JP2008195631A - IL-12 PRODUCTION PROMOTING METHOD AND Th1 INDUCING AGENT SUBJECTED TO THE TREATMENT - Google Patents

IL-12 PRODUCTION PROMOTING METHOD AND Th1 INDUCING AGENT SUBJECTED TO THE TREATMENT Download PDF

Info

Publication number
JP2008195631A
JP2008195631A JP2007030324A JP2007030324A JP2008195631A JP 2008195631 A JP2008195631 A JP 2008195631A JP 2007030324 A JP2007030324 A JP 2007030324A JP 2007030324 A JP2007030324 A JP 2007030324A JP 2008195631 A JP2008195631 A JP 2008195631A
Authority
JP
Japan
Prior art keywords
antigen
cells
substance
inducer
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007030324A
Other languages
Japanese (ja)
Other versions
JP4621218B2 (en
JP2008195631A5 (en
Inventor
Tatsuhiko Suga
辰彦 菅
Hideo Hasegawa
秀夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO KEN KK
SHOYAKU HAKKO KENKYUSHO KK
Original Assignee
BIO KEN KK
SHOYAKU HAKKO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO KEN KK, SHOYAKU HAKKO KENKYUSHO KK filed Critical BIO KEN KK
Priority to JP2007030324A priority Critical patent/JP4621218B2/en
Publication of JP2008195631A publication Critical patent/JP2008195631A/en
Publication of JP2008195631A5 publication Critical patent/JP2008195631A5/ja
Application granted granted Critical
Publication of JP4621218B2 publication Critical patent/JP4621218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new Th1 inducing agent having high safety, free from the problems of side actions, etc., and enabling the regulation of cytokine produced by helper T cell, based on the presumption attained by the recent advance in the immunological research that the balance of Th1 and Th2 has grave action on the onset and development of diseases, and to solve the recent problems of the increasing tendency of the promotion of Th2 from the living environment and, for example, the onset of cancer, immunodeficiency, asthma, dermatitis, allergic diseases, nephritis, infectious diseases, etc., caused by the function promotion of Th2. <P>SOLUTION: The problems can be solved by finely pulverizing an immunizing antigen substance to a size smaller than 1 μm, and applying a reagglomeration preventing treatment to the fine particles. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、免疫抗原物質の粒度を1ミクロン未満にまで微粒子化し、当該粒子に再凝集防止処理を施すことで、抗原提示細胞からのIL−12産生能を増強する方法と、当該処置を施したTh1誘導剤に関するものである。 The present invention provides a method for enhancing the ability to produce IL-12 from antigen-presenting cells by subjecting the immunoantigen substance to a particle size of less than 1 micron and subjecting the particles to a reaggregation prevention treatment, and the treatment. The Th1 inducer.

ヘルパーT細胞(以下、Thと略す)は、機能的にI型ヘルパーT細胞(以下、Th1と略す)とII型ヘルパーT細胞(以下、Th2と略す)に分けられる。 Helper T cells (hereinafter abbreviated as Th) are functionally divided into type I helper T cells (hereinafter abbreviated as Th1) and type II helper T cells (hereinafter abbreviated as Th2).

Th1は、IFN-γ、IL−12(インターロイキン−12)等のTh1型サイトカインを産出し、細菌やウイルスなどの異物を攻撃、破壊して感染を防御し、さらにマクロファージも活性化する。なお、IL−12は、樹状細胞およびマクロファージのような抗原提示細胞からも分泌されるサイトカインで、ガン細胞を直接攻撃するナチュラルキラー細胞(NK細胞)や、ラック細胞(LAK細胞)、キラーT細胞(CTL細胞)を活性化したり、インターフェロンγ(IFN−γ)の産生を増強したりする、非常に強力な免疫活性物質として知られている。 Th1 produces Th1-type cytokines such as IFN-γ and IL-12 (interleukin-12), attacks and destroys foreign substances such as bacteria and viruses to protect against infection, and also activates macrophages. IL-12 is a cytokine secreted also from antigen-presenting cells such as dendritic cells and macrophages. Natural killer cells (NK cells) that directly attack cancer cells, rack cells (LAK cells), killer T It is known as a very powerful immunologically active substance that activates cells (CTL cells) and enhances production of interferon γ (IFN-γ).

一方、Th2は、IL−4、IL−5、IL−10等などのTh2型サイトカインを産出し、カビやダニなどに反応してB細胞にIgE抗体を作らせる液性免疫に関与することが知られている。 On the other hand, Th2 produces Th2-type cytokines such as IL-4, IL-5, and IL-10, and may be involved in humoral immunity that causes B cells to produce IgE antibodies in response to fungi and mites. Are known.

なお、Th1型サイトカインはTh2を抑制し、逆にTh2型サイトカインはTh1を抑制し、この2つは免疫全体のバランスを保つために互いに関係し合っている。 The Th1-type cytokine suppresses Th2, while the Th2-type cytokine suppresses Th1, and the two are related to each other in order to maintain the balance of the entire immunity.

近年、免疫研究が進むにつれて、Th1とTh2のバランスが病気の発症や進展に重要な働きを持つと推測されている。最近では、生活環境からTh2の亢進する傾向が強く、例えば、癌、免疫不全、喘息、皮膚炎、アレルギー疾患、腎炎、感染症等が、そのTh2の機能亢進が関与し発症すると考えられている(非特許文献1参照)。
Springer Seminars in Immunopathology Vol.21(3),1999及び最新医学「自己免疫疾患の臨床1998」,32,1998
In recent years, it has been speculated that the balance between Th1 and Th2 plays an important role in the onset and progression of disease as immune research progresses. Recently, there is a strong tendency for Th2 to increase from the living environment. For example, cancer, immunodeficiency, asthma, dermatitis, allergic disease, nephritis, infectious diseases, etc. are thought to develop due to the increased function of Th2. (Refer nonpatent literature 1).
Springer Seminars in Immunopathology Vol. 21 (3), 1999 and the latest medicine "Clinical 1998 of Autoimmune Disease", 32, 1998

このような疾患を治療あるいは予防するためにはTh2の活性化の制御、ひいては、Th産生サイトカインの調節が非常に重要であると考えられている。 In order to treat or prevent such diseases, it is considered that control of Th2 activation, and thus regulation of Th-producing cytokines, is very important.

その方法のひとつに、抗原提示細胞に対する免疫抗原刺激によってTh産生サイトカインを調節する方法が開示されている(特許文献1―3参照)。
特開平成11-228425号公報 特開2006-016336号公報 特開2006-131623号公報
As one of the methods, a method of regulating Th-producing cytokine by immune antigen stimulation to antigen-presenting cells is disclosed (see Patent Documents 1-3).
JP-A-Heisei 11-228425 JP 2006-016336 JP JP 2006-131623 A

たとえば、乳酸菌を免疫抗原物質として用いた場合、マクロファージによる乳酸菌貪食率と、IL−12産生誘導能との間には、正の相関関係が存在することが開示されている(非特許文献2参照)。
若林英行ら,マウス細胞およびヒト末梢血単核球を用いたL.paracasei KW3110株の抗アレルギー効果の解析,日本農芸化学会2006年3月26日発表
For example, when lactic acid bacteria are used as an immunizing antigen substance, it is disclosed that a positive correlation exists between the phagocytosis rate of lactic acid bacteria by macrophages and the ability to induce IL-12 production (see Non-Patent Document 2). ).
Hideyuki Wakabayashi et al., Analysis of anti-allergic effect of L. paracasei KW3110 strain using mouse cells and human peripheral blood mononuclear cells, published on March 26, 2006

さらに、抗原提示細胞による粒子の貪食とその粒子径との関係については、ラテックスビーズを用いた研究によって、パイエル板に取り込まれる抗原総重量は、その粒子径が11ミクロンまでは増加し、それ以上になると減少して粒子径が21ミクロン以上になると全く取り込まれなくなることが開示されている(非特許文献3参照)。 Furthermore, regarding the relationship between the phagocytosis of particles by antigen-presenting cells and their particle size, the total antigen weight taken into Peyer's patches by the study using latex beads increased until the particle size increased to 11 microns. It is disclosed that, when the particle size becomes 21 μm or more, it is not taken in at all (see Non-Patent Document 3).

