JP2012009233A - Insulating structure material and production method for the same - Google Patents

Insulating structure material and production method for the same Download PDF

Info

Publication number
JP2012009233A
JP2012009233A JP2010143173A JP2010143173A JP2012009233A JP 2012009233 A JP2012009233 A JP 2012009233A JP 2010143173 A JP2010143173 A JP 2010143173A JP 2010143173 A JP2010143173 A JP 2010143173A JP 2012009233 A JP2012009233 A JP 2012009233A
Authority
JP
Japan
Prior art keywords
organic filler
thermosetting resin
filler
pulverized
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010143173A
Other languages
Japanese (ja)
Inventor
Gen Komiya
玄 小宮
Takahiro Imai
隆浩 今井
Susumu Kinoshita
晋 木下
Yoko Todo
洋子 藤堂
Kiyoko Murayama
聖子 村山
Kenichi Yamazaki
顕一 山崎
Miyoshi Matsuoka
美佳 松岡
Tsuyoshi Fukumoto
剛司 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010143173A priority Critical patent/JP2012009233A/en
Publication of JP2012009233A publication Critical patent/JP2012009233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To pulverize finely an organic filler extracted from wood-based resources so as to disperse it in a thermosetting resin uniformly.SOLUTION: An insulating structure material includes a thermosetting resin 5 such as epoxy resin, an organic filler 4 comprising one or more kinds of cellulose, hemicellulose, lignocellulose and lignin extracted from wood-based resources to be packed in the thermosetting resin 5, and an inorganic filler 3 comprising one or more kinds of silica, alumina and mullite to be packed in the thermosetting resin 5, and the organic filler 4 is swollen with a liquid acid anhydride and pulverized by agitation with the inorganic filler 3 so as to be dispersed uniformly.

Description

本発明の実施形態は、電力機器、受配電機器などの主回路を支持絶縁する固体絶縁物を製造するときに用いられる熱硬化性樹脂を成分とする絶縁構造材料およびその製造方法に関する。   Embodiments described herein relate generally to an insulating structure material containing a thermosetting resin as a component and a method for manufacturing the same, which are used when manufacturing a solid insulator that supports and insulates a main circuit such as a power device and a power receiving and distributing device.

エポキシ樹脂のような熱硬化性樹脂は、優れた電気的特性、機械的特性、熱的特性などを有し、電気、電子部品を構成する絶縁材料として広く用いられている。しかしながら、優れた耐久性能を備えているので、長年の使用に耐えた後も性能が不変であり、再利用や分解が困難であった。また、地球環境の観点から、石油に依存していた社会から脱却し、新しい機能を付加した絶縁材料が求められていた。   Thermosetting resins such as epoxy resins have excellent electrical characteristics, mechanical characteristics, thermal characteristics, and the like, and are widely used as insulating materials constituting electric and electronic parts. However, since it has excellent durability performance, the performance remains unchanged even after enduring use for many years, and reuse and disassembly are difficult. In addition, from the viewpoint of the global environment, there has been a need for an insulating material that has escaped from the society that relied on oil and added new functions.

このような要求に対して、自然界に存在する木質系資源を粉砕し、熱硬化性樹脂に充填する絶縁構造材料が提案されている。即ち、極力石油に依存しない新しい機能として、木質系資源から抽出した有機フィラーを付加したものが知られている(例えば、特許文献1参照。)。   In response to such a demand, an insulating structure material has been proposed in which woody resources existing in nature are pulverized and filled into a thermosetting resin. That is, as a new function that does not depend on petroleum as much as possible, a function added with an organic filler extracted from a wood-based resource is known (for example, see Patent Document 1).

特開2007−312489号公報 (図1)JP 2007-312489 A (FIG. 1)

上記の従来の絶縁構造材料においては、木質系資源から有機フィラーを抽出し、粉砕して充填するものの、有機フィラーがバルク状態であり、充填材料として適切な大きさである数100μm以下まで粉砕することに大きな労力を必要としていた。なお、粉砕後の分級が不充分で所定以上の大きなものが充填されたり、充填時にエポキシ樹脂中で凝集したりすると、異物として作用し、電気的特性、機械的特性、熱的特性などを低下させる要因となる。   In the conventional insulating structure material described above, the organic filler is extracted from the wood-based resource and pulverized and filled. However, the organic filler is in a bulk state and pulverized to a size of several hundred μm or less, which is an appropriate size as the filling material. It required a lot of effort. In addition, if the classification after pulverization is insufficient and a large one more than a predetermined value is filled or agglomerates in the epoxy resin at the time of filling, it acts as a foreign substance and deteriorates electrical characteristics, mechanical characteristics, thermal characteristics, etc. It becomes a factor to make.

