷し、表4に示す開始温度で、冷却装置を備えた金型に挟んでハット成形し、続いて表4に示す冷却停止温度まで金型内で冷却した。また、一部のハット部材を、電気加熱炉を用いて、表4に示す条件で再加熱した。表4のホットスタンプ条件のRTは室温であることを示し、「-」は再加熱工程を行わなかったことを示す。 From the above steel plate for hot stamping, a base plate for hot stamping having a width of 240 mm and a length of 170 mm was collected, and a hat member having a shape shown in FIG. 1 was manufactured by hot stamping. In the hot stamping step, the base plate was heated at the heating temperature shown in Table 4 for 4 minutes using a gas heating furnace, then taken out from the heating furnace and allowed to cool, and a cooling device was provided at the starting temperature shown in Table 4. It was sandwiched between molds to form a hat, and then cooled in the mold to the cooling stop temperature shown in Table 4. In addition, some of the hat members were reheated using an electric heating furnace under the conditions shown in Table 4. The RT of the hot stamping condition in Table 4 indicates that the temperature is room temperature, and “-” indicates that the reheating step was not performed.
 一部のハット部材(ホットスタンプ成形品)に、電気加熱炉を用いて170℃で20分間の熱処理を施した。 Some hat members (hot stamped products) were heat-treated at 170 ° C for 20 minutes using an electric heating furnace.
 熱処理前のハット部材の縦壁部から、SEM観察用試験片を採取し、この試験片の鋼板の圧延方向に平行な板厚断面を研磨した後、この板厚断面にナイタール腐食およびレペラー腐食を行い、非めっき鋼板の場合は、鋼板表面から鋼板の板厚の1/4深さ位置(鋼板表面から板厚の1/8深さ~鋼板表面から板厚の3/8深さの領域)、めっき鋼板の場合は、基材の鋼板とめっき層の境界から基材である鋼板の板厚の1/4深さ位置(上記境界から基材である鋼板の板厚の1/8深さ~上記境界から基材である鋼板の板厚の3/8深さの領域)における金属組織を観察した。上述した方法を用いて、画像処理により、フェライト、パーライト、残留オーステナイト、焼戻しマルテンサイト、マルテンサイトおよびベイナイトの面積率を測定した。結果を表4に示す。表4に示す組織の残部はパーライト、残留オーステナイトおよび/または析出物であった。また、表中、本発明の規定を満足する試験番号では、ホットスタンプ成形品の金属組織において、フェライト中に占めるポリゴナルフェライトの割合は5.0%以上であった。 A test piece for SEM observation is taken from the vertical wall of the hat member before heat treatment, and a sheet thickness section parallel to the rolling direction of the steel plate of this test piece is polished, and then nightal corrosion and repeller corrosion are applied to this sheet thickness cross section. In the case of non-plated steel sheet, the depth position from the surface of the steel sheet to the depth of 1/4 of the thickness of the steel sheet (the region from the surface of the steel plate to the depth of 1/8 to the surface of the steel plate to the depth of 3/8 of the thickness). In the case of a plated steel sheet, the depth position is 1/4 of the thickness of the base steel plate from the boundary between the base steel plate and the plating layer (1/8 depth from the boundary to the thickness of the base steel plate). -The metallographic structure in the region of 3/8 depth of the thickness of the steel plate as the base material was observed from the above boundary. The area ratios of ferrite, pearlite, retained austenite, tempered martensite, martensite and bainite were measured by image processing using the method described above. The results are shown in Table 4. The rest of the tissue shown in Table 4 was pearlite, retained austenite and / or precipitates. Further, in the table, in the test number satisfying the provisions of the present invention, the ratio of polygonal ferrite in the ferrite was 5.0% or more in the metal structure of the hot stamped molded product.
 また、熱処理前後のハット部材の縦壁部から、部材の長手方向に沿ってJIS13B号引張試験片を採取し、10mm/分の引張速度で引張試験を行い、引張強さを求めた。熱処理を施していないハット部材の引張強さと、熱処理を施したハット部材の引張強さとの差(ΔTS)を求め、ΔTSが100MPa以下であれば、ハット部材の熱的安定性が良好であると判断した。 In addition, JIS13B tensile test pieces were collected from the vertical wall of the hat member before and after the heat treatment along the longitudinal direction of the member, and a tensile test was performed at a tensile speed of 10 mm / min to determine the tensile strength. The difference (ΔTS) between the tensile strength of the hat member that has not been heat-treated and the tensile strength of the hat member that has been heat-treated is determined. If ΔTS is 100 MPa or less, the thermal stability of the hat member is good. It was judged.
