JP2012235036A - Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same - Google Patents

Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same Download PDF

Info

Publication number
JP2012235036A
JP2012235036A JP2011104066A JP2011104066A JP2012235036A JP 2012235036 A JP2012235036 A JP 2012235036A JP 2011104066 A JP2011104066 A JP 2011104066A JP 2011104066 A JP2011104066 A JP 2011104066A JP 2012235036 A JP2012235036 A JP 2012235036A
Authority
JP
Japan
Prior art keywords
heat
wiring board
copper foil
printed wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011104066A
Other languages
Japanese (ja)
Inventor
Yoshihiro Okuyama
美弘 奥山
Takashi Hyodo
貴志 兵頭
Tamotsu Onodera
保 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Tanaka Kikinzoku Kogyo KK
Original Assignee
Shimadzu Corp
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Tanaka Kikinzoku Kogyo KK filed Critical Shimadzu Corp
Priority to JP2011104066A priority Critical patent/JP2012235036A/en
Publication of JP2012235036A publication Critical patent/JP2012235036A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PROBLEM TO BE SOLVED: To promptly transfer heat of a mounted heating component to a heat radiation component to radiate the heat in a multilayer printed wiring board.SOLUTION: Thick copper foil layers for heat radiation 6a, 6b are laminated on a multilayer interconnection printed wiring board 10, and lands 11, on which a heating component 1 and a heat sink 9 are mounted, are formed so as to be separated from lands for other devices and circuits. A plating layer 4 is formed on an inner wall of a through hole 3 formed in each land 11 to be connected with the thick copper foil layers for heat radiation exposed on an inner wall surface of the through hole. A copper heat conductive paste 5 fills the through holes and plating 2 is performed on surfaces of the copper heat conductive paste 5 to form a heat transmission layer, transmitting heat to the heating component 1 and the heat sink 9, on the lands 11.

Description

本発明は、高密度実装が行われるプリント配線基板において高発熱量の電子部品からの発熱を効果的に放熱する厚銅箔プリント配線基板およびその製造方法に関する。 The present invention relates to a thick copper foil printed wiring board that effectively dissipates heat generated from an electronic component having a high calorific value in a printed wiring board on which high-density mounting is performed, and a method for manufacturing the same.

近年の半導体デバイス等の電子部品の動作速度向上、実装密度の向上に伴い、これらの部品の発熱量も著しく増大してきている。このため、これらの電子部品を搭載するプリント配線基板ではこれらの発熱を速やかに放熱・冷却しなければこれら電子部品の機能が低下し、或いは損なわれるため、これらの熱を速やかに放出することが求められている。
これらの熱の放出、冷却手段として設置されるヒートシンクなどの能力向上が図られているが、その一方で、高密度に実装されたプリント配線基板において搭載された発熱電子部品からこれらの放熱・冷却手段にいたる効果的な熱の伝導経路を構築する必要がある。
このため、このような電子部品から発生する熱を多層プリント配線基板から効率よく放熱させるためプリント配線基板にはさまざまな工夫がなされている。例えば、特開2003−101177号公報(特許文献1)にみられるようにアルミニウム、銅または亜鉛鋼板などからなる金属板に絶縁皮膜を形成した厚銅箔配線基板を用いたもの、特開2004−140063号公報〈特許文献2〉にみられるようにガラスエポキシ多層板に銅板を直接貼り付けたもの、あるいは、特開2004−179291号公報(特許文献3)にみられるようにアルミニウムの内層コア基板を用いたものなどがある。
With recent improvements in operating speed and mounting density of electronic components such as semiconductor devices, the amount of heat generated by these components has also increased significantly. For this reason, in a printed wiring board on which these electronic components are mounted, the function of these electronic components is degraded or impaired unless these heat generation is promptly dissipated and cooled. It has been demanded.
While these heat release and heat sinks installed as cooling means have improved capabilities, on the other hand, heat dissipation and cooling from the heat-generating electronic components mounted on the printed wiring board mounted at high density There is a need to build an effective heat conduction path to the means.
For this reason, in order to efficiently dissipate the heat generated from such electronic components from the multilayer printed wiring board, various contrivances have been made on the printed wiring board. For example, as shown in Japanese Patent Application Laid-Open No. 2003-101177 (Patent Document 1), a thick copper foil wiring board in which an insulating film is formed on a metal plate made of aluminum, copper, a galvanized steel plate, or the like is disclosed. No. 140063 <Patent Document 2> A glass epoxy multilayer board directly attached with a copper plate, or Japanese Patent Application Laid-Open No. 2004-179291 (Patent Document 3) There are things that use.