本発明は上記問題を解決するためになされたもので、有機フィラーを容易に粉砕でき、熱硬化性樹脂中に一様に分散させることの可能な絶縁構造材料およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and provides an insulating structure material that can easily pulverize an organic filler and can be uniformly dispersed in a thermosetting resin, and a method for producing the same. Objective.

上記目的を達成するために、実施形態の絶縁構造材料は、熱硬化性樹脂と、前記熱硬化性樹脂に充填される木質系資源から抽出されたセルロース、へミセルロース、リグノセルロース、リグニンの1種類以上からなる有機フィラーと、前記熱硬化性樹脂に充填されるシリカ、アルミナ、ムライトの1種類以上からなる無機フィラーとを具備し、前記有機フィラーは、液状酸無水物で膨潤され、前記無機フィラーで攪拌することのより粉砕されたものであることを特徴とする。   In order to achieve the above object, the insulating structural material of the embodiment is a thermosetting resin and one of cellulose, hemicellulose, lignocellulose, and lignin extracted from a wood-based resource filled in the thermosetting resin. An organic filler comprising at least one kind and an inorganic filler comprising at least one kind of silica, alumina and mullite filled in the thermosetting resin, the organic filler being swollen with a liquid acid anhydride, It is characterized by being pulverized by stirring with a filler.

本発明の実施例1に係る絶縁構造材料の製造方法を説明する図。The figure explaining the manufacturing method of the insulating-structure material which concerns on Example 1 of this invention. 本発明の実施例1に係る膨潤した有機フィラーの状態を説明する図。The figure explaining the state of the swelled organic filler which concerns on Example 1 of this invention. 本発明の実施例1に係る無機フィラーで攪拌した状態を説明する図。The figure explaining the state stirred with the inorganic filler which concerns on Example 1 of this invention. 本発明の実施例1に係るエポキシ樹脂を充填した状態を説明する図。The figure explaining the state filled with the epoxy resin which concerns on Example 1 of this invention. 本発明の実施例2に係る絶縁構造材料の製造方法を説明する図。The figure explaining the manufacturing method of the insulation structural material which concerns on Example 2 of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明の実施例1に係る絶縁構造材料を図1〜図4を参照して説明する。図1は、本発明の実施例1に係る絶縁構造材料の製造方法を説明する図、図2は、本発明の実施例1に係る膨潤した有機フィラーの状態を説明する図、図3は、本発明の実施例1に係る無機フィラーで攪拌した状態を説明する図である。   First, an insulating structure material according to Example 1 of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating a method for manufacturing an insulating structure material according to Example 1 of the present invention, FIG. 2 is a diagram illustrating a state of a swollen organic filler according to Example 1 of the present invention, and FIG. It is a figure explaining the state stirred with the inorganic filler which concerns on Example 1 of this invention.

図1に示すように、先ず、木質系資源から抽出した有機フィラーを乾燥する(st1)。有機フィラーは、例えばコーンコブから臨界水処理などで抽出されたセルロース、ヘミセルロース、リグノセルロース、リグニンからなり、粒径300μm程度まで粉砕されたものを用いる。これは、従来技術で得られるものと同様である。   As shown in FIG. 1, first, the organic filler extracted from the wood resources is dried (st1). As the organic filler, for example, cellulose, hemicellulose, lignocellulose, or lignin extracted from corn cob by a critical water treatment or the like and pulverized to a particle size of about 300 μm is used. This is similar to that obtained with the prior art.

次に、有機フィラーを液状の酸無水物(日本化薬社製、カヤハードMCD)に数10分間浸漬する(st2)。有機フィラーは50重量部、酸無水物は86重量部とする。すると、図2に示すように、有機フィラーに液状酸無水物1が浸透し、体積が数10%膨潤した膨潤有機フィラー2となる。なお、液状酸無水物1は、後述するエポキシ樹脂の硬化剤として用いるものである。   Next, the organic filler is immersed in a liquid acid anhydride (manufactured by Nippon Kayaku Co., Ltd., Kayahard MCD) for several tens of minutes (st2). The organic filler is 50 parts by weight and the acid anhydride is 86 parts by weight. Then, as shown in FIG. 2, the liquid acid anhydride 1 penetrates into the organic filler, and the swollen organic filler 2 is swelled by several tens of percent. The liquid acid anhydride 1 is used as a curing agent for the epoxy resin described later.

