JP2012229258A - Nano-type lactic acid bacterium - Google Patents

Nano-type lactic acid bacterium Download PDF

Info

Publication number
JP2012229258A
JP2012229258A JP2012160372A JP2012160372A JP2012229258A JP 2012229258 A JP2012229258 A JP 2012229258A JP 2012160372 A JP2012160372 A JP 2012160372A JP 2012160372 A JP2012160372 A JP 2012160372A JP 2012229258 A JP2012229258 A JP 2012229258A
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
nano
type
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012160372A
Other languages
Japanese (ja)
Other versions
JP5751219B2 (en
Inventor
Hideo Hasegawa
秀夫 長谷川
Tatsuhiko Suga
辰彦 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO KEN KK
JAPANESE ASS OF CLINICAL RES ON SUPPLEMENTS
JAPANESE ASSOCIATION OF CLINICAL RESEARCH ON SUPPLEMENTS
Shinwa Yakuhin Co Ltd
Cosmo Foods Corp
Original Assignee
BIO KEN KK
JAPANESE ASS OF CLINICAL RES ON SUPPLEMENTS
JAPANESE ASSOCIATION OF CLINICAL RESEARCH ON SUPPLEMENTS
Shinwa Yakuhin Co Ltd
Cosmo Foods Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO KEN KK, JAPANESE ASS OF CLINICAL RES ON SUPPLEMENTS, JAPANESE ASSOCIATION OF CLINICAL RESEARCH ON SUPPLEMENTS, Shinwa Yakuhin Co Ltd, Cosmo Foods Corp filed Critical BIO KEN KK
Priority to JP2012160372A priority Critical patent/JP5751219B2/en
Publication of JP2012229258A publication Critical patent/JP2012229258A/en
Application granted granted Critical
Publication of JP5751219B2 publication Critical patent/JP5751219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a lactic acid bacterium having a favorable particle diameter for Th1 induction, excellent in the productivity of INF-α, and excellent in dispersibility in water.SOLUTION: A bacterial cell of a nano-type lactic acid bacterium is obtained by adjusting a pH in a medium in a culturing step and a processing step of the lactic acid bacterium to a neutral range, wherein a mode value in a particle size distribution is 1.0 μm or less and the lactic acid bacterium is lactobacillus brevis.

Description

本発明は、抗原提示細胞からのインターフェロンα産生能を増強する作用を有するナノ型乳酸菌に関する。   The present invention relates to a nano-type lactic acid bacterium having an action of enhancing the ability to produce interferon α from antigen-presenting cells.

最近の研究では、ナイーブT細胞(以下、Th0と略す)は、機能的にI型T細胞(以下、Th1と略す)とII型T細胞(以下、Th2と略す)に分化することが知られている。
Th1細胞による免疫応答は、細胞性免疫を誘導し、マクロファージやリンパ球など単核細胞中心の食菌処理が起こる。一方、Th2細胞による免疫応答は、液性免疫を誘導し、抗体による殺菌処理が起こる。Th1型サイトカインはTh2を抑制し、逆にTh2型サイトカインはTh1を抑制し、この2つは免疫全体のバランスを保つために互いに関係し合っている。
In recent studies, it is known that naive T cells (hereinafter abbreviated as Th0) functionally differentiate into type I T cells (hereinafter abbreviated as Th1) and type II T cells (hereinafter abbreviated as Th2). ing.
The immune response by Th1 cells induces cellular immunity, and phagocytosis of mononuclear cells such as macrophages and lymphocytes occurs. On the other hand, the immune response by Th2 cells induces humoral immunity and sterilization with antibodies occurs. Th1-type cytokines suppress Th2, and conversely, Th2-type cytokines suppress Th1, and the two are related to each other in order to maintain the overall immunity balance.

インターフェロンα(IFN−α)は、ウイルスや、結核菌、サルモネラ菌、リステリア菌、らい菌といった細胞内寄生性細菌、クリプトコッカスのような細胞内寄生性真菌による感染時に、樹状細胞(抗原提示細胞)から分泌されるサイトカインである。
また、インターロイキン12(IL−12)は、樹状細胞およびマクロファージのような抗原提示細胞から分泌されるサイトカインで、ガン細胞を直接攻撃するナチュラルキラー細胞(NK細胞)や、ラック細胞(LAK細胞)、キラーT細胞(CTL細胞)を活性化したり、IFN−γの産生を増強したりする非常に強力な免疫活性物質として知られている。
Interferon α (IFN-α) is a dendritic cell (antigen-presenting cell) during infection by viruses, intracellular parasitic bacteria such as Mycobacterium tuberculosis, Salmonella, Listeria, and leprosy, and intracellular parasitic fungi such as cryptococcus. It is a cytokine secreted from.
Interleukin 12 (IL-12) is a cytokine secreted from antigen-presenting cells such as dendritic cells and macrophages. Natural killer cells (NK cells) that directly attack cancer cells and rack cells (LAK cells). ), Which is known as a very powerful immunologically active substance that activates killer T cells (CTL cells) and enhances production of IFN-γ.

これらのIFN−αおよびIL−12は、ともにTh1細胞を誘導するサイトカインであるが、抗原提示細胞に発現している受容体(TRL:Toll−like receptor)の違い(IL−12の場合:TLR1、TLR3、TLR5、TLR9;IFN−αの場合:TLR7、TLR9)が見られる。   Both of these IFN-α and IL-12 are cytokines that induce Th1 cells, but the receptor (TRL: Toll-like receptor) expressed in antigen-presenting cells (in the case of IL-12: TLR1) , TLR3, TLR5, TLR9; IFN-α: TLR7, TLR9).

ところで、抗原提示細胞からのIFN−α産生を増強する乳酸菌またはその構成物については、ラクトバチルス・ブレビス菌粉末(特許文献1:特開平6−206826号公報参照)、エンテロコッカス属に属する乳酸菌またはその処理物(特許文献2:特開平8−259450号公報参照)、ラクトバチルス・ブレビス菌株FERM BP−4693の構成抽出物(特許文献3:特開平9−188627号公報参照)等が報告されている。   By the way, as for lactic acid bacteria that enhance IFN-α production from antigen-presenting cells or components thereof, Lactobacillus brevis powder (see Patent Document 1: JP-A-6-206826), lactic acid bacteria belonging to the genus Enterococcus or the same Processed products (see Patent Document 2: JP-A-8-259450), constituent extracts of Lactobacillus brevis strain FERM BP-4693 (Patent Document 3: see JP-A-9-188627) and the like have been reported. .

通常であれば、IFN−α産生能が高い菌株を選択するのが自然であり、活性が低い菌株をあえて活性が高い菌株に変える必要はなく、またそれを試みようとも思わない。
しかし、長年、ラクトバチルス・ブレビス菌を市場に提供してきた事業者にとっては、乳酸菌のIFN−α産生能を増強することは切実な願いである。
Normally, it is natural to select a strain having a high IFN-α-producing ability, and it is not necessary to intentionally change a strain having a low activity to a strain having a high activity.
However, for businesses that have provided Lactobacillus brevis bacteria on the market for many years, it is an urgent desire to enhance the ability of lactic acid bacteria to produce IFN-α.

これまで乳酸菌は、発酵乳あるいはヨーグルトの形態で摂取するのが常態である。口から摂取される抗原は、パイエル板でM細胞の貪食によって取り込まれる。
そこで、どれくらいまでの大きさであればパイエル板から取り込まれるのかといった関心から、粒子の大きさ(粒子径)とパイエル板への取り込みの関係についてこれまで多くの研究がなされてきた。
Until now, lactic acid bacteria are usually taken in the form of fermented milk or yogurt. Antigen taken from the mouth is taken up by M cell phagocytosis on Peyer's patches.
Therefore, many studies have been conducted on the relationship between the size (particle diameter) of particles and the incorporation into Peyer's plate from the interest of how large it can be taken from Peyer's plate.