しかし、抗原粒子総数の場合には、小さい粒子径の方が多くなり、粒子径が0.6ミクロン程度の場合に最も取込量が多くなることが開示されている(非特許文献3参照)。 However, it is disclosed that in the case of the total number of antigen particles, the smaller particle diameter is larger, and when the particle diameter is about 0.6 microns, the uptake amount is the largest (see Non-Patent Document 3). .

さらに、7ミクロン程度の粒子径がTh2型サイトカインによって誘導されるIgG、IgAといった抗体を効率よく産生する上で最も好ましいことが開示されている(非特許文献3参照)。
Tabata Y,Inoue Y,Ikada Y.Vaccine.1996;14:1677-1685
Furthermore, it is disclosed that a particle size of about 7 microns is most preferable for efficiently producing antibodies such as IgG and IgA induced by Th2-type cytokines (see Non-Patent Document 3).
Tabata Y, Inoue Y, Ikada Y. Vaccine. 1996; 14: 1677-1685

Th産生サイトカインを調節する方法には、抗ヒスタミン薬や、ステロイド剤、抗アレルギー剤などが用いられているが、患者の負担や薬の過剰投与による腸内細菌叢の破壊による下痢などの副作用などの問題があり、予防及び治療のいずれの面においても、未だ完全な方法が開発されていないのが現状である。 Anti-histamines, steroids, antiallergic agents, etc. are used to regulate Th-producing cytokines, but there are side effects such as diarrhea caused by destruction of intestinal microflora due to overloading of the patient and drugs However, the present situation is that a complete method has not yet been developed for both prevention and treatment.

また、抗原提示細胞に対する免疫抗原刺激によってTh産生サイトカインを調節する方法においても、抗原提示細胞におけるIL−12の産生は、抗原物質の貪食が阻害されると抑制されてしまうという課題があった(非特許文献3参照)。
田野智之ら,癌と化学療法31巻11号,p.1767−1789.
In addition, in the method of regulating Th-producing cytokines by immune antigen stimulation to antigen-presenting cells, there is a problem that IL-12 production in antigen-presenting cells is suppressed when engulfment of antigenic substances is inhibited ( Non-Patent Document 3).
Tonoyuki Tano et al., Cancer and Chemotherapy, Vol. 31, No. 11, p. 1767-1789.

しかし、抗原提示細胞によるIL−12産生能が何に依存するかについては全く情報が開示されていないのが現状である。 However, at present, no information is disclosed about what the IL-12 producing ability of antigen-presenting cells depends on.

このように、抗原提示細胞によるIL−12産生能を効率よく増強する方法とTh1誘導剤の提供が強く渇望されている。 Thus, there is a strong craving to provide a method for efficiently enhancing IL-12 production ability by antigen-presenting cells and a Th1 inducer.

そこで、本発明の目的は、従来の問題を解決し、抗原提示細胞によるIL−12産生能を効率よく増強する方法とTh1誘導剤を提供することにある。 Therefore, an object of the present invention is to solve the conventional problems and to provide a method for efficiently enhancing IL-12 production ability by antigen-presenting cells and a Th1 inducer.

本発明者は、上記課題を解決すべく、抗原提示細胞によるIL−12産生能が何に依存するかを鋭意検索した。 In order to solve the above-mentioned problems, the present inventor diligently searched for what the IL-12 production ability of antigen-presenting cells depends on.

その過程で、抗原提示細胞からのIL−12産生が免疫抗原粒子の抗原提示細胞への取込総数に依存することを発見し、免疫抗原物質の粒度を1ミクロン未満にまで微粒子化し、当該粒子に再凝集を防止する加工を施すことで、抗原提示細胞に効率よく取り込ませられるようになり、その結果IL−12産生能が増強されることを見出した。 In the process, it was discovered that IL-12 production from antigen-presenting cells is dependent on the total number of immune antigen particles incorporated into the antigen-presenting cells, and the particle size of the immune antigen substance is reduced to less than 1 micron. It has been found that by applying a treatment to prevent reaggregation, it can be efficiently taken up by antigen-presenting cells, and as a result, the ability to produce IL-12 is enhanced.

これは、Th2型サイトカインによって誘導されるIgG,IgAといった抗体産生が免疫抗原粒子の抗原提示細胞への取込総重量に相関することとは異なるメカニズムによるものであり、これに関する知見は当業者のあいだには未だ知られていないことであった。 This is due to a mechanism different from that in which the production of antibodies such as IgG and IgA induced by Th2-type cytokines correlates with the total weight of immune antigen particles incorporated into antigen-presenting cells. In the meantime, it was not yet known.

かくして本発明者は、抗原提示細胞からのIL−12産生能を増強する方法を完成し、Th1誘導剤を提供するものである。 Thus, the present inventor has completed a method for enhancing the ability to produce IL-12 from antigen-presenting cells, and provides a Th1 inducer.

以下、本発明について詳細に説明する。先ず、本発明は、免疫抗原物質の粒度を1ミクロン未満にまで微粒子化し、当該粒子に再凝集防止処理を施すことで、抗原提示細胞に効率よく取り込ませられるようになり、その結果IL−12産生能を増強し得る方法を提供するものである。その方法のフローを図1に示し、以下詳細に説明する。 Hereinafter, the present invention will be described in detail. First, the present invention makes it possible to efficiently incorporate antigen-presenting cells by finely pulverizing the immunoantigen substance to a particle size of less than 1 micron, and subjecting the particles to a reaggregation prevention treatment. As a result, IL-12 is obtained. The present invention provides a method that can enhance productivity. The flow of the method is shown in FIG. 1 and will be described in detail below.

本発明の「免疫抗原物質」とは、具体的には免疫抗原となり得る物質であれば、既知、未知を問わず、動物、植物、微生物等の起源や、生体、死体、乾燥体等の形態を限定するものではない。 The “immunoantigen substance” of the present invention is specifically a substance that can be an immune antigen, regardless of whether it is known or unknown, origin of animals, plants, microorganisms, etc., forms of living bodies, dead bodies, dried bodies, etc. It is not intended to limit.

たとえば、細菌、酵母、糸状菌等の微生物、茸類、植物、動物等が挙げられ、それらから公知の方法で抽出された蛋白質及びグルカン等の構成物質、あるいはそれらが分泌する物質等も含まれる。また、それらの組み合わせであってもよい。 Examples include microorganisms such as bacteria, yeast, and filamentous fungi, mosses, plants, animals, and the like, and constituents such as proteins and glucans extracted from them by known methods, and substances secreted by them are also included. . Moreover, those combinations may be sufficient.