このように膨潤した状態の中に、シリカ(電気化学工業社製、FB−24R)を150重量部添加する(st3)。シリカは、粒径10〜50μmを用いる。なお、シリカのほかに、無機フィラーとして、アルミナ、ムライトなどを混合して用いることができる。   In the swollen state, 150 parts by weight of silica (manufactured by Electrochemical Industry, FB-24R) is added (st3). Silica has a particle size of 10 to 50 μm. In addition to silica, alumina, mullite, or the like can be mixed and used as an inorganic filler.

そして、自公転式混合攪拌機で攪拌する(st4)。回転数は200〜1000rpmであり、数分間行う。すると、図3に示すように、膨潤して軟らかくなった膨潤有機フィラー2が無機フィラー3のせん断力によって粉砕され、粒径50〜100μmの粉砕有機フィラー4となる。   And it stirs with a self-revolving mixing stirrer (st4). The rotation speed is 200 to 1000 rpm, and it is performed for several minutes. Then, as shown in FIG. 3, the swollen and softened organic filler 2 pulverized by the shearing force of the inorganic filler 3 becomes a pulverized organic filler 4 having a particle size of 50 to 100 μm.

次に、ビスフェノール型エポキシ樹脂(ジャパンエポキシレジン社製、エピコート828)を100重量部混合する。同時に、シリカを350重量部追加し、混合する(st5)。その後、脱泡して金型に充填し、温度80℃で加熱して一次硬化させ、離型後に温度150℃で二次硬化させる(st6)。   Next, 100 parts by weight of a bisphenol type epoxy resin (Japan Epoxy Resin, Epicoat 828) is mixed. At the same time, 350 parts by weight of silica is added and mixed (st5). Thereafter, the foam is defoamed and filled into a mold, heated at a temperature of 80 ° C. for primary curing, and after mold release, secondarily cured at a temperature of 150 ° C. (st6).

すると、図4に示すように、細かく粉砕された粉砕有機フィラー4と、無機フィラー3とが熱硬化性マトリックス5中に一様に分散し、優れた電気的特性、機械的特性、熱的特性などを有する注型絶縁物を製造することができる。一様とは、粉砕有機フィラー4や無機フィラー3が凝集したり、所定以上の大きいものが存在しないことをいう。なお、熱硬化性樹脂5中には、エポキシ樹脂と硬化剤の酸無水物とが存在する。また、熱硬化性樹脂としては、ポリエステル樹脂、フェノール樹脂などがある。   Then, as shown in FIG. 4, the finely pulverized organic filler 4 and the inorganic filler 3 are uniformly dispersed in the thermosetting matrix 5, and excellent electrical characteristics, mechanical characteristics, and thermal characteristics are obtained. It is possible to manufacture a cast insulator having the following. The term “uniform” means that the pulverized organic filler 4 and the inorganic filler 3 are aggregated or there is no larger than a predetermined size. The thermosetting resin 5 contains an epoxy resin and a curing agent acid anhydride. Examples of thermosetting resins include polyester resins and phenol resins.

ここで、図2〜4には、膨潤有機フィラー2、粉砕有機フィラー4を四角形状、無機フィラー3を丸形状で表しているが、この形状に限定されるものではない。また、四角形状の場合は長辺側の長さ、丸形状の場合は長円側の長さを粒径(直径)として表している。   Here, in FIGS. 2 to 4, the swelling organic filler 2 and the pulverized organic filler 4 are represented by a square shape, and the inorganic filler 3 is represented by a round shape, but the shape is not limited thereto. Further, in the case of a quadrangular shape, the length on the long side is represented as the particle size (diameter), and in the case of a round shape, the length on the ellipse side is represented.

このように表示した粉砕有機フィラー4は、無機フィラー3のボールミルのような効果によって、粒径が50〜100μmの粉砕され、無機フィラー3の粒径10〜50μmと同程度の大きさとなる。これを、有機フィラーが無機フィラー3と同程度の大きさに粉砕されると定義する。   The pulverized organic filler 4 displayed in this way is pulverized with a particle size of 50 to 100 μm due to the effect of the inorganic filler 3 such as a ball mill, and has the same size as that of the inorganic filler 3 with a particle size of 10 to 50 μm. This is defined as the organic filler being crushed to the same size as the inorganic filler 3.