 熱処理前の引張強さが440MPa以上、700MPa未満であり、かつΔTSが100MPa以下であった場合を、本発明の規定を満足するとして合格と判定した。一方、熱処理前の引張強さが440MPa未満、または700MPa以上であったか、ΔTSが100MPa超であった場合を、本発明の規定を満足しないとして不合格と判定した。 When the tensile strength before the heat treatment was 440 MPa or more and less than 700 MPa and the ΔTS was 100 MPa or less, it was judged to be acceptable as satisfying the provisions of the present invention. On the other hand, when the tensile strength before the heat treatment was less than 440 MPa, 700 MPa or more, or the ΔTS was more than 100 MPa, it was determined that the product did not satisfy the provisions of the present invention and was rejected.
 表4に、ハット部材の金属組織を観察した結果、および、ハット部材の機械特性を評価した結果を示す。表1~4において、下線を付した数値は、本発明の範囲外であること、または好ましい製造条件を外れることを意味する。 Table 4 shows the results of observing the metallographic structure of the hat member and the results of evaluating the mechanical properties of the hat member. In Tables 1 to 4, the underlined values mean that they are outside the scope of the present invention or that they are outside the preferred manufacturing conditions.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の規定を満足する試験番号1~3、9~11、14~17および25~33は、いずれも、ホットスタンプ成形品の引張強さが440MPa以上、700MPa未満であり、良好な強度特性を示しており、また、ΔTSが100MPa以下であり、良好な熱的安定性を示している。 Test numbers 1 to 3, 9 to 11, 14 to 17 and 25 to 33, which satisfy the provisions of the present invention, all have good strength characteristics, with the tensile strength of the hot stamped product being 440 MPa or more and less than 700 MPa. In addition, ΔTS is 100 MPa or less, indicating good thermal stability.
 また、ホットスタンプ用鋼板の製造工程において、熱延板焼鈍を行った試験番号2、10、16、25および27は、ホットスタンプ成形品のΔTSが30MPa以下であり、熱的安定性が特に良好であった。 Further, in the test numbers 2, 10, 16, 25 and 27 in which the hot-rolled sheet was annealed in the manufacturing process of the hot-stamped steel sheet, the ΔTS of the hot-stamped product was 30 MPa or less, and the thermal stability was particularly good. Met.
 これらに対して、化学組成が本発明の範囲から外れる鋼板を用いた比較例の試験番号20~24は、ホットスタンプ成形品の引張強さが440MPa未満であり、強度特性が劣っていたか、または、ΔTSが100MPa以上であり、熱的安定性が劣っていた。 On the other hand, in the test numbers 20 to 24 of the comparative example using the steel sheet whose chemical composition is out of the range of the present invention, the tensile strength of the hot stamped product was less than 440 MPa, and the strength characteristics were inferior or , ΔTS was 100 MPa or more, and the thermal stability was inferior.
 具体的には、鋼Eを用いた試験番号21は、鋼のMn含有量が低すぎたため、ホットスタンプ成形品の金属組織において焼戻しマルテンサイト面積率が不足し、ホットスタンプ成形品の引張強さが低かった。 Specifically, in Test No. 21 using steel E, since the Mn content of the steel was too low, the tempered martensite area ratio was insufficient in the metal structure of the hot stamped product, and the tensile strength of the hot stamped product was insufficient. Was low.
 鋼Dを用いた試験番号20は、鋼のMn含有量が高すぎたため、ホットスタンプ成形品の引張強さが700MPa以上でありΔTSが大きかった。 In test number 20 using steel D, the Mn content of the steel was too high, so the tensile strength of the hot stamped product was 700 MPa or more, and ΔTS was large.
 鋼Fを用いた試験番号22は、鋼のC含有量が高すぎたため、ホットスタンプ成形品の金属組織においてフェライト面積率が不足し、ホットスタンプ成形品の引張強さが700MPa以上でありΔTSが大きかった。 In test number 22 using steel F, since the C content of the steel was too high, the ferrite area ratio was insufficient in the metallographic structure of the hot stamped product, the tensile strength of the hot stamped product was 700 MPa or more, and ΔTS was high. It was big.