本発明の免疫抗原物質に使用できる細菌としては、ラクトバチルス・アシドフィルス(Lactobacillus acidphilus)、ラクトバチルス・ガセリ(L.gasseri)、ラクトバチルス・マリ(L.mali)、ラクトバチルス・プランタラム(L.plantarum)、ラクトバチルス・ブヒネリ(L.buchneri)、ラクトバチルス・カゼイ(L.casei)、ラクトバチルス・ジョンソニー(L.johnsonii)、ラクトバチルス・ガリナラム(L.gallinarum)、ラクトバチルス・アミロボラス(L.amylovorus)、ラクトバチルス・ブレビス(L.brevis)、ラクトバチルス・ラムノーザス(L.rhamnosus)、ラクトバチルス・ケフィア(L.kefir)、ラクトバチルス・パラカゼイ(L.paracasei)、ラクトバチルス・クリスパタス(L.crispatus)等のラクトバチルス属細菌、ストレプトコッカス・サーモフィルス(Streptcoccus thermophilus)等のストレプトコッカス属細菌、ラクトコッカス・ラクチス(Lactococcus lactis)等のラクトコッカス属細菌、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、ビフィドバクテリウム・ロンガム(B.longum)、ビフィドバクテリウム・アドレスセンティス(B.adolescentis)、ビフィドバクテリウム・インファンティス(B.infantis)、ビフィドバクテリウム・ブレーベ(B.breve)、ビフィドバクテリウム・カテヌラータム(B.catenulatum)等のビフィドバクテリウム属細菌、バチルス・ズブチリス(Bacillus subtilis)、バチルス・コアグランス(B.coagulans)等のバチルス属細菌、クロストリジウム・ブチリカム(Clostoridium butilicum)等のクロストリジウム属細菌が例示される。 Bacteria that can be used for the immunogenic substance of the present invention include Lactobacillus acidphilus, Lactobacillus gasseri, L.mali, Lactobacillus plantarum (L. plantarum), Lactobacillus buchneri (L.buchneri), Lactobacillus casei (L.casei), Lactobacillus johnsonii (L.johnsonii), Lactobacillus gallinarum (L.gallinarum), Lactobacillus amylobolus (L .amylovorus), Lactobacillus brevis (L.brevis), Lactobacillus rhamnosus (L.rhamnosus), Lactobacillus kefir (L.kefir), Lactobacillus paracasei (L.paracasei), Lactobacillus crispatus (L . Lactobacillus genus bacteria, Streptcoccus thermophilus (Streptcoccus thermophilus) Streptococcus bacteria such as Lactococcus lactis, Bifidobacterium bifidum, B. longum, Bifidobacterium address Bifidobacterium such as B. adolescentis, B. infantis, B. breve, B. catenulatum, etc. Examples include bacteria belonging to the genus, Bacillus subtilis, Bacillus bacterium such as B. coagulans, and Clostridium bacterium such as Clostridium butilicum.

本発明の免疫抗原物質に使用できる酵母としては、サッカロマイセス・セレビシエ(Saccharomyses cerevisiae)、トルラスポラ・デルブルエッキー(Torulaspora delbrueckii)、キャンジダ・ケフィア等のサッカロマイセス属、トルラスポラ属、キャンジダ属等が例示される。 Examples of yeasts that can be used for the immunogenic substance of the present invention include Saccharomyces cerevisiae, Torulaspora delbrueckii, Candida kefir, and other Saccharomyces genera, Torlaspora genera, and Candida genera.

本発明の免疫抗原物質に使用できる糸状菌としては、Aspergillius属あるいはMonascus属、好ましくはA.awamori、A.oryzae、A.niger、A.sojae、A.usami、A.kawachii、A.saitoi等の麹菌が例示される。また、これらの菌株から製造した麹であってもよい。 As the filamentous fungus that can be used for the immunogenic substance of the present invention, Aspergillius or Monascus, preferably A. awamori, A. oryzae, A. niger, A.M. sojae, A. usami, A. kawachii, A. Examples are gonococci such as saitoi. Moreover, the cocoon manufactured from these strains may be sufficient.

本発明の免疫抗原物質に使用できる茸類としては、ハナビラタケ、マイタケ、アガリクス、シイタケ、エノキダケ、マツタケ等の菌糸体及び子実体が例示される。 Examples of the moss that can be used for the immunogenic substance of the present invention include mycelia and fruiting bodies such as agaricus, maitake, agaricus, shiitake, enoki mushroom, and matsutake.

本発明の免疫抗原物質に使用できる動物の分泌物質としては、哺乳動物の母乳に含まれるラクトフェリン、アナツバメが自らの唾液を糸状にして作る巣(燕窩)等が例示される。 Examples of animal secretory substances that can be used for the immunogenic substance of the present invention include lactoferrin contained in mammalian breast milk, and nests (axillas) that swallows form their own saliva as a thread.

本発明の免疫抗原物質に使用できる細菌による分泌物質としては、Lactococcus lactis subsp.cremoris乳酸菌及びアウレオバシジウム属(Aureobasidium sp.)に属する微生物等が細胞外に産生する粘性物質等が例示される。 Bacterial secretory substances that can be used for the immunogenic substance of the present invention include Lactococcus lactis subsp. Examples include viscous substances produced extracellularly by microorganisms belonging to cremoris lactic acid bacteria and Aureobasidium sp.

さらに本発明における免疫抗原物質は、上述の素材にデンプン、カラギーナン、寒天、ゼラチン、蛋白質等の基材を加えて人工的に粒子したものであってもよい。 Furthermore, the immunoantigen substance in the present invention may be an artificial antigen particle obtained by adding a base material such as starch, carrageenan, agar, gelatin, or protein to the above-mentioned material.

本発明の「免疫抗原物質の粒度を1ミクロン未満にまで微粒子化」するとは、免疫抗原物質の平均粒子径が1ミクロン(マイクロメータ)未満のナノメータ(nm)サイズ、好ましくは0.6ミクロン程度になるまで粉砕あるいは分散することを指す。この粉砕処理と分散処理を別々に行うこともできれば、同時に行うこともできる。なお、当該粒子径が1ミクロン未満であるかどうかは、粒度分布計あるいは電子顕微鏡等で測定することができる。 “Immunoantigen substance particle size is reduced to less than 1 micron” according to the present invention means that the immunoantigen substance has an average particle diameter of nanometer (nm) less than 1 micron (preferably about 0.6 microns). Refers to pulverization or dispersion until. The pulverization process and the dispersion process can be performed separately or simultaneously. Whether the particle size is less than 1 micron can be measured with a particle size distribution meter or an electron microscope.

本発明の「免疫抗原物質の粒度を1ミクロン未満にまで微粒子化」する方式としては、湿式・乾式を問わず、攪拌、ミキサー、ボールミル、ビーズミル、ジェットミル、ホモゲナイザー、ジェネレーター等の公知の手法が挙げられる。 As a method of “pulverizing the immunoantigen substance to a particle size of less than 1 micron” according to the present invention, known methods such as stirring, mixer, ball mill, bead mill, jet mill, homogenizer, and generator can be used regardless of wet or dry methods. Can be mentioned.