なお、金型に充填するエポキシ樹脂5の流動性を考慮して、エポキシ樹脂100重量部に対して、有機フィラー200重量部以下、無機フィラー600重量部以下にすることができる。即ち、木質系資源から得られる有機フィラーを、膨潤させて軟らかくすることにより、容易に粉砕することができ、エポキシ樹脂よりも多く充填することもできる。この結果、石油資源に配慮した固体絶縁物とすることができる。   In consideration of the fluidity of the epoxy resin 5 filled in the mold, the organic filler can be 200 parts by weight or less and the inorganic filler 600 parts by weight or less with respect to 100 parts by weight of the epoxy resin. That is, the organic filler obtained from the wood resources can be easily pulverized by swelling and softening, and can be filled more than the epoxy resin. As a result, it can be set as the solid insulator in consideration of petroleum resources.

上記実施例1の絶縁構造材料によれば、木質系資源から抽出した有機フィラーを液状酸無水物1で膨潤させ、無機フィラー3で攪拌しながら粉砕して粉砕有機フィラー4とし、熱硬化性樹脂5を混合して加熱硬化させているので、熱硬化性樹脂5中に細かく粉砕された粉砕有機フィラー4と無機フィラー3とが一様に分散し、優れた諸特性を有する固体絶縁物を得ることができる。   According to the insulating structure material of Example 1, the organic filler extracted from the wood resources is swollen with the liquid acid anhydride 1 and pulverized while stirring with the inorganic filler 3 to obtain the pulverized organic filler 4, and the thermosetting resin. 5 is mixed and heat-cured, the finely pulverized organic filler 4 and the inorganic filler 3 are uniformly dispersed in the thermosetting resin 5 to obtain a solid insulator having excellent characteristics. be able to.

次に、本発明の実施例2に係る絶縁構造材料を図5を参照して説明する。図5は、本発明の実施例2に係る絶縁構造材料の製造方法を説明する図である。   Next, an insulating structure material according to Example 2 of the present invention will be described with reference to FIG. FIG. 5 is a diagram illustrating a method for manufacturing an insulating structure material according to Example 2 of the present invention.

なお、この実施例2が実施例1と異なる点は、有機フィラーの膨潤方法である。図5において、実施例1と同様の構成部分においては、同一符号を付し、その詳細な説明を省略する。 In addition, the point from which Example 2 differs from Example 1 is the swelling method of an organic filler. In FIG. 5, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に示すように、有機フィラーを乾燥させた後(st1)、アセトンのような低沸点の溶剤に浸漬させ(st2−1)、有機フィラーを膨潤させる。膨潤後は、アセトンを飛ばして乾燥させ(st2−2)、無機フィラーを添加し(st3)、有機フィラーを細かく粉砕する。なお、硬化剤となる酸無水物は、エポキシ樹脂混合時(st5)に添加するものとする。   As shown in FIG. 5, after drying the organic filler (st1), it is immersed in a low boiling point solvent such as acetone (st2-1) to swell the organic filler. After swelling, acetone is blown off and dried (st2-2), an inorganic filler is added (st3), and the organic filler is finely pulverized. In addition, the acid anhydride used as a hardening | curing agent shall be added at the time of epoxy resin mixing (st5).

上記実施例2の絶縁構造材料によれば、実施例1と同様の効果のほかに、アセトンの浸透がスムースであり、有機フィラーの膨潤を確実に行うことができる。   According to the insulating structure material of Example 2, in addition to the same effects as in Example 1, the penetration of acetone is smooth, and the organic filler can be reliably swelled.

以上述べたような実施形態は、木質系資源から抽出した有機フィラーを酸無水物などで膨潤させ、無機フィラーで攪拌しながら有機フィラーを粉砕するので、細かく粉砕された有機フィラーと無機フィラーとが一様に分散した絶縁構造材料とすることができる。   In the embodiment as described above, the organic filler extracted from the wood resource is swollen with an acid anhydride and the organic filler is pulverized while stirring with the inorganic filler. A uniformly dispersed insulating structure material can be obtained.