しかしながら、近年、電子部品の大容量、高密度化実装の要請に伴い、多層配線基板の板厚が薄くなるとともにビアホール形成のための最小ドリル穴径が0.5mm程度の大きさから0.2mm程度の大きさへ移行し始め、多層配線基板の配線密度が高密度化してきた。金属板や金属コア基板を用いるこれまでのやり方では多層配線基板の板厚を薄くすることができないので、微小なデバイスを搭載するための厚銅箔多層配線基板を採用することが検討され始めた。しかし、厚銅箔多層配線基板の場合にはめっきにより箔が構成されることおよび箔の厚さが金属コア基板等よりも薄いため高発熱電子部品から発生する熱によって隣接するデバイスが悪影響を受けやすいという問題があった。特に、単位面積あたりの発熱量が多くなると、厚銅箔回路にかかる熱負荷が大きくなり隣接する電子部品にも熱影響が及ぶため、多層配線基板の配線密度及び搭載デバイスを高密度化することができなかった。
例えば、特開2003−101177号公報のメタルコア配線基板を用いたものでは、図2に例示されるように、高発熱電子部品から発生する熱はボンディングワイヤを伝ってボンディングパッド直下のスルーホールからメタルコア配線基板へ伝達される。しかし、スルーホール内部には絶縁部材が充填されているため、ボンディングパッド直下の熱はスルーホール側壁の導電層を伝って移動する。同様に、スルーホール側壁からの熱は絶縁部材を介して間接的にメタル基板へ伝わり、直接メタルコア配線基板へ伝熱することはできない。他方、メタルコア配線基板はそれ自身十分な放熱特性を有しているので、メタルコア配線基板からの放熱については特段の工夫はなされていない。
また、特開2004−179291号公報のアルミニウム等のコア基板を用いたものでは、図1に例示されるように、高発熱電子部品から発生する熱は有底スルーホールの側壁を伝わり、陽極酸化皮膜を隔ててアルミニウム等のコア基板へ伝えられる。コア基板は「0.5〜2.0mm程度の厚みがある」ので、陽極酸化皮膜上で蓄積される熱は余裕を持ってコア基板へ吸収することができ、陽極酸化皮膜の熱膨張係数がアルミニウム金属のそれと異なっていても問題とならない。したがって、金属コア基板からの放熱については特段の工夫はなされていない。
しかし、厚銅箔多層配線基板の場合には箔の厚さが数百μm以下と金属コア基板等よりも薄いため陽極酸化皮膜とアルミニウム金属との間で熱の伝達と吸収をうまく行うことができない。そのため単位面積あたりの発熱量が多くなった場合、とくに繰返しの熱衝撃を伴うときには、数十ミクロンの陽極酸化皮膜に亀裂が入ったり金属めっきがはく離したりする。この発熱問題のためデバイスを高密度に搭載することはできなかった。
また、特開2004−140063号公報のスルーホールの内部に熱硬化性の銀ペーストを用いた多層配線基板では、図1に例示されるように、高発熱電子部品から発生する熱は有底スルーホール内部の銀ペースト伝導体を経由し、反対側にある銅板へ伝えられて放熱される。しかしながら、裏面の銅板が放熱のための一定面積を必要とするため、プリント配線基板に裏面の他のデバイス密集度が高められないという欠点があった。また、高発熱電子部品から発生した熱は、銀ペースト充填孔を経由して裏面に放散させるため裏面に搭載するデバイスの配置スペースや集積度が制限されるという問題がある。
However, in recent years, with the demand for high-capacity and high-density mounting of electronic components, the thickness of the multilayer wiring board has been reduced, and the minimum drill hole diameter for via hole formation is from about 0.5 mm to 0.2 mm. The wiring density of the multilayer wiring board has been increased, starting to shift to a certain size. Since conventional methods using metal plates and metal core substrates cannot reduce the thickness of multilayer wiring boards, it has begun to consider the use of thick copper foil multilayer wiring boards for mounting micro devices. . However, in the case of a thick copper foil multilayer wiring board, the adjacent device is adversely affected by the heat generated from the high heat generation electronic components because the foil is formed by plating and the thickness of the foil is thinner than the metal core board. There was a problem that it was easy. In particular, if the amount of heat generated per unit area increases, the heat load on the thick copper foil circuit increases and the adjacent electronic components are also affected by heat, so the wiring density of the multilayer wiring board and the mounted devices must be increased. I could not.
For example, in the case of using the metal core wiring board disclosed in Japanese Patent Application Laid-Open No. 2003-101177, as illustrated in FIG. 2, the heat generated from the highly heat-generating electronic component travels through the bonding wire through the through hole directly below the bonding pad to the metal core. It is transmitted to the wiring board. However, since the through hole is filled with an insulating member, the heat immediately below the bonding pad moves along the conductive layer on the side wall of the through hole. Similarly, heat from the side wall of the through hole is indirectly transmitted to the metal substrate through the insulating member, and cannot be directly transferred to the metal core wiring substrate. On the other hand, since the metal core wiring board itself has sufficient heat dissipation characteristics, no special contrivance has been made for heat dissipation from the metal core wiring board.
Further, in the case of using a core substrate such as aluminum disclosed in Japanese Patent Application Laid-Open No. 2004-179291, as illustrated in FIG. 1, the heat generated from the highly heat-generating electronic component is transmitted through the side wall of the bottomed through hole, and anodized. It is transmitted to the core substrate such as aluminum through the film. Since the core substrate has a thickness of about 0.5 to 2.0 mm, the heat accumulated on the anodized film can be absorbed into the core substrate with a margin, and the thermal expansion coefficient of the anodized film is It does not matter if it is different from that of aluminum metal. Therefore, no special contrivance has been made for heat dissipation from the metal core substrate.
However, in the case of a thick copper foil multilayer wiring board, the thickness of the foil is several hundred μm or less, which is thinner than the metal core board, etc., so that heat transfer and absorption can be performed well between the anodized film and the aluminum metal. Can not. Therefore, when the calorific value per unit area increases, especially when accompanied by repeated thermal shock, the anodic oxide film of several tens of microns is cracked or the metal plating is peeled off. Due to this heat generation problem, the devices could not be mounted at high density.
Further, in a multilayer wiring board using a thermosetting silver paste inside a through hole disclosed in Japanese Patent Application Laid-Open No. 2004-140063, as illustrated in FIG. The heat is dissipated by being transferred to the copper plate on the opposite side via the silver paste conductor inside the hole. However, since the copper plate on the back surface needs a certain area for heat dissipation, there is a drawback that the density of other devices on the back surface cannot be increased on the printed wiring board. In addition, since heat generated from the highly heat-generating electronic component is dissipated to the back surface through the silver paste filling hole, there is a problem that the arrangement space and integration degree of devices mounted on the back surface are limited.

そこで、特開2004−179291号公報のアルミニウムコア基板の替わりに銅等の金属コア基板を使用することも考えられる。しかし、銅はアルミニウムと比べて比重が高いので重くなり、実装上の保持手段に難がある。また、熱放散に伴う温度上昇によって金属コア層と中間樹脂層との熱膨張係数の違いによる圧縮・収縮の応力を受ける。この熱応力ひずみが繰り返されて蓄積されていくと、比較的低い温度の繰返しの熱衝撃に対してもクラック等により導通不良を生じてしまうという欠点が生じる。そこで、銅の厚さを薄くしようとすると、銅層を経由する放熱量が低下して発熱電子部品を使用した際の熱放散を直接受けて隣接デバイスが熱劣化を受けるという問題がある。よって、これまでは高発熱電子部品を使用した場合、デバイスの密集度を高くすることができず、金属板やコア基板を用いてプリント配線基板はある程度厚くならざるを得なかった。 Therefore, it is also conceivable to use a metal core substrate such as copper instead of the aluminum core substrate disclosed in Japanese Patent Application Laid-Open No. 2004-179291. However, since copper has a higher specific gravity than aluminum, it becomes heavier and there is a difficulty in holding means for mounting. Further, due to the temperature rise accompanying heat dissipation, the metal core layer and the intermediate resin layer are subjected to compression / shrinkage stress due to the difference in thermal expansion coefficient. When this thermal stress strain is repeated and accumulated, there is a drawback that conduction failure occurs due to cracks or the like even with repeated thermal shock at a relatively low temperature. Therefore, when attempting to reduce the thickness of copper, there is a problem in that the amount of heat dissipation via the copper layer is reduced, and heat is dissipated directly when the heat generating electronic component is used, and adjacent devices are subject to thermal degradation. Therefore, until now, when high heat-generating electronic components are used, the density of devices cannot be increased, and the printed wiring board has to be thickened to some extent using a metal plate or a core substrate.

一方、多層配線基板の構造を利用して、積層された回路層を放熱用のルート回路とする工夫も提案されている。
特開2006−49412号公報(特許文献4)には発熱する電子部品直下に基板裏面に達する放熱用スルーホールを多数形成し、発熱部品からの熱をこの導電層を介して基板表面から放散すると共に基板外縁の筐体に伝達して放熱することが記載されている。この熱伝達用として、大小多数のスルーホールを発熱部品直下及び基板外縁近傍に形成してその数とホール径によって熱伝導性の向上と調整を行うと共に熱放散のルートを多くして放熱効果を向上することとしている。
しかしながら、これらの放熱用スルーホールは、積層回路間の接続用のスルーホールと同様の構造で基板内外の回路導電層間の熱伝達を行うため、その熱伝導容量は発熱量の大きい発熱素子の放熱用として充分ではなく、基板内外の回路層自体も温度が上昇して、その他のデバイスを周辺に搭載する余地がなくなるばかりでなく、回路層としての制約のため基板外縁の筐体に達する熱量を大きくすることが困難であって、発熱量の大きな電子部品に対する放熱効果と高密度実装の達成の両面で課題を達成できない。
On the other hand, a device has been proposed in which a laminated circuit layer is used as a route circuit for heat dissipation by utilizing the structure of a multilayer wiring board.
Japanese Patent Laid-Open No. 2006-49412 (Patent Document 4) forms a large number of heat radiating through holes that reach the back of the substrate directly below the heat generating electronic component, and dissipates heat from the heat generating component from the surface of the substrate through this conductive layer. In addition, it is described that the heat is transmitted to the casing on the outer edge of the substrate for heat dissipation. For this heat transfer, a large and small number of through-holes are formed directly under the heat-generating component and in the vicinity of the outer edge of the board to improve and adjust the thermal conductivity according to the number and hole diameter, and increase the heat dissipation route to increase the heat dissipation effect. We are going to improve.
However, these heat-dissipating through-holes transfer heat between circuit conductive layers inside and outside the substrate with the same structure as through-holes for connection between stacked circuits. This is not enough, and the circuit layers inside and outside of the board will rise in temperature, and not only will there be no room for other devices to be mounted in the periphery, but the amount of heat that reaches the housing on the outer edge of the board due to restrictions on the circuit layer. It is difficult to increase the size, and the problem cannot be achieved in terms of both the heat dissipation effect for the electronic component having a large calorific value and the achievement of high-density mounting.

