JP2012233130A - Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition - Google Patents

Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition Download PDF

Info

Publication number
JP2012233130A
JP2012233130A JP2011104284A JP2011104284A JP2012233130A JP 2012233130 A JP2012233130 A JP 2012233130A JP 2011104284 A JP2011104284 A JP 2011104284A JP 2011104284 A JP2011104284 A JP 2011104284A JP 2012233130 A JP2012233130 A JP 2012233130A
Authority
JP
Japan
Prior art keywords
resin composition
thermosetting resin
glass transition
lignin derivative
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011104284A
Other languages
Japanese (ja)
Inventor
Gen Komiya
玄 小宮
Yoshikazu Takeuchi
美和 竹内
Kenichi Yamazaki
顕一 山崎
Takahiro Imai
隆浩 今井
Goji Fukumoto
剛司 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011104284A priority Critical patent/JP2012233130A/en
Publication of JP2012233130A publication Critical patent/JP2012233130A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition that reduces the occurrence of stress caused with change of temperature.SOLUTION: The thermosetting resin composition comprises as essential component, a thermosetting resin, a lignin derivative, and an inorganic filler. The mass ratio of the lignin derivative to the thermosetting resin falls in the range of 61 to 110 mass%.

Description

本発明の実施形態は、熱硬化性樹脂組成物、およびそれを用いたモールドコイル、スイッチギヤ、プリント基板、回転電機に関する。   Embodiments described herein relate generally to a thermosetting resin composition, and a molded coil, a switch gear, a printed board, and a rotating electrical machine using the same.

例えばエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂は、導体を巻回して形成したコイルを備えたモールドコイルなどに用いられる。このような熱硬化性樹脂は、一般的に熱伝導率が低いことから、導体に通電されたとき、導体に接触している部位の温度が高くなる一方、導体から離れるに従って温度の上昇が鈍化する。このため、導体の温度が熱硬化性樹脂のガラス転移温度を超えるような運転が行われた場合、モールドコイルの内部では、熱硬化性樹脂のガラス転移した部位とガラス転移していない部位との間で応力の発生が繰り返される。このような応力の発生の繰り返しは、熱硬化性樹脂の内部に例えばクラックなどが生じる要因となる。   For example, a thermosetting resin such as an epoxy resin or an unsaturated polyester resin is used for a molded coil having a coil formed by winding a conductor. Since such a thermosetting resin generally has low thermal conductivity, when the conductor is energized, the temperature of the portion in contact with the conductor increases, while the temperature rise slows as the conductor is separated. To do. For this reason, when the operation is performed such that the temperature of the conductor exceeds the glass transition temperature of the thermosetting resin, the portion of the thermosetting resin that has undergone glass transition and the portion that has not undergone glass transition are formed inside the mold coil. The generation of stress is repeated. Such repeated generation of stress causes, for example, cracks in the thermosetting resin.

特開2010−100726号公報JP 2010-100726 A

本発明が解決しようとする課題は、温度変化に伴う応力の発生を低減する熱硬化性樹脂組成物を提供することである。   The problem to be solved by the present invention is to provide a thermosetting resin composition that reduces the occurrence of stress associated with temperature changes.

実施形態の熱硬化性樹脂組成物は、熱硬化性樹脂と、リグニン誘導体と、無機充填剤とを必須成分として含む熱硬化性樹脂組成物であって、リグニン誘導体を熱硬化性樹脂に対する質量比で61質量%から110質量%の範囲で含んでいる。   The thermosetting resin composition of the embodiment is a thermosetting resin composition containing a thermosetting resin, a lignin derivative, and an inorganic filler as essential components, and the mass ratio of the lignin derivative to the thermosetting resin. In the range of 61 mass% to 110 mass%.

一実施形態のモールドコイルの構成を模式的に示す図The figure which shows the structure of the mold coil of one Embodiment typically 一実施形態のモールドコイル内の温度分布を模式的に示す図The figure which shows typically the temperature distribution in the mold coil of one Embodiment 一実施形態の樹脂組成物の製造工程を模式的に示す図The figure which shows typically the manufacturing process of the resin composition of one Embodiment. 一実施形態の樹脂組成物のリグニン含有量とガラス転移温度差ΔTgとの関係を示す図The figure which shows the relationship between lignin content of the resin composition of one Embodiment, and glass transition temperature difference (DELTA) Tg. 一実施形態の樹脂組成物の動的粘弾性と温度との関係を示す図で、(A)はリグニン誘導体を含む樹脂組成物のガラス転移領域を示す図、(B)はリグニン誘導体を含まないエポキシ樹脂のガラス転移領域を示す図It is a figure which shows the relationship between the dynamic viscoelasticity and temperature of the resin composition of one Embodiment, (A) is a figure which shows the glass transition area | region of the resin composition containing a lignin derivative, (B) does not contain a lignin derivative. Diagram showing glass transition region of epoxy resin