 鋼Gを用いた試験番号23は、鋼のSi含有量が高すぎたため、ΔTSが大きかった。 Test No. 23 using steel G had a large ΔTS because the Si content of the steel was too high.
 鋼Hを用いた試験番号24は、鋼のB含有量が低すぎたため、ΔTSが大きかった。 Test number 24 using steel H had a large ΔTS because the B content of steel was too low.
 化学組成は本発明の範囲内であるが、ホットスタンプ成形品の製造条件が本発明の範囲から外れる比較例の試験番号4~8、12、13、18および19は、ホットスタンプ成形品の引張強さが440MPa未満であり、強度特性が劣っていたか、または、ΔTSが100MPa以上であり、熱的安定性が劣っていた。 Test numbers 4 to 8, 12, 13, 18 and 19 of Comparative Examples in which the chemical composition is within the scope of the present invention but the production conditions of the hot stamped article are outside the scope of the present invention are the tensile strength of the hot stamped article. The strength was less than 440 MPa and the strength characteristics were inferior, or the ΔTS was 100 MPa or more and the thermal stability was inferior.
 具体的には、鋼Aを用いた試験番号4および5は、再加熱工程における保持時間が長すぎたか、または再加熱温度が高すぎたために、ホットスタンプ成形品の引張強さが低かった。 Specifically, in test numbers 4 and 5 using steel A, the tensile strength of the hot stamped product was low because the holding time in the reheating step was too long or the reheating temperature was too high.
 鋼Aを用いた試験番号6は、加熱工程における加熱温度が低すぎたために、引張強さが低かった。
 鋼Aを用いた試験番号7および8は、ホットスタンプ工程における成形開始温度が低すぎたか、または冷却停止温度が高すぎたために、引張強さが低かった。
Test No. 6 using steel A had a low tensile strength because the heating temperature in the heating step was too low.
Test numbers 7 and 8 using steel A had low tensile strength because the forming start temperature in the hot stamping process was too low or the cooling stop temperature was too high.
 鋼Bを用いた試験番号12および13は、再加熱工程における保持時間が短すぎたか、または再加熱温度が低すぎたために、ホットスタンプ成形品の金属組織において焼戻しマルテンサイト面積率が不足し、ΔTSが大きかった。 In test numbers 12 and 13 using steel B, the tempered martensite area ratio was insufficient in the metallographic structure of the hot stamped product because the holding time in the reheating step was too short or the reheating temperature was too low. ΔTS was large.
 鋼Cを用いた試験番号18は、ホットスタンプ工程における成形開始温度が高すぎたために、ΔTSが大きかった。鋼Cを用いた試験番号19は、再加熱工程が行われなかったために、焼戻しマルテンサイト面積率が不足し、ΔTSが大きかった。 Test number 18 using steel C had a large ΔTS because the molding start temperature in the hot stamping process was too high. In Test No. 19 using steel C, the tempered martensite area ratio was insufficient and ΔTS was large because the reheating step was not performed.
(実施例2)
 真空溶解炉を用いて溶鋼を鋳造し、実施例1において、表1に示した化学組成を有する鋼A~Cを製造した。鋼A~Cを用い、実施例1と同様に、表5に示す条件で、熱間圧延、熱延板焼鈍、冷間圧延、および、焼鈍を行い、次いでめっき処理を行い、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および、溶融アルミニウムめっき鋼板(ホットスタンプ用鋼板)を製造した。
(Example 2)
Molten steel was cast using a vacuum melting furnace to produce steels A to C having the chemical compositions shown in Table 1 in Example 1. Using steels A to C, hot rolling, hot rolling plate annealing, cold rolling, and annealing are performed under the conditions shown in Table 5 in the same manner as in Example 1, and then plating treatment is performed to obtain a hot-dip zinc-plated steel sheet. , An alloyed hot-dip zinc-plated steel sheet and a hot-stamped steel sheet (steel for hot stamping) were manufactured.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらのホットスタンプ用鋼板の金属組織および機械特性を、実施例1と同様にして調査した。表6に、ホットスタンプ用鋼板の金属組織を観察した結果、および、ホットスタンプ用鋼板の機械特性を調査した結果を示す。 The metallographic structure and mechanical properties of these hot stamping steel sheets were investigated in the same manner as in Example 1. Table 6 shows the results of observing the metallographic structure of the hot stamping steel sheet and the results of investigating the mechanical properties of the hot stamping steel sheet.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 これらのホットスタンプ用鋼板から、厚さ1.4mm、幅240mm、長さ170mmのホットスタンプ用素板を採取した。この素板を、同一寸法の接合用鋼板とレーザー溶接により接合し、厚さ1.4mm、幅240mm、長さ340mmの接合鋼板を作製した。接合用鋼板には、化学組成が質量%で、0.21%C-0.13%Si-1.31%Mn-0.012%P-0.0018%S-0.043%sol.Al-0.0030%N-0.21%Cr-0.0018%Bである冷延鋼板を用いた。 From these hot stamping steel plates, hot stamping base plates having a thickness of 1.4 mm, a width of 240 mm, and a length of 170 mm were collected. This base plate was joined to a steel plate for joining having the same dimensions by laser welding to prepare a joined steel plate having a thickness of 1.4 mm, a width of 240 mm, and a length of 340 mm. The steel sheet for joining has a chemical composition of 0.21% C-0.13% Si-1.31% Mn-0.012% P-0.0018% S-0.043% sol. A cold-rolled steel sheet having Al-0.0030% N-0.21% Cr-0.0018% B was used.