特開2003−101177号公報JP 2003-101177 A 特開2004−140063号公報JP 2004-140063 A 特開2004−179291号公報JP 2004-179291 A 特開2006−49412号公報JP 2006-49412 A

本発明は,上記課題を解決するためになされたものであり、メタルコアに替わる厚銅箔のプリント配線基板を用い、高発熱電子部品を対象として通常の多層配線基板と同様にデバイス密度が高い厚銅箔プリント配線基板を提供するものである。また、本発明は、高発熱電子部品の放熱ルートと他のデバイスの放熱ルートを分離・独立させたことによって低温の繰返し熱衝撃や電圧変動に対して耐絶縁破壊特性および耐マイグレーション性の高い厚銅箔プリント配線基板を提供するものである。
他方、本発明の製造方法は、銅等の厚銅箔基板とスルーホール孔内のめっき析出物との密着強度を向上させる方法を提供するものである。また、本発明の製造方法は、低温の繰返し熱衝撃に対して耐久性のある厚銅箔プリント配線基板の製造方法を提供するものである。
The present invention has been made to solve the above-described problems, and uses a thick copper foil printed wiring board instead of a metal core, and has a high device density for high heat generation electronic components as in the case of a normal multilayer wiring board. A copper foil printed wiring board is provided. In addition, the present invention separates and separates the heat dissipation route for highly heat-generating electronic components from the heat dissipation route for other devices, thereby providing a thickness with high dielectric breakdown resistance and migration resistance against repeated low temperature thermal shocks and voltage fluctuations. A copper foil printed wiring board is provided.
On the other hand, the manufacturing method of this invention provides the method of improving the adhesive strength of thick copper foil board | substrates, such as copper, and the plating deposit in a through-hole hole. Moreover, the manufacturing method of this invention provides the manufacturing method of the thick copper foil printed wiring board which is durable to a low temperature repeated thermal shock.

上記の課題を解決するための、本発明の発熱部品搭載用の厚銅箔プリント配線基板の構成は、以下の通りである。
(1) 配線基板の表層に発熱部品を搭載し、その発熱を内部の放熱用厚銅箔層を介して配線基板の端部より放熱するための厚銅箔配線基板であって、一方の発熱部品及び放熱部品に対して周辺のランド群から分離、独立した発熱部品及び放熱部品搭載用のランドを有し、そのランドは単数または複数のめっきスルーホールと連結され、その個々のめっきスルーホールの内部は熱伝導性樹脂体で充填され、かつ、そのめっきスルーホールの側壁面のめっき層がスルーホール側壁面に露出した放熱用厚銅箔層と連結されて熱伝導する放熱基板を構成し、前記発熱部品に近接したランド群は、前記の厚銅箔層とは連結されず、表層回路または前記厚銅箔層の上下に積層された中間銅箔層に形成された回路と連結されて配線基板を構成していることを特徴とする発熱部品搭載用の厚銅箔プリント配線基板。
The configuration of the thick copper foil printed wiring board for mounting the heat generating component of the present invention for solving the above-described problems is as follows.
(1) A thick copper foil wiring board for mounting a heat generating component on the surface layer of the wiring board and dissipating the heat from the end of the wiring board through the internal heat radiating thick copper foil layer. Separated from surrounding lands for parts and heat dissipation parts, has independent heat generation parts and lands for mounting heat dissipation parts, and the lands are connected to one or more plated through holes, and each of the plated through holes The inside is filled with a heat conductive resin body, and the plated layer on the side wall surface of the plated through hole is connected to the thick copper foil layer for heat radiation exposed on the through hole side wall surface to constitute a heat radiating substrate that conducts heat, The land group close to the heat-generating component is not connected to the thick copper foil layer, but is connected to a surface layer circuit or a circuit formed on an intermediate copper foil layer stacked above and below the thick copper foil layer. Make up the board Thick copper foil printed wiring board for mounting heat generating parts.

また、本発明の発熱部品搭載用の厚銅箔プリント配線基板の実施態様は以下のとおりである。
(2)スルーホールを充填する熱伝導層表面を含むランドがめっきにより発熱部品及び放熱部品接続のための熱伝導めっき層が形成されていることを特徴とする(1)記載の厚銅箔プリント配線基板。
(3)基板裏面側において、スルーホールを充填する熱伝導層表面を含むランドにめっき層が形成されていることを特徴とする(1)に記載の厚銅箔プリント配線基板。
(4)上記めっき層が無電解または電解法による銅めっきであることを特徴とする(1)に記載の厚銅箔プリント配線基板。
(5)樹脂ペーストが熱伝導性の銅樹脂ペーストであることを特徴とする(1)に記載の厚銅箔プリント配線基板。
Moreover, the embodiment of the thick copper foil printed wiring board for mounting the heat generating component of the present invention is as follows.
(2) The thick copper foil print according to (1), wherein the land including the surface of the heat conductive layer filling the through hole is formed with a heat conductive plating layer for connecting the heat generating component and the heat radiating component by plating. Wiring board.
(3) The thick copper foil printed wiring board according to (1), wherein a plating layer is formed on a land including the surface of the heat conductive layer filling the through hole on the back side of the board.
(4) The thick copper foil printed wiring board according to (1), wherein the plating layer is copper plating by electroless or electrolytic method.
(5) The thick copper foil printed wiring board according to (1), wherein the resin paste is a heat conductive copper resin paste.

他方、上記の課題を解決するための、発熱部品搭載用の厚銅箔プリント配線基の製造方法は、以下の通りである。
(6)発熱部品搭載用の厚銅箔プリント配線基板の製造方法であって、
A:基板内に放熱用銅箔層を積層されたプリント配線基板を準備する工程と、
B:該多層プリント配線基板上の導電層に他のデバイス用ランド及び回路パターンと分離独立した発熱部品及び放熱部品を搭載するランドをパターニング形成する工程と
C:該多層プリント配線基板の発熱部品及び放熱部品を搭載するランド部に穿孔して前記放熱用銅箔層に達するスルーホールを形成する工程と、
D:該スルーホールの側壁面にめっき析出層を形成して該側壁面に露出した放熱用銅箔層に接続する工程と、
E:該スルーホールに熱伝導性樹脂を充填する工程と、
F:該スルーホールを充填する熱伝導樹脂表面を含むランド面にめっきする工程と
からなることを特徴とする発熱部品搭載用の厚銅箔プリント配線基板の製造方法であり、
(7)さらに上記の工程に加えて、
G:上記Dのスルーホールにめっき後、そのめっき析出層を熱処理する工程を有することを特徴とする発熱部品搭載用の厚銅箔プリント配線基板の製造方法であり、
(8)また、さらに
H:上記Eの工程でスルーホールに充填した熱伝導性樹脂を加熱分解して硬化した熱伝導性樹脂体とする工程を有することを特徴とする発熱部品搭載用の厚銅箔プリント配線基板の製造方法である。
On the other hand, the manufacturing method of the thick copper foil printed wiring board for mounting a heat-generating component for solving the above-described problems is as follows.
(6) A method of manufacturing a thick copper foil printed wiring board for mounting a heat generating component,
A: preparing a printed wiring board in which a copper foil layer for heat dissipation is laminated in the board;
B: a step of patterning and forming a heat-generating component and a land for mounting a heat-dissipating component separated from other device lands and circuit patterns on the conductive layer on the multilayer printed-wiring substrate; and C: a heat-generating component of the multilayer printed-wiring substrate and A step of forming a through-hole reaching the heat-dissipating copper foil layer by drilling in a land portion on which a heat-dissipating component is mounted;
D: a step of forming a plating deposition layer on the side wall surface of the through hole and connecting to the heat radiating copper foil layer exposed on the side wall surface;
E: filling the through hole with a heat conductive resin;
F: a method of manufacturing a thick copper foil printed wiring board for mounting a heat-generating component, comprising the step of plating a land surface including a surface of a heat conductive resin filling the through-hole,
(7) In addition to the above steps,
G: A method for producing a thick copper foil printed wiring board for mounting a heat-generating component, comprising a step of heat-treating the plating deposition layer after plating the through hole of D,
(8) Further, H: Thickness for mounting a heat-generating component, characterized in that it further includes a step of obtaining a thermally conductive resin body obtained by thermally decomposing the thermally conductive resin filled in the through-hole in the step E. It is a manufacturing method of a copper foil printed wiring board.