以下本発明の一実施形態による熱硬化性樹脂組成物、およびそれを用いたモールドコイルについて図1から図5を参照して説明する。
図1に示すように、一実施形態のモールドコイル1は、導体2と、その導体2をモールドする熱硬化性樹脂組成物(以下、単に樹脂組成物3と称する)とを備えている。モールドコイル1は、導体2を略円環状あるいは略矩形状に巻回したコイル4を樹脂組成物3で注型することにより、全体として略円筒状又は略角筒状に形成されている。モールドコイル1は、その中心孔部が例えば変圧器の鉄心脚部あるいはリアクトルの鉄心等に嵌合されて使用される。導体2は、銅やアルミニウムなどの導電材料で形成されており、その表面に絶縁物の被覆が設けられている。なお、導体2は、図1に示すような断面が円形状の線材だけでなく、断面が矩形状の薄板状であってもよい。また、銅やアルミニウム以外の導電材料で形成してもよい。
Hereinafter, a thermosetting resin composition according to an embodiment of the present invention and a molded coil using the same will be described with reference to FIGS.
As shown in FIG. 1, a molded coil 1 according to an embodiment includes a conductor 2 and a thermosetting resin composition that molds the conductor 2 (hereinafter simply referred to as a resin composition 3). The molded coil 1 is formed in a substantially cylindrical shape or a substantially rectangular tube shape as a whole by casting a coil 4 obtained by winding a conductor 2 in a substantially annular shape or a substantially rectangular shape with a resin composition 3. The mold coil 1 is used with its center hole portion fitted into, for example, a core leg of a transformer or a core of a reactor. The conductor 2 is formed of a conductive material such as copper or aluminum, and an insulating coating is provided on the surface thereof. The conductor 2 may be not only a wire having a circular cross section as shown in FIG. 1 but also a thin plate having a rectangular cross section. Moreover, you may form with electrically conductive materials other than copper and aluminum.

樹脂組成物3は、エポキシ樹脂、リグニン誘導体、および無機充填剤を必須成分として含んでいる。本実施形態では、エポキシ樹脂の主材としてビスフェノールA型ジグリルエーテルを用いている。なお、主材はビスフェノールA型ジグリルエーテルに限定されない。リグニン誘導体は、植物由来のいわゆるバイオマスであり、後述するように溶媒存在下で高温高圧処理を行うことにより抽出されたものである。無機充填剤は、例えばいわゆるシリカやアルミナなどの無機材料であり、コイル4の注型時にコイル4と樹脂組成部との線膨張率の差を緩和するために添加される。本実施形態の場合、樹脂組成物3は、エポキシ樹脂100phr(Parts per Hundred epoxy Resin)に対し、リグニン誘導体を質量比で約80phrの割合、反応促進剤を1phrの割合で含んでいる。また、無機充填剤は、用途に応じた適切な割合で含まれている。なお、樹脂組成物3には、後述する特性を阻害しない範囲で硬化触媒や難燃剤などの添加物も含まれている。   The resin composition 3 contains an epoxy resin, a lignin derivative, and an inorganic filler as essential components. In this embodiment, bisphenol A type diglyl ether is used as the main material of the epoxy resin. The main material is not limited to bisphenol A type diglyl ether. The lignin derivative is so-called biomass derived from plants, and is extracted by performing high-temperature and high-pressure treatment in the presence of a solvent as will be described later. The inorganic filler is an inorganic material such as so-called silica or alumina, for example, and is added to relieve the difference in linear expansion coefficient between the coil 4 and the resin composition portion when the coil 4 is cast. In the case of this embodiment, the resin composition 3 contains a lignin derivative at a mass ratio of about 80 phr and a reaction accelerator at a rate of 1 phr with respect to 100 phr of epoxy resin (Parts per Hundred epoxy Resin). Moreover, the inorganic filler is contained in an appropriate ratio according to the application. In addition, the resin composition 3 includes additives such as a curing catalyst and a flame retardant within a range that does not hinder the characteristics described later.

