JP2012228696A - Shaft member of rolling bearing device for wheel and method for producing the same - Google Patents

Shaft member of rolling bearing device for wheel and method for producing the same Download PDF

Info

Publication number
JP2012228696A
JP2012228696A JP2011096976A JP2011096976A JP2012228696A JP 2012228696 A JP2012228696 A JP 2012228696A JP 2011096976 A JP2011096976 A JP 2011096976A JP 2011096976 A JP2011096976 A JP 2011096976A JP 2012228696 A JP2012228696 A JP 2012228696A
Authority
JP
Japan
Prior art keywords
mold
diameter
flange
shaft portion
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011096976A
Other languages
Japanese (ja)
Inventor
Yoshiaki Masuda
善紀 増田
Kazunori Nakao
一紀 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011096976A priority Critical patent/JP2012228696A/en
Publication of JP2012228696A publication Critical patent/JP2012228696A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a cold forging having a fitting shaft part, a flange part, and a shaft part from a cylindrical material in a cold forging process, and to provide a shaft member of a rolling bearing device for a wheel, produced by the same.SOLUTION: This shaft member 1 of the rolling bearing device for the wheel is coaxially disposed with the fitting shaft part 30, the flange part 21, and the shaft part 10 along the shaft direction. The fitting shaft part has a cylindrical shape having a recessed part 35 opening in the shaft direction, the flange part has a disk shape perpendicular to the shaft direction, and the shaft part has a cylindrical shape and is formed with an inner ring raceway track face on the outer circumferential face. In the method for producing the shaft member 1 of the rolling bearing device for the wheel, by use of a cylindrical shaft-like material 62 having an outside diameter corresponding to the outside diameter of the fitting shaft part 30 in the shaft member 1 of the rolling bearing device for the wheel, the cold forging 64 integrally having the fitting shaft part, the flange part, and the shaft part is formed in double lateral extruding and one-time forward extruding of the cold forging process.

Description

本発明は、車輪用転がり軸受装置の軸部材とその製造方法に関する。   The present invention relates to a shaft member of a rolling bearing device for a wheel and a manufacturing method thereof.

車輪用転がり軸受装置に用いられるハブホイールとしての車輪用転がり軸受装置の軸部材、及び当該車輪用転がり軸受装置の軸部材を製造する方法においては、例えば特許文献1に開示されている。
なお、車輪用転がり軸受装置の軸部材は、嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている。また、軸部は、フランジ部に近い側には径が大きな大径軸部が形成され、フランジ部から遠い側には径が小さな小径軸部が形成されている。
特許文献1に開示された、従来の車輪用転がり軸受装置の軸部材の製造方法では、少なくとも大径軸部が形成された素材を用い、小径軸部の外径に一致する内径を有する受側パンチに、素材の大径軸部の先端を突き当て、冷間鍛造の前方押出し加工にて、大径軸部の先端を受側パンチに押し込み、小径軸部を形成している。
A shaft member of a wheel rolling bearing device as a hub wheel used in a wheel rolling bearing device and a method of manufacturing the shaft member of the wheel rolling bearing device are disclosed in Patent Document 1, for example.
In addition, as for the shaft member of the rolling bearing device for wheels, the fitting shaft portion, the flange portion, and the shaft portion are arranged coaxially along the axial direction. The shaft portion is formed with a large-diameter shaft portion having a large diameter on the side close to the flange portion, and a small-diameter shaft portion having a small diameter on the side far from the flange portion.
In the manufacturing method of the shaft member of the conventional rolling bearing device for a wheel disclosed in Patent Document 1, a material having at least a large-diameter shaft portion is used, and the receiving side has an inner diameter that matches the outer diameter of the small-diameter shaft portion. The tip of the large-diameter shaft portion of the material is abutted against the punch, and the tip of the large-diameter shaft portion is pushed into the receiving punch by forward extrusion of cold forging to form a small-diameter shaft portion.

特開2007−152413号公報JP 2007-152413 A

特許文献1に記載された従来技術では、冷間鍛造工程において大径軸部の先端を受側パンチに押し込んで小径軸部を形成する前方押出し加工を含み、フランジ部の外径よりも小さな外径を有する円柱状の素材から、図示されているように4回以上の冷間鍛造の加工工程を経て(前方押出し加工と側方押出し加工を複数回行って)、嵌合軸部、フランジ部、軸部を備えた冷間鍛造品を形成しており、加工効率がよくない。また工程毎の金型が必要であり、加工設備、加工時間、加工費用がかさむ。   The prior art described in Patent Document 1 includes a forward extrusion process in which the tip of the large-diameter shaft portion is pushed into the receiving punch in the cold forging process to form a small-diameter shaft portion, and the outer diameter is smaller than the outer diameter of the flange portion. From a cylindrical material having a diameter, through a cold forging process 4 times or more as shown in the figure (forward extrusion and side extrusion multiple times), fitting shaft part, flange part The cold forging product provided with the shaft portion is formed, and the processing efficiency is not good. In addition, a die for each process is required, which increases processing equipment, processing time, and processing costs.

本発明は、このような点に鑑みて創案されたものであり、冷間鍛造工程にて、円柱状の素材から嵌合軸部、フランジ部、軸部を有する冷間鍛造品を効率よく製造する方法、及び当該製造方法にて製造された車輪用転がり軸受装置の軸部材を提供することを課題とする。   The present invention was devised in view of such points, and efficiently produces a cold forged product having a fitting shaft portion, a flange portion, and a shaft portion from a cylindrical material in a cold forging process. And a shaft member of a rolling bearing device for a wheel manufactured by the manufacturing method.

上記課題を解決するため、本発明に係る車輪用転がり軸受装置の軸部材とその製造方法は次の手段をとる。
まず、本発明の第1の発明は、嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている車輪用転がり軸受装置の軸部材の製造方法である。
前記嵌合軸部は軸方向に開口する凹部を有する円筒形状であり、前記フランジ部は軸方向に直交する円板状であり、前記フランジ部における軸方向に直交する方向の径であるフランジ径は、前記嵌合軸部における軸方向に直交する方向の径である嵌合軸部径よりも大きく、前記軸部は円柱形状であって外周面には内輪軌道面が形成されており、前記車輪用転がり軸受装置の軸部材は冷間鍛造によって製造されている。
まず、前記嵌合軸部の外径に対応する外径を有する円柱状の軸状素材を用い、第1の冷間鍛造工程にて前記軸状素材における軸方向の一方の端部の径が前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな中間径のフランジ部である中間径フランジ部を形成するように第1の側方押出し加工を行う。
また、第2の冷間鍛造工程にて前記中間径フランジ部の径が前記フランジ径となるまで第2の側方押出し加工を行う。
そして、第3の冷間鍛造工程にて前記軸状素材における軸方向の他方の端部から前記嵌合軸部の前記凹部と前記軸部とを形成するように前方押出し加工を行い、前記車輪用転がり軸受装置の軸部材を形成する。
In order to solve the above problems, the shaft member of the wheel rolling bearing device according to the present invention and the manufacturing method thereof take the following means.
A first aspect of the present invention is a method for manufacturing a shaft member of a wheel rolling bearing device in which a fitting shaft portion, a flange portion, and a shaft portion are arranged coaxially along the axial direction.
The fitting shaft portion has a cylindrical shape having a recess opening in the axial direction, the flange portion has a disk shape orthogonal to the axial direction, and a flange diameter that is a diameter in a direction orthogonal to the axial direction in the flange portion. Is larger than a fitting shaft portion diameter which is a diameter in a direction perpendicular to the axial direction of the fitting shaft portion, the shaft portion is cylindrical, and an inner ring raceway surface is formed on the outer peripheral surface, The shaft member of the wheel rolling bearing device is manufactured by cold forging.
First, a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion is used, and the diameter of one end portion in the axial direction of the shaft-shaped material in the first cold forging step is The first lateral extrusion is performed so as to form an intermediate diameter flange portion that is an intermediate diameter flange portion that is larger than the fitting shaft portion diameter and smaller than the flange diameter.
Further, in the second cold forging step, the second side extrusion is performed until the diameter of the intermediate flange portion becomes the flange diameter.
Then, in the third cold forging step, forward extrusion is performed so as to form the concave portion and the shaft portion of the fitting shaft portion from the other end portion in the axial direction of the shaft-shaped material, and the wheel A shaft member of the rolling bearing device is formed.

この第1の発明によれば、嵌合軸部の外径に対応する外径を有する円柱状の軸状素材を用いることで、冷間鍛造工程を、2回の側方押出し加工と、1回の前方押出し加工にすることが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the first aspect of the invention, by using a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion, the cold forging process is performed by two side extrusion processes, The forward forging process can be performed once, and a cold forged product having a shaft portion, a flange portion, and a fitting shaft portion integrally can be efficiently formed.