 接合鋼板を、実施例1と同様に、表7に示す条件でホットスタンプし、図2に示す形状のハット部材を製造した。その後、一部のハット部材に、電気加熱炉を用いて170℃で20分間の熱処理を施した。 The joined steel plate was hot stamped under the conditions shown in Table 7 in the same manner as in Example 1, and a hat member having the shape shown in FIG. 2 was manufactured. Then, some of the hat members were heat-treated at 170 ° C. for 20 minutes using an electric heating furnace.
 そして、熱処理前後のハット部材において、鋼A~Cからなる部分の金属組織および機械特性を、実施例1と同様にして調査した。表7に、ハット部材(ホットスタンプ成形品)の金属組織を観察した結果、および、ハット部材の機械特性を評価した結果を示す。 Then, in the hat member before and after the heat treatment, the metallographic structure and mechanical properties of the parts made of steels A to C were investigated in the same manner as in Example 1. Table 7 shows the results of observing the metallographic structure of the hat member (hot stamp molded product) and the results of evaluating the mechanical properties of the hat member.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験番号34~36のいずれの試験結果も、ホットスタンプ成形品の引張強さが440MPa以上700MPa未満であり、また、ΔTSが100MPa以下であり、良好な強度特性および熱的安定性を示している。ハット部材の接合用鋼板部分の引張強さは、試験番号34~36に対し、それぞれ1545MPa、1540MPa、1536MPaであった。 In all the test results of Test Nos. 34 to 36, the tensile strength of the hot stamped product was 440 MPa or more and less than 700 MPa, and the ΔTS was 100 MPa or less, showing good strength characteristics and thermal stability. .. The tensile strength of the steel plate portion for joining of the hat member was 1545 MPa, 1540 MPa, and 1536 MPa, respectively, with respect to the test numbers 34 to 36.
 本発明によれば、塗装焼付処理に伴う強度の変動が小さい、引張強さが440MPa以上、700MPa未満である部分を有する、熱的安定性に優れたホットスタンプ成形品を得ることが可能になる。 According to the present invention, it is possible to obtain a hot stamped product having excellent thermal stability, having a portion having a tensile strength of 440 MPa or more and less than 700 MPa, in which the fluctuation of the strength due to the coating baking treatment is small. ..