次に、運転(通電)中のモールドコイル1の内部に生じる状態について説明する。モールドコイル1は、運転時に導体2即ちコイル4が発熱する。例えばJIS C 4003−1998「電気絶縁の耐熱クラス及び耐熱性評価」における耐熱クラスFに分類されるモールド変圧器(モールドトランス)に用いられるモールドコイル1の場合、運転時における導体2の温度は約155℃にもなる。このとき、樹脂組成物3は、図1に点P1で示すような導体2に接触あるいは導体2の近傍に位置する部位の温度が高くなる。一方、点P2で示すような導体2から離れた部位は、温度の上昇が鈍化する。具体的には、図2に示すように、図1の線分L1上における点P1は、導体2の温度に近い約150℃程度にまで温度が上昇する一方、点P2は、一般的に樹脂材料の熱伝導率が低いことから約110℃程度までしか温度が上昇しない。つまり、運転時のモールドコイル1の内部には、図2に樹脂層(樹脂組成物3の領域)として示しているように、導体2の近傍の部位と離間した部位との間で温度分布が生じている。   Next, a state that occurs inside the molded coil 1 during operation (energization) will be described. In the molded coil 1, the conductor 2, that is, the coil 4 generates heat during operation. For example, in the case of a molded coil 1 used in a molded transformer (molded transformer) classified as a heat resistant class F in JIS C 4003-1998 “Heat class and heat resistance evaluation of electrical insulation”, the temperature of the conductor 2 during operation is about It becomes 155 ° C. At this time, the temperature of the part which the resin composition 3 contacts the conductor 2 as shown by the point P1 in FIG. On the other hand, the temperature rise is slowed at the part away from the conductor 2 as indicated by the point P2. Specifically, as shown in FIG. 2, the point P1 on the line segment L1 in FIG. 1 rises to about 150 ° C. close to the temperature of the conductor 2, while the point P2 is generally a resin. Since the thermal conductivity of the material is low, the temperature rises only to about 110 ° C. That is, inside the mold coil 1 during operation, as shown in FIG. 2 as a resin layer (region of the resin composition 3), there is a temperature distribution between a portion near the conductor 2 and a separated portion. Has occurred.

さて、樹脂材料は、温度が上昇すると弾性率が急激に変化するいわゆるガラス転移が発生する。一般的な樹脂材料の場合、ガラス転移温度が120℃付近にあることから、図1に示す点P1においてはガラス転移温度を超過した状態になり、点P2においてはガラス転移温度に達していない状態になる。すなわち、モールドコイル1の内部では、樹脂材料のガラス転移温度を跨ぐような大きな温度分布が生じている。このとき、モールドコイル1の運転状況によっては、外部の振動や樹脂材料自身の熱膨張などにより、ガラス転移した部位(ゴム状態になった部位)とガラス転移していない部位(ゴム状態になっていない部位)との間に応力の発生が繰り返される。そして、このような応力の発生は、熱硬化性樹脂に例えばクラックなどが発生する要因となる。   Now, the resin material undergoes a so-called glass transition in which the elastic modulus changes rapidly as the temperature rises. In the case of a general resin material, since the glass transition temperature is around 120 ° C., the glass transition temperature is exceeded at the point P1 shown in FIG. 1, and the glass transition temperature is not reached at the point P2. become. That is, a large temperature distribution is generated in the mold coil 1 so as to straddle the glass transition temperature of the resin material. At this time, depending on the operating condition of the mold coil 1, due to external vibrations or thermal expansion of the resin material itself, the glass transitioned part (the part in a rubbery state) and the part not in the glass transition (the rubbery state). The generation of stress is repeated between the two parts. The generation of such stress is a factor that causes cracks or the like in the thermosetting resin.

そこで、発明者らは、樹脂材料の組成に着目して研究を重ねた結果、樹脂材料にリグニン誘導体を含有させることによって過大な応力の発生を低減できることを見いだした。以下、リグニン誘導体の抽出工程と併せて、樹脂組成物3の製造工程について説明する。   Thus, as a result of repeated research focusing on the composition of the resin material, the inventors have found that the generation of excessive stress can be reduced by adding a lignin derivative to the resin material. Hereinafter, the manufacturing process of the resin composition 3 is demonstrated together with the extraction process of a lignin derivative.

図3に示すように、リグニン誘導体の抽出工程では、植物由来の木質素材であるリグノセルロースを、分解反応促進剤としてのエタノールとともに硫酸アルミニウム水溶液に投入して懸濁液とする懸濁工程(S1)がまず実施される。続いて、懸濁液を数100℃程度に加熱および数MPa程度に加圧しながら撹拌し、リグノセルロースを分解する分解処理工程(S2)が実施される。その後、溶媒であるメチルエチルケトンを加え、有機相と水相とに分離する相分離工程(S3)が実施される。この相分離工程では、有機相にリグノセルロースから抽出されたリグニン誘導体が溶解し、水相にセルロースや金属酸化物が溶解する。   As shown in FIG. 3, in the lignin derivative extraction step, a suspension step (S1) in which lignocellulose, which is a plant-derived woody material, is added to an aqueous aluminum sulfate solution together with ethanol as a decomposition reaction accelerator. ) Is first implemented. Subsequently, the suspension is stirred while being heated to about several hundred degrees Celsius and pressurized to about several MPa, and a decomposition treatment step (S2) for decomposing lignocellulose is performed. Then, the phase separation process (S3) which adds methyl ethyl ketone which is a solvent, and isolate | separates into an organic phase and an aqueous phase is implemented. In this phase separation step, the lignin derivative extracted from lignocellulose is dissolved in the organic phase, and cellulose and metal oxide are dissolved in the aqueous phase.