その結果、粒子の大きさが10μmを超えるとM細胞による貪食は著しく低くなり(非特許文献1参照)、パイエル板を通過する粒子の最大径は、粒子の材質がポリラクタイドの場合には10μm(非特許文献2参照)、ポリスチレンの場合には15μm(非特許文献3参照)、生分解性ポリ乳酸の場合には21μm(非特許文献4参照)ということが明らかとなっている。
これらの結果から、パイエル板を通過できる粒子の大きさは高々20μm程度ということがわかる。
As a result, when the particle size exceeds 10 μm, phagocytosis by M cells is remarkably reduced (see Non-Patent Document 1), and the maximum diameter of particles passing through Peyer's patch is 10 μm when the particle material is polylactide ( It is clear that 15 μm (see Non-Patent Document 3) in the case of polystyrene, and 21 μm (see Non-Patent Document 4) in the case of biodegradable polylactic acid.
From these results, it can be seen that the size of particles that can pass through the Peyer plate is at most about 20 μm.

また、抗原を感作させた生分解性ポリ乳酸ビーズをラットに経口投与した実験によれば、Th2誘導によって抗原特異抗体が産生される率が最も高くなる粒子径は、IgGの場合4μm、IgAの場合は7μmであり、Th2誘導に好ましい粒子径は3〜7μm程度であることがわかる(非特許文献4参照)。
しかしながら、Th1誘導に好ましい粒子径は現在までのところ明らかにされていない。
In addition, according to an experiment in which biodegradable polylactic acid beads sensitized with an antigen were orally administered to rats, the particle diameter at which the rate at which an antigen-specific antibody was produced by Th2 induction was highest was 4 μm for IgG, IgA In this case, the particle diameter is 7 μm, and the preferable particle diameter for Th2 induction is about 3 to 7 μm (see Non-Patent Document 4).
However, the preferred particle size for Th1 induction has not been clarified so far.

特開平6−206826号公報JP-A-6-206826 特開平8−259450号公報JP-A-8-259450 特開平9−188627号公報JP-A-9-188627

Tabata Y、Ikada Y. Adv Polym Sci 94:107-141, 1990.Tabata Y, Ikada Y. Adv Polym Sci 94: 107-141, 1990. Eldridge JH. et al. J Controlled Rel 11:205-214, 1990.Eldridge JH. Et al. J Controlled Rel 11: 205-214, 1990. Eldridge JH. et al. Molec Immun 28:187-194, 1991.Eldridge JH. Et al. Molec Immun 28: 187-194, 1991. Tabata Y. et al. Vaccine 14:1677-1685, 1996.Tabata Y. et al. Vaccine 14: 1677-1685, 1996.

本発明は、このような事情に鑑みてなされたものであり、Th1誘導に好ましい粒子径を有し、INF−αの産生能に優れるとともに、水への分散性に優れた乳酸菌を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a lactic acid bacterium having a particle size preferable for Th1 induction, excellent INF-α production ability, and excellent dispersibility in water. With the goal.

本発明者らは、長寿と関係のある乳酸菌を、京都の酸茎漬、長野のすんき漬、グルジア地方のマリアーミとマッツォーニライク、モンゴルの馬乳酒、および各種発酵乳製品より分離し、乳酸菌の大きさと抗原提示細胞からのIL−12およびIFN−αの産生能の関係を解析した。
その結果、図1Aに示されるように、乳酸菌刺激による抗原提示細胞からのIL−12産生能は、乳酸菌の大きさが1μm以下まで小さくなると高くなった(参考例1参照)。
一方、IFN−α産生能の場合においても、図1Bに示すように、乳酸菌の大きさが1μm以下まで小さくなると高くなった(参考例1参照)。
The present inventors isolated lactic acid bacteria related to longevity from Kyoto's pickles, Nagano's pickles, Georgian mariami and Mazzoni-like, Mongolian horse milk and various fermented milk products. The relationship between the size of lactic acid bacteria and the ability to produce IL-12 and IFN-α from antigen-presenting cells was analyzed.
As a result, as shown in FIG. 1A, the ability to produce IL-12 from antigen-presenting cells by stimulation with lactic acid bacteria increased when the size of lactic acid bacteria was reduced to 1 μm or less (see Reference Example 1).
On the other hand, also in the case of IFN-α production ability, as shown in FIG. 1B, it increased as the size of lactic acid bacteria decreased to 1 μm or less (see Reference Example 1).

しかし、IL−12およびIFN−αの産生能には負の相関を示す菌株も認められた(図2参照)。例えば、EF、KH1、KH3といった菌株ではIL−12産生能が高くIFN−α産生能が低い、逆にLL12、ML4といった菌株ではIL−12産生能が低くIFN−α産生能が高い。
一方、SNKはIL−12およびIFN−αの産生能が相対的にともに高いといった特徴が認められた。
これは、先行技術(特願2007−30324号明細書)からは想到し得ない知見で、おそらく、抗原提示細胞に発現する受容体の乳酸菌に対する認識の違いによると推察される。
However, some strains were negatively correlated with IL-12 and IFN-α production ability (see FIG. 2). For example, strains such as EF, KH1, and KH3 have high IL-12 production ability and low IFN-α production ability. Conversely, strains such as LL12 and ML4 have low IL-12 production ability and high IFN-α production ability.
On the other hand, SNK was characterized by relatively high ability to produce IL-12 and IFN-α.
This is a finding that cannot be conceived from the prior art (Japanese Patent Application No. 2007-30324), and is presumably due to a difference in recognition of lactic acid bacteria by receptors expressed in antigen-presenting cells.

その結果、ラクトバチルス・ブレビス菌株FERM BP−4693(表1および図1−2中、LBRで表示)のように、粒子径が9μm近くもある乳酸菌においては、それが1μm程度のものに比べて、IFN−α産生能が著しく劣るということが明らかとなった。   As a result, in Lactobacillus having a particle diameter of nearly 9 μm, such as Lactobacillus brevis strain FERM BP-4693 (indicated by LBR in Table 1 and FIG. 1-2), it is compared with that of about 1 μm. It was revealed that the ability to produce IFN-α was extremely inferior.

そこで、さらに本発明者は、上記課題を解決すべく、乳酸菌体の粒度分布における最頻値を小さくし、しかも菌体同士の再凝集を防止するための条件を鋭意検討した。
その過程で、乳酸菌の表面が正(プラス)に荷電していることに着眼し、培養工程および加工工程におけるpHを中性域に調整することで、乳酸菌体の粒度分布における最頻値(以下、単に粒度という場合もある)が1.0μm以下にまで小さくなることを見出した。
一般的に、乳酸菌が培養時における諸条件によってその形態が変化することは知られているが、培養工程および加工工程におけるpHを制御することでその大きさを1.0μm以下に調整できるという知見は、当業者のあいだではこれまで知られていない。
Therefore, in order to solve the above-mentioned problems, the present inventor diligently studied conditions for reducing the mode value in the particle size distribution of lactic acid bacteria and preventing reaggregation of the bacteria.
In that process, paying attention to the fact that the surface of lactic acid bacteria is positively charged, and adjusting the pH in the culture process and processing process to the neutral range, the mode value in the particle size distribution of lactic acid bacteria (below) It was found that the particle size is sometimes reduced to 1.0 μm or less.
In general, it is known that the form of lactic acid bacteria changes depending on various conditions during cultivation, but the knowledge that the size can be adjusted to 1.0 μm or less by controlling the pH in the culturing and processing steps. Has not been known to those skilled in the art.

また、本発明者は、当該菌体をもって抗原提示細胞からのIFN−α産生能を著しく増強させることができることも見出した。
以上のように、本発明者は、通常の粒度が1.0μmより大きな乳酸菌に対しても、中性域のpHでの培養および加工処理を通して、乳酸菌体の粒度を1.0μm以下にまで調整し得ること、およびこの乳酸菌が抗原提示細胞からのIFN-α産生能を増強させ、免疫賦活作用を向上し得ることを見出し、本発明を完成した。
The present inventor has also found that the ability to produce IFN-α from antigen-presenting cells can be remarkably enhanced with the cells.
As described above, the present inventor adjusted the particle size of lactic acid bacteria to 1.0 μm or less through culturing and processing at a neutral pH even for lactic acid bacteria having a normal particle size larger than 1.0 μm. And the present inventors have found that this lactic acid bacterium can enhance the ability to produce IFN-α from antigen-presenting cells and improve the immunostimulatory effect.

