JP2012237043A - METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL - Google Patents

METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL Download PDF

Info

Publication number
JP2012237043A
JP2012237043A JP2011107606A JP2011107606A JP2012237043A JP 2012237043 A JP2012237043 A JP 2012237043A JP 2011107606 A JP2011107606 A JP 2011107606A JP 2011107606 A JP2011107606 A JP 2011107606A JP 2012237043 A JP2012237043 A JP 2012237043A
Authority
JP
Japan
Prior art keywords
film
mask member
stainless steel
aqueous solution
acid aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011107606A
Other languages
Japanese (ja)
Inventor
Atsushi Kozuki
敦詞 上月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011107606A priority Critical patent/JP2012237043A/en
Publication of JP2012237043A publication Critical patent/JP2012237043A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively removing an Ni film without eroding a mask member made of stainless steel when removing the Ni film deposited in a thin film pattern forming process from a surface of the mask member made of stainless steel used for pattern forming in the film pattern forming process such as sputtering.SOLUTION: The Ni film is dissolved and removed using mixed acid aqueous solution containing 15-25 wt.% of sulfuric acid and 5-15 wt.% of nitric acid when the Ni film formed on the surface of the mask member is removed from the mask member made of stainless steel used for forming the Ni film in a prescribed pattern on a substrate by a thin film formation technique.

Description

この発明は、スパッタリングなどの薄膜形成技術によって圧電振動子等のパッケージの外面などに、所定のパターンでNi膜を被覆形成するにあたり、マスク部材としてステンレス鋼を用いた場合に、そのマスク部材表面に形成されたNi膜を除去するための方法に関するものである。   In the present invention, when a stainless steel is used as a mask member in forming a Ni film with a predetermined pattern on the outer surface of a package such as a piezoelectric vibrator by a thin film forming technique such as sputtering, the surface of the mask member is formed. The present invention relates to a method for removing a formed Ni film.

周知のように、水晶などを用いた圧電振動子のガラスパッケージには、その外面にいわゆる外部電極を形成するのが通常であり、その場合、外部電極形成の過程で、スパッタリングなどの薄膜形成技術によってニッケル(Ni)膜を形成することがある。またこの種の薄膜形成技術では、ガラスパッケージなどの基材上に所定のパターンで膜を形成するため、反転パターン形状のマスク部材で基材表面を覆っておいてスパッタリングなどを行い、これによって所定のパターン形状の薄膜を形成することが一般的である。このような場合のマスク部材としては、従来から種々の材質のものが使用されているが、Niをスパッタリングする際の金属マスク(メタルマスク)の材料としては、耐熱性や耐食性、あるいはガラスなどの基材との熱膨張率差の調整のしやすさなどの観点から、例えば特許文献1に示されているように、SUS304、SUS430などのステンレス鋼が用いられることが多い。   As is well known, a so-called external electrode is usually formed on the outer surface of a piezoelectric vibrator glass package using crystal or the like. In this case, in the process of forming the external electrode, a thin film forming technique such as sputtering is used. May form a nickel (Ni) film. In this type of thin film formation technology, a film is formed in a predetermined pattern on a base material such as a glass package. Therefore, the surface of the base material is covered with a mask member having an inverted pattern, and sputtering is performed. It is common to form a thin film having the pattern shape. As mask members in such cases, various materials have been conventionally used. However, as a material of a metal mask (metal mask) when sputtering Ni, heat resistance, corrosion resistance, glass, or the like can be used. From the viewpoint of easy adjustment of the difference in coefficient of thermal expansion with the substrate, stainless steel such as SUS304 and SUS430 is often used as disclosed in Patent Document 1, for example.

ところで、マスク部材を用いてスパッタリングなどの薄膜形成技術によって所定のパターンで薄膜を形成する際には、基材表面のみならず、マスク部材の表面も薄膜材料が堆積されてしまう。このようにマスク部材の表面に堆積された薄膜用材料の膜(マスク部材上の堆積膜)が成長すれば、マスク部材によるパターン形成精度が低下してしまう問題があり、この問題は、特に微細なパターンで薄膜を形成する場合には大きな悪影響を与える。
そこで一般には、ステンレス鋼などの金属からなるマスク部材を用いてスパッタリングなどにより基材上に所定のパターンで成膜する場合、スパッタリングなどの薄膜形成工程終了後に、マスク部材を基材から取り外して、マスク部材表面に堆積された膜を洗浄、除去し、次の使用に備えるようにしている。すなわちマスク部材を1回使用するたびごとに、そのマスク材表面からの堆積膜除去作業を行なうのが通常である。
By the way, when forming a thin film with a predetermined pattern by a thin film forming technique such as sputtering using the mask member, the thin film material is deposited not only on the surface of the base material but also on the surface of the mask member. If the film of the thin film material (deposited film on the mask member) deposited on the surface of the mask member grows in this way, there is a problem that the pattern formation accuracy by the mask member is lowered. When a thin film is formed with a simple pattern, it has a great adverse effect.
Therefore, in general, when a mask member made of a metal such as stainless steel is used to form a film in a predetermined pattern on the substrate by sputtering or the like, the mask member is removed from the substrate after completion of the thin film forming process such as sputtering, The film deposited on the mask member surface is cleaned and removed to prepare for the next use. That is, every time the mask member is used once, the operation of removing the deposited film from the mask material surface is usually performed.