たとえば、細菌のような場合には、細菌培養液を湿式で150kgf/cm程度の高圧ホモゲナイザー等で微粒子化できる。一方、高分子ポリマー性の免疫刺激物質の場合には、当該物質を乾式で微粒子化した場合、それに水を添加すると水分を吸収して数倍に体積が膨張して粒子径がナノメータサイズではなくなることがあるので、湿式で1,000〜2,500kgf/cm程度の高圧ジェネレーターで微粒子化することが好ましい。 For example, in the case of bacteria, the bacterial culture can be microparticulated with a high-pressure homogenizer of about 150 kgf / cm 2 when wet. On the other hand, in the case of a high molecular weight polymer immunostimulatory substance, when the substance is made into a fine particle by dry process, when water is added to the substance, the water is absorbed and the volume is expanded several times, so that the particle diameter is not nanometer size. Therefore, it is preferable to make fine particles with a high-pressure generator of about 1,000 to 2,500 kgf / cm 2 when wet.

本発明の「当該粒子に再凝集防止処理を施す」とは、1ミクロン未満に粉砕・分散した微粒子の再凝集を防止するために、粉砕・分散した粒子に、公知の分散剤あるいは賦形剤を添加し、再びミキサー、ホモゲナイザー等で分散処理を施すことを指す。この場合、粉砕・分散処理するときに分散剤あるいは賦形剤をあらかじめ添加しておいてもよい。 In the present invention, “the reaggregation prevention treatment is applied to the particles” means that a known dispersant or excipient is added to the pulverized / dispersed particles in order to prevent reaggregation of fine particles pulverized / dispersed to less than 1 micron. Is added and dispersed again with a mixer, homogenizer or the like. In this case, a dispersant or an excipient may be added in advance when pulverizing / dispersing.

この場合、使用する分散剤・賦形剤の添加量は、免疫抗原物質の性状によって変化するが、重量換算で1〜100倍量、好ましくは4〜10倍量が例示できる。 In this case, the amount of the dispersant / excipient used varies depending on the properties of the immunizing antigen substance, but can be 1 to 100 times, preferably 4 to 10 times the weight.

なお、本発明のTh1誘導剤を最終的に粉末として得る場合には、公知の分散剤・賦形剤等で粒子が再凝着しないような処理を施してから凍結乾燥あるいは減圧噴霧乾燥すると分散性に優れた粉末を得ることができる。 In the case where the Th1 inducer of the present invention is finally obtained as a powder, it is dispersed by freeze-drying or spray-drying under reduced pressure after a treatment that prevents the particles from re-adhering with a known dispersant or excipient. A powder having excellent properties can be obtained.

つぎに、本発明はTh1誘導剤をも提供するものである。 Next, the present invention also provides a Th1 inducer.

本発明における「Th1誘導」とは、抗原提示細胞からIL−12を効率よく産生させることで、Th0細胞(ナイーブTh細胞)のTh1への分化を促進し、生体内でTh1優位の状態をつくり出すことを指す。 “Th1 induction” in the present invention means that IL-12 is efficiently produced from antigen-presenting cells, thereby promoting differentiation of Th0 cells (naive Th cells) into Th1, and creating a Th1-dominant state in vivo. Refers to that.

本発明の「Th1誘導剤」は、1ミクロン未満にまで微粒子化し、当該粒子に再凝集防止処理を施した免疫抗原物質を有効成分とすることを特徴とする。 The “Th1 inducer” of the present invention is characterized by comprising as an active ingredient an immunoantigen substance obtained by micronizing to less than 1 micron and subjecting the particles to a reaggregation prevention treatment.

本発明の「Th1誘導剤」は、そのままでも製品とすることもできるが、一般には、風味を上げたり、必要な形状とする等のために種々の成分を添加、配合し、更にフレーバーを添加して最終製品とすることができる。 The “Th1 inducer” of the present invention can be used as a product as it is, but in general, various ingredients are added and blended to increase the flavor and form the required shape, and further add flavor. And can be the final product.

本発明の「Th1誘導剤」に添加、混合される成分としては、各種糖質や乳化剤、甘味料、酸味料、果汁等が挙げられる。より具体的には、グルコース、シュークロース、フラクトース、蜂蜜等の糖類、ソルビトール、キシリトール、エリスリトール、ラクチトール、パラチニット等の糖アルコール、ショ糖脂肪酸エステル、グリセリン糖脂肪酸エステル、レシチン等の乳化剤、が挙げられる。この他にも、ビタミンA、ビタミンB類、ビタミンC、ビタミンE等の各種ビタミン類やハーブエキス、穀物成分、野菜成分、乳成分等を配合しても、優れた風味のTh1誘導剤を得ることができる。 Examples of the component added to and mixed with the “Th1 inducer” of the present invention include various sugars, emulsifiers, sweeteners, acidulants, fruit juices and the like. More specifically, sugars such as glucose, sucrose, fructose, and honey, sugar alcohols such as sorbitol, xylitol, erythritol, lactitol, and palatinit, emulsifiers such as sucrose fatty acid ester, glycerin sugar fatty acid ester, and lecithin are included. . In addition to this, even if various vitamins such as vitamin A, vitamin B, vitamin C, vitamin E and the like, herbal extracts, cereal ingredients, vegetable ingredients, milk ingredients, etc. are blended, an excellent flavor Th1 inducer is obtained. be able to.

また、本発明の「Th1誘導剤」に添加することのできるフレーバーとしては、ヨーグルト系、ベリー系、オレンジ系、花梨系、シソ系、シトラス系、アップル系、ミント系、グレープ系、ペア、カスタードクリーム、ピーチ、メロン、バナナ、トロピカル、ハーブ系、紅茶、コーヒー系等のフレーバーが挙げられ、これらを1種または2種以上組み合わせて用いることができる。フレーバーの添加量は特に限定されないが、風味面から0.05〜0.5質量%、特に0.1〜0.3質量%程度が好ましい。 The flavors that can be added to the “Th1 inducer” of the present invention include yogurt, berry, orange, quince, perilla, citrus, apple, mint, grape, pair, custard. Examples include flavors such as cream, peach, melon, banana, tropical, herbal, tea, and coffee, and these can be used alone or in combination. The addition amount of the flavor is not particularly limited, but is preferably 0.05 to 0.5% by mass, particularly preferably about 0.1 to 0.3% by mass from the flavor side.

以上説明した「Th1誘導剤」は、固形状、液状等いずれの形態の製品とすることも可能である。 The “Th1 inducer” described above can be a product in any form such as solid or liquid.

本発明の「Th1誘導剤」は、医薬的に受容な塩、賦形剤、保存剤、着色剤、矯味剤等とともに、医薬品あるいは食品の製造分野において公知の方法によって、飲料、顆粒、錠剤、カプセル剤等の種々の形態で使用することができる。 The “Th1 inducer” of the present invention includes beverages, granules, tablets, pharmaceutically acceptable salts, excipients, preservatives, coloring agents, corrigents and the like by methods known in the field of pharmaceutical or food production. It can be used in various forms such as capsules.

また、本発明における「Th1誘導剤」は、健康食品に利用することができる。健康食品とは、通常の食品よりも積極的な意味で、保健、健康維持・増進等の目的とした食品を意味し、例えば、液体又は半固形、固形の製品、具体的には、クッキー、せんべい、ゼリー、ようかん、ヨーグルト、まんじゅう等の菓子類、清涼飲料、栄養飲料、スープ等が挙げられる。 In addition, the “Th1 inducer” in the present invention can be used for health food. Health food means a food that is more active than ordinary food, and is intended for health, health maintenance and promotion, for example, liquid or semi-solid, solid products such as cookies, Examples include confectionery such as rice crackers, jelly, yokan, yogurt and manju, soft drinks, nutritional drinks, soups and the like.