なお、最近乳酸菌の死菌体を濃縮した乾燥粉末を市場で見受けるようになった。これは、少量で多数量の乳酸菌を摂取可能とすることを目的とするものである。
しかし、このような乾燥粉末における乳酸菌本来の粒度が1.0μm以下であったとしても、濃縮した菌体を乾燥しただけの粉末であっては、これを水に入れた場合に粒子同士が吸着・凝集し、かたまり(塊)となってしまう(参考例2参照)。
そもそも、通常の培養条件では、粒度が1.0μm以下の乳酸菌は、存在する可能性が低い(表1参照)。
Recently, dry powder enriched with dead lactic acid bacteria has been found on the market. This is intended to enable intake of a large amount of lactic acid bacteria in a small amount.
However, even if the original particle size of lactic acid bacteria in such a dry powder is 1.0 μm or less, if the powder is simply dried concentrated bacteria, the particles will adsorb when placed in water. -Aggregates to form a lump (refer to Reference Example 2).
In the first place, under normal culture conditions, lactic acid bacteria having a particle size of 1.0 μm or less are unlikely to exist (see Table 1).

すなわち、本発明は、以下のナノ型乳酸菌を提供する。
1. 乳酸菌の培養工程および加工工程における培地のpHを中性域に調整して得られる、粒度分布における最頻値が1.0μm以下であるナノ型乳酸菌の菌体であって、
前記乳酸菌がラクトバチルス・ブレビスであることを特徴とするナノ型乳酸菌の菌体。
2. 前記培地のpHを5〜8に調整して得られる1のナノ型乳酸菌の菌体。
3. 前記培養工程における培地がエネルギー源としてブドウ糖を含有し、前記ブドウ糖が消費された時点を培養終点として得られる1または2のナノ型乳酸菌の菌体。
4. 前記加工工程において、分散剤または賦形剤を乳酸菌に添加した後、凍結乾燥または噴霧乾燥して得られる1のナノ型乳酸菌の菌体。
5. 1〜4のいずれかのナノ型乳酸菌の菌体を含有する免疫賦活作用を有する組成物。
6. 1〜4のいずれかのナノ型乳酸菌の菌体、または5の組成物を含有する飲食物、飼料、化粧品または医薬品。
7. 1〜4のいずれかのナノ型乳酸菌の菌体を含有するインターフェロンα産生能増強剤。
また、本発明は、以下のナノ型乳酸菌が関連する。
[1] 粒度分布における最頻値が1.0μm以下であることを特徴とするナノ型乳酸菌の菌体。
[2] 乳酸菌の培養工程および加工工程における培地のpHを中性域に調整して得られる[1]のナノ型乳酸菌の菌体。
[3] 前記培地のpHを5〜8に調整して得られる[2]のナノ型乳酸菌の菌体。
[4] 前記乳酸菌の培養工程における培地にブドウ糖を含有させる[2]または[3]のナノ型乳酸菌の菌体。
[5] pHを中性域に調整した培地と、菌とを含む培養液に分散剤または賦形剤を添加して分散した後、凍結乾燥または噴霧乾燥して得られる[1]のナノ型乳酸菌の菌体。
[6] ラクトバチルス属乳酸菌である[1]〜[5]のいずれかのナノ型乳酸菌の菌体。
[7] 前記ラクトバチルス属乳酸菌が、ラクトバチルス・ブレビスである[6]のナノ型乳酸菌の菌体。
[8] 前記ラクトバチルス・ブレビスの菌株が、FERM BP−4693である[7]のナノ型乳酸菌の菌体。
[9] [1]〜[8]のいずれかのナノ型乳酸菌の菌体を含有する免疫賦活作用を有する組成物。
[10] [1]〜[8]のいずれかのナノ型乳酸菌の菌体、または[9]の組成物を含有する飲食物、飼料、化粧品または医薬品。
[11] 乳酸菌の培養工程および加工工程における培地のpHを中性域に調整することを特徴とする[1]のナノ型乳酸菌の菌体の製造方法。
[12] 前記培地のpHを5〜8に調整する[11]のナノ型乳酸菌の菌体の製造方法。
[13] pHを中性域に調整した培地と、菌とを含む培養液に分散剤または賦形剤を添加して分散した後、凍結乾燥または噴霧乾燥する[11]のナノ型乳酸菌の菌体の製造方法。
That is, the present invention provides the following nano-type lactic acid bacteria.
1. A cell of nano-type lactic acid bacteria obtained by adjusting the pH of the medium in the culture process and processing process of lactic acid bacteria to a neutral range, and the mode value in the particle size distribution is 1.0 μm or less,
A microbial cell of a nano-type lactic acid bacterium, wherein the lactic acid bacterium is Lactobacillus brevis.
2. A cell of 1 nano-type lactic acid bacterium obtained by adjusting the pH of the medium to 5-8.
3. A cell of 1 or 2 nano-type lactic acid bacteria obtained by using the culture medium in the culturing step as a source of energy and glucose as an energy source, and obtaining the time when the glucose is consumed as a culture end point.
4). In the processing step, a nano-type lactic acid bacterium cell body obtained by adding a dispersant or an excipient to a lactic acid bacterium, followed by freeze-drying or spray-drying.
5. The composition which has the immunostimulatory effect containing the microbial cell of nano type lactic acid bacteria in any one of 1-4.
6). Food / beverage, feed, cosmetics or pharmaceuticals containing any one of 1 to 4 nano-type lactic acid bacteria or 5 compositions.
7). The interferon alpha production ability enhancer containing the microbial cell of any one of 1-4 nano type lactic acid bacteria.
In addition, the present invention relates to the following nano-type lactic acid bacteria.
[1] A nano-type lactic acid bacterium having a mode value in a particle size distribution of 1.0 μm or less.
[2] The cell of the nano-type lactic acid bacterium according to [1], which is obtained by adjusting the pH of the medium in the lactic acid bacterium culture process and processing step to a neutral range.
[3] The nano-type lactic acid bacteria of [2] obtained by adjusting the pH of the medium to 5 to 8.
[4] Nano-type lactic acid bacteria according to [2] or [3], wherein glucose is added to the medium in the lactic acid bacteria culture step.
[5] The nano-type of [1] obtained by adding a dispersing agent or an excipient to a culture solution containing a medium having a pH adjusted to a neutral range and a bacterium and dispersing the dispersion, followed by freeze drying or spray drying Lactic acid bacteria.
[6] The cell of the nano-type lactic acid bacterium according to any one of [1] to [5], which is a Lactobacillus lactic acid bacterium.
[7] The lactic acid bacterium according to [6], wherein the Lactobacillus lactic acid bacterium is Lactobacillus brevis.
[8] The nano-type lactic acid bacterium of [7], wherein the Lactobacillus brevis strain is FERM BP-4693.
[9] A composition having an immunostimulatory effect, comprising the cells of the nano-type lactic acid bacteria according to any one of [1] to [8].
[10] A food / beverage, feed, cosmetic or pharmaceutical product containing the lactic acid bacterium of any one of [1] to [8] or the composition of [9].
[11] The method for producing a cell of a nano-type lactic acid bacterium according to [1], wherein the pH of the medium in the lactic acid bacteria culture and processing steps is adjusted to a neutral range.
[12] The method for producing cells of nano-type lactic acid bacteria according to [11], wherein the pH of the medium is adjusted to 5 to 8.
[13] A nano-type lactic acid bacterium according to [11], which is dispersed by adding a dispersant or an excipient to a culture solution containing a medium having a pH adjusted to a neutral range and a bacterium, and then lyophilized or spray-dried. Body manufacturing method.

本発明によれば、通常の粒度が1μmより大きな乳酸菌に対しても、中性域のpHでの培養および加工処理を通して、乳酸菌体の粒度を1.0μm以下にまで調整することができる。
このようにして得られたナノ型乳酸菌の菌体は、抗原提示細胞からのIFN-α産生能を増強させ、免疫賦活作用を向上し得るため、非常に有用な菌体であるといえる。
According to the present invention, the particle size of lactic acid bacteria can be adjusted to 1.0 μm or less through culturing and processing at a neutral pH even for lactic acid bacteria having a normal particle size larger than 1 μm.
The cells of the nano-type lactic acid bacterium thus obtained can be said to be very useful cells because they can enhance the ability to produce IFN-α from antigen-presenting cells and improve the immunostimulatory action.