一方、前述のように、ガラスなどの基材上にNi膜をスパッタリングする際のマスク部材としては、ステンレス鋼を用いることが多いが、マスク部材上に堆積されたNi膜を除去するためには、従来は、エッチング剤としてハロゲン系の薬液、あるいは塩化鉄系の薬液を用い、Ni堆積膜が形成されたステンレス鋼製マスク部材をこれらの薬液中に浸漬させ、Ni堆積膜を溶解除去(エッチング)することが多かった。
なお、この発明で対象としているステンレス鋼製のマスク部材とは異なるが、主として銅や銅合金からなるマスク部材を対象として、そのマスク部材上のNi膜を除去するための薬液として、硫酸などの無機酸や有機酸などの各種の酸を含む混酸を用いることが、例えば特許文献2に示されており、また上記と同様に銅からなるマスク部材を対象として、そのマスク部材上のNi膜を除去するための薬液として、硫酸、過酸化水素水、ケトン化合物を含むものを用いることが、例えば特許文献3に示されている。
On the other hand, as described above, stainless steel is often used as a mask member when sputtering a Ni film on a substrate such as glass, but in order to remove the Ni film deposited on the mask member, Conventionally, a halogen-type chemical solution or an iron chloride-type chemical solution is used as an etching agent, and a stainless steel mask member on which a Ni deposited film is formed is immersed in these chemical solutions, and the Ni deposited film is dissolved and removed (etching). )
Although different from the stainless steel mask member which is the subject of the present invention, as a chemical solution for removing the Ni film on the mask member mainly for a mask member made of copper or a copper alloy, sulfuric acid or the like is used. The use of a mixed acid containing various acids such as an inorganic acid and an organic acid is disclosed in, for example, Patent Document 2 and, similarly to the above, for a mask member made of copper, an Ni film on the mask member is formed. For example, Patent Document 3 discloses that a chemical solution for removal includes a solution containing sulfuric acid, hydrogen peroxide solution, and a ketone compound.

特開2009−221524号公報JP 2009-221524 A 特開平9−228075号公報Japanese Patent Laid-Open No. 9-228075 特開平6−322559号公報JP-A-6-322559

スパッタリングなどの薄膜形成工程において、所定のパターンで基材上にNi膜形成するためのマスク部材としてステンレス鋼を用い、そのマスク部材上に堆積されたNi膜をエッチング除去するための薬液として、前述のようなハロゲン系薬液、もしくは塩化鉄系薬液を用いた場合には、次のような問題がある。すなわち、これらの薬液中にステンレス鋼製のマスク部材を浸漬させれば、マスク部材上のNi膜が溶解されるばかりでなく、マスク部材自体も侵食されて、マスク部材が変形してしまう。このように侵食されて変形してしまったマスク部材は、パターン形成のためのマスクとしては使用できなくなってしまう。そこで従来は、ステンレス鋼製のマスク部材を使用してNi膜を成膜する場合は、スパッタリングなどの成膜工程終了後、マスク部材はそのまま廃棄せざるを得なかった。すなわち1回使用した後のステンレス鋼製のマスク部材は、その表面に堆積されたNi膜を除去して再使用することなく、廃棄してしまっているのが実情である。これは、一回の成膜のたびごとにマスク部材を新しいものと交換せざるを得ないことを意味する。したがって従来は、マスク部材に要するコストが大きく、それがパターン薄膜形成プロセスの全体的なコストを押し上げる大きな要因となっていた。すなわち、ステンレス鋼からなるマスク部材は、その原材料コストが高いばかりでなく、微細かつ高精度の加工を要するため、加工コストも高く、このようなステンレス鋼製マスク部材を再使用できないことは、パターン薄膜形成プロセスの全体的なコストを低減するための大きな障害となっていた。   In a thin film formation process such as sputtering, stainless steel is used as a mask member for forming a Ni film on a substrate in a predetermined pattern, and the chemical solution for etching and removing the Ni film deposited on the mask member is used as described above. When using a halogen-based chemical solution or an iron chloride-based chemical solution, there are the following problems. That is, if a stainless steel mask member is immersed in these chemical solutions, not only the Ni film on the mask member is dissolved, but also the mask member itself is eroded and the mask member is deformed. The mask member that has been eroded and deformed in this way cannot be used as a mask for pattern formation. Therefore, conventionally, when forming a Ni film using a mask member made of stainless steel, the mask member has to be discarded as it is after the completion of the film forming process such as sputtering. That is, the actual situation is that the mask member made of stainless steel after being used once is discarded without removing the Ni film deposited on its surface and reusing it. This means that the mask member must be replaced with a new one each time a film is formed. Therefore, conventionally, the cost required for the mask member is large, and this has been a major factor that increases the overall cost of the pattern thin film forming process. That is, the mask member made of stainless steel not only has a high raw material cost, but also requires fine and high-precision processing, so the processing cost is also high, and it is impossible to reuse such a stainless steel mask member. This has been a major obstacle to reducing the overall cost of the thin film formation process.

この発明は、以上のような事情に鑑みてなされたもので、スパッタリングなどを用いたパターン薄膜形成プロセスにおいてパターン形成のために使用されるステンレス鋼製のマスク部材の表面から、薄膜形成工程で堆積されたNi膜を除去するにあたり、ステンレス鋼製のマスク部材を侵食させることなく、Ni膜を効果的に除去し得る方法を提供することを課題としている。   The present invention has been made in view of the above circumstances, and is deposited in the thin film formation process from the surface of a stainless steel mask member used for pattern formation in a pattern thin film formation process using sputtering or the like. An object of the present invention is to provide a method capable of effectively removing the Ni film without eroding the stainless steel mask member in removing the Ni film formed.