続いて、有機相溶液のみを回収する有機相回収工程(S4)、および、有機相溶液を乾燥する乾燥工程(S5)を経て、リグニン誘導体が抽出される。その後、メチルエチルケトン溶媒中でビスフェノールA型ジグリルエーテルと抽出したリグニン誘導体とイミダゾール系硬化触媒を混合し、脱溶媒した後、加熱硬化して樹脂組成物3が製造される。この場合、リグニン誘導体は、硬化剤として機能する。   Subsequently, the lignin derivative is extracted through an organic phase recovery step (S4) for recovering only the organic phase solution and a drying step (S5) for drying the organic phase solution. Thereafter, the bisphenol A type diglyl ether, the extracted lignin derivative and the imidazole-based curing catalyst are mixed in a methyl ethyl ketone solvent, and after removing the solvent, the resin composition 3 is manufactured by heat curing. In this case, the lignin derivative functions as a curing agent.

このように製造された樹脂組成物3は、リグニン誘導体の含有量によってガラス転移温度差ΔTgが変化する。ここで、ガラス転移温度差ΔTgとは、本実施形態の場合、ガラス転移開始温度とガラス転移終了温度との温度差である。尚、本実施形態の場合、ガラス転移開始温度とは、温度が上昇するときにガラス転移(相転移)が始まる温度であり、ガラス転移終了温度とは、温度が上昇した結果相転移が終了してゴム状態になる温度としている。具体的には、樹脂組成物3は、図4に示すように、リグニン誘導体の含有量が概ね85prh前後まで増加するに従ってガラス転移温度差ΔTgが上昇していき、リグニン誘導体の含有量が概ね85prhを超えると徐々にガラス転移温度差ΔTgが下降する。なお、図4に示す弾性率は、サンプルの熱の出入りに基づいて樹脂のガラス−ゴム状態の転移挙動を測定するDSC(示唆走査型熱量測定)により測定した結果である。   In the resin composition 3 thus produced, the glass transition temperature difference ΔTg varies depending on the content of the lignin derivative. Here, the glass transition temperature difference ΔTg is a temperature difference between the glass transition start temperature and the glass transition end temperature in the present embodiment. In the case of the present embodiment, the glass transition start temperature is a temperature at which the glass transition (phase transition) starts when the temperature rises, and the glass transition end temperature is the result of the temperature rise resulting in the end of the phase transition. The temperature becomes rubbery. Specifically, as shown in FIG. 4, in the resin composition 3, the glass transition temperature difference ΔTg increases as the content of the lignin derivative increases to about 85 prh, and the content of the lignin derivative is about 85 prh. When the value exceeds V, the glass transition temperature difference ΔTg gradually decreases. The elastic modulus shown in FIG. 4 is the result of measurement by DSC (suggested scanning calorimetry) that measures the transition behavior of the resin in the glass-rubber state based on the heat input and output of the sample.

ここで、樹脂組成物3に対する比較例としてのエポキシ樹脂単体のガラス転移温度差について説明する。エポキシ樹脂単体の場合、ガラス転移温度差は一般的に概ね10℃程度であるものの、エポキシ樹脂にシリカなどの無機充填物を含有させたエポキシ樹脂組成物の場合、ガラス転移温度差は概ね20℃程度である。   Here, the glass transition temperature difference of the epoxy resin single-piece | unit as a comparative example with respect to the resin composition 3 is demonstrated. In the case of an epoxy resin alone, the glass transition temperature difference is generally about 10 ° C., but in the case of an epoxy resin composition containing an inorganic filler such as silica in the epoxy resin, the glass transition temperature difference is about 20 ° C. Degree.