以上において幾つかの実施形態を述べたが、これらの実施形態は、単に例として示したもので、本発明の範囲を限定することを意図したものではない。実際、ここにおいて述べた新規な材料および方法は、種々の他の形態に具体化されてもよいし、さらに、本発明の主旨またはスピリットから逸脱することなく、ここにおいて述べた材料および方法の形態における種々の省略、置き換えおよび変更を行ってもよい。付随する請求項およびそれらの均等物または均等方法は、本発明の範囲および主旨またはスピリットに入るようにそのような形態若しくは変形を含むことを意図している。   Several embodiments have been described above, but these embodiments are merely given as examples and are not intended to limit the scope of the present invention. Indeed, the novel materials and methods described herein may be embodied in a variety of other forms and further without departing from the spirit or spirit of the invention. Various omissions, substitutions and changes may be made. The appended claims and their equivalents or equivalent methods are intended to include such forms or modifications as fall within the scope and spirit or spirit of the invention.

1 液状酸無水物
2 膨潤有機フィラー
3 無機フィラー
4 粉砕有機フィラー
5 熱硬化性樹脂
DESCRIPTION OF SYMBOLS 1 Liquid acid anhydride 2 Swelling organic filler 3 Inorganic filler 4 Ground organic filler 5 Thermosetting resin

Claims (6)

熱硬化性樹脂と、
前記熱硬化性樹脂に充填される木質系資源から抽出されたセルロース、へミセルロース、リグノセルロース、リグニンの1種類以上からなる有機フィラーと、
前記熱硬化性樹脂に充填されるシリカ、アルミナ、ムライトの1種類以上からなる無機フィラーとを具備し、
前記有機フィラーは、液状酸無水物で膨潤され、前記無機フィラーで攪拌することのより粉砕されたものであることを特徴とする絶縁構造材料。
A thermosetting resin;
An organic filler composed of one or more of cellulose, hemicellulose, lignocellulose, and lignin extracted from the wood resources filled in the thermosetting resin;
Comprising an inorganic filler composed of one or more of silica, alumina, and mullite filled in the thermosetting resin;
An insulating structure material, wherein the organic filler is swelled with a liquid acid anhydride and pulverized by stirring with the inorganic filler.
熱硬化性樹脂と、
前記熱硬化性樹脂に充填される木質系資源から抽出されたセルロース、へミセルロース、リグノセルロース、リグニンの1種類以上からなる有機フィラーと、
前記熱硬化性樹脂に充填されるシリカ、アルミナ、ムライトの1種類以上からなる無機フィラーとを具備し、
前記有機フィラーは、低沸点溶剤で膨潤され、この低沸点溶剤を除去して前記無機フィラーで攪拌することにより粉砕されたものであることを特徴とする絶縁構造材料。
A thermosetting resin;
An organic filler composed of one or more of cellulose, hemicellulose, lignocellulose, and lignin extracted from the wood resources filled in the thermosetting resin;
Comprising an inorganic filler composed of one or more of silica, alumina, and mullite filled in the thermosetting resin;
An insulating structural material, wherein the organic filler is swelled with a low boiling point solvent, and is pulverized by removing the low boiling point solvent and stirring with the inorganic filler.
前記粉砕された有機フィラーと前記無機フィラーとは、同程度の大きさであることを特徴とする請求項1または請求項2に記載の絶縁構造材料。   The insulating structure material according to claim 1 or 2, wherein the pulverized organic filler and the inorganic filler have the same size. 前記熱硬化性樹脂よりも前記有機フィラーの充填量が多いことを特徴とする請求項1乃至請求項3のいずれか1項に記載の絶縁構造材料。   The insulating structural material according to any one of claims 1 to 3, wherein the organic filler is filled in a larger amount than the thermosetting resin. 木質系資源からセルロース、へミセルロース、リグノセルロース、リグニンを有する有機フィラーを抽出し、
この有機フィラーを液状酸無水物に浸漬して膨潤させ、
膨潤した有機フィラーに無機フィラーを添加し、
これらを攪拌することにより前記有機フィラーを粉砕し、
粉砕した有機フィラーに熱硬化性樹脂を充填することを特徴とする絶縁構造材料の製造方法。
Extracting organic fillers containing cellulose, hemicellulose, lignocellulose, lignin from wood resources,
This organic filler is immersed in a liquid acid anhydride to swell,
Add inorganic filler to swollen organic filler,
The organic filler is pulverized by stirring them,
A method for producing an insulating structure material, wherein a pulverized organic filler is filled with a thermosetting resin.
木質系資源からセルロース、ヘミセルロース、リグノセルロース、リグニンを有する有機フィラーを抽出し、
この有機フィラーを低沸点溶剤に浸漬して膨潤させ、
膨潤した有機フィラーを乾燥後、無機フィラーを添加し、
これらを攪拌することにより前記有機フィラーを粉砕し、
粉砕した有機フィラーに熱硬化性樹脂を充填することを特徴とする絶縁構造材料の製造方法。
Extracting organic fillers containing cellulose, hemicellulose, lignocellulose, lignin from wood resources,
This organic filler is immersed in a low boiling point solvent to swell,
After drying the swollen organic filler, add inorganic filler,
The organic filler is pulverized by stirring them,
A method for producing an insulating structure material, wherein a pulverized organic filler is filled with a thermosetting resin.
JP2010143173A 2010-06-23 2010-06-23 Insulating structure material and production method for the same Pending JP2012009233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010143173A JP2012009233A (en) 2010-06-23 2010-06-23 Insulating structure material and production method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143173A JP2012009233A (en) 2010-06-23 2010-06-23 Insulating structure material and production method for the same