次に、本発明の第2の発明は、上記第1の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第1の冷間鍛造工程における前記第1の側方押出し加工では、前記中間径フランジ部における外周面の形状と、前記中間径フランジ部における前記軸部の側の面である一方側中間径フランジ面の形状と、に形成された第1一方側金型と、前記中間径フランジ部における前記嵌合軸部の側の面である他方側中間径フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記中間径フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第1一方側金型と嵌合する略円筒形状の第1中間金型と、略円筒形状の前記第1中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第1他方側金型と、を用いて側方押出し加工して、前記軸状素材から前記嵌合軸部の外周面と、前記中間径フランジ部の外周面と、前記一方側中間径フランジ面と、前記他方側中間径フランジ面と、が形成された1次冷間鍛造品を形成する。
更に、前記第2の冷間鍛造工程における前記第2の側方押出し加工では、前記フランジ部における外周面の形状と、前記フランジ部における前記軸部の側の面である一方側フランジ面の形状と、に形成された第2一方側金型と、前記フランジ部における前記嵌合軸部の側の面である他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第2一方側金型と嵌合する略円筒形状の第2中間金型と、略円筒形状の前記第2中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第2他方側金型と、を用いて側方押出し加工して、前記1次冷間鍛造品から前記嵌合軸部の外周面と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された2次冷間鍛造品を形成する。
そして、前記第3の冷間鍛造工程における前記前方押出し加工では、前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第3一方側金型と、前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第3一方側金型と嵌合する略円筒形状の第3中間金型と、略円筒形状の前記第3中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第3他方側金型と、を用いて前方押出し加工して、前記2次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する。
Next, 2nd invention of this invention is a manufacturing method of the shaft member of the rolling bearing apparatus for wheels which concerns on the said 1st invention, Comprising: Said 1st side extrusion in a said 1st cold forging process In the processing, a first one-side mold formed in the shape of the outer peripheral surface of the intermediate-diameter flange portion and the shape of the one-side intermediate-diameter flange surface that is a surface on the shaft portion side in the intermediate-diameter flange portion And the shape of the other-side intermediate-diameter flange surface that is the surface on the side of the fitting shaft portion in the intermediate-diameter flange portion and the shape of the outer peripheral surface of the fitting shaft portion, and the intermediate-diameter flange portion The first intermediate metal having a substantially cylindrical shape that has an outer diameter corresponding to the outer diameter of the fitting shaft portion and has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and is fitted to the first one-side mold. The mold can be fitted into the hollow portion of the first intermediate mold having a substantially cylindrical shape, and the front A first cylindrical mold having a substantially cylindrical shape having an outer diameter corresponding to the outer diameter of the fitting shaft portion, and lateral extrusion using the shaft-shaped material to the outer peripheral surface of the fitting shaft portion; Then, a primary cold forged product is formed in which the outer peripheral surface of the intermediate diameter flange portion, the one side intermediate diameter flange surface, and the other side intermediate diameter flange surface are formed.
Furthermore, in the second side extruding process in the second cold forging step, the shape of the outer peripheral surface of the flange portion and the shape of the one side flange surface that is the surface of the flange portion on the side of the shaft portion. And a second one-side mold formed on the flange portion, a shape of the other flange surface which is a surface of the flange portion on the fitting shaft portion side, and a shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical shape that has an outer diameter corresponding to the outer diameter of the flange portion and has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and is fitted to the second one-side mold. The second intermediate mold having a substantially cylindrical shape that can be fitted into the hollow part of the second intermediate mold having a shape and the second intermediate mold having a substantially cylindrical shape and has an outer diameter corresponding to the outer diameter of the fitting shaft part. Side fitting using the other side mold, and fitting from the primary cold forged product And the outer peripheral surface of the parts to form the outer peripheral surface of the flange portion, and the one side flange surface, and the other side flange surface, the formed secondary cold forging.
In the forward extrusion process in the third cold forging step, the shape of the outer peripheral surface of the flange portion, the shape of the one side flange surface, and the shape of the shaft portion at the tip of the one side flange surface The outer diameter corresponding to the outer diameter of the flange portion is formed in the third one-side mold formed on the outer surface of the flange portion and the shape of the outer peripheral surface of the fitting shaft portion. A third cylindrical intermediate mold having a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and fitting to the third one-side mold, and the substantially cylindrical first The second cold forging by using a third other mold that can be fitted in the cavity of the three intermediate molds and formed in the shape of the recess of the fitting shaft part. In a third cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from a product. That forms the shaft member of the wheel rolling bearing device.

この第2の発明によれば、嵌合軸部の外径に対応する外径を有する円柱状の軸状素材と、適切な金型を用いることで、冷間鍛造工程を、2回の側方押出し加工と、1回の前方押出し加工で実現することが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the second aspect of the present invention, the cold forging process is performed twice by using a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion and an appropriate die. This can be realized by a one-side extrusion process and a single forward extrusion process, and a cold forged product having a shaft portion, a flange portion, and a fitting shaft portion integrally can be efficiently formed.

次に、本発明の第3の発明は、上記第2の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第1の冷間鍛造工程において、前記第1中間金型と前記第1他方側金型を用いる代わりに、前記第1中間金型と前記第1他方側金型とが一体的に形成された第1一体金型を用いて側方押出し加工を行うことで、前記軸状素材から前記嵌合軸部の外周面と、前記中間径フランジ部の外周面と前記一方側中間径フランジ面と前記他方側中間径フランジ面とが形成された1次冷間鍛造品を形成する。
あるいは、前記第2の冷間鍛造工程において、前記第2中間金型と前記第2他方側金型を用いる代わりに、前記第2中間金型と前記第2他方側金型とが一体的に形成された第2一体金型を用いて側方押出し加工を行うことで、前記1次冷間鍛造品から前記嵌合軸部の外周面と、前記フランジ部の外周面と前記一方側フランジ面と前記他方側フランジ面とが形成された2次冷間鍛造品を形成する。
あるいは、前記第3の冷間鍛造工程において、前記第3中間金型と前記第3他方側金型を用いる代わりに、前記第3中間金型と前記第3他方側金型とが一体的に形成された第3一体金型を用いて前方押出し加工を行うことで、前記2次冷間鍛造品から前記嵌合軸部の凹部と前記軸部とが形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する。
Next, a third invention of the present invention is a method of manufacturing a shaft member of a wheel rolling bearing device according to the second invention, wherein in the first cold forging step, the first intermediate mold is used. And side extruding using a first integrated mold in which the first intermediate mold and the first other mold are integrally formed instead of using the first other mold. In the primary cold, the outer peripheral surface of the fitting shaft portion, the outer peripheral surface of the intermediate-diameter flange portion, the one-side intermediate-diameter flange surface, and the other-side intermediate-diameter flange surface are formed from the shaft-shaped material. Form a forged product.
Alternatively, in the second cold forging step, instead of using the second intermediate mold and the second other mold, the second intermediate mold and the second other mold are integrally formed. By performing a side extrusion process using the formed second integrated mold, the outer peripheral surface of the fitting shaft portion, the outer peripheral surface of the flange portion, and the one-side flange surface from the primary cold forged product And a second cold forged product in which the other flange surface is formed.
Alternatively, in the third cold forging step, instead of using the third intermediate mold and the third other mold, the third intermediate mold and the third other mold are integrally formed. By performing forward extrusion using the formed third integrated die, the third cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from the secondary cold forged product. A shaft member of the rolling bearing device for a certain wheel is formed.

この第3の発明によれば、第1中間金型と第1他方側金型を一体的に形成した第1一体金型、あるいは第2中間金型と第2他方側金型を一体的に形成した第2一体金型、あるいは第3中間金型と第3他方側金型を一体的に形成した第3一体金型、を用いることで、更に効率良く冷間鍛造品を形成することができる。   According to the third aspect of the invention, the first integrated mold in which the first intermediate mold and the first other mold are integrally formed, or the second intermediate mold and the second other mold are integrally formed. By using the formed second integrated mold or the third integrated mold in which the third intermediate mold and the third other mold are integrally formed, a cold forged product can be formed more efficiently. it can.

次に、本発明の第4の発明は、上記第1の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記中間径フランジ部は、前記嵌合軸部の側に傾斜した円錐形状を有する中間径傾斜フランジ部であり、前記第1の冷間鍛造工程における前記第1の側方押出し加工では、前記中間径傾斜フランジ部における外周面の形状と、前記中間径傾斜フランジ部における前記軸部の側の面であって円錐状の一方側中間径傾斜フランジ面の形状と、に形成された第4一方側金型と、前記中間径傾斜フランジ部における前記嵌合軸部の側の面であって円錐状の他方側中間径傾斜フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記中間径傾斜フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第4一方側金型と嵌合する略円筒形状の第4中間金型と、略円筒形状の前記第4中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第4他方側金型と、を用いて側方押出し加工して、前記軸状素材から前記嵌合軸部の外周面と、前記中間径傾斜フランジ部の外周面と、前記一方側中間径傾斜フランジ面と、前記他方側中間径傾斜フランジ面と、が形成された1次冷間鍛造品を形成する。
更に、前記第2の冷間鍛造工程における前記第2の側方押出し加工では、前記中間径傾斜フランジ部から径を最終的なフランジ部の径まで拡径した傾斜フランジ部における前記軸部の側の面であって円錐状の一方側傾斜フランジ面の形状と、前記傾斜フランジ部の外周面の形状と、に形成された第5一方側金型と、前記傾斜フランジ部における前記嵌合軸部の側の面であって円錐状の他方側傾斜フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記傾斜フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第5一方側金型と嵌合する略円筒形状の第5中間金型と、略円筒形状の前記第5中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第5他方側金型と、を用いて側方押出し加工して、前記第1冷間鍛造品から前記嵌合軸部の外周面と、前記傾斜フランジ部の外周面と、前記一方側傾斜フランジ面と、前記他方側傾斜フランジ面と、が形成された2次冷間鍛造品を形成する。
そして、前記第3の冷間鍛造工程における前記前方押出し加工では、前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第6一方側金型と、前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第6一方側金型と嵌合する略円筒形状の第6中間金型と、略円筒形状の前記第6中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第6他方側金型と、を用いて前方押出し加工して、前記2次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する。
Next, 4th invention of this invention is a manufacturing method of the shaft member of the rolling bearing device for wheels which concerns on the said 1st invention, Comprising: The said intermediate diameter flange part inclines in the side of the said fitting shaft part. An intermediate diameter inclined flange portion having a conical shape, and in the first side extrusion in the first cold forging step, the shape of the outer peripheral surface of the intermediate diameter inclined flange portion and the intermediate diameter inclined flange portion A fourth one-side mold formed in a conical one-side intermediate-diameter inclined flange surface that is a surface on the shaft portion side of the portion, and the fitting shaft portion in the intermediate-diameter inclined flange portion The outer surface corresponding to the outer diameter of the intermediate diameter inclined flange portion is formed in the shape of the conical other side intermediate diameter inclined flange surface and the shape of the outer peripheral surface of the fitting shaft portion. An inner diameter that has a diameter and corresponds to the outer diameter of the fitting shaft portion A substantially cylindrical fourth intermediate mold that has a cavity of the method and fits with the fourth one-side mold, and can fit into a cavity of the substantially cylindrical fourth intermediate mold A substantially cylindrical fourth mold on the other side having an outer diameter corresponding to the outer diameter of the fitting shaft portion, and an outer peripheral surface of the fitting shaft portion from the shaft-shaped material by side extrusion. And a primary cold forged product in which the outer peripheral surface of the intermediate diameter inclined flange portion, the one side intermediate diameter inclined flange surface, and the other side intermediate diameter inclined flange surface are formed.
Furthermore, in the second side extruding process in the second cold forging step, the shaft portion side of the inclined flange portion whose diameter is expanded from the intermediate diameter inclined flange portion to the final flange portion diameter. A first conical inclined flange surface and a shape of the outer peripheral surface of the inclined flange portion, a fifth one mold formed on the inclined flange portion, and the fitting shaft portion in the inclined flange portion And having an outer diameter corresponding to the outer diameter of the inclined flange portion, and the shape of the conical other side inclined flange surface and the shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical fifth intermediate mold that has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and is fitted to the fifth one-side mold, and the substantially cylindrical fifth intermediate mold Fits into the cavity of the mold and corresponds to the outer diameter of the fitting shaft An outer surface of the fitting shaft portion from the first cold forged product, and an outer surface of the inclined flange portion. And a secondary cold forged product in which the one side inclined flange surface and the other side inclined flange surface are formed.
In the forward extrusion process in the third cold forging step, the shape of the outer peripheral surface of the flange portion, the shape of the one side flange surface, and the shape of the shaft portion at the tip of the one side flange surface The outer diameter corresponding to the outer diameter of the flange portion is formed in the shape of the sixth one-side mold, the shape of the other-side flange surface, and the shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical sixth intermediate mold that has a hollow part having an inner diameter corresponding to the outer diameter of the fitting shaft part and is fitted to the sixth one-side mold, and the substantially cylindrical first part The second cold forging is forward-extruded using a sixth other mold that can be fitted into the cavity of the six intermediate molds and is formed in the shape of the recess of the fitting shaft part. The concave portion of the fitting shaft portion, the shaft portion, the outer peripheral surface of the flange portion, and the front On the other hand forming the lateral flange surface, and the other side flange surface, the shaft member of the wheel rolling bearing device is a third-order cold forgings are formed.