本発明におけるTh1誘導剤の使用量は、使用した免疫抗原物質の種類及び品質、あるいは年齢、症状等によって異なる。例えば、予防のために用いるには、成人1回につき固形分換算で0.01〜10g程度が挙げられ、食前30分位に1日3回服用するのが望ましい。また、健康食品としての使用時には、食品の味や外観に悪影響を及ぼさない量、例えば、対象となる食品1kgに対し、固形分換算で0.1〜100g程度の範囲で用いることが適当である。 The amount of Th1 inducer used in the present invention varies depending on the type and quality of the used immune antigen substance, age, symptoms, and the like. For example, for prevention, about 0.01 to 10 g in terms of solid content per adult can be mentioned, and it is desirable to take 3 times a day about 30 minutes before meals. In addition, when used as a health food, it is appropriate to use it in an amount that does not adversely affect the taste and appearance of the food, for example, in the range of about 0.1 to 100 g in terms of solid content with respect to 1 kg of the target food. .

さらに、本発明におけるTh1誘導剤は、ローション(化粧水)、化粧用クリーム類、乳液、化粧水、パック剤、スキンミルク(乳剤)、ジェル剤、パウダー、リップクリーム、口紅、アンダーメークアップ、ファンデーション、サンケア、浴用剤、ボディシャンプー、ボディリンス、石鹸、クレンジングフォーム、軟膏、貼付剤、ゼリー剤、エアゾール剤等種々の製品形態で皮膚外用剤に利用することもできる。 Further, the Th1 inducer in the present invention is a lotion (skin lotion), cosmetic cream, emulsion, lotion, pack, skin milk (emulsion), gel, powder, lip balm, lipstick, under makeup, foundation. , Suncare, bath preparations, body shampoos, body rinses, soaps, cleansing foams, ointments, patches, jellies, aerosols, and the like, and can also be used for external preparations for skin.

また、本発明のTh1誘導剤には、下記に示されるような化粧品、医薬部外品、医薬品において通常用いられる各種成分や添加剤を必要に応じて適宜配合することができる。 In addition, the Th1 inducer of the present invention can be appropriately mixed with various components and additives usually used in cosmetics, quasi-drugs, and pharmaceuticals as shown below, as necessary.

即ち、グリセリン、ワセリン、尿素、ヒアルロン酸、ヘパリン等の保湿剤;PABA誘導体(パラアミノ安息香酸、エスカロール507等)、桂皮酸誘導体(ネオヘリオパン、パルソールMCX、サンガードB等)、サリチル酸誘導体(オクチルサリチレート等)、ベンゾフェノン誘導体(ASL−24、ASL−24S等)、ジベンゾイルメタン誘導体(パルソールA、パルソールDAM等)、複素環誘導体(チヌビン系等)、酸化チタン等の紫外線吸収剤・散乱剤;エデト酸二ナトリウム、エデト酸三ナトリウム、クエン酸、クエン酸ナトリウム、酒石酸、酒石酸ナトリウム、乳酸、リンゴ酸、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸等の金属封鎖剤;サリチル酸、イオウ、カフェイン、タンニン等の皮脂抑制剤;塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン等の殺菌・消毒剤;塩酸ジフェンヒドラミン、トラネキサム酸、グアイアズレン、アズレン、アラントイン、ヒノキチオール、グリチルリチン酸及びその塩、グリチルリチン酸誘導体、グリチルレチン酸等の抗炎症剤;ビタミンA、ビタミンB群(B1,B2,B6,B12,B15)、葉酸、ニコチン酸類、パントテン酸類、ビオチン、ビタミンC、ビタミンD群(D2,D3)、ビタミンE、ユビキノン類、ビタミンK(K1,K2,K3,K4)等のビタミン類;アスパラギン酸、グルタミン酸、アラニン、リジン、グリシン、グルタミン、セリン、システイン、シスチン、チロシン、プロリン、アルギニン、ピロリドンカルボン酸等のアミノ酸及びその誘導体;レチノール、酢酸トコフェロール、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸、エラグ酸、胎盤抽出液等の美白剤;ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル等の抗酸化剤;塩化亜鉛、硫酸亜鉛、石炭酸亜鉛、酸化亜鉛、硫酸アルミニウムカリウム等の収斂剤;グルコース、フルクトース、マルトース、ショ糖、トレハロース、エリスリトール、マンニトール、キシリトール、ラクチトール等の糖類;甘草、カミツレ、マロニエ、ユキノシタ、芍薬、カリン、オウゴン、オウバク、オウレン、ジュウヤク、イチョウ葉等の各種植物エキス等の他、油性成分、界面活性剤、増粘剤、アルコール類、粉末成分、色素等を適宜配合することができる。 That is, humectants such as glycerin, petrolatum, urea, hyaluronic acid, heparin; PABA derivatives (paraaminobenzoic acid, Escalol 507, etc.), cinnamic acid derivatives (neoheliopan, pulsol MCX, sungard B, etc.), salicylic acid derivatives (octyl salicy) Rate), benzophenone derivatives (ASL-24, ASL-24S, etc.), dibenzoylmethane derivatives (Parsol A, Parsole DAM, etc.), heterocyclic derivatives (tinuvin type, etc.), ultraviolet absorbers / scattering agents such as titanium oxide; Metal sequestering agents such as disodium edetate, trisodium edetate, citric acid, sodium citrate, tartaric acid, sodium tartrate, lactic acid, malic acid, sodium polyphosphate, sodium metaphosphate, gluconic acid; salicylic acid, sulfur, caffeine, Sebum inhibitor such as tannin; salt Bactericides and disinfectants such as benzalkonium chloride, benzethonium chloride, chlorhexidine gluconate; anti-inflammatory agents such as diphenhydramine hydrochloride, tranexamic acid, guaiazulene, azulene, allantoin, hinokitiol, glycyrrhizic acid and salts thereof, glycyrrhizic acid derivatives, glycyrrhetinic acid; vitamins A, vitamin B group (B1, B2, B6, B12, B15), folic acid, nicotinic acids, pantothenic acids, biotin, vitamin C, vitamin D group (D2, D3), vitamin E, ubiquinones, vitamin K (K1, Vitamins such as K2, K3, K4); amino acids and derivatives thereof such as aspartic acid, glutamic acid, alanine, lysine, glycine, glutamine, serine, cysteine, cystine, tyrosine, proline, arginine, pyrrolidone carboxylic acid; retinol, acetic acid Whitening agents such as coferol, magnesium ascorbate phosphate, glucoside ascorbate, arbutin, kojic acid, ellagic acid, placenta extract; antioxidants such as butylhydroxytoluene, butylhydroxyanisole, propyl gallate; zinc chloride, zinc sulfate Astringents such as zinc carbonate, zinc oxide, and aluminum potassium sulfate; sugars such as glucose, fructose, maltose, sucrose, trehalose, erythritol, mannitol, xylitol, lactitol; licorice, chamomile, maronier, yukinoshita, glaze, karin, ogon In addition to various plant extracts, such as agron, auren, jujube, and ginkgo biloba, oily components, surfactants, thickeners, alcohols, powder components, pigments, and the like can be appropriately blended.

次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。 EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not restrict | limited at all by these Examples.