本発明者らは、前述の課題を解決し得る方法について種々実験、検討を重ねた結果、ステンレス鋼製マスク部材表面のNi膜の洗浄、除去のための薬液としては、硫酸と硝酸との混酸、とりわけ硫酸を15〜25wt%、硝酸を5〜15wt%含有し、残部が実質的に水よりなる混酸を用いることが、ステンレス鋼製マスク部材の侵食を防止しつつNi膜を除去するために有効であることを見い出し、この発明をなすに至ったのである。
なお、ステンレス鋼ではなく、銅や銅合金からなるマスク部材上のNi膜を除去するための薬液として各所の混酸を用いることは、前記特許文献2、特許文献3などにより従来から知られているが、金属の種類が異なれば、同じ薬液を使用してもそれによる溶解作用、浸食作用は異なり、したがって前記特許文献2、特許文献3に示されている薬液をそのままステンレス鋼製のマスク部材に適用しても、それによって前述の課題を解決し得るか否かは、予測することは困難である。すなわちこの発明は、あくまでステンレス鋼からなるマスク部材について、前述の課題を解決しようとしているのである。
As a result of repeated experiments and studies on the method capable of solving the above-mentioned problems, the present inventors have found that a mixed solution of sulfuric acid and nitric acid is used as a chemical solution for cleaning and removing the Ni film on the surface of the stainless steel mask member. In particular, in order to remove the Ni film while preventing the erosion of the stainless steel mask member, it is possible to use a mixed acid containing 15 to 25 wt% sulfuric acid and 5 to 15 wt% nitric acid, and the balance being substantially made of water. It has been found that it is effective and has led to the present invention.
In addition, using the mixed acid of various places as a chemical | medical solution for removing Ni film | membrane on the mask member which consists of copper or a copper alloy instead of stainless steel is conventionally known by the said patent document 2, patent document 3, etc. However, if the type of metal is different, even if the same chemical solution is used, the dissolution action and erosion action thereof are different. Therefore, the chemical solution shown in Patent Document 2 and Patent Document 3 is directly used as a mask member made of stainless steel. Even if it is applied, it is difficult to predict whether or not the above-described problems can be solved. In other words, the present invention is intended to solve the above-described problems with respect to a mask member made of stainless steel.

したがってこの発明のステンレス鋼製マスク部材からのNi膜除去方法は、基本的には、薄膜形成技術によって基材上に所定のパターンでNi膜を形成するために使用される、ステンレス鋼製のマスク部材について、その表面に形成されたNi膜を除去するにあたり、硫酸を15〜25wt%、硝酸を5〜15wt%含有する混酸水溶液を用いて、前記Ni膜を溶解、除去することを特徴とするものである。   Therefore, the Ni film removing method from the stainless steel mask member of the present invention basically uses a stainless steel mask used for forming a Ni film in a predetermined pattern on a substrate by a thin film forming technique. In removing the Ni film formed on the surface of the member, the Ni film is dissolved and removed using a mixed acid aqueous solution containing 15 to 25 wt% sulfuric acid and 5 to 15 wt% nitric acid. Is.

ここで、前記混酸水溶液における硫酸と硝酸の合計濃度は、23〜40wt%の範囲内が好ましい。   Here, the total concentration of sulfuric acid and nitric acid in the mixed acid aqueous solution is preferably in the range of 23 to 40 wt%.

また上記の混酸水溶液を用いてNi膜を溶解、除去するにあたっては、Ni膜が形成されたステンレス鋼製のマスク部材を混酸水溶液の浴中に浸漬させても、あるいはマスク部材の表面に混酸水溶液をスプレー法により散布してもよい、   Further, when the Ni film is dissolved and removed using the above mixed acid aqueous solution, the stainless steel mask member on which the Ni film is formed may be immersed in a mixed acid aqueous solution bath or the mixed acid aqueous solution on the surface of the mask member. May be sprayed by spraying,

この発明のステンレス鋼製マスク部材からのNi膜除去方法によれば、ステンレス鋼からなるマスク部材の表面に堆積されたNi膜を除去するに際して、マスク部材を侵食してしまうことなく、Ni膜を除去することが可能となり、そのためマスク部材の侵食による変形の発生を防止して、量産的な規模でもスパッタリングなどの薄膜形成工程で1回以上使用したマスク部材を、繰り返し再使用することが可能となり、ステンレス鋼製マスク部材に要するコストを大幅に低減し、パターン薄膜形成プロセスにおける全体的なコストをも大幅に低減することが可能となった。   According to the Ni film removal method from the stainless steel mask member of the present invention, when removing the Ni film deposited on the surface of the mask member made of stainless steel, the Ni film can be removed without eroding the mask member. Therefore, it is possible to prevent the occurrence of deformation due to the erosion of the mask member, and it is possible to repeatedly reuse the mask member that has been used once or more in the thin film formation process such as sputtering even on a mass production scale. The cost required for the stainless steel mask member can be greatly reduced, and the overall cost in the pattern thin film forming process can be greatly reduced.

この発明のステンレス鋼製マスク部材からのNi膜除去方法を実施している状況の一例を模式的に示す略解図である。It is a schematic diagram which shows typically an example of the condition which is implementing the Ni film removal method from the stainless steel mask member of this invention.