この第4の発明によれば、嵌合軸部の外径に対応する外径を有する円柱状の軸状素材と、適切な金型を用いることで、冷間鍛造工程を、2回の側方押出し加工と、1回の前方押出し加工で実現することが可能であり、軸部、フランジ部、嵌合軸部とを一体に有する冷間鍛造品を効率よく形成することができる。   According to the fourth aspect of the invention, the cold forging process is performed twice by using a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion and an appropriate die. This can be realized by a one-side extrusion process and a single forward extrusion process, and a cold forged product having a shaft portion, a flange portion, and a fitting shaft portion integrally can be efficiently formed.

次に、本発明の第5の発明は、上記第4の発明に係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第1の冷間鍛造工程において、前記第4中間金型と前記第4他方側金型を用いる代わりに、前記第4中間金型と前記第4他方側金型とが一体的に形成された第4一体金型を用いて側方押出し加工を行うことで、前記軸状素材から前記嵌合軸部の外周面と、最終的な一方側フランジ面及び最終的な他方側フランジ面に対して径が小さいとともに傾斜した一方側中間径傾斜フランジ面と他方側中間径傾斜フランジ面とが形成された1次冷間鍛造品を形成する。
あるいは、前記第2の冷間鍛造工程において、前記第5中間金型と前記第5他方側金型を用いる代わりに、前記第5中間金型と前記第5他方側金型とが一体的に形成された第5一体金型を用いて側方押出し加工を行うことで、前記第1冷間鍛造品から前記嵌合軸部の外周面と、最終的な一方側フランジ面及び最終的な他方側フランジ面に対して傾斜した一方側傾斜フランジ面と他方側傾斜フランジ面とが形成された2次冷間鍛造品を形成する。
あるいは、前記第3の冷間鍛造工程において、前記第6中間金型と前記第6他方側金型を用いる代わりに、前記第6中間金型と前記第6他方側金型とが一体的に形成された第6一体金型を用いて前方押出し加工を行うことで、前記2次冷間鍛造品から前記嵌合軸部の凹部と前記軸部と最終的な一方側フランジ面と最終的な他方側フランジ面が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する。
Next, a fifth invention of the present invention is a method of manufacturing a shaft member of a rolling bearing device for a wheel according to the fourth invention, wherein in the first cold forging step, the fourth intermediate mold And side extruding using a fourth integrated mold in which the fourth intermediate mold and the fourth other mold are integrally formed instead of using the fourth other mold. The one-side intermediate diameter inclined flange surface and the other inclined from the shaft-shaped material to the outer peripheral surface of the fitting shaft portion, the final one-side flange surface, and the final other-side flange surface. A primary cold forged product having a side intermediate diameter inclined flange surface is formed.
Alternatively, in the second cold forging step, instead of using the fifth intermediate mold and the fifth other mold, the fifth intermediate mold and the fifth other mold are integrally formed. By performing a side extrusion process using the formed fifth integrated die, the outer peripheral surface of the fitting shaft portion, the final one-side flange surface, and the final other side from the first cold forged product A secondary cold forging product is formed in which the one side inclined flange surface and the other side inclined flange surface inclined with respect to the side flange surface are formed.
Alternatively, in the third cold forging step, instead of using the sixth intermediate mold and the sixth other mold, the sixth intermediate mold and the sixth other mold are integrally formed. By performing forward extrusion using the formed sixth integrated mold, the concave portion of the fitting shaft portion, the shaft portion, the final one-side flange surface, and the final shape are obtained from the secondary cold forging product. A shaft member of the rolling bearing device for a wheel, which is a tertiary cold forged product on which the other side flange surface is formed, is formed.

この第5の発明によれば、第4中間金型と第4他方側金型を一体的に形成した第4一体金型、あるいは第5中間金型と第5他方側金型を一体的に形成した第5一体金型、あるいは第6中間金型と第6他方側金型を一体的に形成した第6一体金型、を用いることで、更に効率良く冷間鍛造品を形成することができる。   According to the fifth aspect of the invention, the fourth integrated mold in which the fourth intermediate mold and the fourth other mold are integrally formed, or the fifth intermediate mold and the fifth other mold are integrated. By using the formed fifth integrated mold or the sixth integrated mold in which the sixth intermediate mold and the sixth other mold are integrally formed, a cold forged product can be formed more efficiently. it can.

次に、本発明の第6の発明は、上記第1の発明〜第5の発明のいずれか1つに係る車輪用転がり軸受装置の軸部材の製造方法であって、前記第1の冷間鍛造工程の前に、第1の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を前記軸状素材に対して行う。
また、前記第1の冷間鍛造工程を行った後、前記第2の冷間鍛造工程の前に、第2の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を前記軸状素材に対して再度行う。
Next, 6th invention of this invention is a manufacturing method of the shaft member of the rolling bearing apparatus for wheels which concerns on any one of the said 1st invention-5th invention, Comprising: Said 1st cold Prior to the forging process, at least the annealing process and the coating process are performed on the shaft-shaped material in the first annealing / coating process.
In addition, after performing the first cold forging step and before the second cold forging step, at least annealing treatment and coating treatment are performed on the shaft-shaped material in the second annealing / coating step. Try again.

この第6の発明によれば、第1の冷間鍛造工程、及び第2の冷間鍛造工程にて、軸状素材に割れ等を発生させることなく冷間鍛造を行うことができる。   According to the sixth aspect of the present invention, cold forging can be performed in the first cold forging step and the second cold forging step without causing cracks in the shaft-shaped material.

次に、本発明の第7の発明は、上記第1の発明〜第6の発明のいずれか1つに係る車輪用転がり軸受装置の軸部材の製造方法によって製造された車輪用転がり軸受装置の軸部材であって、前記第1〜第3の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する際に、前記嵌合軸部の外径に対応する外径を有する円柱状の軸状素材から製造され、円板状の前記フランジ部を有する。   Next, a seventh invention of the present invention is a rolling bearing device for a wheel manufactured by the method for manufacturing a shaft member of a rolling bearing device for a wheel according to any one of the first to sixth inventions. A circle member having an outer diameter corresponding to the outer diameter of the fitting shaft portion when the shaft member of the rolling bearing device for a wheel is formed in the first to third cold forging steps. It is manufactured from a columnar shaft-shaped material and has the disk-shaped flange portion.

この第7の発明によれば、嵌合軸部の外径に対応する外径を有する円柱状の軸状素材を用いて冷間鍛造工程を2回の側方押出し加工と1回の前方押出し加工にて実現し、軸部、フランジ部、嵌合軸部とを一体に有し、効率よく形成された車輪用転がり軸受装置の軸部材を実現することができる。   According to the seventh aspect of the invention, the cold forging process is performed by two lateral extrusion processes and one forward extrusion process using a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion. The shaft member of the rolling bearing device for a wheel which is realized by processing and has a shaft portion, a flange portion, and a fitting shaft portion integrally and is efficiently formed can be realized.