Claims (7)

  1.  ホットスタンプ成形品であって、
     前記ホットスタンプ成形品の全部または一部が、
     質量%で、
     C :0.001%以上、0.090%未満、
     Si:0.50%未満、
     Mn:0.50%以上、1.70%未満、
     P :0.200%以下、
     S :0.0200%以下、
     sol.Al:0.001~2.500%、
     N :0.0200%以下、
     B :0.0002~0.0200%、
     Ti:0~0.300%、
     Nb:0~0.300%、
     V :0~0.300%、
     Zr:0~0.300%、
     Cr:0~2.00%、
     Mo:0~2.00%、
     Cu:0~2.00%、
     Ni:0~2.00%、
     Ca:0~0.0100%、
     Mg:0~0.0100%、
     REM:0~0.1000%、
     Bi:0~0.0500%、並びに
     残部:Feおよび不純物である化学組成を有し、
     金属組織が、面積%で、
      フェライト:50.0%超、
      焼戻しマルテンサイト:5.0%以上、50.0%未満、
      マルテンサイト:0%以上、10.0%未満、
      ベイナイト:0%以上、20.0%未満、を含み、
     引張強さが、440MPa以上、700MPa未満であり、
     170℃で20分間の熱処理を施した際の、前記引張強さの低下量であるΔTSが100MPa以下である、
     ホットスタンプ成形品。
    It is a hot stamp molded product
    All or part of the hot stamp molded product
    By mass%
    C: 0.001% or more, less than 0.090%,
    Si: less than 0.50%,
    Mn: 0.50% or more and less than 1.70%,
    P: 0.200% or less,
    S: 0.0200% or less,
    sol. Al: 0.001 to 2.500%,
    N: 0.0200% or less,
    B: 0.0002 to 0.0200%,
    Ti: 0 to 0.300%,
    Nb: 0 to 0.300%,
    V: 0 to 0.300%,
    Zr: 0 to 0.300%,
    Cr: 0 to 2.00%,
    Mo: 0-2.00%,
    Cu: 0-2.00%,
    Ni: 0 to 2.00%,
    Ca: 0-0.0100%,
    Mg: 0 to 0.0100%,
    REM: 0 to 0.1000%,
    Bi: 0-0.0500%, and balance: Fe and impurities with a chemical composition.
    The metal structure is% of the area
    Ferrite: over 50.0%,
    Tempering martensite: 5.0% or more and less than 50.0%,
    Martensite: 0% or more and less than 10.0%,
    Bainite: Includes 0% or more and less than 20.0%
    Tensile strength is 440 MPa or more and less than 700 MPa.
    When heat treatment is performed at 170 ° C. for 20 minutes, ΔTS, which is the amount of decrease in tensile strength, is 100 MPa or less.
    Hot stamp molded product.
  2.  前記化学組成が、質量%で、
     Ti:0.001~0.300%、
     Nb:0.001~0.300%、
     V :0.001~0.300%、
     Zr:0.001~0.300%、
     Cr:0.001~2.00%、
     Mo:0.001~2.00%、
     Cu:0.001~2.00%、
     Ni:0.001~2.00%、
     Ca:0.0001~0.0100%、
     Mg:0.0001~0.0100%、
     REM:0.0001~0.1000%、および
     Bi:0.0001~0.0500%
     からなる群から選択される1種または2種以上を含有する、
     請求項1に記載のホットスタンプ成形品。
    When the chemical composition is mass%,
    Ti: 0.001 to 0.300%,
    Nb: 0.001 to 0.300%,
    V: 0.001 to 0.300%,
    Zr: 0.001 to 0.300%,
    Cr: 0.001 to 2.00%,
    Mo: 0.001-2.00%,
    Cu: 0.001-2.00%,
    Ni: 0.001-2.00%,
    Ca: 0.0001-0.0100%,
    Mg: 0.0001-0.0100%,
    REM: 0.0001 to 0.1000%, and Bi: 0.0001 to 0.0500%
    Containing one or more selected from the group consisting of
    The hot stamp molded product according to claim 1.
  3.  表面にめっき層を有する、
     請求項1または2に記載のホットスタンプ成形品。
    Has a plating layer on the surface,
    The hot stamp molded product according to claim 1 or 2.
  4.  請求項1または2に記載のホットスタンプ成形品を製造する方法であって、
     請求項1または2に記載の化学組成を有するホットスタンプ用鋼板を、Ac点を超える温度まで加熱する加熱工程と、
     前記加熱工程後の前記ホットスタンプ用鋼板に対して、(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、
     前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える、
     ホットスタンプ成形品の製造方法。
    The method for producing a hot stamped article according to claim 1 or 2.
    A heating step of heating a steel sheet for hot stamping having the chemical composition according to claim 1 or 2 to a temperature exceeding 3 points of Ac.
    A hot stamping step of starting hot stamping on the hot stamping steel sheet after the heating step at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points, and then cooling to a temperature of less than 90 ° C. When,
    A reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
    A method for manufacturing a hot stamped product.