乳酸菌の菌体粒度とIL−12およびIFN−α産生能の関係を示した図である。It is the figure which showed the relationship between the microbial cell particle size and IL-12 and IFN- (alpha) production ability. 乳酸菌刺激によるIL−12およびIFN−α産生能の相関を示した図である。It is the figure which showed the correlation of IL-12 and IFN- (alpha) production ability by lactic acid bacteria stimulation. 菌体粒度を比較した図である。It is the figure which compared the microbial cell particle size. 乳酸菌粉末の粒子径分布(A:頻度%,B:積算%)を示した図である。It is the figure which showed the particle size distribution (A: frequency%, B: integration%) of lactic acid bacteria powder. ナノ型乳酸菌ラブレの菌体粒度とIFN−α産生能を示した図である。It is the figure which showed the microbial cell particle size and IFN- (alpha) production ability of nano type | mold lactic acid bacteria Labre.

以下、本発明についてさらに詳しく説明する。
本発明に係るナノ型乳酸菌の菌体は、粒度分布における最頻値(粒度)が1.0μm以下のものである。
本発明において、「粒度分布における最頻値」は、菌の大きさを表す指標となる値であって、菌体の粒子径を測定したときの粒度分布における相対頻度が最大となる粒子径をいう。
Hereinafter, the present invention will be described in more detail.
The cells of nano-type lactic acid bacteria according to the present invention have a mode value (particle size) of 1.0 μm or less in the particle size distribution.
In the present invention, the "mode value in the particle size distribution" is a value serving as an index representing the size of the bacterium, and the particle diameter that maximizes the relative frequency in the particle size distribution when the particle size of the bacterial cell is measured. Say.

本発明の「ナノ型乳酸菌の菌体」の原料となる乳酸菌の具体例としては、ラクトバチルス・アシドフィルス(Lactobacillus acidphilus)、ラクトバチルス・ガセリ(L.gasseri)、ラクトバチルス・マリ(L.mali)、ラクトバチルス・プランタラム(L.plantarum)、ラクトバチルス・ブヒネリ(L.buchneri)、ラクトバチルス・カゼイ(L.casei)、ラクトバチルス・ジョンソニー(L.johnsonii)、ラクトバチルス・ガリナラム(L.gallinarum)、ラクトバチルス・アミロボラス(L.amylovorus)、ラクトバチルス・ブレビス(L.brevis)、ラクトバチルス・ラムノーザス(L.rhamnosus)、ラクトバチルス・ケフィア(L.kefir)、ラクトバチルス・パラカゼイ(L.paracasei)、ラクトバチルス・クリスパタス(L.crispatus)等のラクトバチルス属細菌、ストレプトコッカス・サーモフィルス(Streptcoccus thermophilus)等のストレプトコッカス属細菌、ラクトコッカス・ラクチス(Lactococcus lactis)等のラクトコッカス属細菌、エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・フェシウム(E.faecium)等のエンテロコッカス属細菌、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・ロンガム(B.longum)、ビフィドバクテリウム・アドレスセンティス(B.adolescentis)、ビフィドバクテリウム・インファンティス(B.infantis)、ビフィドバクテリウム・ブレーベ(B.breve)、ビフィドバクテリウム・カテヌラータム(B.catenulatum)等のビフィドバクテリウム属細菌などが挙げられる。   Specific examples of the lactic acid bacterium used as a raw material for the “bacteria of the nano-type lactic acid bacterium” of the present invention include Lactobacillus acidophilus, L. gasseri, and Lactobacillus mari (L. mari). Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L. buchneri), Lactobacillus casei (L. casei), Lactobacillus johnsonii (L. johnsonii), Lactobacillus gallinarum (L. gallinarum), Lactobacillus amylovorus (L. amylovorus), Lactobacillus brevis (L. brevis), Lactobacillus rhamnosus (L. rhamnosus), Lactobacillus Lactobacillus bacteria such as Kefir, L. paracasei, L. crisptus, Streptococcus thermophilus, Streptococcus such as Streptococcus thermophilus Lactococcus bacteria such as Lactococcus lactis, Enterococcus faecalis, Enterococcus faecium, etc., Bifidobacteria Bifidobacterium・ Longham (B. longum), bifi B. adolescentens, B. infantis, B. breve, B. catenatum, B. catenatum, etc. Examples include bacteria belonging to the genus Fidobacterium.

本発明のナノ型乳酸菌の菌体の形態は、生菌でも死菌でもよいが、生菌の場合、製品製造以降の配送時や陳列時に形態変化を起こす可能性があるため、それ以上形態変化を起こさない死菌が好ましい。   The form of the cells of the nano-type lactic acid bacteria of the present invention may be live or dead, but in the case of live bacteria, there is a possibility of causing a change in form at the time of delivery or display after product manufacture. A killed bacteria that does not cause odor is preferred.

乳酸菌は、培養時の生育環境が劣悪になると、そのストレスで形態が変化することが知られている。
そこで本発明では、培養および加工条件を制御することで、乳酸菌の形態が一定になるように維持しながら乳酸菌を増殖させて、上述した粒度分布における最頻値を有するナノ型乳酸菌を製造する。
具体的には、先に述べたとおり、乳酸菌の表面が正(陽、プラス)に荷電していることに着眼し、培養工程および加工工程におけるpHを中性域に調整して膜を安定化することで、分裂菌が接合したままの双菌状態および菌同士の再吸着を防止するものである。
Lactic acid bacteria are known to change in form due to stress when the growth environment during culture becomes poor.
Therefore, in the present invention, by controlling the culture and processing conditions, the lactic acid bacteria are grown while maintaining the form of the lactic acid bacteria to be constant, and the nano-type lactic acid bacteria having the mode value in the particle size distribution described above are manufactured.
Specifically, as mentioned above, the surface of lactic acid bacteria is positively charged (positive, positive), and the membrane is stabilized by adjusting the pH in the culture and processing steps to a neutral range. By doing so, it prevents the double bacteria state in which the dividing bacteria are joined and the re-adsorption of the bacteria.

ここで、「pHを中性域に調整」する方法としては、乳酸等の酸や水酸化ナトリウム等のアルカリでの中和が挙げられる。
なお、本発明における「培養工程および加工工程における培地のpHを中性域に調整」するとは、培養工程のpHを中性域に調整しておくことのみならず、培養終了後の菌体滅菌、洗浄、濃縮といった工程(加工工程)におけるpHも中性域に調整することを意味している。
培養工程および加工工程におけるpHは、5〜8が好ましく、5.5〜7.5がより好ましい。
Here, as a method of “adjusting pH to a neutral range”, neutralization with an acid such as lactic acid or an alkali such as sodium hydroxide can be mentioned.
In the present invention, “adjusting the pH of the medium in the culturing step and the processing step to the neutral range” not only adjusts the pH of the culturing step to the neutral range, but also sterilizes the cells after completion of the culture. It means that the pH in the process (processing step) such as washing and concentration is also adjusted to the neutral range.
5-8 are preferable and, as for pH in a culture process and a processing process, 5.5-7.5 are more preferable.

また、培地の栄養組成におけるエネルギー源としては、エネルギー利用性が最も高いブドウ糖が好ましく、その添加量は培地中に5〜10質量%程度とすることが好ましい。
なお、ブドウ糖が消費された時点を培養終点とすることで、栄養枯渇から来るストレスによる菌形態の変化を防止することができる。
Moreover, as an energy source in the nutrient composition of a culture medium, glucose with the highest energy utilization is preferable, and it is preferable that the addition amount shall be about 5-10 mass% in a culture medium.
In addition, the change of a fungal form by the stress which comes from nutrient depletion can be prevented by setting the time of glucose consumption as the culture end point.