この発明の方法において除去すべきNi膜とは、薄膜形成技術によって基材上に所定のパターンでNi膜を形成するために使用されたステンレス鋼製のマスク部材において、その薄膜形成工程で堆積されてしまったNi膜である。   The Ni film to be removed in the method of the present invention is a stainless steel mask member used for forming a Ni film in a predetermined pattern on a substrate by a thin film formation technique, and is deposited in the thin film formation process. This is a Ni film.

ここで薄膜形成技術とは、代表的にはスパッタリングがあるが、その他、真空蒸着、イオンプレーティングなどのPVD法、あるいは化学的気相成長法(CVD)などを含む。またマスク部材のステンレス鋼としては、例えばオーステナイト系ステンレス鋼として代表的なSUS304、あるいはフェライト系ステンレス鋼として代表的なSUS430が多いが、このほかのオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、さらにはマルテンサイト系ステンレス鋼など、マスク部材として使用可能なステンレス鋼であればよく、特に限定されるものではない。またNi膜とは、通常の各種電子部品における電極形成過程で所定のパターンで形成されるNi膜であれば、特に限定されるものではなく、純Ni膜のほか、Niを主体とするNi合金膜をも含むものとする。   Here, the thin film formation technique typically includes sputtering, but also includes PVD methods such as vacuum deposition and ion plating, or chemical vapor deposition (CVD). As the stainless steel of the mask member, for example, there are many SUS304, which is typical as an austenitic stainless steel, or SUS430, which is typical as a ferritic stainless steel, but other austenitic stainless steel, ferritic stainless steel, and martens There is no particular limitation as long as it is stainless steel that can be used as a mask member, such as site stainless steel. The Ni film is not particularly limited as long as it is a Ni film formed in a predetermined pattern in the process of forming electrodes in various ordinary electronic components. In addition to a pure Ni film, a Ni alloy mainly composed of Ni A membrane is also included.

以下、この発明の方法を実施する形態の一例について、図1を参照して説明する。
図1の(A)において、符号1は、表面にNi膜2が堆積、形成されたマスク部材を示す。この発明を実施するにあたっては、硫酸を15〜25wt%、硝酸を5〜15wt%含有する混酸水溶液4を調製し、その混酸水溶液4を処理槽3内に注入しておく。
そして図1の(B)に示すように、処理槽3内の混酸水溶液4中にマスク部材1を浸漬させ、この混酸水溶液4による化学的溶解作用(エッチング作用)によって、図1の(C)に示すように、マスク部材1の表面のNi膜2を溶解、除去する。
Hereinafter, an example of an embodiment for carrying out the method of the present invention will be described with reference to FIG.
In FIG. 1A, reference numeral 1 denotes a mask member on which a Ni film 2 is deposited and formed on the surface. In carrying out the present invention, a mixed acid aqueous solution 4 containing 15 to 25 wt% sulfuric acid and 5 to 15 wt% nitric acid is prepared, and the mixed acid aqueous solution 4 is poured into the treatment tank 3.
Then, as shown in FIG. 1B, the mask member 1 is immersed in the mixed acid aqueous solution 4 in the treatment tank 3, and the chemical dissolution action (etching action) by the mixed acid aqueous solution 4 causes the (C) in FIG. As shown in FIG. 2, the Ni film 2 on the surface of the mask member 1 is dissolved and removed.

ここで、NI膜除去のためのエッチング液として、硫酸と硝酸の混酸水溶液を用い、しかもその混酸水溶液における硫酸濃度を15〜25wt%、硝酸濃度を5〜15wt%の範囲内に調整しておくことによって、マスク部材のステンレス鋼への侵食を防止しつつ、Ni膜のみを効果的に除去することができる。すなわち、一般にステンレス鋼は高濃度にCrを含有しているため、そのマスク部材のステンレス鋼の表面が硫酸と硝酸の混酸水溶液に接すれば、主として酸化力が強い硝酸による酸化作用によって、ステンレス鋼表面に不動態皮膜が形成され、この不動態皮膜が侵食阻止機能を発揮して、マスク部材が侵食されることが防止される。一方、Ni膜には、この発明で規定する程度の硝酸濃度では不動態がほとんど形成されず、硫酸と硝酸による化学的溶解作用(エッチング作用)によって、Ni膜が溶解され、除去される。   Here, a mixed acid aqueous solution of sulfuric acid and nitric acid is used as an etching solution for removing the NI film, and the sulfuric acid concentration in the mixed acid aqueous solution is adjusted to 15 to 25 wt% and the nitric acid concentration is adjusted to a range of 5 to 15 wt%. Thus, only the Ni film can be effectively removed while preventing the mask member from eroding into the stainless steel. That is, since stainless steel generally contains Cr in a high concentration, if the surface of the stainless steel of the mask member is in contact with a mixed acid aqueous solution of sulfuric acid and nitric acid, the surface of the stainless steel is mainly oxidized by nitric acid having strong oxidizing power. A passive film is formed on the surface, and the passive film exhibits an erosion prevention function, thereby preventing the mask member from being eroded. On the other hand, almost no passivation is formed in the Ni film at a nitric acid concentration of the level specified in the present invention, and the Ni film is dissolved and removed by the chemical dissolution action (etching action) of sulfuric acid and nitric acid.