また、本発明の発熱部品搭載用の厚銅箔プリント配線基板の製造方法の実施態様は以下のとおりである。
(9)スルーホールめっきおよび/または熱伝導めっき層のめっきが銅めっきであることを特徴とする(6)〜(8)のいずれかに記載の発熱部品搭載用の厚銅箔プリント配線基板の製造方法。
(10)熱伝導性樹脂が熱伝導性の銅樹脂ペーストであることを特徴とする(6)〜(8)のいずれかに記載の発熱部品搭載用の厚銅箔プリント配線基板の製造方法。
Moreover, the embodiment of the manufacturing method of the thick copper foil printed wiring board for heat-emitting components mounting of this invention is as follows.
(9) The through-hole plating and / or the plating of the heat conductive plating layer is a copper plating. The thick copper foil printed wiring board for mounting a heat-generating component according to any one of (6) to (8), Production method.
(10) The method for producing a thick copper foil printed wiring board for mounting a heat-generating component according to any one of (6) to (8), wherein the heat conductive resin is a heat conductive copper resin paste.

本発明は、多層配線プリント基板において、発熱部品から放熱部品に至る熱容量の大きな熱伝導経路を構築したことにより、発熱部品からの熱影響を最小限に抑制して、多層プリント配線基板の熱耐久性を向上すると共にデバイス実装密度を向上し、
また、スルーホール側壁のめっき層に対して加熱処理することによって、スルーホールめっき導電層の繰り返し熱衝撃に対する耐久性を向上し、多層プリント配線基板に於ける高密度、微細化に伴うスルーホール微細化に対して高アスペクト比を達成することができ、一層のデバイス高密度実装と基板の薄型化、軽量化を可能とする。
In the multilayer printed circuit board of the present invention, by constructing a heat conduction path having a large heat capacity from the heat generating component to the heat radiating component, the heat influence from the heat generating component is suppressed to the minimum, and the heat durability of the multilayer printed circuit board is achieved. Improve device packaging density,
In addition, by heat-treating the plated layer on the side wall of the through-hole, the through-hole plated conductive layer is improved in durability against repeated thermal shocks. A high aspect ratio can be achieved, and further device high-density mounting and thinner and lighter substrates are possible.

図1は、本発明の一実施形態の模式図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

本発明の特徴的部分は、発熱部品搭載用の厚銅箔プリント配線基板にあっては上記の「基板表面の発熱部品搭載用のランドに形成したスルーホール内側壁にめっきすると共にその内部は熱伝導性樹脂体で充填され、さらに該樹脂表面を含むランドに熱伝導用めっき層が形成され」ていることであり、厚銅箔プリント配線基板の製造方法にあっては上記の「D:そのめっき析出層を熱処理する工程」または「E:熱伝導性樹脂を加熱分解して樹脂体に形成する工程」である。
スルーホールの内部へのめっきは、無電解めっきであれ電解めっきであれ、めっき液の循環が悪いので正常なめっき析出物を得ることが困難である。特に、高密度基板になればなるほど孔径が0.5mm以下と細くなりアスペクト比が大きくなるため正常なめっき析出物を得にくくなる。そのためプリント配線基板自身をめっき液中で揺動したり、パルスめっきをかけたりして均一な析出物を得ようとする試みもなされているが、プリント配線基板表面のめっき回路層と比較すると正常なめっき析出物を得ることはできない。
本発明は、この不十分なめっき析出物をあらかじめ加熱処理をしておくことによってめっき析出物中に取り込まれる気体成分を放散させておくことも特徴とする。ただし、外見上は、顕微鏡観察してもめっき上がり時とまったく異ならない性状である。プリント配線基板に搭載した発熱部品の使用時に発生する熱は、スルーホール側壁のめっき析出層を伝わり、直接厚銅箔層へ伝達され、厚銅箔層の他端側に設けられた放熱体によって熱が連続的に放散される。このとき、めっき金属層の熱膨張係数とプリント配線基板の絶縁層の熱膨張係数が異なるためにスルーホール側壁のめっき析出層がひずみ応力を受けるが、このめっき析出層はあらかじめ厚銅箔層の発熱部品からの熱による温度よりも高温度で気体成分を放散させるための加熱処理をしてあるので、基板に対する密着性が向上して多数回の熱衝撃の繰返しに対してクラックやめっき層の切断が生じることなく、うまく追従することができる。特に、めっきスルーホールの内部を熱伝導性樹脂体で充填しておくと、高アスペクト比のスルーホール内部で熱伝導性樹脂体はめっき析出層に対して半径方向に拡張収縮を繰り返し、めっき析出層がこれらにバックアップされたサンドイッチ構造となるため熱膨張係数の相違によってひずみが生じにくくなり、熱衝撃の多数回の繰返しに対してさらに安定した結果が得られる。
その上、スルーホールを含む発熱部品搭載側表面ランド部に熱伝導めっき層を形成しておくと、発熱部品から発生した熱をこの熱伝導めっき層を介して直接にスルーホール側壁のめっき析出層へ伝達してすみやかに熱を移動させることができ、スルーホール側壁のめっき析出層に熱負荷が集中することを回避することができる。1箇所の熱伝導めっき層部分に対し複数個のスルーホールを設けると、熱の移動が分散されるため高アスペクト比のスルーホールでも異常に温度が上昇することがない。なお、放熱用銅箔層を複数積層して設ける場合、高発熱部品からの熱影響を避けるため、積層された厚銅箔層は下側の厚銅箔層を高発熱部品からの放熱層に使用し、上側の厚銅箔層を隣接する密集デバイスの放熱層に使用するのが良い。
The characteristic part of the present invention is that a thick copper foil printed wiring board for mounting a heat generating component is plated on the inner wall of the through hole formed in the land for mounting the heat generating component on the surface of the substrate and the inside is heated. It is filled with a conductive resin body, and further, a thermal conductive plating layer is formed on the land including the resin surface ”. In the method of manufacturing a thick copper foil printed wiring board, the above“ D: “Step of heat-treating the plated layer” or “E: Step of thermally decomposing thermally conductive resin to form resin body”.
Plating inside the through hole is difficult to obtain normal plating deposits because of poor circulation of the plating solution, whether it is electroless plating or electrolytic plating. In particular, the higher the density of the substrate, the smaller the hole diameter becomes 0.5 mm or less and the aspect ratio becomes larger, so that it becomes difficult to obtain a normal plating deposit. Therefore, attempts have been made to obtain uniform precipitates by shaking the printed wiring board in the plating solution or applying pulse plating, but it is normal compared to the plated circuit layer on the surface of the printed wiring board. No plating deposit can be obtained.
The present invention is also characterized in that a gas component taken into the plating deposit is diffused by heat-treating the insufficient plating deposit in advance. However, in appearance, it is a property that is not different from that at the time of plating finish even when observed with a microscope. Heat generated when using heat-generating components mounted on a printed circuit board is transmitted to the plated deposit layer on the side wall of the through-hole, directly to the thick copper foil layer, and by a heat sink provided on the other end of the thick copper foil layer. Heat is dissipated continuously. At this time, since the thermal expansion coefficient of the plated metal layer and the thermal expansion coefficient of the insulating layer of the printed wiring board are different, the plated deposit layer on the side wall of the through hole is subjected to strain stress. Since heat treatment is performed to dissipate gas components at a temperature higher than the temperature due to heat from the heat-generating component, adhesion to the substrate is improved, and cracks and plating layers are not affected by repeated thermal shocks. It can follow well without cutting. In particular, if the inside of the plated through hole is filled with a thermally conductive resin body, the thermally conductive resin body repeatedly expands and contracts in the radial direction with respect to the plated deposition layer inside the through hole having a high aspect ratio. Since the layers have a sandwich structure backed up by these layers, distortion is less likely to occur due to the difference in thermal expansion coefficient, and a more stable result can be obtained with respect to many repeated thermal shocks.
In addition, if a heat conductive plating layer is formed on the heat generating component mounting side surface land portion including the through hole, the heat generated from the heat generating component is directly passed through the plating deposit layer on the through hole side wall through the heat conductive plating layer. It is possible to transfer heat to the substrate and quickly move the heat, and it is possible to avoid the heat load from being concentrated on the plating deposition layer on the side wall of the through hole. If a plurality of through-holes are provided for one portion of the heat conductive plating layer, the heat transfer is dispersed, so that the temperature does not rise abnormally even with a high aspect ratio through-hole. When multiple heat-dissipating copper foil layers are provided, the lower thick copper foil layer is used as the heat-dissipating layer from the high-heat-generating component in order to avoid thermal effects from the high-heat-generating component. Use the upper thick copper foil layer as the heat dissipation layer of the adjacent dense device.