さらに、本発明の「ナノ型乳酸菌の菌体」は分散処理されたものであることが好ましい。
分散処理の手法としては、特に限定されるものではないが、例えば、菌の培養液を湿式で150kgf/cm2(1.5MPa)程度の高圧ホモゲナイザーで分散する方法が挙げられる。
この場合、予め公知の分散剤または賦形剤を培養液に添加しておくことが好ましく、これにより、菌体の再凝集を効率的に防止することができる。
使用する分散剤および賦形剤の添加量は、菌体の性状によって変化するが、質量換算で菌体に対して1〜100倍量が好ましく、2〜20倍量がより好ましい。
好適な分散剤および賦形剤としては、トレハロース、デキストリン、スキムミルク等が挙げられる。
Furthermore, it is preferable that the “bacteria of nano-type lactic acid bacteria” of the present invention have been subjected to a dispersion treatment.
The method for the dispersion treatment is not particularly limited, and examples thereof include a method of dispersing a bacterial culture solution with a high-pressure homogenizer of about 150 kgf / cm 2 (1.5 MPa) in a wet manner.
In this case, it is preferable to add a known dispersing agent or excipient in advance to the culture solution, whereby the bacterial cells can be effectively prevented from reaggregating.
Although the addition amount of the dispersing agent and excipient | filler to be used changes with the characteristics of a microbial cell, 1-100 times amount is preferable with respect to a microbial cell in conversion of mass, and 2-20 times amount is more preferable.
Suitable dispersing agents and excipients include trehalose, dextrin, skim milk and the like.

なお、本発明の「ナノ型乳酸菌の菌体」を最終的に粉末として得る場合には、公知の分散剤・賦形剤等で菌体が再凝集しないような処理を施してから、凍結乾燥や噴霧乾燥することが好ましい。これにより、水への分散性に優れた菌体粉末を得ることができる。   In the case of finally obtaining the “nano-type lactic acid bacteria” of the present invention as a powder, the cells are treated with a known dispersant / excipient so that the cells do not reaggregate, and then lyophilized. Or spray drying. Thereby, the microbial cell powder excellent in the dispersibility to water can be obtained.

以上説明した本発明のナノ型乳酸菌の菌体は、粒度が1.0μm以下のナノメータ(nm)サイズにまで微細化されたものである。
また、この菌体は、上記手法によって乾燥粉末とし、当該粉末を生理的消化液に再懸濁した場合の菌体粒度がやはり1.0μm以下を保つ。なお、生理的消化液とは、公知の方法で調製された人工胃液あるいは腸液を意味する。
The cells of the nano-type lactic acid bacteria of the present invention described above have been refined to a nanometer (nm) size with a particle size of 1.0 μm or less.
Moreover, this microbial cell is made into a dry powder by the said method, and the microbial cell particle size at the time of resuspending the said powder in a physiological digestive liquid also maintains 1.0 micrometer or less. The physiological digestive fluid means artificial gastric juice or intestinal fluid prepared by a known method.

本発明のナノ型乳酸菌の菌体は、そのまま製品とすることもできるが、一般には、風味を上げたり、必要な形状とする等のために種々の成分を添加、配合したり、更にフレーバーを添加したりして最終製品される。
この添加、混合される成分としては、各種糖質や乳化剤、甘味料、酸味料、果汁等が挙げられる。
The cells of the nano-type lactic acid bacterium of the present invention can be used as it is, but in general, various ingredients are added and blended in order to increase the flavor, make it a required shape, etc. The final product is added.
Examples of the components to be added and mixed include various sugars, emulsifiers, sweeteners, acidulants, fruit juices and the like.

より具体的には、グルコース、シュークロース、フラクトース、蜂蜜等の糖類;ソルビトール、キシリトール、エリスリトール、ラクチトール、パラチニット等の糖アルコール;ショ糖脂肪酸エステル、グリセリン糖脂肪酸エステル、レシチン等の乳化剤などが挙げられる。その他にも、ビタミンA、ビタミンB類、ビタミンC、ビタミンE等の各種ビタミン類やハーブエキス、穀物成分、野菜成分、乳成分等を配合しても、優れた風味のTh1誘導剤を得ることができる。   More specifically, sugars such as glucose, sucrose, fructose, and honey; sugar alcohols such as sorbitol, xylitol, erythritol, lactitol, and palatinit; emulsifiers such as sucrose fatty acid ester, glycerin sugar fatty acid ester, and lecithin . In addition, various types of vitamins such as vitamin A, vitamin B, vitamin C and vitamin E, herbal extracts, cereal ingredients, vegetable ingredients, milk ingredients, etc. can be blended to obtain an excellent flavor Th1 inducer. Can do.

また、フレーバーとしては、ヨーグルト系、ベリー系、オレンジ系、花梨系、シソ系、シトラス系、アップル系、ミント系、グレープ系、ペア、カスタードクリーム、ピーチ、メロン、バナナ、トロピカル、ハーブ系、紅茶、コーヒー系等のフレーバーが挙げられ、これらを1種または2種以上組み合わせて用いることができる。フレーバーの添加量は特に限定されないが、風味面から菌体中に0.05〜0.5質量%、特に0.1〜0.3質量%程度が好ましい。   In addition, flavors include yogurt, berry, orange, quince, perilla, citrus, apple, mint, grape, pair, custard cream, peach, melon, banana, tropical, herbal, tea And coffee-based flavors, which can be used alone or in combination of two or more. Although the addition amount of a flavor is not specifically limited, 0.05-0.5 mass% in a microbial cell from a flavor surface, Especially about 0.1-0.3 mass% is preferable.

以上説明した本発明のナノ型乳酸菌の菌体は、固形状、液状等いずれの形態の製品とすることもできる。具体的には、医薬的に受容な塩、賦形剤、保存剤、着色剤、矯味剤等とともに、医薬品あるいは食品の製造分野における公知の方法によって、飲料、顆粒、錠剤、カプセル剤等の種々の形態として製品化することができる。   The nano-type lactic acid bacteria of the present invention described above can be made into a product in any form such as solid or liquid. Specifically, various pharmaceutically acceptable salts, excipients, preservatives, coloring agents, flavoring agents, and the like, as well as various beverages, granules, tablets, capsules, and the like, by known methods in the pharmaceutical or food manufacturing field. It can be commercialized as a form.

また、本発明のナノ型乳酸菌の菌体は、健康食品に利用することができる。健康食品とは、通常の食品よりも積極的な意味で、保健、健康維持・増進等の目的とした食品を意味する。その形態は、液体、半固形、固形のいずれでもよく、具体的には、クッキー、せんべい、ゼリー、ようかん、ヨーグルト、まんじゅう等の菓子類;清涼飲料、栄養飲料、スープ等が挙げられる。   Moreover, the microbial cell of the nano type | mold lactic acid bacteria of this invention can be utilized for health food. The health food means a food that is more active than normal food and intended for health, health maintenance and promotion. The form may be any of liquid, semi-solid, and solid, and specific examples thereof include confectionery such as cookies, rice crackers, jelly, yokan, yogurt, and manju; soft drinks, nutritional drinks, soups and the like.

さらに、本発明のナノ型乳酸菌の菌体は、ローション(化粧水)、化粧用クリーム類、乳液、化粧水、パック剤、スキンミルク(乳剤)、ジェル剤、パウダー、リップクリーム、口紅、アンダーメークアップ、ファンデーション、サンケア、浴用剤、ボディシャンプー、ボディリンス、石鹸、クレンジングフォーム、軟膏、貼付剤、ゼリー剤、エアゾール剤等種々の製品形態で皮膚外用剤に利用することもできる。   Furthermore, the cells of the nano-type lactic acid bacteria of the present invention include lotions (skin lotions), cosmetic creams, emulsions, lotions, packs, skin milk (emulsions), gels, powders, lip balms, lipsticks, undermakes. Up, foundation, sun care, bath preparation, body shampoo, body rinse, soap, cleansing foam, ointment, patch, jelly, aerosol, etc., can be used as a skin external preparation.