本発明の車輪用転がり軸受装置の軸部材の製造方法にて製造された車輪用転がり軸受装置の軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図である。It is an axial direction sectional view showing the state where shaft member 1 of the wheel rolling bearing device manufactured with the manufacturing method of the shaft member of the rolling bearing device for wheels of the present invention was assembled as rolling bearing device A for wheels. 車輪用転がり軸受装置の軸部材1の軸方向断面図である。It is an axial sectional view of the shaft member 1 of the rolling bearing device for wheels. (A)は図2に示す車輪用転がり軸受装置の軸部材1をAA方向から見た図であり、(B)はBB方向から見た図である。(A) is the figure which looked at the shaft member 1 of the rolling bearing device for wheels shown in FIG. 2 from the AA direction, (B) is the figure seen from the BB direction. 軸状素材60から車輪用転がり軸受装置の軸部材を成形するまでの工程(A)〜工程(I)による素材の形状の変化等を示す図である。It is a figure which shows the change of the shape of the raw material by the process (A)-process (I) until it forms the shaft member of the rolling bearing apparatus for wheels from the shaft-shaped raw material 60. 第1の実施の形態において、冷間鍛造工程の2回の側方押出し加工と1回の前方押出し加工を説明する図であり、(A)は1回目の側方押出し加工の金型と素材の断面図を示しており、(B)は2回目の側方押出し加工の金型と素材の断面図を示しており、(C)は前方押出し加工の金型と素材の断面図を示している。また(D)は1回目の側方押出し加工前の素材の概略形状を示しており、(E)は1回目の側方押出し加工後の素材の概略形状を示しており、(F)は2回目の側方押出し加工後の素材の概略形状を示しており、(G)は前方押出し加工後の素材の概略形状を示している。In 1st Embodiment, it is a figure explaining two side extrusion processes of a cold forging process, and one front extrusion process, (A) is the metal and material of a first side extrusion process (B) shows a sectional view of the mold and material of the second side extrusion, and (C) shows a sectional view of the die and material of the forward extrusion process. Yes. (D) shows the schematic shape of the material before the first lateral extrusion, (E) shows the schematic shape of the material after the first lateral extrusion, and (F) shows 2 The schematic shape of the raw material after the second side extrusion is shown, and (G) shows the schematic shape of the raw material after forward extrusion. 第2の実施の形態において、冷間鍛造工程の2回の側方押出し加工と1回の前方押出し加工を説明する図であり、(A)は1回目の側方押出し加工の金型と素材の断面図を示しており、(B)は2回目の側方押出し加工の金型と素材の断面図を示しており、(C)は前方押出し加工の金型と素材の断面図を示している。また(D)は1回目の側方押出し加工前の素材の概略形状を示しており、(E)は1回目の側方押出し加工後の素材の概略形状を示しており、(F)は2回目の側方押出し加工後の素材の概略形状を示しており、(G)は前方押出し加工後の素材の概略形状を示している。In 2nd Embodiment, it is a figure explaining two side extrusion processes and one front extrusion process of a cold forging process, (A) is the metal and material of a first side extrusion process (B) shows a sectional view of the mold and material of the second side extrusion, and (C) shows a sectional view of the die and material of the forward extrusion process. Yes. (D) shows the schematic shape of the material before the first lateral extrusion, (E) shows the schematic shape of the material after the first lateral extrusion, and (F) shows 2 The schematic shape of the raw material after the second side extrusion is shown, and (G) shows the schematic shape of the raw material after forward extrusion.

以下に本発明を実施するための形態を図面を用いて説明する。図1は、本発明の車輪用転がり軸受装置の軸部材の製造方法にて製造された車輪用転がり軸受装置の軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図を示している。また図2は車輪用転がり軸受装置の軸部材1の軸方向断面図を示しており、図3は図2に示す車輪用転がり軸受装置の軸部材1をAA方向から見た図(A)、及びBB方向から見た図(B)を示している。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1 is an axial sectional view showing a state in which a shaft member 1 of a wheel rolling bearing device manufactured by the method for manufacturing a shaft member of a wheel rolling bearing device of the present invention is assembled as a wheel rolling bearing device A. Is shown. 2 shows an axial sectional view of the shaft member 1 of the wheel rolling bearing device, and FIG. 3 is a view (A) of the shaft member 1 of the wheel rolling bearing device shown in FIG. And the figure (B) seen from the BB direction is shown.

●[車輪用転がり軸受装置Aと車輪用転がり軸受装置の軸部材1の全体構造(図1〜図3)]
次に図1〜図3を用いて、車輪用転がり軸受装置Aと車輪用転がり軸受装置の軸部材1の全体構造について説明する。
図1及び図2に示すように、車輪用転がり軸受装置A(いわゆる車輪用ハブユニット)に採用される車輪用転がり軸受装置の軸部材1(いわゆるハブホイール)は、軸部10と、フランジ部21と、嵌合軸部30と、を軸方向に沿って同軸上に、一体に有している。
なお、車輪用転がり軸受装置Aが車両に取り付けられた場合、軸部10は車両内側に位置しており、嵌合軸部30は車両外側に位置しており、図1においては紙面の左方向が車両内側を示し、紙面の右方向が車両外側を示している。
● [Whole rolling bearing device A and overall structure of shaft member 1 of wheel rolling bearing device (FIGS. 1 to 3)]
Next, the overall structure of the wheel rolling bearing device A and the shaft member 1 of the wheel rolling bearing device will be described with reference to FIGS.
As shown in FIGS. 1 and 2, a shaft member 1 (so-called hub wheel) of a wheel rolling bearing device employed in a wheel rolling bearing device A (so-called wheel hub unit) includes a shaft portion 10 and a flange portion. 21 and the fitting shaft portion 30 are integrally provided coaxially along the axial direction.
When the wheel rolling bearing device A is attached to the vehicle, the shaft portion 10 is located inside the vehicle, the fitting shaft portion 30 is located outside the vehicle, and in FIG. Indicates the inside of the vehicle, and the right direction of the page indicates the outside of the vehicle.

軸部10は略円柱形状であり、軸部10におけるフランジ部21に近い側には径が大きな大径軸部11が形成され、フランジ部21から遠い端部には大径軸部11よりも小さな径の小径軸部12が形成され、大径軸部11と小径軸部12との段差部には軸部10の回転軸に直交する面である内輪突き当て面12aが形成されている。
フランジ部21は、軸部10と嵌合軸部30との間に位置して軸方向(回転軸ZS方向)に直交する円板状であり、フランジ部21の外径は軸部10の外径よりも大きい。
嵌合軸部30は、軸部10の一端側(小径軸部12と反対の側)に、軸部10と同軸上に、連続する略円筒形状に成形されており、車輪(図示省略)の中心孔が嵌め込まれる。
図3に示すように、外径方向に円板状に延出されたフランジ部21には、車輪を締め付けるハブボルト27が圧入によって配置されるボルト孔24が貫設されている。
また図1、図2に示すように嵌合軸部30には、フランジ部21側にブレーキロータ用嵌合部31が形成され、先端側にブレーキロータ用嵌合部31よりも若干小径の車輪用嵌合部32が形成されている。
またフランジ部21における嵌合軸部30の側の面であるロータ支持面22には、図1に示すようにブレーキロータ55の中心孔の周囲の面が当接する。
また嵌合軸部30の内径側には、凹状の鍛造凹部35が形成されている。
The shaft portion 10 has a substantially cylindrical shape, and a large-diameter shaft portion 11 having a large diameter is formed on a side near the flange portion 21 in the shaft portion 10, and an end portion far from the flange portion 21 is larger than the large-diameter shaft portion 11. A small-diameter shaft portion 12 having a small diameter is formed, and an inner ring abutting surface 12 a that is a surface orthogonal to the rotation axis of the shaft portion 10 is formed at a step portion between the large-diameter shaft portion 11 and the small-diameter shaft portion 12.
The flange portion 21 is located between the shaft portion 10 and the fitting shaft portion 30 and has a disk shape perpendicular to the axial direction (rotation axis ZS direction). The outer diameter of the flange portion 21 is the outer diameter of the shaft portion 10. It is larger than the diameter.
The fitting shaft portion 30 is formed on one end side of the shaft portion 10 (on the side opposite to the small-diameter shaft portion 12), is coaxially formed with the shaft portion 10 and is formed into a continuous, substantially cylindrical shape, and has a wheel (not shown). Center hole is fitted.
As shown in FIG. 3, a bolt hole 24 in which a hub bolt 27 for tightening a wheel is disposed by press-fitting is formed in the flange portion 21 extending in a disk shape in the outer diameter direction.
As shown in FIGS. 1 and 2, the fitting shaft portion 30 is formed with a brake rotor fitting portion 31 on the flange portion 21 side, and has a slightly smaller diameter wheel on the tip side than the brake rotor fitting portion 31. A fitting portion 32 is formed.
Further, as shown in FIG. 1, the surface around the center hole of the brake rotor 55 abuts on the rotor support surface 22 that is the surface of the flange portion 21 on the side of the fitting shaft portion 30.
A concave forged concave portion 35 is formed on the inner diameter side of the fitting shaft portion 30.