〔Th1誘導剤の調製〕
乳酸菌Lactobacillus brevis菌株FERM BP−4693を公知の方法で培養した。当該培養液から加熱処理菌体を調製し、菌体に対して重量換算で0倍量(無添加),0.5倍量,1倍量,2倍量,4倍量,9倍量のデキストリンを賦形剤として添加し、そのまま凍結乾燥する試料(番号AからF)と、ミキサーで分散してから凍結乾燥する試料(番号GからL)を調製した。これらの凍結乾燥試料をそれぞれ乾燥菌体換算で10mg/mlになるように精製水を加えて菌体分散液を調製した。手でよく振って攪拌し、18時間冷蔵庫内に安置した。その結果を図2―Iに示す。
[Preparation of Th1 inducer]
The lactic acid bacterium Lactobacillus brevis strain FERM BP-4693 was cultured by a known method. Prepare heat-treated cells from the culture solution, and 0 times (no addition), 0.5 times, 1 times, 2 times, 4 times, 9 times the amount of the cells in terms of weight. Dextrin was added as an excipient, and a sample (numbers A to F) to be lyophilized as it was and a sample (numbers G to L) to be lyophilized after being dispersed with a mixer were prepared. Purified water was added to each of these freeze-dried samples so as to give a dry cell equivalent of 10 mg / ml to prepare a cell dispersion. Shake well by hand and stir in the refrigerator for 18 hours. The results are shown in Fig. 2-I.

また、各試料の液面下15mmの上清0.1mlを取り、精製水0.9mlに加え、よく攪拌してからOD660nmにおける吸光度を測定した。その結果を図2―IIに示す。 Further, 0.1 ml of a supernatant 15 mm below the surface of each sample was taken, added to 0.9 ml of purified water, and stirred well, and then the absorbance at OD 660 nm was measured. The results are shown in Figure 2-II.

乳酸菌体の浮遊率は、菌体に対して重量換算でデキストリンを賦形剤として4倍量加え、さらにミキサーで分散してから凍結乾燥した試料Kにおいて、沈殿物が最も少なく(図2―I)、浮遊率が88.9%と最も高くなり(図2―II)、粉砕・分散処理と再凝集防止処理の相乗効果が現われていることがわかった。 The floating rate of lactic acid bacteria was the smallest in the sample K in which the amount of dextrin was added four times as an excipient in terms of weight with respect to the bacteria, and further dispersed with a mixer and then freeze-dried (Fig. 2-I). ), The floating rate was the highest at 88.9% (FIG. 2-II), and it was found that the synergistic effect of the pulverization / dispersion treatment and the re-aggregation prevention treatment appeared.

なお、粒度が小さい粒子の占める割合が高いほど浮遊率が高くなる関係があるので、試料Kにおいて粒度が小さい粒子の占める割合が最も高くなったことを示している。そこで、試料A及びKの全液における菌体粒子の粒度分布を測定した。その結果を図3に示す。 In addition, since there is a relationship in which the floating ratio increases as the proportion of particles having a small particle size increases, it indicates that the proportion of particles having a small particle size in Sample K is the highest. Therefore, the particle size distribution of the bacterial cell particles in all the solutions of Samples A and K was measured. The result is shown in FIG.

図3に示すように、試料Aにおいては、粒度重量換算分布の平均値が1,036.3±73.7nmと2,607.4±126.5nmの2つの粒度ピークが存在し、全体としての平均値は1,728.2±786.3nmであった。一方、試料Kにおいては、粒度重量換算分布の平均値は555.8±40.6nmと、0.6ミクロン付近のごく狭い範囲にしか粒子が分布していなかったことがわかった。これは恐らく試料Kにおける0.6ミクロン付近の粒子が乳酸菌体の一次粒子に相当し、それが試料Aにおいては2倍体と4倍体になって混在しているものと推察される。 As shown in FIG. 3, in sample A, there are two particle size peaks with an average value of the particle size weight conversion distribution of 106.3 ± 73.7 nm and 2,607.4 ± 126.5 nm. The average value of was 1,728.2 ± 786.3 nm. On the other hand, in sample K, the average value of the particle size weight conversion distribution was 555.8 ± 40.6 nm, indicating that the particles were distributed only in a very narrow range near 0.6 microns. This is probably because the particles near 0.6 microns in the sample K correspond to primary particles of lactic acid bacteria, and in the sample A, they are diploid and tetraploid.

〔IL−12産生能の比較〕
IL−12誘導活性の測定は以下の方法で行った。
(1)試薬の調製
PBS:NaCl 80g、NaHPO・12HO 29g、KCl 2g、KHPO 2gを蒸留水に溶解し1Lとした。
FCS(Fetal Calf Serum):冷凍保存してあるFCSを56℃ウォーターバスに40分処理により非働化し、氷冷する。70μmセルストレーナーを通し、滅菌容器に入れ冷蔵保存し、1〜2ヵ月程度で使用した。
ET(−)RPMI1640Medium:RPMI1640 31.2g、NaHCO3.75g、ペニシリンG−K(萬有製薬100万単位)0.18g、カナマイシン0.18gを注射用水3Lに溶解後COガスを吹き込んだ後0.45μmのフィルターでろ過した。
Turc染色後:0.01%ゲンチアナバイオレット水溶液:酢酸:水=1:1:98に混合し、冷蔵保存した。
[Comparison of IL-12 production ability]
The measurement of IL-12 induction activity was performed by the following method.
(1) Preparation of reagents PBS: NaCl 80 g, Na 2 HPO 4 · 12H 2 O 29 g, KCl 2 g, KH 2 PO 4 2 g were dissolved in distilled water to make 1 L.
FCS (Fetal Calf Serum): Frozen FCS is deactivated by treatment in a water bath at 56 ° C. for 40 minutes and cooled on ice. The sample was passed through a 70 μm cell strainer, placed in a sterilized container, stored refrigerated, and used in about 1 to 2 months.
ET (−) RPMI 1640 Medium: RPMI 1640 31.2 g, NaHCO 3 3.75 g, penicillin G-K (Million units of Ariyu Pharmaceutical) 0.18 g, kanamycin 0.18 g was dissolved in 3 L of water for injection, and CO 2 gas was blown into the solution. Thereafter, it was filtered with a 0.45 μm filter.
After Turc staining: 0.01% gentian violet aqueous solution: acetic acid: water = 1: 1: 98, and stored refrigerated.