このため、樹脂組成物3では、リグニン誘導体を概ね61〜110phr程度の割合で含有させることにより、ガラス転移温度差ΔTgがエポキシ樹脂組成物のガラス転移温度差(約20℃)よりも大きな概ね25℃以上としている。このため、樹脂組成物3の内部では、ガラス状態とゴム状態とが混在する温度範囲が大きくなる。これにより、熱伝導率が低いことから局所的(例えば点P1と点P2との間)に大きな温度差が生じる場合であっても、応力の発生を低減することができる。このとき、本実施形態のように耐熱クラスFに適用可能なモールドコイル1を想定している場合、リグニン誘導体を69〜101phrの割合で含有させ、ガラス転移温度差ΔTgを約30℃以上とすることが好ましい。これは、詳細は後述するが、ガラス転移温度差ΔTgが概ね30℃を超えるようにすれば、図1に示す点P2の温度が110℃程度までしか上昇しない場合であっても、点P2において樹脂組成物3の一部がガラス転移を開始することが可能になるためである。   Therefore, in the resin composition 3, the glass transition temperature difference ΔTg is larger than the glass transition temperature difference (about 20 ° C.) of the epoxy resin composition by adding approximately 25 to 110 phr of the lignin derivative. More than ℃. For this reason, inside the resin composition 3, the temperature range in which a glass state and a rubber state coexist becomes large. Thereby, even if it is a case where a big temperature difference arises locally (for example, between the point P1 and the point P2) from thermal conductivity being low, generation | occurrence | production of stress can be reduced. At this time, when the mold coil 1 applicable to the heat resistance class F is assumed as in this embodiment, the lignin derivative is contained at a rate of 69 to 101 phr, and the glass transition temperature difference ΔTg is set to about 30 ° C. or more. It is preferable. Although this will be described in detail later, even if the temperature at the point P2 shown in FIG. 1 only rises to about 110 ° C. if the glass transition temperature difference ΔTg exceeds about 30 ° C., the point P2 This is because a part of the resin composition 3 can start glass transition.

このように、熱硬化性樹脂にリグニン誘導体を含有させることにより、ガラス転移温度差ΔTgが増大するという優れた特性を示す樹脂組成物3を得ることができる。なお、リグニン誘導体は様々な分子量を有するフェノール類が混在しているため反応性も様々であり、これを硬化剤として用いることにより緩やかなガラス転移挙動を有する熱硬化性樹脂を製造することができる。また、樹脂組成物3は、ガラス転移温度(本実施形態では、ガラス転移開始温度とガラス転移終了温度との中点をガラス転移温度としている)がリグニン誘導体を含まない場合に比べて上昇するという特性も示す。   Thus, the resin composition 3 which shows the outstanding characteristic that glass transition temperature difference (DELTA) Tg increases by containing a lignin derivative in a thermosetting resin can be obtained. The lignin derivative is mixed with phenols having various molecular weights, and thus has various reactivity. By using this as a curing agent, a thermosetting resin having a gentle glass transition behavior can be produced. . In addition, the resin composition 3 is said to have a higher glass transition temperature (in this embodiment, the middle point between the glass transition start temperature and the glass transition end temperature is the glass transition temperature) than when no lignin derivative is contained. The characteristics are also shown.

図5は、樹脂組成物3をサンプルの弾性率に基づくDMA(動的粘弾性測定)により測定した動的粘弾性の変化を示している。樹脂組成物3は、図5(A)に示すように、ガラス転移開始温度とガラス転移終了温度との差であるガラス転移温度差ΔTgが、図5(B)に示すリグニン誘導体を含まない樹脂材料(例えばノボラック硬化エポキシ樹脂)のガラス転移温度差ΔTg0に比べて増大する。また、樹脂組成物3は、動的粘弾性E’の変化率がリグニン誘導体を含まない樹脂材料の動的粘弾性E’0の変化よりも緩やかになる。   FIG. 5 shows changes in dynamic viscoelasticity of the resin composition 3 measured by DMA (dynamic viscoelasticity measurement) based on the elastic modulus of the sample. As shown in FIG. 5 (A), the resin composition 3 has a glass transition temperature difference ΔTg which is the difference between the glass transition start temperature and the glass transition end temperature, and does not contain the lignin derivative shown in FIG. 5 (B). It increases compared to the glass transition temperature difference ΔTg0 of the material (for example, novolac cured epoxy resin). In addition, in the resin composition 3, the change rate of the dynamic viscoelasticity E ′ is gentler than the change of the dynamic viscoelasticity E′0 of the resin material not including the lignin derivative.