なお、本発明のナノ型乳酸菌の菌体には、下記に例示されるような化粧品、医薬部外品、医薬品において通常用いられる各種成分や、添加剤を必要に応じて適宜配合することができる。
すなわち、グリセリン、ワセリン、尿素、ヒアルロン酸、ヘパリン等の保湿剤;PABA誘導体(パラアミノ安息香酸、エスカロール507(アイエスピー・ジャパン(株))等)、桂皮酸誘導体(ネオヘリオパン、パルソールMCX(DSMニュートリション ジャパン(株))、サンガードB((株)資生堂)等)、サリチル酸誘導体(オクチルサリチレート等)、ベンゾフェノン誘導体(ASL−24、ASL−24S((有)湘南ケミカルサービス)等)、ジベンゾイルメタン誘導体(パルソールA、パルソールDAM(DSMニュートリション ジャパン(株)等)、複素環誘導体(チヌビン系等)、酸化チタン等の紫外線吸収剤・散乱剤;エデト酸二ナトリウム、エデト酸三ナトリウム、クエン酸、クエン酸ナトリウム、酒石酸、酒石酸ナトリウム、乳酸、リンゴ酸、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸等の金属封鎖剤;サリチル酸、イオウ、カフェイン、タンニン等の皮脂抑制剤;塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン等の殺菌・消毒剤;塩酸ジフェンヒドラミン、トラネキサム酸、グアイアズレン、アズレン、アラントイン、ヒノキチオール、グリチルリチン酸およびその塩、グリチルリチン酸誘導体、グリチルレチン酸等の抗炎症剤;ビタミンA、ビタミンB群(B1、B2、B6、B12、B15)、葉酸、ニコチン酸類、パントテン酸類、ビオチン、ビタミンC、ビタミンD群(D2、D3)、ビタミンE、ユビキノン類、ビタミンK(K1、K2、K3、K4)等のビタミン類;アスパラギン酸、グルタミン酸、アラニン、リジン、グリシン、グルタミン、セリン、システイン、シスチン、チロシン、プロリン、アルギニン、ピロリドンカルボン酸等のアミノ酸およびその誘導体;レチノール、酢酸トコフェロール、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸、エラグ酸、胎盤抽出液等の美白剤;ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル等の抗酸化剤;塩化亜鉛、硫酸亜鉛、石炭酸亜鉛、酸化亜鉛、硫酸アルミニウムカリウム等の収斂剤;グルコース、フルクトース、マルトース、ショ糖、トレハロース、エリスリトール、マンニトール、キシリトール、ラクチトール等の糖類;甘草、カミツレ、マロニエ、ユキノシタ、芍薬、カリン、オウゴン、オウバク、オウレン、ジュウヤク、イチョウ葉等の各種植物エキス等の他、油性成分、界面活性剤、増粘剤、アルコール類、粉末成分、色素などを適宜配合することができる。
In addition, various components and additives usually used in cosmetics, quasi-drugs, and pharmaceuticals as exemplified below can be appropriately blended into the cells of the nano-type lactic acid bacteria of the present invention as necessary. .
That is, humectants such as glycerin, petrolatum, urea, hyaluronic acid, heparin; PABA derivatives (paraaminobenzoic acid, Escalol 507 (Asp Japan)), cinnamic acid derivatives (neoheliopan, pulsol MCX (DSM nutrition) Japan Co., Ltd.), Sungard B (Shiseido Co., Ltd.), salicylic acid derivatives (octyl salicylate, etc.), benzophenone derivatives (ASL-24, ASL-24S (Shonan Chemical Service), etc.), dibenzoyl Methane derivatives (Pulsol A, Pulsol DAM (DSM Nutrition Japan Co., Ltd., etc.), heterocyclic derivatives (Tinuvin, etc.), UV absorbers / scattering agents such as titanium oxide; disodium edetate, trisodium edetate, citric acid , Sodium citrate, tartaric acid, Metal sequestering agents such as sodium tartrate, lactic acid, malic acid, sodium polyphosphate, sodium metaphosphate, gluconic acid; sebum inhibitors such as salicylic acid, sulfur, caffeine, tannin; benzalkonium chloride, benzethonium chloride, chlorhexidine gluconate Anti-inflammatory agents such as diphenhydramine hydrochloride, tranexamic acid, guaiazulene, azulene, allantoin, hinokitiol, glycyrrhizic acid and salts thereof, glycyrrhizic acid derivatives, glycyrrhetinic acid; vitamin A, vitamin B group (B1, B2, B6, B12, B15), folic acid, nicotinic acids, pantothenic acids, biotin, vitamin C, vitamin D group (D2, D3), vitamin E, ubiquinones, vitamins such as vitamin K (K1, K2, K3, K4) Aspartic acid, Amino acids and their derivatives such as glutamic acid, alanine, lysine, glycine, glutamine, serine, cysteine, cystine, tyrosine, proline, arginine, pyrrolidone carboxylic acid; retinol, tocopherol acetate, magnesium ascorbate phosphate, glucoside ascorbate, arbutin, kouji Whitening agents such as acid, ellagic acid and placenta extract; antioxidants such as butylhydroxytoluene, butylhydroxyanisole and propyl gallate; astringents such as zinc chloride, zinc sulfate, zinc carbonate, zinc oxide and aluminum potassium sulfate; Glucose, fructose, maltose, sucrose, trehalose, erythritol, mannitol, xylitol, lactitol, and other sugars; licorice, chamomile, maronier, yukinoshita, glaze, karin, ougon, owe Click, Coptis, herba houttuyniae, other various kinds plant extracts such as ginkgo biloba, oil components, surfactants, thickeners, alcohols, powder components, can be as appropriate blended dye.

以下、参考例および実施例を挙げて、本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。なお、乳酸菌の粒子径は粒度分布測定装置((株)島津製作所、SALD−3100)で測定した。また、マクロファージから乳酸菌刺激によって産生されるIL−12およびIFN−αは市販されているELISAキットで測定した。   Hereinafter, although a reference example and an example are given and the present invention is explained more concretely, the present invention is not limited to the following examples. The particle size of lactic acid bacteria was measured with a particle size distribution measuring device (Shimadzu Corporation, SALD-3100). IL-12 and IFN-α produced from macrophages by stimulation with lactic acid bacteria were measured using a commercially available ELISA kit.

[参考例1]
〔死菌体の調製〕
表1に示されるように、長寿と関係のある乳酸菌を、京都の酸茎漬、長野のすんき漬、グルジア地方のマリアーミとマッツォーニライク、モンゴルの馬乳酒、各種発酵乳製品より分離し、MRS培地を用いて培養時のpHを調整することなく36.5℃で48時間培養した。培養終了後、培養液を80℃で10分間加熱滅菌処理し、菌体をPBSで洗浄し、菌体濃度で10mg/mlになるように調製した。
なお、表中のLBRとはラクトバチルス・ブレビス菌株FERM BP−4693を指す。ラクトバチルス・ブレビス菌株FERM BP−4693株は、独立行政法人製品評価技術基盤機構特許微生物寄託センターより入手することができる。
[Reference Example 1]
[Preparation of dead cells]
As shown in Table 1, lactic acid bacteria related to longevity are isolated from Kyoto's pickles, Nagano's pickles, Georgian mariami and Mazzoni-like, Mongolian horse milk and various fermented milk products. Then, the cells were cultured at 36.5 ° C. for 48 hours without adjusting the pH during the culture using MRS medium. After completion of the culture, the culture solution was sterilized by heating at 80 ° C. for 10 minutes, and the cells were washed with PBS to prepare a cell concentration of 10 mg / ml.
In addition, LBR in the table refers to Lactobacillus brevis strain FERM BP-4693. The Lactobacillus brevis strain FERM BP-4693 can be obtained from the Independent Administrative Institution Product Evaluation Technology Base Organization Patent Microorganism Depositary Center.