上記の混酸水溶液における硝酸濃度が5wt%未満では、マスク部材のステンレス鋼の表面に不動態皮膜が十分に形成されず、そのため不動態皮膜を形成してマスク部材の侵食を阻止する効果が十分に得られない。一方硝酸濃度が15wt%を越える場合は、初期はNi膜の溶解除去作用が大きいが、次第にNi膜に不動態が形成されて溶解性が低下してしまい、その結果、完全にはNi膜を除去しきれなくなるか、または部分的に溶解された箇所と溶解されない箇所とがムラ状に生じてしまう(すなわちNi膜の溶解除去が不均一となる)。
また、上記の混酸水溶液における硫酸濃度が15wt%未満では、Ni膜の科学的溶解作用が低くなるとともに、硝酸による上述のようなNi膜に対する後期の不動態形成不動態作用が相対的に強くなって、Ni膜の溶解除去が不均一となる。一方、混酸水溶液における硫酸濃度が25wt%を超えれば、たとえ硝酸が添加されていても、マスク部材の侵食を防止することが困難となり、マスク部材が侵食されてしまう。
したがって以上から、ステンレス鋼製のマスク部材におけるNI膜溶解除去のためのエッチング液である硫酸と硝酸との混酸水溶液としては、硫酸濃度が15〜25wt%、硝酸濃度が5〜15wt%の範囲内にあるものを使用する必要がある。
When the concentration of nitric acid in the above mixed acid aqueous solution is less than 5 wt%, a passive film is not sufficiently formed on the surface of the stainless steel of the mask member, so that the effect of forming a passive film and preventing the erosion of the mask member is sufficient. I can't get it. On the other hand, when the concentration of nitric acid exceeds 15 wt%, the Ni film dissolution and removal action is large at the beginning, but the Ni film is gradually formed with a passive state and the solubility is lowered. As a result, the Ni film is completely removed. The portion that cannot be completely removed or the portion that is partially dissolved and the portion that is not dissolved are unevenly formed (that is, the Ni film is not uniformly dissolved and removed).
In addition, when the sulfuric acid concentration in the mixed acid aqueous solution is less than 15 wt%, the scientific dissolution action of the Ni film is lowered, and the latter passive formation and passive action of the Ni film on the Ni film as described above is relatively strong. Thus, the Ni film is not uniformly dissolved and removed. On the other hand, if the sulfuric acid concentration in the mixed acid aqueous solution exceeds 25 wt%, even if nitric acid is added, it becomes difficult to prevent the mask member from being eroded and the mask member is eroded.
Therefore, from the above, the mixed acid aqueous solution of sulfuric acid and nitric acid, which is an etching solution for removing the NI film in the stainless steel mask member, has a sulfuric acid concentration of 15 to 25 wt% and a nitric acid concentration of 5 to 15 wt%. It is necessary to use what is in.

なお混酸水溶液における硫酸の濃度と硝酸の濃度との合計の濃度は、基本的には限定されないが、通常は23〜40wt%の範囲内とすることが好ましい。硫酸濃度と硝酸濃度との合計濃度が23wt%未満では、混酸水溶液全体としてNi膜に対する化学的溶解作用が小さくなり、NI膜溶解除去に要する時間が長時間となってしまうおそれがある。一方、硫酸濃度と硝酸濃度との合計濃度が40wt%を越えれば、ステンレス鋼からなるマスク部材の侵食が発生するおそれがある。   The total concentration of sulfuric acid and nitric acid in the mixed acid aqueous solution is not basically limited, but it is usually preferably in the range of 23 to 40 wt%. When the total concentration of the sulfuric acid concentration and the nitric acid concentration is less than 23 wt%, the chemical dissolution action with respect to the Ni film as the whole mixed acid aqueous solution becomes small, and there is a possibility that the time required for dissolution and removal of the NI film becomes long. On the other hand, if the total concentration of sulfuric acid concentration and nitric acid concentration exceeds 40 wt%, the mask member made of stainless steel may be eroded.

なお以上の説明では、Ni膜を除去するにあたって、いわゆる浸漬法を適用して、Ni膜除去用(エッチング用)の混酸水溶液の浴中に、Ni膜を有するマスク部材を浸漬するものとしたが、場合によっては、混酸水溶液をマスク部材表面にスプレーしてもよく、このように浸漬法に代えてスプレー法を適用しても、混酸水溶液の硫酸濃度を15〜25wt%、硝酸濃度を5〜15wt%の範囲内としておけば、浸漬法の場合と同様な効果が得られる。   In the above description, when removing the Ni film, a so-called dipping method is applied to immerse the mask member having the Ni film in a mixed acid aqueous solution bath for removing the Ni film (for etching). In some cases, the mixed acid aqueous solution may be sprayed on the surface of the mask member, and even if the spray method is applied instead of the dipping method in this way, the sulfuric acid concentration of the mixed acid aqueous solution is 15 to 25 wt% and the nitric acid concentration is 5 to 5. If the content is within the range of 15 wt%, the same effect as in the dipping method can be obtained.

また図1においては、ステンレス鋼製のマスク部材1の表面に直接Ni膜2が形成されているように示しているが、この発明の方法は、Ni膜2が直接マスク部材1の表面に形成されている場合に限らず、例えばステンレス鋼製のマスク部材1の表面にCrなどの異種金属の薄層が形成されて、その異種金属薄層の上にNi膜が形成されている場合において、その異種金属薄層上のNi膜を除去する場合にも適用できることはもちろんである。   1 shows that the Ni film 2 is directly formed on the surface of the mask member 1 made of stainless steel, the Ni film 2 is formed directly on the surface of the mask member 1 in the method of the present invention. In the case where a thin layer of dissimilar metal such as Cr is formed on the surface of the mask member 1 made of stainless steel, for example, and a Ni film is formed on the dissimilar metal thin layer, Of course, the present invention can also be applied to the removal of the Ni film on the thin metal layer.