以下、図面を参照して本発明による発熱部品搭載用の厚銅箔プリント配線基板の構造を説明する。
図1は、本発明の一実施形態を模式的に示すものである。図1中の1は発熱部品、2は熱伝導めっき層、3はスルーホール、4はスルーホールのめっき層、5は銅含有樹脂体、6a、6bは放熱用厚銅箔層、7は放熱用スルーホール、8はプリント配線回路(層)、9はヒートシンク、10はプリント配線基板である。
The structure of a thick copper foil printed wiring board for mounting a heat-generating component according to the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows an embodiment of the present invention. In FIG. 1, 1 is a heat generating component, 2 is a heat conductive plating layer, 3 is a through hole, 4 is a plating layer of a through hole, 5 is a copper-containing resin body, 6a and 6b are heat-dissipating thick copper foil layers, and 7 is heat dissipation. Through holes, 8 is a printed circuit (layer), 9 is a heat sink, and 10 is a printed circuit board.

発熱部品1から発生した熱は、複数の熱伝導めっき層2のパッドオンホール(図1では1個のパッドオンホールを模式的に例示している。)、および高熱伝導性の銅含有樹脂体5へ伝わる。スルーホール3内へ移動した熱は大部分が上方の厚銅箔層6aへ吸収され、残りの熱が下方の厚銅箔層6bへ吸収される。吸収された熱は厚銅箔層6a、6b内を横方向に伝わる。厚銅箔層6a、6bは熱伝導性が高いので、熱は両側の厚銅箔層6a、6bに接する樹脂層へあまり放散せずに厚銅箔層6a、6bの他端側へ伝わり、放熱スルーホール7へ到達する。放熱スルーホール7はスルーホール3と同じ構造でよい。また、ヒートシンク9の止めねじを放熱スルーホール7内に埋設してプリント配線基板10に固定してもよい。いずれの態様であっても、熱は放熱スルーホール7を伝ってヒートシンク9へ到達し、完全に放散される。なお、スルーホール3の発熱部品1と反対面も熱伝導めっき層2のパッドオンホールとし、グランド層として共用することができる。   The heat generated from the heat generating component 1 is a pad-on-hole (a single pad-on-hole is schematically illustrated in FIG. 1) of a plurality of thermally conductive plating layers 2 and a highly heat-conductive copper-containing resin body. Go to 5. Most of the heat transferred into the through hole 3 is absorbed by the upper thick copper foil layer 6a, and the remaining heat is absorbed by the lower thick copper foil layer 6b. The absorbed heat is transmitted laterally in the thick copper foil layers 6a and 6b. Since the thick copper foil layers 6a and 6b have high thermal conductivity, heat is not dissipated so much to the resin layers in contact with the thick copper foil layers 6a and 6b on both sides, but is transferred to the other end side of the thick copper foil layers 6a and 6b. It reaches the heat dissipation through hole 7. The heat dissipation through hole 7 may have the same structure as the through hole 3. Alternatively, a set screw of the heat sink 9 may be embedded in the heat dissipation through hole 7 and fixed to the printed wiring board 10. In either embodiment, the heat reaches the heat sink 9 through the heat dissipation through hole 7 and is completely dissipated. Note that the surface of the through hole 3 opposite to the heat-generating component 1 can also be used as a pad-on-hole of the heat conductive plating layer 2 and used as a ground layer.

本発明において、スルーホール3の孔径は0.1mm〜1.0mmの範囲が好ましい。1.0mmよりも大きくなりすぎると、充填した樹脂ペーストの焼成時に樹脂ペーストが収縮し過ぎて樹脂体5に亀裂が生じることがあるからである。0.1mmよりも小さくなりすぎると、スルーホール3の孔内にめっき液が進入しづらくなりめっきすることが困難になるからである。より好ましくは0.3mm〜0.8mmの範囲が作業性の点から望ましい。   In the present invention, the hole diameter of the through hole 3 is preferably in the range of 0.1 mm to 1.0 mm. This is because if the thickness is larger than 1.0 mm, the resin paste may shrink too much when the filled resin paste is baked, and the resin body 5 may crack. This is because if the thickness is smaller than 0.1 mm, it is difficult for the plating solution to enter the through hole 3 and plating becomes difficult. More preferably, the range of 0.3 mm to 0.8 mm is desirable from the viewpoint of workability.

本発明において、厚銅箔層6a、6bの厚さは50μm以上であればよいが、実用上は100〜300μmの範囲が好ましい。銅コア基板のように厚くなりすぎると重量が重くなりすぎて取扱いに不便であり、薄いと熱伝達が不十分になるからである。より好ましくは175〜210μmの範囲である。
厚銅箔層6aは表層にできるだけ近く設定するのがよいが、前記の例とは逆に厚銅箔層6bを発熱部品1から発生した熱の排出用に用い、厚銅箔6aを他のデバイス部品群の発熱予防層として用いることもできる。いずれにしても発熱部品1から発生した熱はできるだけ速やかに厚銅箔層へ排出する必要がある。発熱部品1から発生した熱を排出するための厚銅箔層は、好ましくはスルーホール3の孔径に対して基板表面から1:1〜1:10の範囲内にあることが好ましい。1:1未満では厚銅箔層6aから放散された熱が近接したランド群へ到達し、デバイスの誤動作を生じるおそれがあるからである。逆に1:10の範囲を超えると、発熱部品1から発生した熱が厚銅箔6aへ到達するまでに時間がかかりすぎるため、厚銅箔層6a上部の樹脂層を経由して放散された熱が近接したランド群へ到達するおそれがあるからである。厚銅箔層は、発熱部1から発生した熱を確実に吸熱させるため2層以上用いてもよい。この場合、余剰の厚銅箔層6bをグランド層として用いることができる。
In the present invention, the thickness of the thick copper foil layers 6a and 6b may be 50 μm or more, but is practically in the range of 100 to 300 μm. This is because if the thickness is too thick like a copper core substrate, the weight becomes too heavy, which is inconvenient to handle, and if it is thin, heat transfer is insufficient. More preferably, it is the range of 175-210 micrometers.
The thick copper foil layer 6a is preferably set as close as possible to the surface layer. On the contrary to the above example, the thick copper foil layer 6b is used for discharging the heat generated from the heat-generating component 1, and the thick copper foil layer 6a is used for other purposes. It can also be used as a heat generation preventing layer for the device component group. In any case, the heat generated from the heat generating component 1 needs to be discharged to the thick copper foil layer as quickly as possible. The thick copper foil layer for discharging the heat generated from the heat generating component 1 is preferably within a range of 1: 1 to 1:10 from the substrate surface with respect to the hole diameter of the through hole 3. If the ratio is less than 1: 1, the heat dissipated from the thick copper foil layer 6a reaches the adjacent land group, which may cause malfunction of the device. On the other hand, if the ratio exceeds 1:10, it takes too much time for the heat generated from the heat-generating component 1 to reach the thick copper foil 6a, so that it is dissipated through the resin layer above the thick copper foil layer 6a. This is because there is a possibility that heat may reach the adjacent lands. Two or more thick copper foil layers may be used in order to reliably absorb the heat generated from the heat generating portion 1. In this case, the excessive thick copper foil layer 6b can be used as a ground layer.