  5.  請求項1または2に記載のホットスタンプ成形品を製造する方法であって、
     請求項1または2に記載の化学組成を有するホットスタンプ用鋼板を、接合用鋼板と接合して接合鋼板とする接合工程と、
     前記接合工程後の接合鋼板を前記ホットスタンプ用鋼板のAc点を超える温度まで加熱する加熱工程と、
     前記加熱工程後の前記接合鋼板に対して、前記ホットスタンプ用鋼板の(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、
     前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える、
     ホットスタンプ成形品の製造方法。
    The method for producing a hot stamped article according to claim 1 or 2.
    A joining step of joining a hot stamping steel sheet having the chemical composition according to claim 1 or 2 to a joining steel sheet to form a joining steel sheet.
    A heating step of heating the joined steel sheet after the joining step to a temperature exceeding Ac 3 points of the hot stamping steel sheet, and a heating step.
    To the joining steel sheet after the heating step, the (Ar 3 point -200 ° C.) of the hot stamping steel plate or to initiate hot stamping at a temperature of Ar less than 3 points, followed by cooling to a temperature below 90 ° C. Hot stamping process and
    A reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
    A method for manufacturing a hot stamped product.
  6.  請求項3に記載のホットスタンプ成形品を製造する方法であって、
     請求項1または2に記載の化学組成を有し、かつ表面にめっき層を有するホットスタンプ用鋼板を、Ac点を超える温度まで加熱する加熱工程と、
     前記加熱工程後の前記ホットスタンプ用鋼板に対して、(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、
     前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える
     ホットスタンプ成形品の製造方法。
    The method for producing a hot stamped molded product according to claim 3.
    A heating step of heating a steel sheet for hot stamping having the chemical composition according to claim 1 or 2 and having a plating layer on the surface to a temperature exceeding 3 points of Ac.
    A hot stamping step of starting hot stamping on the hot stamping steel sheet after the heating step at a temperature of (Ar 3 points-200 ° C.) or more and less than Ar 3 points, and then cooling to a temperature of less than 90 ° C. When,
    A method for producing a hot stamped molded product, comprising a reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes.
  7.  請求項3に記載のホットスタンプ成形品を製造する方法であって、
     請求項1または2に記載の化学組成を有し、かつ表面にめっき層を有するホットスタンプ用鋼板を、接合用鋼板と接合して接合鋼板とする接合工程と、
     前記接合工程後の接合鋼板を、前記ホットスタンプ用鋼板のAc点を超える温度まで加熱する加熱工程と、
     前記加熱工程後の前記接合鋼板に対して、前記ホットスタンプ用鋼板の(Ar点-200℃)以上、Ar点未満の温度でホットスタンプを開始し、続いて90℃未満の温度まで冷却するホットスタンプ工程と、
     前記ホットスタンプ工程後の成形品を、100~140℃の温度まで加熱し、その温度で3~120分間保持する再加熱工程と、を備える、
     ホットスタンプ成形品の製造方法。
    The method for producing a hot stamped molded product according to claim 3.
    A joining step of joining a hot stamping steel sheet having the chemical composition according to claim 1 or 2 and having a plating layer on the surface to a joining steel sheet to form a joining steel sheet.
    A heating step of heating the joined steel sheet after the joining step to a temperature exceeding Ac 3 points of the hot stamping steel sheet, and
    To the joining steel sheet after the heating step, the (Ar 3 point -200 ° C.) of the hot stamping steel plate or to initiate hot stamping at a temperature of Ar less than 3 points, followed by cooling to a temperature below 90 ° C. Hot stamping process and
    A reheating step of heating the molded product after the hot stamping step to a temperature of 100 to 140 ° C. and holding the molded product at that temperature for 3 to 120 minutes is provided.
    A method for manufacturing a hot stamped product.