以下にこの発明の実施例を記す。なお以下の各実施例は、この発明の効果を示すためのものであり、これらの実施例に記載した条件がこの発明の技術的範囲を限定するものでないことはもちろんである。   Examples of the present invention will be described below. In addition, each following Example is for showing the effect of this invention, and of course, the conditions described in these Examples do not limit the technical scope of this invention.

先ずNi膜除去性試験を、次のように行なった。すなわち、オーステナイト系ステンレス鋼であるSUS304からなる厚み1mmの方形板状(長さ30mm、幅40mm)のマスク部材を用意し、その片面に、予め、厚み0.5μmのNi膜を通常のスパッタリング法により形成しておいた。一方、硫酸、硝酸および水からなる混酸水溶液として、表1のNo.1〜No.15に示すような種々の硫酸濃度、硝酸濃度からなるものを用意した。そして前述のようにしてNi膜が形成されたマスク基材を、混酸水溶液浴中に浸漬させて、Ni膜を除去する実験を行なった。ここで、浸漬時の混酸水溶液の温度(浴温)は、25℃±5℃とし、浸漬時間は5分とした。5分浸漬後、マスク部材を混酸水溶液浴から取り出し、水で洗浄、乾燥させた後、目視および顕微鏡観察によりマスク部材表面のNi膜の除去状況を観察した。その結果を表1の「評価」の「Ni膜除去性」の欄に示す。なおここで、「Ni膜除去性」についての○印は、Ni膜が均一かつほぼ完全に除去された場合を示し、×印は、Ni膜が完全には除去されず、しかも除去状況も不均一で、ムラ状にNi膜が残存していた場合を示す。さらに△印は、除去状況は均一であるが、上記の浸漬時間ではNi膜を除去しきれなかった場合(すなわち完全除去のために5分を越える長時間を要する場合)を示す。   First, the Ni film removability test was performed as follows. That is, a 1 mm thick rectangular plate (length 30 mm, width 40 mm) mask member made of SUS304, which is an austenitic stainless steel, is prepared, and a Ni film with a thickness of 0.5 μm is preliminarily formed on one surface thereof by a normal sputtering method. It was formed by. On the other hand, as a mixed acid aqueous solution composed of sulfuric acid, nitric acid and water, No. 1 in Table 1 was obtained. 1-No. 15 having various sulfuric acid concentrations and nitric acid concentrations as shown in FIG. Then, an experiment for removing the Ni film was performed by immersing the mask base material on which the Ni film was formed as described above in a mixed acid aqueous solution bath. Here, the temperature (bath temperature) of the mixed acid aqueous solution at the time of immersion was 25 ° C. ± 5 ° C., and the immersion time was 5 minutes. After immersion for 5 minutes, the mask member was taken out of the mixed acid aqueous solution bath, washed with water and dried, and then the removal state of the Ni film on the mask member surface was observed visually and under a microscope. The result is shown in the column of “Ni film removability” of “Evaluation” in Table 1. In this case, the mark “◯” for “Ni film removability” indicates the case where the Ni film is uniformly and almost completely removed, and the mark “X” indicates that the Ni film is not completely removed and the removal state is not satisfactory. The case where the Ni film remains uniform and uneven is shown. Furthermore, Δ marks indicate the case where the removal situation is uniform, but the Ni film could not be completely removed by the above immersion time (that is, when a long time exceeding 5 minutes is required for complete removal).

次に混酸水溶液に対するマスク部材の耐侵食性を調べる実験(SUS耐侵食性試験)を行なった。すなわち、上記と同一のSUS304製のマスク部材について、表1のNo.1〜No.15に示す混酸水溶液浴中(浴温25℃±5℃)に24時間浸漬し、取り出して水洗、乾燥後、マスク部材の侵食状況を目視および顕微鏡観察により観察した。その結果を表1中の「評価」の「SUS耐侵食性」の欄に示す。なおここで、「SUS耐侵食性」についての○印は、SUS304製のマスク部材が全く侵食されていなかっか、またはわずかに侵食されてもその最大侵食幅が5μm以下と、実用上支障のない程度であった場合を示し、×印は、最大侵食幅が5μmを超えて侵食されてしまった場合を示す。
さらに総合評価として、上記の「Ni膜除去性」と「SUS耐侵食性」との両者が良好である場合を、総合評価良好(○印)と判断し、それ以外の場合のうち、少なくともいずれか一方の性能が劣っていた場合は総合評価不良(△印、×印)と判断して、これらの総合評価を図1中に示した。
Next, an experiment (SUS corrosion resistance test) for examining the corrosion resistance of the mask member against the mixed acid aqueous solution was performed. That is, for the same SUS304 mask member as described above, No. 1-No. 15 was immersed in a mixed acid aqueous solution bath (bath temperature 25 ° C. ± 5 ° C.) shown in FIG. 15 for 24 hours, taken out, washed with water and dried, and the erosion status of the mask member was observed visually and under a microscope. The result is shown in the column of “SUS corrosion resistance” of “Evaluation” in Table 1. Here, the mark “◯” regarding “SUS erosion resistance” indicates that the mask member made of SUS304 is not eroded at all, or even if it is slightly eroded, its maximum erosion width is 5 μm or less, and there is no practical problem. In this case, the mark X indicates a case where the maximum erosion width exceeds 5 μm and has been eroded.
Furthermore, as a comprehensive evaluation, a case where both the above-mentioned “Ni film removability” and “SUS erosion resistance” are good is judged as a good general evaluation (marked with a circle), and at least one of the other cases. When one of the performances was inferior, it was judged that the overall evaluation was poor (Δ mark, × mark), and these comprehensive evaluations are shown in FIG.