本発明において、樹脂ペーストとしてはスルーホール用ペ−ストや有底ビアフィル用ペーストを用いることができる。これは、高アスペクト比のスルーホールめっきをした場合に、めっき液の流動性が不十分であってめっき析出物が不安定に析出したとしても充填された樹脂ペーストとうまくなじむからである。樹脂ペーストとしては非導電性のものと導電性のものがあるが、熱伝導性を考慮すると銀や銅を用いた導電性のものが好ましい。金属ペーストとしては、費用対効果の点から導電性銅ペースト、例えばタツタ システム・エレクトロニクス株式会社製の商品名「DDペーストAE1244」(ノンメッキビア用導電性銅ペースト)などが好ましい。 In the present invention, a paste for through holes or a paste for bottomed via fill can be used as the resin paste. This is because when through-hole plating with a high aspect ratio is performed, the fluidity of the plating solution is inadequate, and even if the plating deposits are unstablely deposited, they are compatible with the filled resin paste. The resin paste includes a non-conductive paste and a conductive paste. In consideration of thermal conductivity, a conductive paste using silver or copper is preferable. As the metal paste, conductive copper paste, for example, trade name “DD paste AE1244” (non-plated via conductive copper paste) manufactured by Tatsuta System Electronics Co., Ltd. is preferable from the viewpoint of cost effectiveness.

本発明において、スルーホールめっきは、電気めっきまたは無電解めっきを用いることができる。めっき厚としては10μm以上必要である。発熱部品1から発生した熱を厚銅箔層6aへできるだけ速く到達させ、厚銅箔層6a上部の樹脂層へ熱を蓄積させないためである。めっきの種類としては銅または銀がよく、費用対効果の点から銅めっきがよい。硫酸銅の電解浴または無電解浴が一般的である。いずれの浴でも配線基板のスルーホール側壁に露出した厚銅箔層の端面に直接結合しためっき層を形成することができるので、スルーホール(3)内へ移動した熱を直接的に厚銅箔層(6a)へ伝達することができ、前述のアルミニウムのコア基板のように酸化膜層を介在させる場合に比較して熱伝導性は大きく向上する。めっき厚の上限は経済性から100μmを超える必要はない。好ましくは20〜80μmの範囲がよい。 In the present invention, electroplating or electroless plating can be used for through-hole plating. The plating thickness is required to be 10 μm or more. This is because the heat generated from the heat-generating component 1 reaches the thick copper foil layer 6a as quickly as possible and does not accumulate heat in the resin layer above the thick copper foil layer 6a. As the type of plating, copper or silver is preferable, and copper plating is preferable from the viewpoint of cost effectiveness. Copper sulfate electrolytic baths or electroless baths are common. Since any plating can form a plating layer directly bonded to the end face of the thick copper foil layer exposed on the side wall of the through hole of the wiring board, the heat transferred to the through hole (3) is directly applied to the thick copper foil. It can be transmitted to the layer (6a), and the thermal conductivity is greatly improved as compared with the case where an oxide film layer is interposed like the above-described aluminum core substrate. The upper limit of the plating thickness does not need to exceed 100 μm for economic efficiency. The range of 20 to 80 μm is preferable.

以下、本発明による発熱部品搭載用の厚銅箔プリント配線基板の実施例を説明する。
内層に2層の厚銅箔層(各々175μm)を有する6層のガラスエポキシ樹脂からなる積層体(縦200mm、横250mm、厚さ2mm)3枚を通常の多層板の作製方法で製作した。この銅表層を縦2mm、横2mmの発熱部品1搭載用の放熱面(ランド)を16箇所残してエッチングした。なお、必要であればファインパターン化も可能である。その後、この放熱面に直径0.3mmのドリルで4箇所の貫通孔を穿孔した。この貫通孔に硫酸電解銅めっき浴(硫酸400g/l、銅40g/l)にて2時間めっきをし、平均膜厚50μmのスルーホールめっきを得た。
Embodiments of a thick copper foil printed wiring board for mounting a heat generating component according to the present invention will be described below.
Three laminates (200 mm long, 250 mm wide, 2 mm thick) made of 6 layers of glass epoxy resin having 2 thick copper foil layers (each 175 μm) in the inner layer were produced by a conventional multilayer board production method. This copper surface layer was etched by leaving 16 heat dissipating surfaces (lands) for mounting the heat generating component 1 2 mm long and 2 mm wide. If necessary, a fine pattern can be formed. Thereafter, four through holes were drilled on the heat radiation surface with a drill having a diameter of 0.3 mm. The through-holes were plated for 2 hours in a sulfuric acid electrolytic copper plating bath (sulfuric acid 400 g / l, copper 40 g / l) to obtain through-hole plating with an average film thickness of 50 μm.

これらの積層体は、スルーホールめっき後に8箇所の放熱面へ銅樹脂ペースト(タツタ
システム・エレクトロニクス株式会社製の「AE1244」)を充填し、135℃で45分間大気中で熱処理した。
These laminated bodies were filled with a copper resin paste (“AE1244” manufactured by Tatsuta System Electronics Co., Ltd.) at eight heat dissipating surfaces after through-hole plating and heat-treated at 135 ° C. for 45 minutes in the air.

そのうちの1枚の積層体は、上記の硫酸電解銅めっき浴にて60分間めっきをし、4箇所のスルーホール出入り口のめっき部分上へ平均膜厚20μmの熱伝導めっき層を形成した。
この積層プリント配線基板を電源ドライバーボードとして温度測定した。測定は、熱源として50Ω抵抗、8W印加した条件で、ソース初期温度の22℃から飽和温度に達するまで測定したところ、40分後に飽和温度41.6℃を実測した。
One of the laminates was plated for 60 minutes in the above-described sulfuric acid electrolytic copper plating bath to form a thermally conductive plating layer having an average film thickness of 20 μm on the plated portions at the four through-hole entrances.
The temperature of this laminated printed wiring board was measured using a power driver board. The measurement was carried out under the condition that 50 W resistance and 8 W were applied as a heat source until the saturation temperature was reached from the source initial temperature of 22 ° C., and a saturation temperature of 41.6 ° C. was measured after 40 minutes.