(2)マクロファージの調製
雄のICRマウス(4〜8W)の腹腔内に1g/100ml濃度のグリセリン溶液を0.4ml注射し1晩飼育した。マウスを頚椎脱臼で屠殺した後、冷却したPBSを5ml腹腔内に注射し腹をよくもんだ後、腹腔内液を約4ml注射器で取り出した。シリコンコートしたスピッツ管に腹腔内液を入れ、冷却遠心機で1200rpm、5分遠心し、上清及び壁面の赤血球を除去した。冷PBSを加えピペッティングで分散し、800rpm、5分遠心した。上清及び壁面の赤血球を除去した。この操作を更に1回繰り返し最後に1%FCS加ET−RPMI1640Medium(インビトロジェイン社製)を1ml/マウス加えた。この液を50μlとチェルク染色液50μlを混合し、血球計算板にて生細胞数を数えた。この数値から1%FCS加ET−RPMI1640Mediumを用いて細胞数を1×10/mlに調整した(マクロファージ液)。96穴平底プレートにマクロファージ液を200μlずつ入れ、1.5〜5時間COインキュベーターで培養した。
(2) Preparation of macrophages Male ICR mice (4-8W) were intraperitoneally injected with 0.4 ml of a 1 g / 100 ml glycerin solution and reared overnight. After the mouse was sacrificed by cervical dislocation, 5 ml of cooled PBS was injected into the abdominal cavity and the abdominal cavity was swallowed. The intraperitoneal solution was placed in a silicon-coated Spitz tube, and centrifuged at 1200 rpm for 5 minutes in a cooling centrifuge to remove the supernatant and red blood cells on the wall surface. Cold PBS was added and dispersed by pipetting, followed by centrifugation at 800 rpm for 5 minutes. The supernatant and wall red blood cells were removed. This operation was further repeated once, and finally 1 ml / mouse of 1% FCS-added ET-RPMI 1640 Medium (manufactured by Invitro Jane) was added. 50 μl of this solution and 50 μl of Cherk staining solution were mixed, and the number of viable cells was counted using a hemocytometer. From this value, the number of cells was adjusted to 1 × 10 6 / ml using 1% FCS-added ET-RPMI 1640 Medium (macrophage fluid). 200 μl of macrophage solution was placed in a 96-well flat bottom plate and cultured in a CO 2 incubator for 1.5 to 5 hours.

(3)IL−12の誘導
試料を菌末換算で1mg/mlになるよう5%FCS加ET−RPMI1640Mediumで調整した後、超音波で菌体を分散させた。この液を5%FCS加ET−RPMI1640Mediumで100倍に希釈し、96穴U型プレートに250μlに入れてCOインキュベーターで1時間保温した。
(3) After adjusting the IL-12 derived sample with 5% FCS-added ET-RPMI1640 Medium to 1 mg / ml in terms of bacterial powder, the cells were dispersed with ultrasound. This solution was diluted 100-fold with ET-RPMI 1640 Medium containing 5% FCS, placed in a 96-well U-shaped plate at 250 μl, and incubated for 1 hour in a CO 2 incubator.

上記(2)で得たマクロファージ液の上清を抜き、37℃に保温したPBSで2回洗浄する。これに上記の希釈した菌末液を200μl加え、COインキュベーターで22時間培養してIL−12を誘導した。 The supernatant of the macrophage fluid obtained in (2) above is removed and washed twice with PBS kept at 37 ° C. 200 μl of the above diluted bacterial powder was added thereto, and cultured in a CO 2 incubator for 22 hours to induce IL-12.

(4)IL−12の測定
BIO SOURCE INTERNATIONAL社製マウスIL−12測定キット「Cytoscreen」を用いて行った。なお、マクロファージのロット差を調整するためにサンプルと同濃度のOK432を測定し、その測定値との比活性として表した。なお、OK432とは、「ピシバニール」(商品名、中外製薬株式会社製)として市販されている抗悪性腫瘍剤であり、ストレプトコッカス・ピオゲネス(A群3型)Su株をペニシリンGの存在下、一定条件で処理し、凍結乾燥して得られる菌体製剤である。OK432は、免疫活性測定の際の指標となる物質として当業界で広く使用されているものである。
(4) Measurement of IL-12 The measurement was performed using a mouse IL-12 measurement kit “Cytoscreen” manufactured by BIO SOURCE INTERNATIONAL. In addition, in order to adjust the lot difference of macrophages, OK432 having the same concentration as the sample was measured and expressed as a specific activity with the measured value. OK432 is an antineoplastic agent marketed as “Pisibanil” (trade name, manufactured by Chugai Pharmaceutical Co., Ltd.). Streptococcus pyogenes (group A type 3) Su strain is fixed in the presence of penicillin G. It is a cell preparation obtained by treatment under conditions and lyophilization. OK432 is widely used in the art as a substance that serves as an index for measuring immune activity.

本発明者は、実施例1で調製した試料A及びKについてIL−12誘導能を比較した。その結果を図4に示す。 The present inventor compared the IL-12 inducing ability of samples A and K prepared in Example 1. The result is shown in FIG.

図4から、試料Kには試料Aの3.5倍強のIL−12誘導能があることがわかった。このことは、菌体の粒度が小さくなることによって、マクロファージへの抗原取込率が3.5倍に増えたことを意味する。 From FIG. 4, it was found that Sample K has an IL-12 inducing ability 3.5 times that of Sample A. This means that the antigen uptake rate to macrophages increased 3.5 times as the cell size of the cells decreased.

これらの結果より、乳酸菌の菌体に重量換算で4倍量程度の賦形剤を添加してから分散処理を施し、凍結乾燥することによって分散性に優れた粉末を得ることができ、この粉体をもってマクロファージから効率的にIL−12を産生させることができるようになることが確認できた。 From these results, it is possible to obtain a powder with excellent dispersibility by adding about 4 times the amount of excipient in terms of weight to the lactic acid bacteria and then lyophilizing the powder. It was confirmed that IL-12 can be efficiently produced from macrophages by the body.

このように1ミクロン未満にまで微粒子化し、当該粒子に再凝集防止処理を施した免疫抗原物質を有効成分とするTh1誘導剤は、生体内でTh1優位の状態をつくり出す上で非常に有用といえる。 Thus, a Th1 inducer comprising an immunoantigen substance, which is micronized to less than 1 micron and subjected to reaggregation prevention treatment to the particle, is very useful in creating a Th1-dominant state in vivo. .

Th1誘導剤の製造法を示した図である。It is the figure which showed the manufacturing method of Th1 inducer. 微粒子化・再凝集防止処理が粒子浮遊率に及ぼす影響を示した図である。It is the figure which showed the influence which the micronization and re-aggregation prevention process has on the particle floating rate. 試料A及びKの粒度重量換算分布を比較した図である。It is the figure which compared the particle size weight conversion distribution of the samples A and K. FIG. 試料A及びKのIL−12誘導能を比較した図である。It is the figure which compared the IL-12 inducibility of the samples A and K.

符号の説明Explanation of symbols

図1―Iにおいて、図中の試料瓶に記載した番号は、デキストリンを賦形剤として添加し、そのまま凍結乾燥した試料(番号AからF)と、ミキサーで粉砕してから凍結乾燥した試料(番号GからL)とを示す。なお、デキストリンの添加量については、菌体に対して重量換算で、番号AとGは0倍量(無添加)、番号BとHは0.5倍量、番号CとIは1倍量、番号DとJは2倍量、番号EとKは4倍量、番号FとLは9倍量である。 In FIG. 1-I, the numbers shown in the sample bottles in the figure are the samples (numbers A to F) added with dextrin as an excipient and lyophilized as they are, and the samples (numbered A to F) that were crushed with a mixer and then lyophilized ( Numbers G to L). As for the amount of dextrin added, in terms of weight with respect to the cells, numbers A and G are 0 times (no addition), numbers B and H are 0.5 times, and numbers C and I are 1 time. , Numbers D and J are double amounts, numbers E and K are four times amounts, and numbers F and L are nine times amounts.