Figure 2012237043
Figure 2012237043

表1から明らかなように、エッチング用の混酸水溶液における硫酸濃度が15wt%〜25%の範囲内でかつ硝酸濃度が15wt%〜25%の範囲内にある本発明例のNo.5〜No.9、No.12、No.13の場合には、いずれも「Ni膜除去性」と「SUS耐侵食性」との両者が良好であり、総合的にも良好であることが確認された。   As is apparent from Table 1, the sample No. of the present invention in which the sulfuric acid concentration in the mixed acid aqueous solution for etching is in the range of 15 wt% to 25% and the nitric acid concentration is in the range of 15 wt% to 25%. 5-No. 9, no. 12, no. In the case of No. 13, both “Ni film removability” and “SUS erosion resistance” were both good, and it was confirmed that they were also good overall.

これに対して、硝酸濃度が15wt%を越え、硫酸濃度が15wt%未満の比較例のNo.1〜No.4の場合には、いずれもNi膜除去性が劣り、5分間の浸漬時間ではNi膜を完全には除去できないばかりか、Ni膜除去状況にムラが発生してしまった。一方、硫酸濃度が25wt%を越え、硝酸濃度が15wt%未満の比較例のNo.10、No.11の場合には、いずれもSUS耐侵食性が不良で、SUS304製のマスク部材が侵食されてしまいまたこれらのうちNo.11の場合は、Ni膜の除去は可能であるものの、除去に長時間を要してしまうことが判明した。さらに比較例のNo.14は、硫酸濃度が15wt%未満、硝酸濃度が5wt%未満の例であり、この場合、No.11と同様に、Ni膜の除去は可能であるものの、除去に長時間を要してしまうことが判明した。また比較例のNo.15は、硫酸濃度が25wt%を越え、硝酸濃度が15wt%を越えている例であり、この場合、SUS耐侵食性が劣り、SUS304製のマスク部材が侵食されてしまうことが判明した。   On the other hand, in the comparative example No. 1 in which the nitric acid concentration exceeds 15 wt% and the sulfuric acid concentration is less than 15 wt%. 1-No. In the case of No. 4, the Ni film removal property was inferior, and not only the Ni film could not be completely removed by the immersion time of 5 minutes, but also the Ni film removal situation was uneven. On the other hand, in the comparative example No. 1 in which the sulfuric acid concentration exceeds 25 wt% and the nitric acid concentration is less than 15 wt%. 10, no. In the case of No. 11, the SUS erosion resistance was poor, and the mask member made of SUS304 was eroded. In the case of 11, the Ni film can be removed, but it has been found that the removal takes a long time. Furthermore, No. of the comparative example. No. 14 is an example in which the sulfuric acid concentration is less than 15 wt% and the nitric acid concentration is less than 5 wt%. As in the case of 11, the Ni film can be removed, but it has been found that the removal takes a long time. The comparative example No. No. 15 is an example in which the sulfuric acid concentration exceeds 25 wt% and the nitric acid concentration exceeds 15 wt%. In this case, the SUS erosion resistance is inferior, and it has been found that the mask member made of SUS304 is eroded.

したがってこれらの実験結果から、エッチング用の混酸水溶液における硫酸濃度を15wt%〜25%の範囲内とすると同時に硝酸濃度を15wt%〜25%の範囲内とすることによって、Ni膜除去性とSUS耐侵食性との両者をともに満足させ得ることが明らかである。   Therefore, from these experimental results, the Ni film removal property and the SUS resistance can be obtained by setting the sulfuric acid concentration in the etching mixed acid aqueous solution within the range of 15 wt% to 25% and at the same time the nitric acid concentration within the range of 15 wt% to 25%. It is clear that both erodibility and satisfaction can be satisfied.

マスク部材のステンレス鋼を、実施例1の場合とは異なるフェライト系のSUS430に変更して、実施例1のNo.1〜No.15と同様に、混酸水溶液の硝酸濃度および硫酸濃度を変化させ、実施例1と同様なNi膜除去性試験およびSUS耐侵食性を行なった。その結果、実施例1について表1に示したものと実質的に同一の結果が得られることが確認された   The stainless steel of the mask member is changed to a ferritic SUS430 different from the case of Example 1, and 1-No. In the same manner as in Example 15, the nitric acid concentration and sulfuric acid concentration of the mixed acid aqueous solution were changed, and the Ni film removal test and SUS erosion resistance were performed in the same manner as in Example 1. As a result, it was confirmed that substantially the same result as that shown in Table 1 was obtained for Example 1.

前記実施例1におけるNi膜除去性試験では、浸漬法によりNi膜の除去を行なったが、本実施例3では、混酸水溶液を、スプレー法によりマスク部材に対して散布することによって、Ni膜除去性試験を実施した。その他は実施例1と同様であり、混酸水溶液の硝酸濃度および硫酸濃度も、実施例1No.1〜No.15と同様に変化させた。その結果、実施例1について表1に示したものと実質的に同一の結果が得られることが確認された。   In the Ni film removal test in Example 1, the Ni film was removed by the dipping method. In Example 3, the Ni film removal was performed by spraying the mixed acid aqueous solution on the mask member by the spray method. A sex test was performed. Others were the same as in Example 1. The nitric acid concentration and sulfuric acid concentration of the mixed acid aqueous solution were also the same as in Example 1 No. 1-No. 15 was changed. As a result, it was confirmed that substantially the same results as those shown in Table 1 for Example 1 were obtained.