つまり、リグニン誘導体を含む樹脂組成物3は、リグニン誘導体を含まない場合に比べて、ガラス転移開始温度が低下する一方ガラス転移終了温度が上昇し、温度変化に対する動的粘弾性の変化(相転移)が緩和されるという優れた特性を示すようになる。本実施形態の樹脂組成物3の場合、動的粘弾性E’に基づくガラス転移温度差ΔTgは、概ね50℃を超える程度まで増大する。そのため、樹脂組成物3のガラス転移領域(ガラス転移開始温度からガラス転移終了温度までの領域)は、運転時における導体2の最高温度あるいは許容最高温度を含んだ状態になっている。   That is, in the resin composition 3 containing a lignin derivative, the glass transition start temperature decreases while the glass transition end temperature rises compared to the case where no lignin derivative is contained, and the dynamic viscoelasticity change (phase transition) with respect to the temperature change. ) Will be reduced. In the case of the resin composition 3 of the present embodiment, the glass transition temperature difference ΔTg based on the dynamic viscoelasticity E ′ increases to a level exceeding approximately 50 ° C. Therefore, the glass transition region (region from the glass transition start temperature to the glass transition end temperature) of the resin composition 3 is in a state including the maximum temperature or the allowable maximum temperature of the conductor 2 during operation.

そして、この樹脂組成物3でコイル4を注型することにより、モールドコイル1は形成されている。なお、コイル4の注型は周知の含浸工程などにより行うことが可能であるので、詳細な説明は省略する。モールドコイル1の内部では、図1に示す点P1においては温度が約150℃であることからガラス転移がほぼ終了し(図5(A)参照)、樹脂組成物3がゴム状態になっている。そして、点P2(約110℃)においては、一般的な樹脂材料単体を用いた場合と異なり、樹脂組成物3は一部がガラス転移を開始し(図5(A)参照)、ガラス状態とゴム状態とが混在した状態になる。   The molded coil 1 is formed by casting the coil 4 with the resin composition 3. The casting of the coil 4 can be performed by a well-known impregnation process or the like, and thus detailed description thereof is omitted. Inside the mold coil 1, the temperature is about 150 ° C. at the point P1 shown in FIG. 1, so that the glass transition is almost completed (see FIG. 5A), and the resin composition 3 is in a rubber state. . And in the point P2 (about 110 degreeC), unlike the case where a general resin material single-piece | unit is used, a part of resin composition 3 starts glass transition (refer FIG. 5 (A)), and a glass state and The rubber state is mixed.

その結果、点P2において樹脂組成物3の一部がゴム状態になり、点P1において線膨張や弾性率の変化が生じた場合であっても、点P2においてはその変化に追従することができるようになる。換言すると、樹脂組成物3は、ガラス転移温度差ΔTgが増大することにより、その内部においてガラス状態およびゴム状態が混在する領域がより増加する。これにより、ガラス状態の部位とゴム状態の部位との間に発生する応力が緩和される。したがって、運転時にコイル4が温度上昇および温度低下を繰り返すような場合であっても、本実施形態のように樹脂組成物3でモールドコイル1を注型することにより、運転時の温度変化に伴う応力の発生を低減でき、樹脂組成物3の内部にクラックなどが生じるおそれを抑制することができる。もって、モールドコイル1の信頼性を向上させることができる。   As a result, a part of the resin composition 3 becomes rubbery at the point P2, and even when linear expansion or a change in elastic modulus occurs at the point P1, the change can be followed at the point P2. It becomes like this. In other words, as the glass transition temperature difference ΔTg increases, the resin composition 3 further increases in the region where the glass state and the rubber state are mixed. Thereby, the stress which generate | occur | produces between the site | part of a glass state and the site | part of a rubber state is relieved. Therefore, even when the coil 4 repeatedly increases and decreases in temperature during operation, by casting the molded coil 1 with the resin composition 3 as in the present embodiment, the temperature changes during operation. Generation | occurrence | production of stress can be reduced and a possibility that a crack etc. may arise inside the resin composition 3 can be suppressed. Accordingly, the reliability of the molded coil 1 can be improved.