上記の飽和温度41.6℃は、一般的な1.6mm厚の積層体に1mm厚のアルミニウム基板を貼り付けたプリント配線基板を使ったシミュレーションにおける温度43℃から2℃の範囲内の値に収まった。このことは従来のアルミベース基板と同等の熱伝導性を有することを示すものである。
よって、従来のアルミベース基板と同様に放熱スルーホールからはなれた任意の箇所に所望のヒートシンクを備えることができ、放熱部品に近接してデバイス部品を搭載し、高密度に集積させることが可能になった。
The saturation temperature of 41.6 ° C. is a value within the range of 43 ° C. to 2 ° C. in a simulation using a printed wiring board in which a 1 mm thick aluminum substrate is attached to a general 1.6 mm thick laminate. Settled. This indicates that it has a thermal conductivity equivalent to that of a conventional aluminum base substrate.
Therefore, a desired heat sink can be provided at any location away from the heat dissipation through hole as in the case of a conventional aluminum base substrate, and device components can be mounted close to the heat dissipation component and integrated at high density. became.

上記実施例では、発熱部品が複数の放熱用銅箔層に対して複数のめっきスルーホールを連結した場合を説明したが、高輝度発光ダイオード等の発熱部品に対してボンディングワイヤを接続してそのボンディングワイヤの終端が配線基板上のランドやパッドなどに接続されている場合等のように発熱部品や放熱部品が直接多層プリント配線基板上に搭載されず、或いは比較的発熱量が小さい場合でも、また放熱用銅箔層が単数であって、単数のめっきスルーホールと連結されている場合でも上記実施例と同様に適用できる。 In the above embodiment, the case where the heat-generating component has a plurality of plated through holes connected to a plurality of heat-dissipating copper foil layers has been described, but a bonding wire is connected to a heat-generating component such as a high-intensity light emitting diode. Even when the end of the bonding wire is connected to a land, pad, etc. on the wiring board, heat generating parts and heat radiating parts are not directly mounted on the multilayer printed wiring board, or even if the heat generation amount is relatively small, Further, even when the heat dissipation copper foil layer is singular and is connected to a single plated through hole, the present invention can be applied in the same manner as in the above embodiment.

本発明は、特に大型ボール・グリッド・アレイなどが1箇所に集中して搭載される電子部品の用途や、高電力を消費する電源モジュール等の用途や、高輝度発光ダイオード等の発熱量が多い電子部品の用途に適する。   The present invention has a large amount of heat generated by electronic components in which large balls, grid arrays, etc. are mounted in one place, power supply modules that consume high power, and high-intensity light emitting diodes. Suitable for electronic parts.

1 発熱部品
2 熱伝導めっき層(熱伝導べた面)
3 スルーホール
4 スルーホールめっき層
5 熱伝導性樹脂体
6 放熱用厚銅箔層
7 放熱用スルーホール
8 プリント配線回路(層)
9 ヒートシンク(放熱部品)
10 多層プリント配線基板
11 発熱部品(放熱部品)搭載用ランド

1 Heat-generating component 2 Thermal conductive plating layer (thermal conductive solid surface)
3 Through Hole 4 Through Hole Plating Layer 5 Thermal Conductive Resin Body 6 Heat Dissipating Thick Copper Foil Layer 7 Heat Dissipating Through Hole 8 Printed Wiring Circuit (Layer)
9 Heat sink (heat dissipation component)
10 Multilayer printed circuit board 11 Land for mounting heat-generating components (heat dissipating components)

Claims (7)

基板上に搭載した発熱部品から同一基板上に搭載した放熱部品に熱を伝送して放熱する多層プリント配線基板において
該プリント配線基板内に回路配線用導電層から独立した放熱用銅箔層を積層し、
該プリント配線基板上の発熱部品及び放熱部品を搭載するランドを他のデバイス用ランド及び回路層と分離独立して設け、
該ランドから上記放熱用銅箔層に達するスルーホールを形成すると共にその内壁面に露出した該銅箔層に接続するめっき層を形成し、
該スルーホール内を熱導電性樹脂で充填し、
該樹脂層表面を含む上記ランド表面に発熱部品及び放熱部品への熱伝導面となる熱伝導めっき層を形成したことを特徴とする発熱部品搭載用の厚銅箔プリント配線基板。
In a multilayer printed wiring board that dissipates heat by transferring heat from a heat generating component mounted on the board to a heat radiating component mounted on the same board, a heat radiating copper foil layer that is independent of the conductive layer for circuit wiring is laminated in the printed wiring board And
A land for mounting the heat-generating component and the heat-dissipating component on the printed wiring board is provided separately and independently from other device lands and circuit layers,
Forming a through-hole reaching the heat-dissipating copper foil layer from the land and forming a plating layer connected to the copper foil layer exposed on the inner wall surface;
Fill the through hole with a heat conductive resin,
A thick copper foil printed wiring board for mounting a heat generating component, wherein a heat conductive plating layer serving as a heat conductive surface to the heat generating component and the heat radiating component is formed on the land surface including the resin layer surface.
前記スルーホールが多層配線基板裏面に達して、該多層配線基板の表裏が同じく形成されていることを特徴とする請求項1記載の厚銅箔プリント配線基板。 2. The thick copper foil printed wiring board according to claim 1, wherein the through hole reaches the back surface of the multilayer wiring board, and the front and back surfaces of the multilayer wiring board are formed in the same manner. 前記熱伝導めっき層が無電解または電解の銅めっきであることを特徴とする請求項1又は請求項2のいずれかに記載の厚銅箔プリント配線基板。 The thick copper foil printed wiring board according to claim 1, wherein the heat conductive plating layer is electroless or electrolytic copper plating. 樹脂ペーストが熱伝導性の銅樹脂ペーストであることを特徴とする請求項1〜請求項3のいずれかに記載の厚銅箔プリント配線基板。 The thick copper foil printed wiring board according to any one of claims 1 to 3, wherein the resin paste is a heat conductive copper resin paste. 発熱部品搭載用の多層プリント配線基板の製造方法であって、
A:基板内に放熱用銅箔層を積層されたプリント配線基板を準備する工程と、
B:該多層プリント配線基板上の導電層に他のデバイス用ランド及び回路パターンと分離独立した発熱部品及び放熱部品を搭載するランドをパターニング形成し
C:該多層プリント配線基板の発熱部品及び放熱部品を載面するランド部に穿孔して前記放熱用銅箔層に達するスルーホールを形成する工程と、
D:該スルーホールの側壁面にめっき析出層を形成して該側壁面に露出した放熱用銅箔層に接続する工程と、
E:該スルーホールに熱伝導性樹脂を充填する工程と、
F:該スルーホールを充填した熱導電性樹脂表面を含むランド面にめっきする工程と
からなることを特徴とする発熱部品搭載用の厚銅箔プリント配線基板の製造方法。
A method of manufacturing a multilayer printed wiring board for mounting a heat generating component,
A: preparing a printed wiring board in which a copper foil layer for heat dissipation is laminated in the board;
B: A conductive layer on the multilayer printed wiring board is formed by patterning a land for mounting a heat generating component and a heat radiating component separated from other device lands and circuit patterns, and C: a heat generating component and a heat radiating component of the multilayer printed wiring board. Forming a through hole reaching the heat dissipation copper foil layer by perforating the land portion on the surface,
D: a step of forming a plating deposition layer on the side wall surface of the through hole and connecting to the heat radiating copper foil layer exposed on the side wall surface;
E: filling the through hole with a heat conductive resin;
F: A method of manufacturing a thick copper foil printed wiring board for mounting a heat-generating component, comprising the step of plating on a land surface including the surface of the thermally conductive resin filled with the through hole.
G:上記Dのスルーホールにめっき後、そのめっき析出層を熱処理する工程と
ことを特徴とする請求項5記載の発熱部品搭載用の厚銅箔プリント配線基板の製造方法。
6. The method for producing a thick copper foil printed wiring board for mounting a heat-generating component according to claim 5, wherein: G: plating the through-hole of D and then heat-treating the plating deposit layer.
H:上記Eの工程でスルーホールに充填した樹脂を加熱分解して硬化した熱伝導性樹脂体とすることを特徴とする請求項5又は請求項6記載の発熱部品搭載用の厚銅箔プリント配線基板の製造方法。
The thick copper foil print for mounting a heat-generating component according to claim 5 or 6, wherein the heat conductive resin body is obtained by thermally decomposing and curing the resin filled in the through hole in the step E. A method for manufacturing a wiring board.
JP2011104066A 2011-05-09 2011-05-09 Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same Pending JP2012235036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104066A JP2012235036A (en) 2011-05-09 2011-05-09 Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104066A JP2012235036A (en) 2011-05-09 2011-05-09 Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2012235036A true JP2012235036A (en) 2012-11-29