図1、図2に示すように本実施の形態にて説明する車輪用転がり軸受装置の軸部材1の軸部10の大径軸部11には、フランジ部21との境界部の近傍における外周面の一部に、転がり軸受としての複列のアンギュラ玉軸受における一方の軸受部を構成する第1内輪軌道面18が円周方向に連続するように形成されている。
また、第1内輪軌道面18に隣接してフランジ部21に近い側における外周面の一部には、円周方向に連続する後述のシール面19が形成されている。
また小径軸部12の外周面には、円周方向に連続するように形成された第2内輪軌道面44を外周面に有する内輪42が嵌め込まれる。なお内輪42は、内輪突き当て面12aに突き当たるまで嵌め込まれている。
そして、小径軸部12における内輪42からの突出部(図1中の軸端部15)は径方向外側にかしめられて、かしめ部17が形成され、かしめ部17と内輪突き当て面12aにて内輪42が固定されている。
また図1に示すように、小径軸部12の軸端部15をかしめたかしめ部17と内輪突き当て面12aにて内輪42を固定した際に内輪42を固定可能な強度を有するように、内輪突き当て面12aの面積が設定されている。
As shown in FIGS. 1 and 2, the large-diameter shaft portion 11 of the shaft portion 10 of the shaft member 1 of the rolling bearing device for a wheel described in the present embodiment has an outer periphery in the vicinity of the boundary portion with the flange portion 21. A first inner ring raceway surface 18 constituting one bearing portion of a double row angular ball bearing as a rolling bearing is formed on a part of the surface so as to be continuous in the circumferential direction.
Further, a seal surface 19 described later that is continuous in the circumferential direction is formed on a part of the outer peripheral surface adjacent to the first inner ring raceway surface 18 and close to the flange portion 21.
Further, an inner ring 42 having a second inner ring raceway surface 44 formed so as to be continuous in the circumferential direction is fitted on the outer circumferential surface of the small-diameter shaft portion 12. The inner ring 42 is fitted until it hits the inner ring abutting surface 12a.
And the protrusion part from the inner ring | wheel 42 in the small diameter shaft part 12 (shaft end part 15 in FIG. 1) is caulked radially outward to form a caulking part 17, and the caulking part 17 and the inner ring abutting surface 12a The inner ring 42 is fixed.
Further, as shown in FIG. 1, when the inner ring 42 is fixed with the caulking portion 17 and the inner ring abutting surface 12a by caulking the shaft end 15 of the small diameter shaft portion 12, the inner ring 42 has a strength capable of fixing. The area of the inner ring abutting surface 12a is set.

また図1に示すように、車輪用転がり軸受装置の軸部材1の軸部10の外周面には、環状空間を保って外輪45が配置されている。
外輪45の内周面には、車輪用転がり軸受装置の軸部材1に形成されている第1内輪軌道面18に対向する第1外輪軌道面46と、内輪42に形成されている第2内輪軌道面44に対向する第2外輪軌道面47と、が形成されている。なお、各内輪軌道面、各外輪軌道面は、それぞれの面において円周方向に連続するように形成されている。
そして第1内輪軌道面18と第1外輪軌道面46との間には、複数の第1転動体50が保持器52によって保持されて転動可能に配置され、第2内輪軌道面44と第2外輪軌道面47との間には、複数の第2転動体51が保持器53によって保持されて転動可能に配置されている。
なお、複数の第1転動体50、及び複数の第2転動体51には、小径軸部12の端部をかしめてかしめ部17を形成した際のかしめ力に基づいて、軸方向の予圧が付与されてアンギュラ玉軸受を構成している。
Moreover, as shown in FIG. 1, the outer ring | wheel 45 is arrange | positioned maintaining the annular space in the outer peripheral surface of the axial part 10 of the shaft member 1 of the rolling bearing apparatus for wheels.
On the inner peripheral surface of the outer ring 45, a first outer ring raceway surface 46 facing the first inner ring raceway surface 18 formed on the shaft member 1 of the wheel rolling bearing device, and a second inner ring formed on the inner ring 42. A second outer ring raceway surface 47 facing the raceway surface 44 is formed. Each inner ring raceway surface and each outer ring raceway surface are formed to be continuous in the circumferential direction on each surface.
Between the first inner ring raceway surface 18 and the first outer ring raceway surface 46, a plurality of first rolling elements 50 are held by a cage 52 and arranged so as to be able to roll. Between the two outer ring raceway surfaces 47, a plurality of second rolling elements 51 are held by a cage 53 and are arranged to be able to roll.
The plurality of first rolling elements 50 and the plurality of second rolling elements 51 are subjected to axial preload based on the caulking force when the caulking portion 17 is formed by caulking the end of the small diameter shaft portion 12. An angular ball bearing is provided.

また図1に示すように、外輪45の外周面には、車体側フランジ48が一体に形成されており、当該車体側フランジは、車両の懸架装置(図示省略)に支持されたナックル、キャリア等の車体側部材の取付面にボルト等によって締結される。
また外輪45における第1外輪軌道面46に隣接する開口部の内周面には、シール部材56が圧入されて組み付けられ、当該シール部材56のリップ58の先端が、シール面19に摺接(接触)して外輪45と車輪用転がり軸受装置の軸部材1との隙間をシールしている。
また図3(B)及び図2に示すように、フランジ部21における軸部10の側の面には、重量の増加を抑えながらもボルト孔24の周囲の剛性を向上させるために、浮島状に部分的に肉厚とした浮島状肉厚部29が形成されている。
As shown in FIG. 1, a vehicle body side flange 48 is integrally formed on the outer peripheral surface of the outer ring 45, and the vehicle body side flange is a knuckle, a carrier, etc. supported by a vehicle suspension device (not shown). Fastened to the mounting surface of the vehicle body side member with a bolt or the like.
A seal member 56 is press-fitted and assembled to the inner peripheral surface of the opening adjacent to the first outer ring raceway surface 46 in the outer ring 45, and the tip of the lip 58 of the seal member 56 is in sliding contact with the seal surface 19 ( The gap between the outer ring 45 and the shaft member 1 of the wheel rolling bearing device is sealed.
Further, as shown in FIGS. 3B and 2, the surface of the flange portion 21 on the side of the shaft portion 10 has a floating island shape in order to improve the rigidity around the bolt hole 24 while suppressing an increase in weight. A floating island-shaped thick portion 29 having a partial thickness is formed.

●[車輪用転がり軸受装置の軸部材1の製造方法(図4)]
次に図4を用いて、車輪用転がり軸受装置の軸部材1の製造方法について説明する。
図4(A)〜(I)は軸状素材60から各工程を経て車輪用転がり軸受装置の軸部材1を成形する様子を示しており、各工程後の素材の断面形状を示している。
本実施の形態にて説明する車輪用転がり軸受装置の軸部材1は、第1の焼鈍・被膜工程、第1の冷間鍛造工程、第2の焼鈍・被膜工程、第2の冷間鍛造工程、第3の冷間鍛造工程、旋削工程、熱処理工程、研磨工程、を経て製造される。
まず、第1の焼鈍・被膜工程に先立って、S45C、S50C、S55C等の炭素量0.5%前後の略円柱形状の構造用炭素鋼を所定長さに切断して軸状素材60を形成する(図4(A)参照)。
なお、略円柱形状の軸状素材60の外径(φE)は、車輪用転がり軸受装置の軸部材1の嵌合軸部30の外径とほぼ同じものを用いる。
● [Manufacturing method of shaft member 1 of rolling bearing device for wheel (FIG. 4)]
Next, the manufacturing method of the shaft member 1 of the rolling bearing device for wheels is demonstrated using FIG.
4A to 4I show how the shaft member 1 of the rolling bearing device for a wheel is formed from the shaft-shaped material 60 through each process, and shows the cross-sectional shape of the material after each process.
The shaft member 1 of the rolling bearing device for a wheel described in the present embodiment includes a first annealing / coating process, a first cold forging process, a second annealing / coating process, and a second cold forging process. , Through a third cold forging process, a turning process, a heat treatment process, and a polishing process.
First, prior to the first annealing / coating process, a substantially cylindrical structural carbon steel having a carbon content of about 0.5% such as S45C, S50C, S55C, etc. is cut to a predetermined length to form a shaft-shaped material 60. (See FIG. 4A).
The outer diameter (φE) of the substantially cylindrical shaft-shaped material 60 is substantially the same as the outer diameter of the fitting shaft portion 30 of the shaft member 1 of the wheel rolling bearing device.

[第1の焼鈍・被膜工程(図4(B)、図4(C))]
第1の焼鈍・被膜工程では、少なくとも以下の焼鈍処理と被膜処理を行う。
焼鈍処理では、軸状素材60を変態点温度以上の温度(好ましくは、変態点温度よりも20℃〜70℃程度高い温度)で加熱する。
これによって、軸状素材60中の炭素成分を球状化させて球状化焼鈍することで焼鈍済軸状素材61を形成する(図4(B)参照)。この焼鈍済軸状素材61は、これ自体の材料の延性が向上する。
[First annealing / coating process (FIGS. 4B, 4C)]
In the first annealing / coating step, at least the following annealing treatment and coating treatment are performed.
In the annealing treatment, the shaft-shaped material 60 is heated at a temperature equal to or higher than the transformation point temperature (preferably, a temperature higher by about 20 ° C. to 70 ° C. than the transformation point temperature).
Thereby, the carbon component in the shaft-shaped material 60 is spheroidized and spheroidized and annealed to form the annealed shaft-shaped material 61 (see FIG. 4B). This annealed shaft material 61 improves the ductility of the material itself.

被膜処理では、焼鈍済軸状素材61の表面に潤滑剤を被膜処理して潤滑剤被膜36を有する被膜処理済軸状素材62を形成する(図4(C)参照)。
例えば、焼鈍済軸状素材61の表面に潤滑剤としてのリン酸塩を塗布して潤滑剤被膜(リン酸塩被膜)36を有する被膜処理済軸状素材62を形成する。
被膜処理済軸状素材62は、その表面の潤滑剤被膜36によって、冷間鍛造の成形型と素材(材料)との間に生じる摩擦力を低減する。
なお、上記の焼鈍処理の後、且つ上記の被膜処理の前に、ショットブラスト処理を行い、焼鈍済軸状素材61の表面を削るとともに表面が粗くなるように微細な凹凸を形成すると、被膜処理にてより安定して被膜を形成することができるので、より好ましい。
In the coating process, the surface of the annealed shaft material 61 is coated with a lubricant to form a coated shaft material 62 having the lubricant film 36 (see FIG. 4C).
For example, a coated shaft material 62 having a lubricant film (phosphate film) 36 is formed by applying phosphate as a lubricant to the surface of the annealed shaft material 61.
The coated shaft material 62 reduces the frictional force generated between the cold forging mold and the material (material) by the lubricant film 36 on the surface thereof.
In addition, after the above annealing treatment and before the above coating treatment, a shot blast treatment is performed, and when the surface of the annealed shaft material 61 is shaved and fine irregularities are formed so that the surface becomes rough, the coating treatment It is more preferable because a film can be formed more stably.