(その他の実施形態)
一実施形態ではエポキシ樹脂を主材とした樹脂組成物3の例を示したが、不飽和ポリエステル樹脂を主成分とする熱硬化性樹脂においても、リグニン誘導体を含有させることにより応力の発生を低減可能な熱硬化性樹脂組成物を得ることができる。
また、リグニン誘導体として、反応基を導入したリグニン二次誘導体を用いてもよい。リグニン二次誘導体を用いた場合、反応基によって架橋密度が高くなる。その結果、熱硬化性樹脂組成物の弾性率をさらに向上させることができ、もって温度変化による応力の発生をより低減することができる。
一実施形態では樹脂組成物3をJIS C 4003−1998における耐熱クラスFに分類されるモールドトランスに用いるモールドコイル1に適用した例を示したが、これに限定されない。例えば耐熱クラスBのモールドトランスに用いるモールドコイルに適用してもよい。勿論、他の規格による分類であってもよい。
(Other embodiments)
In one embodiment, an example of the resin composition 3 containing an epoxy resin as a main material has been shown. However, even in a thermosetting resin containing an unsaturated polyester resin as a main component, generation of stress is reduced by including a lignin derivative. A possible thermosetting resin composition can be obtained.
Moreover, you may use the lignin secondary derivative which introduce | transduced the reactive group as a lignin derivative. When the lignin secondary derivative is used, the crosslinking density is increased by the reactive group. As a result, the elastic modulus of the thermosetting resin composition can be further improved, and the generation of stress due to temperature changes can be further reduced.
In one embodiment, the example in which the resin composition 3 is applied to the mold coil 1 used for the mold transformer classified into the heat resistance class F in JIS C 4003-1998 is shown, but the present invention is not limited to this. For example, the present invention may be applied to a molded coil used in a heat resistant class B molded transformer. Of course, it may be classified according to other standards.

また、樹脂組成物3は、例えばスイッチギヤ、プリント基板並びに回転電機などにも適用することができる。例えばスイッチギヤの場合、樹脂組成物3を絶縁材として用いることにより、一実施形態と同様に応力を低減することができる。また、プリント基板の基材あるいはいわゆるレジスト剤として用いることができる。また、回転電機の場合、コイルエンドを成形するワニスとして用いることができる。さらに、樹脂組成物3は、いわゆるモールドICのような、例えば電源回路や電力回路に用いられる半導体装置にも適用することできる。換言すると、樹脂組成物3は、ガラス転移温度の近傍まで温度が上昇する導体2を例えば封止あるいは絶縁するような様々な用途に用いることができる。   The resin composition 3 can also be applied to, for example, a switch gear, a printed board, a rotating electric machine, and the like. For example, in the case of a switchgear, the stress can be reduced similarly to the embodiment by using the resin composition 3 as an insulating material. Further, it can be used as a substrate of a printed board or a so-called resist agent. In the case of a rotating electrical machine, it can be used as a varnish for forming a coil end. Furthermore, the resin composition 3 can also be applied to a semiconductor device used in, for example, a power circuit or a power circuit, such as a so-called mold IC. In other words, the resin composition 3 can be used for various applications such as sealing or insulating the conductor 2 whose temperature rises to the vicinity of the glass transition temperature.

以上のように、実施形態の熱硬化性樹脂組成物(樹脂組成物3)は、熱硬化性樹脂と、リグニン誘導体と、無機充填剤とを必須成分として含み、リグニン誘導体を熱硬化性樹脂に対する質量比で61質量%から110質量%の範囲で含んでいる。これにより、ガラス転移温度差ΔTgの増大、相転移の緩和、およびガラス転移温度の上昇という特性を示す熱硬化性樹脂組成物を得ることができる。   As described above, the thermosetting resin composition (resin composition 3) of the embodiment includes a thermosetting resin, a lignin derivative, and an inorganic filler as essential components, and the lignin derivative is used for the thermosetting resin. It is contained in the range of 61 mass% to 110 mass% in mass ratio. Thereby, the thermosetting resin composition which shows the characteristic of increase of glass transition temperature difference (DELTA) Tg, relaxation of a phase transition, and a raise of glass transition temperature can be obtained.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1はモールドコイル、3は樹脂組成物(熱硬化性樹脂組成物)、4はコイルを示す。   In the drawings, 1 is a molded coil, 3 is a resin composition (thermosetting resin composition), and 4 is a coil.

Claims (9)