Family

ID=47435062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104066A Pending JP2012235036A (en) 2011-05-09 2011-05-09 Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2012235036A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216567A (en) * 2013-04-26 2014-11-17 株式会社デンソー Multilayer substrate and electronic apparatus using the same
CN104754919A (en) * 2013-12-26 2015-07-01 株式会社电装 Electronic device with temperature detecting element
US9621196B2 (en) 2015-03-05 2017-04-11 Kabushiki Kaisha Toshiba High-frequency module and microwave transceiver
KR20170045518A (en) * 2015-10-19 2017-04-27 주식회사 만도 Electric brake system
JP2021530713A (en) * 2018-07-24 2021-11-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. Temperature-dependent calibration of mobile detection devices
US11737832B2 (en) 2019-11-15 2023-08-29 Magic Leap, Inc. Viewing system for use in a surgical environment
US11756335B2 (en) 2015-02-26 2023-09-12 Magic Leap, Inc. Apparatus for a near-eye display
US11762222B2 (en) 2017-12-20 2023-09-19 Magic Leap, Inc. Insert for augmented reality viewing device
US11776509B2 (en) 2018-03-15 2023-10-03 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11790554B2 (en) 2016-12-29 2023-10-17 Magic Leap, Inc. Systems and methods for augmented reality
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
US11874468B2 (en) 2016-12-30 2024-01-16 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
US11927759B2 (en) 2017-07-26 2024-03-12 Magic Leap, Inc. Exit pupil expander
US11953653B2 (en) 2017-12-10 2024-04-09 Magic Leap, Inc. Anti-reflective coatings on optical waveguides
US11960661B2 (en) 2018-08-03 2024-04-16 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169189A (en) * 1992-11-30 1994-06-14 Hitachi Ltd Chip type heat generating component and packaging thereof
JP2004140063A (en) * 2002-10-16 2004-05-13 O K Print:Kk Wiring board
JP2011060969A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Manufacturing method for wiring substrate
JP2011077177A (en) * 2009-09-29 2011-04-14 Mitsuboshi Belting Ltd Conductor paste for hole filling, substrate with hole filled with conductor, method of manufacturing substrate with hole filled with conductor, circuit substrate, electronic component, and semiconductor package
JP2011082250A (en) * 2009-10-05 2011-04-21 Denso Corp Wiring board and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169189A (en) * 1992-11-30 1994-06-14 Hitachi Ltd Chip type heat generating component and packaging thereof
JP2004140063A (en) * 2002-10-16 2004-05-13 O K Print:Kk Wiring board
JP2011060969A (en) * 2009-09-09 2011-03-24 Toyota Motor Corp Manufacturing method for wiring substrate
JP2011077177A (en) * 2009-09-29 2011-04-14 Mitsuboshi Belting Ltd Conductor paste for hole filling, substrate with hole filled with conductor, method of manufacturing substrate with hole filled with conductor, circuit substrate, electronic component, and semiconductor package
JP2011082250A (en) * 2009-10-05 2011-04-21 Denso Corp Wiring board and method for manufacturing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216567A (en) * 2013-04-26 2014-11-17 株式会社デンソー Multilayer substrate and electronic apparatus using the same
CN104754919A (en) * 2013-12-26 2015-07-01 株式会社电装 Electronic device with temperature detecting element
JP2015126089A (en) * 2013-12-26 2015-07-06 株式会社デンソー Electronic apparatus
US9329090B2 (en) 2013-12-26 2016-05-03 Denso Corporation Electronic device with temperature detecting element
US11756335B2 (en) 2015-02-26 2023-09-12 Magic Leap, Inc. Apparatus for a near-eye display
US9621196B2 (en) 2015-03-05 2017-04-11 Kabushiki Kaisha Toshiba High-frequency module and microwave transceiver
KR20170045518A (en) * 2015-10-19 2017-04-27 주식회사 만도 Electric brake system
KR102397465B1 (en) 2015-10-19 2022-05-13 주식회사 만도 Electric brake system
US11790554B2 (en) 2016-12-29 2023-10-17 Magic Leap, Inc. Systems and methods for augmented reality
US11874468B2 (en) 2016-12-30 2024-01-16 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
US11927759B2 (en) 2017-07-26 2024-03-12 Magic Leap, Inc. Exit pupil expander
US11953653B2 (en) 2017-12-10 2024-04-09 Magic Leap, Inc. Anti-reflective coatings on optical waveguides
US11762222B2 (en) 2017-12-20 2023-09-19 Magic Leap, Inc. Insert for augmented reality viewing device
US11776509B2 (en) 2018-03-15 2023-10-03 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11908434B2 (en) 2018-03-15 2024-02-20 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
JP7426982B2 (en) 2018-07-24 2024-02-02 マジック リープ, インコーポレイテッド Temperature-dependent calibration of movement sensing devices
JP2021530713A (en) * 2018-07-24 2021-11-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. Temperature-dependent calibration of mobile detection devices
US11960661B2 (en) 2018-08-03 2024-04-16 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
US11737832B2 (en) 2019-11-15 2023-08-29 Magic Leap, Inc. Viewing system for use in a surgical environment

Similar Documents

Publication Publication Date Title
JP2012235036A (en) Thick copper foil printed wiring board for mounting heating component and manufacturing method of the same
CN108364921B (en) Efficient heat removal from diode-embedded component carrier
CN107112297B (en) Printed circuit board, semiconductor device, method for manufacturing printed circuit board, and method for manufacturing semiconductor device
WO2008123766A2 (en) High thermal-efficient metal core printed circuit board with selective electrical and thermal circuitry connectivity
JP2010103548A (en) Printed circuit substrate with built-in electronic device, and manufacturing method therefor
KR101095202B1 (en) Hybrid heat-radiating substrate and manufacturing method thereof
TWI435666B (en) Radiant heat circuit board and method for manufacturing the same
US20110272179A1 (en) Printed Circuit Board with Embossed Hollow Heatsink Pad
TW201027697A (en) Mount board and semiconductor module
JP2006332449A (en) Multilayer printed wiring board and method for manufacturing the same
JP2010272836A (en) Heat dissipating substrate and method of manufacturing the same
JP2010263003A (en) Heat-conducting structure of printed board
JP2006165299A (en) Method of manufacturing printed circuit board
JP5175320B2 (en) Heat dissipation board and manufacturing method thereof
WO2013142580A1 (en) Application of dielectric layer and circuit traces on heat sink
JP2007036050A (en) Process for producing multilayer circuit board
CN111031687A (en) Method for preparing heat dissipation circuit board
JP2012004527A (en) Heat-radiating substrate and method of manufacturing the same
CN111148353B (en) Preparation method of circuit board with copper-based heat sink
JP2010062199A (en) Circuit board
KR101080702B1 (en) Light emitted diode package including closed aperture and its manufacture method
JP5275859B2 (en) Electronic substrate
CN111093320A (en) Preparation method of metal heat-dissipation double-sided circuit board
KR101119259B1 (en) Hybrid heat-radiating substrate and manufacturing method thereof
WO2014136175A1 (en) Heat-dissipating substrate and method for producing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150330