[第1の冷間鍛造工程(図4(D))]
第1の冷間鍛造工程では、被膜処理済軸状素材62における軸方向の一方の端部の径が、嵌合軸部30の径(φE)よりも大きく且つフランジ部21の径(φG)よりも小さな径である中間径(φF)のフランジ部である中間径フランジ部21Zを形成するように、第1の側方押出し加工を行い、1次冷間鍛造品63を形成する(図4(D)参照)。
このように、一度に嵌合軸部30の径(φE)からフランジ部21の径(φG)に拡径することなく、中間径(φF)までの拡径にとどめることで、フランジ部の割れ、ひび等の発生を適切に防止することができる。
なお、第1の冷間鍛造工程にて用いる金型の形状等については後述する。
なお、図4(D)〜(F)に示す断面形状は、後述する第1の実施の形態の場合の断面形状の例を示している。
[First cold forging step (FIG. 4D)]
In the first cold forging process, the diameter of one end in the axial direction of the coated shaft material 62 is larger than the diameter (φE) of the fitting shaft portion 30 and the diameter (φG) of the flange portion 21. The first cold forging product 63 is formed by performing the first lateral extrusion so as to form an intermediate diameter flange portion 21Z that is a flange portion having an intermediate diameter (φF) that is a smaller diameter (FIG. 4). (See (D)).
In this way, the crack of the flange portion is prevented by expanding the diameter from the diameter (φE) of the fitting shaft portion 30 to the diameter (φG) of the flange portion 21 at a time without increasing the diameter to the intermediate diameter (φF). The occurrence of cracks and the like can be prevented appropriately.
The shape of the mold used in the first cold forging step will be described later.
In addition, the cross-sectional shape shown to FIG.4 (D)-(F) has shown the example of the cross-sectional shape in the case of 1st Embodiment mentioned later.

[第2の焼鈍・被膜工程(図4(E))]
第2の焼鈍・被膜工程では、中間径(φF)まで拡径した中間径フランジ部21Zの径を最終的なフランジ部21の径(φG)に拡径するために、改めてもう一度、第1の焼鈍・被膜処理と同様に、少なくとも焼鈍処理と被膜処理を行い、焼鈍・被膜処理済の1次冷間鍛造品64を形成する(図4(E)参照)。
これにより、第1の冷間鍛造後の素材に残留する応力を除去するとともに、再度、1次冷間鍛造品63の延性の向上と摩擦係数の低下を図り、フランジ部の割れ、ひび等の発生を適切に防止することができる。
[Second annealing / coating process (FIG. 4E)]
In the second annealing / coating process, in order to expand the diameter of the intermediate diameter flange portion 21Z that has been expanded to the intermediate diameter (φF) to the final diameter (φG) of the flange portion 21 again, Similar to the annealing / coating process, at least the annealing process and the coating process are performed to form a primary cold forged product 64 that has been subjected to the annealing / coating process (see FIG. 4E).
As a result, the stress remaining in the material after the first cold forging is removed, and the ductility of the primary cold forged product 63 is improved and the friction coefficient is reduced again. Occurrence can be prevented appropriately.

[第2の冷間鍛造工程(図4(F))]
第2の冷間鍛造工程では、焼鈍・被膜処理済の1次冷間鍛造品64における軸方向の一方の端部の径が、最終的なフランジ部21の径(φG)となるように、第2の側方押出し加工を行い、2次冷間鍛造品65を形成する(図4(F)参照)。
なお、第2の冷間鍛造工程にて用いる金型の形状等については後述する。
[Second Cold Forging Process (FIG. 4F)]
In the second cold forging step, the diameter of one end portion in the axial direction in the annealed / coated primary cold forged product 64 is the final diameter of the flange portion 21 (φG). A second side extrusion process is performed to form a secondary cold forged product 65 (see FIG. 4F).
The shape of the mold used in the second cold forging step will be described later.

[第3の冷間鍛造工程(図4(G))]
第3の冷間鍛造工程では、2次冷間鍛造品65の嵌合軸部30の中心部端面に鍛造凹部35を形成しながら、大径軸部11と小径軸部12を形成するように前方押出し加工を行い、嵌合軸部30、フランジ部21、大径軸部11、小径軸部12が形成された3次冷間鍛造品66を形成する(図4(G)参照)。
なお、図4(G)に示す断面形状は、後述する第1の実施の形態、第2の実施の形態のどちらもほぼ同じである。
また、前方押出し加工とは、金型(いわゆるダイ)の内部に素材を配置し、別の金型(いわゆるパンチ)を押し込み、当該金型を押し込む方向に素材を流動させる加工を指す。
そして側方押出し加工とは、金型(いわゆるダイ)の内部に素材を配置し、別の金型(いわゆるパンチ)を押し込み、当該金型を押し込む方向と交差する方向(主に直交する方向)に素材を流動させる加工を指す。
[Third cold forging step (FIG. 4G)]
In the third cold forging step, the large-diameter shaft portion 11 and the small-diameter shaft portion 12 are formed while forming the forged recess 35 on the end surface of the central portion of the fitting shaft portion 30 of the secondary cold forged product 65. A forward extrusion process is performed to form a third cold forged product 66 in which the fitting shaft portion 30, the flange portion 21, the large diameter shaft portion 11, and the small diameter shaft portion 12 are formed (see FIG. 4G).
Note that the cross-sectional shape shown in FIG. 4G is substantially the same in both a first embodiment and a second embodiment described later.
Further, the forward extrusion process refers to a process in which a material is placed inside a mold (so-called die), another mold (so-called punch) is pushed in, and the material is made to flow in the direction in which the mold is pushed.
Side extrusion is a direction in which a material is placed inside a die (so-called die), another die (so-called punch) is pushed in, and the direction in which the die is pushed in (mainly orthogonal) Refers to the process of making the material flow.

[旋削工程(図4(H))]
旋削工程では、3次冷間鍛造品66の一部、例えば、フランジ部21の一側面のロータ支持面22(後述する他方側フランジ面21Cに相当)と、嵌合軸部30の端面33とを旋削し、フランジ部21にボルト孔24を孔開け加工して旋削済鍛造品67を形成する(図4(H)参照)。
この旋削工程において、3次冷間鍛造品66の少なくとも嵌合軸部30の車輪用嵌合部32(図2参照)の潤滑剤被膜36は旋削することなく残す。
また本実施の形態では、図2に示すように、潤滑剤被膜36は、フランジ部21のロータ支持面22の反対側の面(後述する一方側フランジ面21Dに相当)と、第1内輪軌道面18の肩部に隣接して形成されたシール面19と、鍛造凹部35の表面と、軸部10の小径軸部12の先端の軸端部15の端面において、旋削されることなく残される。
従来では、少なくとも図2における車輪用嵌合部32の潤滑剤被膜36を旋削しており、従来において潤滑剤被膜36を残している個所に加えて、本願では少なくとも車輪用嵌合部32の潤滑剤被膜36を余分に残す。
そして、潤滑剤被膜36を残した分だけ旋削加工範囲が小さくなり、旋削加工が容易に、且つ短時間となる。
[Turning process (Fig. 4 (H))]
In the turning process, a part of the third cold forged product 66, for example, the rotor support surface 22 on one side of the flange portion 21 (corresponding to the other side flange surface 21C described later), and the end surface 33 of the fitting shaft portion 30 And the bolt hole 24 is drilled in the flange portion 21 to form a turned forged product 67 (see FIG. 4H).
In this turning process, the lubricant coating 36 of at least the wheel fitting portion 32 (see FIG. 2) of the fitting shaft portion 30 of the tertiary cold forged product 66 remains without turning.
In the present embodiment, as shown in FIG. 2, the lubricant coating 36 includes a surface on the opposite side of the rotor support surface 22 of the flange portion 21 (corresponding to a one-side flange surface 21D described later), a first inner ring raceway. The seal surface 19 formed adjacent to the shoulder portion of the surface 18, the surface of the forged recess 35, and the end surface of the shaft end portion 15 at the tip of the small diameter shaft portion 12 of the shaft portion 10 are left without being turned. .
Conventionally, at least the lubricant coating 36 of the wheel fitting portion 32 in FIG. 2 is turned, and in addition to the portions where the lubricant coating 36 is left in the prior art, at least lubrication of the wheel fitting portion 32 in the present application. Extra agent coating 36 is left.
Then, the turning range is reduced by the amount of the lubricant film 36 left, and the turning process is easy and takes a short time.

[熱処理工程(図4(I))]
次に、熱処理工程(焼入れ焼き戻し工程)において、旋削済鍛造品67の軸部10の第1内輪軌道面18を高周波焼入れした後、焼き戻しして熱処理済鍛造品68を形成する(図4(I)参照)。この場合、シール面19、小径軸部12の外周面、内輪突き当て面12aには、あえて高周波焼入れを行わない。これにより、熱処理工程の時間を短縮化することができる。なお、図2に示すように、第1内輪軌道面18の周囲には焼入れ焼き戻しによる硬化層Sが形成される。
[Heat treatment process (FIG. 4I)]
Next, in the heat treatment step (quenching and tempering step), the first inner ring raceway surface 18 of the shaft portion 10 of the turned forged product 67 is induction-quenched and then tempered to form a heat-treated forged product 68 (FIG. 4). (See (I)). In this case, induction hardening is not performed on the seal surface 19, the outer peripheral surface of the small diameter shaft portion 12, and the inner ring abutting surface 12a. Thereby, the time of a heat treatment process can be shortened. As shown in FIG. 2, a hardened layer S is formed around the first inner ring raceway surface 18 by quenching and tempering.