Publications (1)

Publication Number Publication Date
JP2012009233A true JP2012009233A (en) 2012-01-12

Family

ID=45539561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010143173A Pending JP2012009233A (en) 2010-06-23 2010-06-23 Insulating structure material and production method for the same

Country Status (1)

Country Link
JP (1) JP2012009233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538012B2 (en) 2015-12-07 2020-01-21 Timothee Boitouzet Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538012B2 (en) 2015-12-07 2020-01-21 Timothee Boitouzet Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11254026B2 (en) 2015-12-07 2022-02-22 Timothée BOITOUZET Process for partial delignification and filling of a lignocellulosic material, and composite material structure able to be obtained by this process
US11820041B2 (en) 2017-06-07 2023-11-21 Sas Woodoo Process for supercritical or subcritical partial delignification and filling of a lignocellulosic material
US11656756B2 (en) 2018-02-09 2023-05-23 Sas Woodoo Touch detection device with touch interface made of composite material
US11662899B2 (en) 2018-02-09 2023-05-30 Sas Woodoo Touch detection device with touch interface made of composite material

Similar Documents

Publication Publication Date Title
Shibata et al. Preparation and properties of biocomposites composed of bio‐based epoxy resin, tannic acid, and microfibrillated cellulose
Yue et al. Vitrimerization: a novel concept to reprocess and recycle thermoset waste via dynamic chemistry
Shibata et al. Preparation and properties of biocomposites composed of epoxidized soybean oil, tannic acid, and microfibrillated cellulose
CN105255112B (en) A kind of epoxy resin fulvene compounding material and preparation method thereof
JP2012009233A (en) Insulating structure material and production method for the same
CN101710518A (en) Boned neodymium iron boron permanent magnet and manufacturing method thereof
CN103709983A (en) High temperature resisting bottom filler glue and preparation method thereof
CN104371419B (en) A kind of nano-calcium carbonate compound resin base rabbet ink and preparation method thereof
Shibata et al. Thermal and mechanical properties of sorbitol‐based epoxy resin cured with quercetin and the biocomposites with wood flour
Chen et al. Recycling of waste FRP and corn straw in wood plastic composite
CN103450632A (en) Epoxy resin composition for electronic packaging and preparation method thereof
Le-ping et al. Preparation and characterization of microcapsules for Self-healing materials
Monti et al. Development of unsaturated polyester matrix–carbon nanofibers nanocomposites with improved electrical properties
Kazemi et al. Cellulose and lignin as carbon black replacement in natural rubber
Kocaman Chemical modification of apricot kernel shell waste and its effect on phenolic novolac epoxy composites
CN104356596B (en) A kind of preparation method of the electric insulation layer material of micro discharge defect selfreparing
Pittala et al. Self‐healing performance assessment of epoxy resin and amine hardener encapsulated polymethyl methacrylate microcapsules reinforced epoxy composite
Paluvai et al. Synthesis and characterization of acrylated epoxidized castor oil nanocomposites
Liu et al. Mechanical and thermal properties of modified red mud‐reinforced phenolic foams
Ebrahimnezhad‐Khaljiri et al. Assessment of mechanical and healing behaviors of glass fibers‐epoxy composite containing the microcapsules with the nanocomposite shell
CN104210181B (en) LED highly heat-conductive copper-clad plate and preparation method thereof
CN104312098B (en) A kind of preparation method of heat-conduction epoxy resin
Isam Bakr Albaker et al. Application of various carboxylic acids modified walnut shell waste as natural filler for epoxy‐based composites
CN103333463A (en) Preparation method of heat conductive masterbatch
Cui et al. Reliability of flexible electrically conductive adhesives

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205