〔菌体粒度とIL−12およびIFN−α産生能との関係〕
乳酸菌の菌体粒度とIL−12およびIFN−α産生能との関係を図1Aおよび図1Bにそれぞれ示す。
乳酸菌の大きさ(粒子径)が1μm程度にまで小さくなった方が、IL−12およびIFN−αのいずれのサイトカインも著しく産生能が増強されることが明らかとなった(表1と図1参照)。
ただし、図2に示されるように、IL−12およびIFN−αとの産生能には負の相関を示す菌株が認められ、たとえばEF、KH1、KH3といった菌株ではIL−12産生能が高くIFN−α産生能が低い、逆にLL12、ML4といった菌株ではIL−12産生能が低くIFN−α産生能が高い、一方でSNKはIL−12およびIFN−αの産生能が相対的にともに高いといった特徴が認められた。
[Relationship between cell particle size and ability to produce IL-12 and IFN-α]
The relationship between the cell size of lactic acid bacteria and the ability to produce IL-12 and IFN-α is shown in FIGS. 1A and 1B, respectively.
It has been clarified that the production ability of both IL-12 and IFN-α cytokines is remarkably enhanced when the size (particle diameter) of lactic acid bacteria is reduced to about 1 μm (Table 1 and FIG. 1). reference).
However, as shown in FIG. 2, strains having a negative correlation were observed in the production ability with IL-12 and IFN-α. For example, strains such as EF, KH1, and KH3 have high IL-12 production ability and IFN. -Α production ability is low, conversely, strains such as LL12 and ML4 have low IL-12 production ability and high IFN-α production ability, whereas SNK has relatively high production ability of IL-12 and IFN-α. The following features were recognized.

Figure 2012229258
Figure 2012229258

[実施例1]
〔ナノ型乳酸菌EFの調製〕
乳酸菌エンテロコッカス・フェカリス菌株EFを、5質量%ブドウ糖添加の公知の栄養培地で、20質量%水酸化ナトリウム水溶液で培養時におけるpHを6.5に調整しながら36.5℃で培養し、ブドウ糖が消費された時点を培養終点とした(培養工程)。
培養終了後、培養液を80℃で10分間加熱滅菌処理した後、菌体をPBSで洗浄し、菌体濃度で10mg/mlになるように調整した(加工工程)。なお、加工工程時のpHは6.5に保持した。
〔菌体粒度の比較〕
参考例1および実施例1で調製した乳酸菌EFの菌体粒度を測定した。その結果を図3に示す。
図3に示されるように、非中和培養による菌体粒度が1.215と1μmより大きかったのに対し、中和培養による菌体粒度は0.701と1.0μm以下になっていることがわかる。
[Example 1]
[Preparation of nano-type lactic acid bacteria EF]
Lactic acid bacteria Enterococcus faecalis strain EF was cultured at 36.5 ° C. in a known nutrient medium supplemented with 5% by weight glucose and adjusted to pH 6.5 at the time of cultivation with 20% by weight sodium hydroxide aqueous solution. The time point of consumption was defined as a culture end point (culture process).
After completion of the culture, the culture solution was sterilized by heating at 80 ° C. for 10 minutes, and then the cells were washed with PBS and adjusted to a cell concentration of 10 mg / ml (processing step). The pH during the processing step was maintained at 6.5.
[Comparison of cell size]
The cell size of the lactic acid bacteria EF prepared in Reference Example 1 and Example 1 was measured. The result is shown in FIG.
As shown in FIG. 3, the cell size by non-neutralization culture was 1.215 and larger than 1 μm, whereas the cell size by neutralization culture was 0.701 and 1.0 μm or less. I understand.

[参考例2]
〔死菌乾燥粉末の調製〕
乳酸菌本来の大きさが0.6μm(図4A)で、選択的にサイトカインを誘導し得る2μm以下の粒子の積算分布が99%(図4B)の乳酸菌エンテロコッカス・フェカリス菌株EFを実施例1の方法で培養し、その培養液から菌体を濃縮し、賦形剤を添加せずに噴霧乾燥して粉末とした。
〔菌体粒度の比較〕
上記で調製した粉末を、再び水に分散させた。その結果、図4Aに示されるように、粒子径が100μmまでなだらかな粒度分布を示した。その内訳は、図4Bの積算分布に示されるように、パイエル板を通過する20μmまでの粒子は約50%、Th2細胞を誘導する3〜7μmの粒子は約14%、さらにTh1細胞を誘導する2μm以下の粒子は高々1%に過ぎなかった。これではTh1/Th2応答をともに誘導する粒子が混在することになり、生理的には決して好ましい状況とは言えない。
[Reference Example 2]
[Preparation of dry powder of dead bacteria]
Lactic acid bacteria Enterococcus faecalis strain EF having an original size of lactic acid bacteria of 0.6 μm (FIG. 4A) and an integrated distribution of particles of 2 μm or less capable of selectively inducing cytokines (99% (FIG. 4B)) is used as the method of Example 1 The cells were concentrated from the culture solution and spray-dried without adding excipients to obtain powder.
[Comparison of cell size]
The powder prepared above was dispersed again in water. As a result, as shown in FIG. 4A, the particle size distribution showed a gentle particle size distribution up to 100 μm. The breakdown is as shown in the cumulative distribution of FIG. 4B. About 50% of particles up to 20 μm that pass through Peyer's patches, about 14% of particles of 3-7 μm that induce Th2 cells, and further induce Th1 cells. Particles of 2 μm or less were at most 1%. In this case, particles that induce both Th1 / Th2 responses are mixed, which is not a physiologically preferable situation.

さらに生体内での消化作用を想定し、これを公知の方法で調製された人工胃液または腸液で処理した場合でも、Th1細胞を誘導する2μm以下の粒子の積算分布は高々10%までしか上がらなかった(図4B)。
これではせっかくの乳酸菌本来の機能も十分に発揮されない(高々10%程度)という結果を招くことが懸念される。
In addition, assuming an in vivo digestive action, even when this is treated with an artificial gastric fluid or intestinal fluid prepared by a known method, the cumulative distribution of particles of 2 μm or less that induce Th1 cells increases only to 10% at most. (FIG. 4B).
There is a concern that this may lead to a result that the original function of lactic acid bacteria is not fully exhibited (about 10% at most).

[実施例2]
〔ナノ型乳酸菌ラクトバチルス・ブレビスの調製〕
乳酸菌ラクトバチルス・ブレビス菌株FERM BP−4693を、5質量%ブドウ糖添加の公知の栄養培地で、20質量%水酸化ナトリウム水溶液で培養時におけるpHを6.5に調整しながら36.5℃で培養し、グルコース消費が完了した時点を培養終点とした(培養工程)。
培養終了後、培養液を80℃で10分間加熱滅菌処理し、菌体をPBSで洗浄し、菌体に対して重量換算で4倍量のデキストリンを賦形剤として添加し、ミキサーで分散してから凍結乾燥して試料を調製し、これを再び菌体濃度で10mg/mlになるようにPBSに懸濁した(加工工程)。なお、加工工程時のpHは6.5に保持した。
[Example 2]
[Preparation of nano-type lactic acid bacteria Lactobacillus brevis]
Lactic acid bacterium Lactobacillus brevis strain FERM BP-4693 is cultured at 36.5 ° C. in a known nutrient medium supplemented with 5% by weight glucose and adjusted to pH 6.5 with 20% by weight sodium hydroxide aqueous solution. Then, the time point when the glucose consumption was completed was defined as the culture end point (culture step).
After completion of the culture, the culture solution is sterilized by heating at 80 ° C. for 10 minutes, the cells are washed with PBS, 4 times the amount of dextrin is added as an excipient to the cells and dispersed with a mixer. Then, the sample was freeze-dried to prepare a sample, which was again suspended in PBS so that the bacterial cell concentration was 10 mg / ml (processing step). The pH during the processing step was maintained at 6.5.

〔菌体粒度およびIFN−α産生能の比較〕
参考例1および実施例2で調製したラクトバチルス・ブレビス菌株FERM BP−4693の菌体粒度およびIFN−α産生能を測定した。その結果を図5に示す。
図5に示されるように、非中和培養の場合(LBRと表示)は、菌体粒度が8.8μm、IFN−α産生能が16.8pg/mlであったのに対し、中和培養の場合(NANO−LBRと表示)は、菌体粒度が0.7μmと1.0μm以下になり、そしてIFN−α産生能は92.9pg/mlと非中和培養の場合に比べて5.5倍に増強されていることがわかる。
[Comparison of cell size and IFN-α production ability]
The cell size and IFN-α production ability of Lactobacillus brevis strain FERM BP-4693 prepared in Reference Example 1 and Example 2 were measured. The result is shown in FIG.
As shown in FIG. 5, in the case of non-neutralization culture (labeled LBR), the cell size was 8.8 μm and the IFN-α production ability was 16.8 pg / ml, whereas neutralization culture was used. (Indicated as NANO-LBR), the cell size is 0.7 μm and 1.0 μm or less, and the IFN-α production ability is 92.9 pg / ml, which is 5. It can be seen that it is enhanced 5 times.