[研磨工程]
研磨工程では、熱処理済鍛造品68の第1内輪軌道面18を研磨加工して車輪用転がり軸受装置の軸部材1を形成する。
[Polishing process]
In the polishing step, the first inner ring raceway surface 18 of the heat-treated forged product 68 is polished to form the shaft member 1 of the wheel rolling bearing device.

●[第1の実施の形態における冷間鍛造工程の詳細(図5)]
次に図5を用いて、第1の実施の形態における第1の冷間鍛造工程、第2の冷間鍛造工程、第3の冷間鍛造工程の詳細について説明する。
第1の実施の形態では、最終的な嵌合軸部30の外径(φE)とほぼ同じ(等しいまたはやや小径の)外径を有する被膜処理済軸状素材62(軸状素材)から、2回の側方押出し加工と、1回の前方押出し加工を経て、嵌合軸部30とフランジ部21と大径軸部11と小径軸部12を一体に有する冷間鍛造品を形成する。
なお、図5(A)は第1の側方押出し加工の金型と素材の断面図を示しており、図5(B)は第2の側方押出し加工の金型と素材の断面図を示しており、図5(C)は前方押出し加工の金型と素材の断面図を示している。また、図5(D)は第1の側方押出し加工前の素材の概略形状を示しており、図5(E)は第1の側方押出し加工後の素材の概略形状を示しており、図5(F)は第2の側方押出し加工後の素材の概略形状を示しており、図5(G)は前方押出し加工後の素材の概略形状を示している。
なお、図5(A)〜(C)に示す側方押出し加工及び前方押出し加工を説明する金型と素材の断面図において、中心線より紙面右側は側方押出し加工(または前方押出し加工)を行う前の状態(素材をセットした状態)を示しており、中心線より紙面左側は側方押出し加工(または前方押出し加工)が完了した状態を示している。
● [Details of Cold Forging Process in First Embodiment (FIG. 5)]
Next, details of the first cold forging process, the second cold forging process, and the third cold forging process in the first embodiment will be described with reference to FIG.
In the first embodiment, from the coated shaft-shaped material 62 (shaft-shaped material) having an outer diameter that is substantially the same (equal or slightly smaller) as the outer diameter (φE) of the final fitting shaft portion 30, A cold forged product having the fitting shaft portion 30, the flange portion 21, the large-diameter shaft portion 11, and the small-diameter shaft portion 12 integrally is formed through two side extrusion processes and one forward extrusion process.
5A shows a sectional view of the first side extrusion mold and material, and FIG. 5B shows a sectional view of the second side extrusion mold and material. FIG. 5C shows a cross-sectional view of a die and material for forward extrusion. FIG. 5D shows a schematic shape of the material before the first side extrusion, and FIG. 5E shows a schematic shape of the material after the first side extrusion. FIG. 5 (F) shows a schematic shape of the material after the second lateral extrusion, and FIG. 5 (G) shows a schematic shape of the material after the forward extrusion.
In addition, in the sectional view of the mold and the material for explaining the side extrusion process and the front extrusion process shown in FIGS. 5A to 5C, the right side of the drawing from the center line is the side extrusion process (or the front extrusion process). The state before performing (the state in which the material is set) is shown, and the left side of the paper from the center line shows the state where the side extrusion (or forward extrusion) has been completed.

次に図5(A)、(D)、(E)を用いて第1の冷間鍛造工程(第1の側方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図5(A)に示すように、第1の冷間鍛造工程では、第1一方側金型K11、第1他方側金型K12、第1中間金型K13、を用いて被膜処理済軸状素材62を側方押出し加工する。
第1一方側金型K11は、嵌合軸部30の径(φE)よりも大きく且つ最終的なフランジ部21の径(φG)よりも小さな径である中間径(φF)のフランジ部である中間径フランジ部における外周面の形状と、中間径フランジ部における軸部10の側の面である一方側中間径フランジ面21Bの形状とに形成されている。
第1中間金型K13は、中間径フランジ部における嵌合軸部30の側の面である他方側中間径フランジ面21Aの形状と、嵌合軸部30の外周面の形状とに形成されている。また第1中間金型K13は、中間径フランジ部の外径に対応する外径を有しているとともに中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有しており、第1一方側金型K11と嵌合する略円筒形状に形成されている。
第1他方側金型K12は、第1中間金型K13の空洞部に嵌合可能であるとともに嵌合軸部30の外径に対応する外径を有する略円柱形状に形成されている。
そして第1一方側金型K11における嵌合軸部30の位置となる中央部に被膜処理済軸状素材62(図5(D)参照)を配置し、第1中間金型K13を下降させて第1一方側金型K11と嵌合させて嵌合軸部30の外周面と他方側中間径フランジ面21Aの位置を位置決めする。そして、第1他方側金型K12を下降させて第1中間金型K13の空洞部に嵌合させて側方押出し加工をすることで、嵌合軸部30の外周面と、中間径フランジ部の外周面と、一方側中間径フランジ面21Bと、他方側中間径フランジ面21Aと、が形成された1次冷間鍛造品63(図5(E)参照)を形成することができる。
なお、金型の破損等を防止するために、「第1一方側金型K11と第1中間金型K13と第1他方側金型K12にて囲まれる空間の体積」のほうが、「被膜処理済軸状素材62の体積」よりも大きく設定されている。
なお、図5(A)〜(C)における傾斜角度Aを20°≦θ≦60°に設定すると、一方側中間径フランジ面21B、一方側フランジ面21Dにおいて浮島状肉厚部29が形成されていない部分において、中心側の肉厚部から徐々に外周側の肉薄部へと厚さを変更する個所の傾斜部の傾斜角度に近くなるので、より好ましい形状に形成することができる。
Next, the shape and configuration of the mold in the first cold forging step (first lateral extrusion process), and materials before and after the cold forging, using FIGS. 5 (A), (D), and (E). The shape of will be described.
As shown in FIG. 5 (A), in the first cold forging step, a film-treated shaft using a first one-side mold K11, a first other-side mold K12, and a first intermediate mold K13. The material 62 is subjected to a side extrusion process.
The first one-side mold K11 is a flange portion having an intermediate diameter (φF) that is larger than the diameter (φE) of the fitting shaft portion 30 and smaller than the final diameter (φG) of the flange portion 21. It is formed in the shape of the outer peripheral surface in an intermediate diameter flange part, and the shape of the one side intermediate diameter flange surface 21B which is the surface by the side of the axial part 10 in an intermediate diameter flange part.
The first intermediate mold K13 is formed into a shape of the other-side intermediate diameter flange surface 21A that is a surface on the side of the fitting shaft portion 30 in the intermediate diameter flange portion and a shape of the outer peripheral surface of the fitting shaft portion 30. Yes. The first intermediate mold K13 has an outer diameter corresponding to the outer diameter of the intermediate diameter flange portion, and has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion 30 at the center portion. It is formed in a substantially cylindrical shape that fits with the first one-side mold K11.
The first other mold K12 is formed in a substantially cylindrical shape that can be fitted into the cavity of the first intermediate mold K13 and has an outer diameter corresponding to the outer diameter of the fitting shaft part 30.
Then, the coated shaft material 62 (see FIG. 5 (D)) is disposed at the center portion of the first one-side mold K11 where the fitting shaft portion 30 is located, and the first intermediate mold K13 is lowered. The position of the outer peripheral surface of the fitting shaft portion 30 and the other-side intermediate diameter flange surface 21A is determined by fitting with the first one-side mold K11. Then, the outer peripheral surface of the fitting shaft portion 30 and the intermediate diameter flange portion are formed by lowering the first other side die K12 and fitting it into the cavity of the first intermediate die K13 to perform side extrusion. The primary cold forging product 63 (see FIG. 5E) in which the outer peripheral surface, the one-side intermediate diameter flange surface 21B, and the other-side intermediate diameter flange surface 21A are formed can be formed.
In order to prevent damage to the mold, the “volume of the space surrounded by the first one-side mold K11, the first intermediate mold K13, and the first other-side mold K12” is “the coating treatment. It is set to be larger than the “volume of the finished shaft material 62”.
When the inclination angle A in FIGS. 5A to 5C is set to 20 ° ≦ θ ≦ 60 °, the floating island-shaped thick portion 29 is formed on the one-side intermediate diameter flange surface 21B and the one-side flange surface 21D. In a portion that is not, it becomes closer to the inclination angle of the inclined portion where the thickness is gradually changed from the thick portion on the center side to the thin portion on the outer peripheral side, so that a more preferable shape can be formed.