PCT/JP2020/014822 2019-04-01 2020-03-31 Hot-stamping molded article and method for manufacturing same WO2020204027A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217026339A KR102633542B1 (en) 2019-04-01 2020-03-31 Hot stamp molded products and their manufacturing method
CN202080016590.0A CN113490759B (en) 2019-04-01 2020-03-31 Hot press-formed article and method for producing same
JP2021512149A JP7127735B2 (en) 2019-04-01 2020-03-31 HOT STAMP MOLDED PRODUCT AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019070212 2019-04-01
JP2019-070212 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020204027A1 true WO2020204027A1 (en) 2020-10-08

Family

ID=72668993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014822 WO2020204027A1 (en) 2019-04-01 2020-03-31 Hot-stamping molded article and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP7127735B2 (en)
KR (1) KR102633542B1 (en)
CN (1) CN113490759B (en)
WO (1) WO2020204027A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162984A1 (en) * 2013-04-02 2014-10-09 新日鐵住金株式会社 Hot-stamp-molded article, cold-rolled steel sheet, and method for manufacturing hot-stamp-molded article
JP2018527462A (en) * 2015-07-30 2018-09-20 アルセロールミタル Method for producing cured parts without LME problems
WO2019069938A1 (en) * 2017-10-02 2019-04-11 新日鐵住金株式会社 Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389562B2 (en) 2000-07-28 2003-03-24 アイシン高丘株式会社 Method of manufacturing collision reinforcing material for vehicles
JP4135397B2 (en) 2002-05-13 2008-08-20 日産自動車株式会社 Method and apparatus for quenching pressed parts
JP4316842B2 (en) 2002-07-26 2009-08-19 アイシン高丘株式会社 Method for manufacturing tailored blank press molded products
JP2005193287A (en) 2004-01-09 2005-07-21 Nippon Steel Corp Method for manufacturing high-strength component having excellent shape accuracy
JP4452157B2 (en) 2004-02-06 2010-04-21 新日本製鐵株式会社 600-1200 MPa class high-strength member for automobiles with excellent strength uniformity in the member and method for producing the same
SE528130C2 (en) 2004-10-04 2006-09-12 Gestamp Hardtech Ab Ways to heat mold and harden a sheet metal
WO2008110670A1 (en) 2007-03-14 2008-09-18 Arcelormittal France Steel for hot working or quenching with a tool having an improved ductility
JP2009061473A (en) 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP5141811B2 (en) * 2010-11-12 2013-02-13 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
BR112014015440A8 (en) * 2011-12-27 2017-07-04 Nippon Steel & Sumitomo Metal Corp hot-dip coated high strength steel sheet for excellent pressing work at low temperature toughness and corrosion resistance and method for producing it
PL2803748T3 (en) * 2012-01-13 2018-08-31 Nippon Steel & Sumitomo Metal Corporation Hot stamp molded article, and method for producing hot stamp molded article
JP6372070B2 (en) * 2013-11-26 2018-08-15 新日鐵住金株式会社 Ferritic / martensitic duplex steel and oil well steel pipe
WO2016148045A1 (en) * 2015-03-18 2016-09-22 株式会社神戸製鋼所 Steel sheet for hot pressing and method for producing same
CA3053659A1 (en) * 2017-02-20 2018-08-23 Nippon Steel Corporation Hot stamped body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162984A1 (en) * 2013-04-02 2014-10-09 新日鐵住金株式会社 Hot-stamp-molded article, cold-rolled steel sheet, and method for manufacturing hot-stamp-molded article
JP2018527462A (en) * 2015-07-30 2018-09-20 アルセロールミタル Method for producing cured parts without LME problems
WO2019069938A1 (en) * 2017-10-02 2019-04-11 新日鐵住金株式会社 Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these

Also Published As

Publication number Publication date
KR102633542B1 (en) 2024-02-06
KR20210117316A (en) 2021-09-28
CN113490759B (en) 2022-10-04
JPWO2020204027A1 (en) 2021-12-02
CN113490759A (en) 2021-10-08
JP7127735B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
TWI484050B (en) A cold-rolled steel, process for production thereof, and hot-stamp-molded article
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
KR101597058B1 (en) Cold-rolled steel sheet
US10253384B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
US11225701B2 (en) Hot dip galvanized steel sheet and hot dip galvannealed steel sheet
KR102404647B1 (en) Hot-stamped article and steel sheet for hot-stamping, and manufacturing method thereof
WO2021162084A1 (en) Hot stamp molded article
JP7095818B2 (en) Covered steel members, coated steel sheets and their manufacturing methods
KR102512770B1 (en) Coated steel member, coated steel sheet and manufacturing method thereof
WO2020204037A1 (en) Hot-stamping molded article and steel sheet for hot stamping, and methods for manufacturing same
WO2020204027A1 (en) Hot-stamping molded article and method for manufacturing same
CN114945690B (en) Steel sheet and method for producing same
JP2011236482A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512149

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217026339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781880

Country of ref document: EP

Kind code of ref document: A1