1・・・マスク部材、 2・・・Ni膜、3・・・処理槽、 4・・・混酸水溶液 DESCRIPTION OF SYMBOLS 1 ... Mask member, 2 ... Ni film | membrane, 3 ... Treatment tank, 4 ... Mixed acid aqueous solution

Claims (4)

薄膜形成技術によって基材上に所定のパターンでNi膜を形成するために使用されるステンレス鋼製のマスク部材について、その表面に形成されたNi膜を除去するにあたり、
硫酸を15〜25wt%、硝酸を5〜15wt%含有する混酸水溶液を用いて、前記Ni膜を溶解、除去することを特徴とする、ステンレス鋼製マスク部材からのNi膜除去方法。
In removing the Ni film formed on the surface of the stainless steel mask member used for forming the Ni film in a predetermined pattern on the substrate by the thin film formation technique,
A method for removing a Ni film from a stainless steel mask member, comprising dissolving and removing the Ni film using a mixed acid aqueous solution containing 15 to 25 wt% sulfuric acid and 5 to 15 wt% nitric acid.
請求項1に記載のステンレス鋼製マスク部材からのNi膜除去方法において、
前記混酸水溶液における硫酸と硝酸の合計濃度を、23〜40wt%の範囲内としたことを特徴とする、ステンレス鋼製マスク部材からのNi膜除去方法。
In the Ni film removal method from the stainless steel mask member according to claim 1,
A method for removing a Ni film from a stainless steel mask member, characterized in that a total concentration of sulfuric acid and nitric acid in the mixed acid aqueous solution is within a range of 23 to 40 wt%.
請求項1、請求項2のうちのいずれかの請求項に記載のステンレス鋼製マスク部材からのNi膜除去方法において、
Ni膜が形成されたステンレス鋼製の前記マスク部材を、前記混酸水溶液の浴中に浸漬させることを特徴とする、ステンレス鋼製マスク部材からのNi膜除去方法。
In the Ni film removal method from the stainless steel mask member according to any one of claims 1 and 2,
A method for removing a Ni film from a stainless steel mask member, comprising immersing the stainless steel mask member on which a Ni film is formed in a bath of the mixed acid aqueous solution.
請求項1、請求項2のうちのいずれかの請求項に記載のステンレス鋼製マスク部材からのNi膜除去方法において、
Ni膜が形成されたステンレス鋼製の前記マスク部材の表面に、前記混酸水溶液をスプレー法により散布することを特徴とする、ステンレス鋼製マスク部材からのNi膜除去方法。
In the Ni film removal method from the stainless steel mask member according to any one of claims 1 and 2,
A method for removing a Ni film from a stainless steel mask member, comprising spraying the mixed acid aqueous solution onto a surface of the mask member made of stainless steel on which a Ni film is formed.
JP2011107606A 2011-05-12 2011-05-12 METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL Withdrawn JP2012237043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011107606A JP2012237043A (en) 2011-05-12 2011-05-12 METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011107606A JP2012237043A (en) 2011-05-12 2011-05-12 METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL

Publications (1)

Publication Number Publication Date
JP2012237043A true JP2012237043A (en) 2012-12-06

Family

ID=47460198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011107606A Withdrawn JP2012237043A (en) 2011-05-12 2011-05-12 METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL

Country Status (1)

Country Link
JP (1) JP2012237043A (en)

Similar Documents

Publication Publication Date Title
CN100582306C (en) Stainless steel etching technique
TWI424091B (en) Stabilized etch solutions for cu and cu/ni layers
JP4605409B2 (en) Surface treatment method of aluminum or aluminum alloy
JP4981284B2 (en) Method for producing titanium material for fuel cell separator
JP2010077532A (en) Sealing method for anodic oxide film
JP2009127101A (en) Solution for processing of metal replacement with aluminum or aluminum alloy and method for surface processing using such solution
WO2005017230A1 (en) Etching solution for titanium-containing layer and method for etching titanium-containing layer
JP4961776B2 (en) Pattern forming mask and cleaning method thereof
US20080277288A1 (en) Method For Removing A Coating From A Component
KR100944596B1 (en) Anodic oxidation coating remover composition and method of removing anodic oxidation coatings
JP4429141B2 (en) Etching solution set, etching method using the same, and method for manufacturing wiring board
JP2012237043A (en) METHOD FOR REMOVING Ni FILM FROM MASK MEMBER MADE OF STAINLESS STEEL
JP4816256B2 (en) Etching method
KR102536249B1 (en) Cleaning composition for removing oxide and method of cleaning using the same
JP5437541B1 (en) Resist stripper
JP2004137586A (en) Etching liquid, and etching method
JP4826372B2 (en) Stainless steel sheet having uniform film and method for producing the same
JP2008031038A (en) Method for cleaning surface of quartz glass
JP5396113B2 (en) Method for removing oxidized scale of copper alloy material
KR20180001992A (en) Cleaning composition for removing oxide and method of cleaning using the same
JP5299321B2 (en) Plating method
JP4774014B2 (en) Al or Al alloy
Raj et al. Chemical machining process-an overview
JP6090758B2 (en) Perforated metal plate and manufacturing method thereof
JP4944507B2 (en) Etching solution

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805