熱硬化性樹脂と、リグニン誘導体と、無機充填剤とを必須成分として含む熱硬化性樹脂組成物であって、
前記リグニン誘導体を、前記熱硬化性樹脂に対する質量比で61質量%から110質量%の範囲で含むことを特徴とする熱硬化性樹脂組成物。
A thermosetting resin composition comprising a thermosetting resin, a lignin derivative, and an inorganic filler as essential components,
A thermosetting resin composition comprising the lignin derivative in a mass ratio of 61% by mass to 110% by mass with respect to the thermosetting resin.
前記リグニン誘導体を、前記熱硬化性樹脂に対する質量比で69質量%から101質量%の範囲で含むことを特徴とする請求項1記載の熱硬化性樹脂組成物。   2. The thermosetting resin composition according to claim 1, comprising the lignin derivative in a mass ratio of 69% by mass to 101% by mass with respect to the thermosetting resin. 前記熱硬化性樹脂は、エポキシ樹脂であることを特徴とする請求項1または2記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the thermosetting resin is an epoxy resin. 前記熱硬化性樹脂は、不飽和ポリエステル樹脂であることを特徴とする請求項1または2記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the thermosetting resin is an unsaturated polyester resin. 前記リグニン誘導体は、反応基を導入したリグニン二次誘導体であることを特徴とする請求項1から4の何れか一項記載の熱硬化性樹脂組成物   The thermosetting resin composition according to any one of claims 1 to 4, wherein the lignin derivative is a lignin secondary derivative into which a reactive group has been introduced. 請求項1から5の何れか一項記載の熱硬化性樹脂組成物でコイルを注型したことを特徴とするモールドコイル。   A molded coil, wherein the coil is cast with the thermosetting resin composition according to any one of claims 1 to 5. 請求項1から5の何れか一項記載の熱硬化性樹脂組成物を絶縁材として用いたことを特徴とするスイッチギヤ。   A switchgear comprising the thermosetting resin composition according to any one of claims 1 to 5 as an insulating material. 請求項1から5の何れか一項記載の熱硬化性樹脂組成物を絶縁材として用いたことを特徴とするプリント基板。   A printed circuit board comprising the thermosetting resin composition according to any one of claims 1 to 5 as an insulating material. 請求項1から5の何れか一項記載の熱硬化性樹脂組成物でコイルエンドを成型したことを特徴とする回転電機。   A rotating electrical machine, wherein a coil end is molded with the thermosetting resin composition according to any one of claims 1 to 5.
JP2011104284A 2011-05-09 2011-05-09 Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition Withdrawn JP2012233130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104284A JP2012233130A (en) 2011-05-09 2011-05-09 Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104284A JP2012233130A (en) 2011-05-09 2011-05-09 Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition

Publications (1)

Publication Number Publication Date
JP2012233130A true JP2012233130A (en) 2012-11-29

Family

ID=47433768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104284A Withdrawn JP2012233130A (en) 2011-05-09 2011-05-09 Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition

Country Status (1)

Country Link
JP (1) JP2012233130A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
DE102013219718A1 (en) * 2013-09-30 2015-04-02 Bayerische Motoren Werke Aktiengesellschaft A curable resin composition, a fiber composite, a kit for producing a curable resin composition and a method for producing a cured resin and a fiber composite
WO2016194600A1 (en) * 2015-06-02 2016-12-08 ハリマ化成株式会社 Resin composition, method for producing resin composition, and molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
DE102013219718A1 (en) * 2013-09-30 2015-04-02 Bayerische Motoren Werke Aktiengesellschaft A curable resin composition, a fiber composite, a kit for producing a curable resin composition and a method for producing a cured resin and a fiber composite
WO2016194600A1 (en) * 2015-06-02 2016-12-08 ハリマ化成株式会社 Resin composition, method for producing resin composition, and molded article

Similar Documents

Publication Publication Date Title
JP5668860B2 (en) Coil parts
JP4961692B2 (en) insulator
JP2008138061A (en) Insulating polymer material composition
JP2012233130A (en) Thermosetting resin composition, and mold coil, switch gear, printed-circuit board, and rotary electric machine using the thermosetting resin composition
JP4961691B2 (en) Insulated polymer material cured product
CN105400135A (en) Electronic insulating encapsulating material
CN103589122A (en) Reinforced environment-friendly insulation material and preparation method thereof
JP2011184645A (en) Insulating polymeric material composition
JP4561242B2 (en) Insulating polymer material composition
CN102964781A (en) Production method of epoxy resin electronic potting material
CN103401335B (en) A kind of double-fed wind power generator insulation system and processing method thereof
Komiya et al. Development of high thermal conductive epoxy composite for large current switchgear
CN106479122A (en) A kind of high voltage insulating materials
JP5359008B2 (en) Method for producing insulating polymer material composition
JP6450597B2 (en) Coil insulation structure for rotating electrical machine, method for manufacturing the same, and rotating electrical machine comprising the coil insulation structure
Komiya et al. Effects of lignin derivatives on cross-link density and dielectric properties in the epoxy-based insulating materials for printed circuit boards
JP2005281467A (en) Resin and member having high thermal conductivity, and electrical equipment and semiconductor device produced by using the same
JP2011201948A (en) Epoxy resin composition for casting and coil component using the same
JP6385970B2 (en) Epoxy resin composition and insulating molded body
JP2009099333A (en) Insulating composition for high-voltage device
JP2012009233A (en) Insulating structure material and production method for the same
JP2007169638A (en) Electronic component having casting material
JP2010061879A (en) Insulating polymeric material composition
JP2005330390A (en) Epoxy resin composition and molded motor
JP5590544B2 (en) Epoxy resin composite material and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805