以上の結果より、培養および加工工程におけるpHを中性域に調整することで、菌体粒度を1.0μm以下にまで微細化でき、さらに菌体に質量換算で4倍量程度の賦形剤を添加してから分散処理を施し、凍結乾燥することによって分散性に優れた菌体粉末を得ることができ、この粉体をもってマクロファージから効率よくインターフェロンαを産生させることができることが確認された。   From the above results, by adjusting the pH in the culturing and processing steps to a neutral range, the cell particle size can be refined to 1.0 μm or less, and further about 4 times the amount of excipient in terms of mass in the cell. It was confirmed that a cell powder excellent in dispersibility can be obtained by adding a dispersion treatment after lyophilization and freeze-drying, and that this powder can efficiently produce interferon α from macrophages.

Claims (7)

乳酸菌の培養工程および加工工程における培地のpHを中性域に調整して得られる、粒度分布における最頻値が1.0μm以下であるナノ型乳酸菌の菌体であって、
前記乳酸菌がラクトバチルス・ブレビスであることを特徴とするナノ型乳酸菌の菌体。
A cell of nano-type lactic acid bacteria obtained by adjusting the pH of the medium in the culture process and processing process of lactic acid bacteria to a neutral range, and the mode value in the particle size distribution is 1.0 μm or less,
A microbial cell of a nano-type lactic acid bacterium, wherein the lactic acid bacterium is Lactobacillus brevis.
前記培地のpHを5〜8に調整して得られる請求項1記載のナノ型乳酸菌の菌体。   The microbial cell of the nano type | mold lactic acid bacteria of Claim 1 obtained by adjusting the pH of the said culture medium to 5-8. 前記培養工程における培地がエネルギー源としてブドウ糖を含有し、前記ブドウ糖が消費された時点を培養終点として得られる請求項1または2記載のナノ型乳酸菌の菌体。   The microbial cell of nano-type lactic acid bacteria according to claim 1 or 2, wherein the culture medium in the culturing step contains glucose as an energy source, and is obtained at the time when the glucose is consumed as a culture end point. 前記加工工程において、分散剤または賦形剤を乳酸菌に添加した後、凍結乾燥または噴霧乾燥して得られる請求項1記載のナノ型乳酸菌の菌体。   The microbial cell of the nano type | mold lactic acid bacteria of Claim 1 obtained by adding a dispersing agent or an excipient | filler to lactic acid bacteria in the said process process, and then freeze-drying or spray-drying. 請求項1〜4のいずれか1項記載のナノ型乳酸菌の菌体を含有する免疫賦活作用を有する組成物。   The composition which has the immunostimulatory effect containing the microbial cell of nano type | mold lactic acid bacteria of any one of Claims 1-4. 請求項1〜4のいずれか1項記載のナノ型乳酸菌の菌体、または請求項5記載の組成物を含有する飲食物、飼料、化粧品または医薬品。   Food / beverage, feed, cosmetics or a pharmaceutical containing the nano-type lactic acid bacteria according to any one of claims 1 to 4 or the composition according to claim 5. 請求項1〜4のいずれか1項記載のナノ型乳酸菌の菌体を含有するインターフェロンα産生能増強剤。   An interferon α-producing ability enhancer containing the nano-type lactic acid bacteria according to any one of claims 1 to 4.
JP2012160372A 2012-07-19 2012-07-19 Immunostimulator Active JP5751219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160372A JP5751219B2 (en) 2012-07-19 2012-07-19 Immunostimulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160372A JP5751219B2 (en) 2012-07-19 2012-07-19 Immunostimulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009534787A Division JP5257363B2 (en) 2008-06-26 2008-06-26 Method for producing cells of nano-type lactic acid bacteria

Publications (2)

Publication Number Publication Date
JP2012229258A true JP2012229258A (en) 2012-11-22
JP5751219B2 JP5751219B2 (en) 2015-07-22

Family

ID=47431106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160372A Active JP5751219B2 (en) 2012-07-19 2012-07-19 Immunostimulator

Country Status (1)

Country Link
JP (1) JP5751219B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206826A (en) * 1992-11-24 1994-07-26 Kyoto Pasutouule Kenkyusho Agent for promoting immunological function
JPH09188627A (en) * 1996-01-10 1997-07-22 Kyoto Pasutouule Kenkyusho Substance for improving interferon-producing ability and its production
JP2008017785A (en) * 2006-07-14 2008-01-31 Mikasa Sangyo Kk METHOD FOR ENRICHING COMMON SALT-CONTAINING FOOD WITH gamma-AMINOBUTYRIC ACID
JP2008195631A (en) * 2007-02-09 2008-08-28 Bio Ken:Kk IL-12 PRODUCTION PROMOTING METHOD AND Th1 INDUCING AGENT SUBJECTED TO THE TREATMENT
WO2008149654A1 (en) * 2007-05-31 2008-12-11 Kagome Co., Ltd. Fermented food/beverage and method for production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206826A (en) * 1992-11-24 1994-07-26 Kyoto Pasutouule Kenkyusho Agent for promoting immunological function
JPH09188627A (en) * 1996-01-10 1997-07-22 Kyoto Pasutouule Kenkyusho Substance for improving interferon-producing ability and its production
JP2008017785A (en) * 2006-07-14 2008-01-31 Mikasa Sangyo Kk METHOD FOR ENRICHING COMMON SALT-CONTAINING FOOD WITH gamma-AMINOBUTYRIC ACID
JP2008195631A (en) * 2007-02-09 2008-08-28 Bio Ken:Kk IL-12 PRODUCTION PROMOTING METHOD AND Th1 INDUCING AGENT SUBJECTED TO THE TREATMENT
WO2008149654A1 (en) * 2007-05-31 2008-12-11 Kagome Co., Ltd. Fermented food/beverage and method for production thereof

Also Published As

Publication number Publication date
JP5751219B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5257363B2 (en) Method for producing cells of nano-type lactic acid bacteria
JP4621218B2 (en) Th1 inducer and method for producing the same
JP5954828B2 (en) Composition for improving skin condition
US9763988B2 (en) Nano-sized kimchi lactic acid bacteria
EP2586448A1 (en) Skin properties improving agent for oral administration
WO2013099883A1 (en) NOVEL LACTIC ACID BACTERIUM HAVING IgA PRODUCTION PROMOTING ACTIVITY, AND USE THEREOF
JP6106141B2 (en) Wolfberry fruit lactic acid bacteria fermented product, cosmetics, foods and drinks, pharmaceuticals, and DNA repair promoter containing the fermented product
CN105026549B (en) Lactobacillus having the ability to induce IL-12 production and method for culturing the same
EP3564382B1 (en) Fermented product and production method therefor
JP7179343B2 (en) Novel lactic acid strain and immunostimulant containing the same
JP6302239B2 (en) Antitumor agent and method for producing the same
KR101743043B1 (en) Nano-Sized Lactic Acid Bacteria from Kimchi For Improving The Intestine Function and Environment
KR101743044B1 (en) The Functional Health Food For Improving The Intestine Function and Environment and Enhencing Immunity
KR101677187B1 (en) The Functional Health Drink For Improving The Intestine Function and Environment and Enhencing Immunity
JP2017143802A (en) Method of culturing lactobacillus lactic acid bacteria
JP5751219B2 (en) Immunostimulator
JP7466166B2 (en) Lactic acid bacteria-containing agent for preventing viral infection and method for producing same
KR101743045B1 (en) The Functional Health Snack Foods For Improving The Intestine Function and Environment and Enhencing Immunity
KR20160085235A (en) The Functional Health Ice Cream For Improving The Intestine Function and Environment and Enhencing Immunity
KR20160085233A (en) The Functional Health Dry Milk For Improving The Intestine Function and Environment and Enhencing Immunity
KR20160081883A (en) The Functional Health Yogurt For Improving The Intestine Function and Environment and Enhencing Immunity
KR20160082584A (en) The Functional Health Ramen For Improving The Intestine Function and Environment and Enhencing Immunity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5751219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250