Claims (2)

免疫抗原物質の粒度を1ミクロン未満にまで微粒子化し、当該粒子に再凝集防止処理を施すことで、抗原提示細胞からのIL−12産生能を増強する方法。 A method for enhancing the ability to produce IL-12 from antigen-presenting cells by micronizing the immunoantigen substance to a particle size of less than 1 micron and subjecting the particles to re-aggregation prevention treatment. 請求項1記載の処置を施した免疫抗原物質を有効成分とするTh1誘導剤。 A Th1 inducer comprising as an active ingredient an immunoantigen substance subjected to the treatment according to claim 1.
JP2007030324A 2007-02-09 2007-02-09 Th1 inducer and method for producing the same Active JP4621218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007030324A JP4621218B2 (en) 2007-02-09 2007-02-09 Th1 inducer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007030324A JP4621218B2 (en) 2007-02-09 2007-02-09 Th1 inducer and method for producing the same

Publications (3)

Publication Number Publication Date
JP2008195631A true JP2008195631A (en) 2008-08-28
JP2008195631A5 JP2008195631A5 (en) 2008-11-20
JP4621218B2 JP4621218B2 (en) 2011-01-26

Family

ID=39754917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007030324A Active JP4621218B2 (en) 2007-02-09 2007-02-09 Th1 inducer and method for producing the same

Country Status (1)

Country Link
JP (1) JP4621218B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157073A1 (en) * 2008-06-26 2009-12-30 信和薬品株式会社 Nano-level lactic acid bacterium
JP2011074038A (en) * 2009-10-01 2011-04-14 Mie Univ Allergic disease preventing or treating agent
JP2012229258A (en) * 2012-07-19 2012-11-22 Shinwa Yakuhin Kk Nano-type lactic acid bacterium
JP2013136528A (en) * 2011-12-28 2013-07-11 Buroma Kenkyusho:Kk Antiallergic composition
JP2015084748A (en) * 2013-11-01 2015-05-07 株式会社ブロマ研究所 Food composition and composition for eliminating active oxygen
JP2016079112A (en) * 2014-10-14 2016-05-16 株式会社五葉 Immune function controlling oral agent
JP2017524743A (en) * 2014-08-14 2017-08-31 ブラウン ユニバーシティ Compositions for stabilizing and delivering proteins
JP2020023459A (en) * 2018-08-08 2020-02-13 有限会社バイオ研 Method for improving reachability of lactic acid bacterium to peyer's patch
JP2020079236A (en) * 2018-11-12 2020-05-28 有限会社バイオ研 Skin-wound healing promoting composition for skin application, method for producing the same, and wound dressing
JP2020115786A (en) * 2019-01-24 2020-08-06 株式会社太田胃散 Dextrin containing lactic acid bacteria, food containing lactic acid bacteria, and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101583018B1 (en) 2012-12-07 2016-01-06 바이오제닉스코리아 주식회사 Lactobacillus capable of inducing production of IL-12 and method of preparing thereof
JP2020066606A (en) 2018-10-25 2020-04-30 株式会社ダイセル Type 1 helper-t cell proliferation agent, food, and pharmaceutical

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09188627A (en) * 1996-01-10 1997-07-22 Kyoto Pasutouule Kenkyusho Substance for improving interferon-producing ability and its production
JPH10511957A (en) * 1995-01-05 1998-11-17 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン Surface-modified nanoparticles and methods for their production and use
JP2002523470A (en) * 1998-09-01 2002-07-30 エラン コーポレーシヨン ピーエルシー Oral vaccine composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10511957A (en) * 1995-01-05 1998-11-17 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン Surface-modified nanoparticles and methods for their production and use
JPH09188627A (en) * 1996-01-10 1997-07-22 Kyoto Pasutouule Kenkyusho Substance for improving interferon-producing ability and its production
JP2002523470A (en) * 1998-09-01 2002-07-30 エラン コーポレーシヨン ピーエルシー Oral vaccine composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157073A1 (en) * 2008-06-26 2009-12-30 信和薬品株式会社 Nano-level lactic acid bacterium
JPWO2009157073A1 (en) * 2008-06-26 2011-12-01 信和薬品株式会社 Nano-type lactic acid bacteria
JP5257363B2 (en) * 2008-06-26 2013-08-07 信和薬品株式会社 Method for producing cells of nano-type lactic acid bacteria
JP2011074038A (en) * 2009-10-01 2011-04-14 Mie Univ Allergic disease preventing or treating agent
JP2013136528A (en) * 2011-12-28 2013-07-11 Buroma Kenkyusho:Kk Antiallergic composition
JP2012229258A (en) * 2012-07-19 2012-11-22 Shinwa Yakuhin Kk Nano-type lactic acid bacterium
JP2015084748A (en) * 2013-11-01 2015-05-07 株式会社ブロマ研究所 Food composition and composition for eliminating active oxygen
JP2017524743A (en) * 2014-08-14 2017-08-31 ブラウン ユニバーシティ Compositions for stabilizing and delivering proteins
US10722468B2 (en) 2014-08-14 2020-07-28 Brown University Compositions for stabilizing and delivering proteins
US11504329B2 (en) 2014-08-14 2022-11-22 Brown University Compositions for stabilizing and delivering proteins
JP2016079112A (en) * 2014-10-14 2016-05-16 株式会社五葉 Immune function controlling oral agent
JP2020023459A (en) * 2018-08-08 2020-02-13 有限会社バイオ研 Method for improving reachability of lactic acid bacterium to peyer's patch
JP2020079236A (en) * 2018-11-12 2020-05-28 有限会社バイオ研 Skin-wound healing promoting composition for skin application, method for producing the same, and wound dressing
JP7045671B2 (en) 2018-11-12 2022-04-01 有限会社バイオ研 A skin wound healing promoting composition for skin application, a method for producing the same, and a wound dressing.
JP2020115786A (en) * 2019-01-24 2020-08-06 株式会社太田胃散 Dextrin containing lactic acid bacteria, food containing lactic acid bacteria, and method for manufacturing the same

Also Published As

Publication number Publication date
JP4621218B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4621218B2 (en) Th1 inducer and method for producing the same
KR101580678B1 (en) Nano-sized lactic acid bacteria
EP1458247B1 (en) Malleable protein matrix and uses thereof
US10570366B2 (en) Lactic acid bacterium having IgA production promoting activity, and use thereof
JP5954828B2 (en) Composition for improving skin condition
JP6888835B2 (en) Fermented product and its manufacturing method
JPWO2012002322A1 (en) Oral skin condition improver
JP2010187554A (en) COFFEE BEAN EXTRACT CONTAINING gamma-AMINOBUTYRIC ACID
TWI689585B (en) Novel lactic acid strain and immune activating agent containing novel lactic acid strain
JP5324283B2 (en) Infectious agent
KR20160082583A (en) The Functional Health Drink For Improving The Intestine Function and Environment and Enhencing Immunity
JP5751219B2 (en) Immunostimulator
JP7466166B2 (en) Lactic acid bacteria-containing agent for preventing viral infection and method for producing same
JP2020023459A (en) Method for improving reachability of lactic acid bacterium to peyer&#39;s patch
JP6433053B2 (en) Lipid accumulation promoter in sebaceous gland cells
JP6358692B2 (en) Tight junction formation accelerator
JP2009120517A (en) Intestinal flora improver
KR101743045B1 (en) The Functional Health Snack Foods For Improving The Intestine Function and Environment and Enhencing Immunity
KR20200082586A (en) A composition for preventing or treating an allergic disease, comprising a mixture of fish oil and coral extract
KR20160085233A (en) The Functional Health Dry Milk For Improving The Intestine Function and Environment and Enhencing Immunity
JP2013147458A (en) Th1 INDUCER AND METHOD FOR PRODUCING THE SAME
JP2009120507A (en) Composition for reducing neutral fat in blood

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100219

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4621218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250