次に図5(B)、(E)、(F)を用いて第2の冷間鍛造工程(第2の側方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図5(B)に示すように、第2の冷間鍛造工程では、第2一方側金型K21、第2他方側金型K22、第2中間金型K23、を用いて1次冷間鍛造品64(第2の焼鈍・被膜処理後の1次冷間鍛造品63)を側方押出し加工する。
第2一方側金型K21は、最終的なフランジ部21における外周面の形状と、フランジ部21における軸部10の側の面である一方側フランジ面21Dの形状とに形成されている。
第2中間金型K23は、フランジ部21における嵌合軸部30の側の面である他方側フランジ面21Cの形状と、嵌合軸部30の外周面の形状とに形成されている。また第2中間金型K23は、フランジ部21の外径に対応する外径を有しているとともに中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有しており、第2一方側金型K21と嵌合する略円筒形状に形成されている。
第2他方側金型K22は、第2中間金型K23の空洞部に嵌合可能であるとともに嵌合軸部30の外径に対応する外径を有する略円柱形状に形成されている。
そして、1次冷間鍛造品63に対して前述の第2の焼鈍・被膜工程を行い、第2一方側金型K21の中央部に焼鈍・被膜処理後の1次冷間鍛造品64を配置し、第2中間金型K23を下降させて第2一方側金型K21と嵌合させて嵌合軸部30の外周面と他方側フランジ面21Cの位置を位置決めする。そして、第2他方側金型K22を下降させて第2中間金型K23の空洞部に嵌合させて側方押出し加工をすることで、嵌合軸部30の外周面と、フランジ部21の外周面と、一方側フランジ面21Dと、他方側フランジ面21Cと、が形成された2次冷間鍛造品65(図5(F)参照)を形成することができる。
なお、金型の破損等を防止するために、「第2一方側金型K21と第2中間金型K23と第2他方側金型K22にて囲まれる空間の体積」のほうが、「焼鈍・被膜処理後の1次冷間鍛造品64の体積」よりも大きく設定されている。
Next, using FIG. 5 (B), (E), (F), the shape and configuration of the mold in the second cold forging step (second lateral extrusion process), and the material before and after the cold forging The shape of will be described.
As shown in FIG. 5B, in the second cold forging step, primary cold forging using the second one-side mold K21, the second other-side mold K22, and the second intermediate mold K23. The product 64 (the first cold forged product 63 after the second annealing / coating treatment) is subjected to side extrusion.
The second one-side mold K21 is formed in the shape of the outer peripheral surface of the final flange portion 21 and the shape of the one-side flange surface 21D that is the surface of the flange portion 21 on the shaft portion 10 side.
The second intermediate mold K <b> 23 is formed in the shape of the other flange surface 21 </ b> C that is the surface of the flange portion 21 on the fitting shaft portion 30 side and the shape of the outer peripheral surface of the fitting shaft portion 30. The second intermediate mold K23 has an outer diameter corresponding to the outer diameter of the flange portion 21 and a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion 30 at the center portion. It is formed in a substantially cylindrical shape that fits into the second one-side mold K21.
The second other mold K22 is formed in a substantially cylindrical shape that can be fitted into the cavity of the second intermediate mold K23 and has an outer diameter corresponding to the outer diameter of the fitting shaft part 30.
Then, the first cold forging product 63 is subjected to the second annealing / coating process described above, and the first cold forging product 64 after the annealing / coating treatment is arranged at the center of the second one-side mold K21. Then, the second intermediate mold K23 is lowered and fitted with the second one-side mold K21 to position the outer peripheral surface of the fitting shaft portion 30 and the other-side flange surface 21C. Then, by lowering the second other mold K22 and fitting it into the cavity of the second intermediate mold K23 and performing side extrusion, the outer peripheral surface of the fitting shaft part 30 and the flange part 21 A secondary cold forged product 65 (see FIG. 5F) in which the outer peripheral surface, the one side flange surface 21D, and the other side flange surface 21C are formed can be formed.
In order to prevent damage to the mold, the “volume of the space surrounded by the second one-side mold K21, the second intermediate mold K23, and the second other-side mold K22” It is set to be larger than the “volume of the primary cold forged product 64 after the coating process”.

次に図5(C)、(F)、(G)を用いて第3の冷間鍛造工程(前方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図5(C)に示すように、第3の冷間鍛造工程では、第3一方側金型K31、第3他方側金型K32、第3中間金型K33、を用いて2次冷間鍛造品65を前方押出し加工する。なお、本実施の形態では補助金型K34も用いているが、補助金型K34は省略してもよい。
第3一方側金型K31は、フランジ部21の外周面の形状と、フランジ部21の一方側フランジ面21Dの形状と、当該一方側フランジ面21Dの先に大径軸部11の形状と小径軸部12の形状とに形成されている。
補助金型K34は、第3一方側金型K31の小径軸部の形状の先に弾性体K34Sにて弾性力等が付与されて支持されており、押出されてきた素材を支持しながら移動可能であり、素材の体積のばらつきに応じて適切な位置に移動するので、バリの発生を防止することができる。
第3中間金型K33は、フランジ部21の他方側フランジ面21Cの形状と、嵌合軸部30の外周面の形状とに形成されている。また第3中間金型K33は、フランジ部21の外径を有する円筒形状であり、中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有し、第3一方側金型K31に嵌合する。
第3他方側金型K32は嵌合軸部30の凹部(鍛造凹部35)に対応する形状に形成されており、第3他方側金型K32は第3中間金型K33の空洞部に嵌合する。
そして第3一方側金型K31内に2次冷間鍛造品65を配置し、第3中間金型K33を第3一方側金型K31に嵌合させ、第3他方側金型K32を第3中間金型K33の空洞部に下降させて前方押出し加工をすることで、嵌合軸部30の外周面と鍛造凹部35と、フランジ部21の外周面と一方側フランジ面21Dと他方側フランジ面21Cと、大径軸部11と、小径軸部12と、が形成された3次冷間鍛造品66を形成することができる。
なお、第2の冷間鍛造工程と第3の冷間鍛造工程との間にて、第1の冷間鍛造工程と第2の冷間鍛造工程との間で行った第2の焼鈍・被膜工程と同様の工程を行っても良い。
Next, with reference to FIGS. 5C, 5 </ b> F, and 5 </ b> G, the shape and configuration of the mold in the third cold forging step (forward extrusion process) and the shape of the material before and after the cold forging will be described. To do.
As shown in FIG. 5C, in the third cold forging step, secondary cold forging is performed using the third one-side mold K31, the third other-side mold K32, and the third intermediate mold K33. Article 65 is forward extruded. Although the auxiliary mold K34 is also used in the present embodiment, the auxiliary mold K34 may be omitted.
The third one-side mold K31 includes a shape of the outer peripheral surface of the flange portion 21, a shape of the one-side flange surface 21D of the flange portion 21, and a shape and a small diameter of the large-diameter shaft portion 11 at the tip of the one-side flange surface 21D. It is formed in the shape of the shaft portion 12.
The auxiliary mold K34 is supported by the elastic body K34S with an elastic force applied to the tip of the small-diameter shaft portion of the third one-side mold K31, and is movable while supporting the extruded material. Since it moves to an appropriate position according to the variation in the volume of the material, it is possible to prevent the occurrence of burrs.
The third intermediate mold K33 is formed in the shape of the other flange surface 21C of the flange portion 21 and the shape of the outer peripheral surface of the fitting shaft portion 30. The third intermediate mold K33 has a cylindrical shape having the outer diameter of the flange portion 21, and has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion 30 at the center portion. Fits into the mold K31.
The third other mold K32 is formed in a shape corresponding to the recess (forged recess 35) of the fitting shaft part 30, and the third other mold K32 is fitted into the cavity of the third intermediate mold K33. To do.
Then, the secondary cold forged product 65 is disposed in the third one-side mold K31, the third intermediate mold K33 is fitted into the third one-side mold K31, and the third other-side mold K32 is connected to the third one. By lowering into the hollow portion of the intermediate mold K33 and performing forward extrusion, the outer peripheral surface of the fitting shaft portion 30, the forged recess 35, the outer peripheral surface of the flange portion 21, the one side flange surface 21D, and the other side flange surface A tertiary cold forged product 66 in which 21C, the large-diameter shaft portion 11, and the small-diameter shaft portion 12 are formed can be formed.
The second annealing / coating performed between the first cold forging process and the second cold forging process between the second cold forging process and the third cold forging process. You may perform the process similar to a process.

上記の説明では、図5(A)における第1中間金型K13と第1他方側金型K12とを別体で構成した例を説明したが、第1中間金型K13と第1他方側金型K12とを一体化した金型である第1一体金型を形成して、第1の冷間鍛造工程に利用してもよい。この場合、1次冷間鍛造品を更に効率よく形成することができる。
また、図5(B)における第2中間金型K23と第2他方側金型K22とを別体で構成した例を説明したが、第2中間金型K23と第2他方側金型K22とを一体化した金型である第2一体金型を形成して、第2の冷間鍛造工程に利用してもよい。この場合、2次冷間鍛造品を更に効率よく形成することができる。
また、図5(C)における第3中間金型K33と第3他方側金型K32とを別体で構成した例を説明したが、第3中間金型K33と第3他方側金型K32とを一体化した金型である第3一体金型を形成して、第3の冷間鍛造工程に利用してもよい。この場合、3次冷間鍛造品を更に効率よく形成することができる。
In the above description, the example in which the first intermediate mold K13 and the first other mold K12 in FIG. 5A are configured separately is described. However, the first intermediate mold K13 and the first other mold A first integrated die that is a die integrated with the die K12 may be formed and used in the first cold forging step. In this case, the primary cold forged product can be formed more efficiently.
Further, the example in which the second intermediate mold K23 and the second other mold K22 in FIG. 5B are configured separately has been described. However, the second intermediate mold K23 and the second other mold K22 A second integrated die, which is a die integrated with each other, may be formed and used in the second cold forging step. In this case, a secondary cold forged product can be formed more efficiently.
Further, the example in which the third intermediate mold K33 and the third other mold K32 in FIG. 5C are configured separately has been described, but the third intermediate mold K33, the third other mold K32, A third integrated die that is a die integrated with each other may be formed and used in the third cold forging step. In this case, the third cold forged product can be formed more efficiently.

●[第2の実施の形態における冷間鍛造工程の詳細(図6)]
次に図6を用いて、第2の実施の形態における第1〜第3の冷間鍛造工程の詳細について説明する。第2の実施の形態では、図5に示す第1の実施の形態に対して、第1の冷間鍛造工程及び第2の冷間鍛造工程にて形成する中間径フランジ部及びフランジ部の延出方向が嵌合軸部30の側に傾斜している点と、それに伴って金型が傾斜面を有している点が異なる。また図6の例では、フランジ部21の浮島状肉厚部29の記載を省略している。
なお、第1の実施の形態と同様に、最終的な嵌合軸部30の外径(φE)とほぼ同じ(等しいまたはやや小径の)外径を有する被膜処理済軸状素材62(軸状素材)から、2回の側方押出し加工と1回の前方押出し加工を経て、嵌合軸部30とフランジ部21と大径軸部11と小径軸部12を一体に有する冷間鍛造品を形成する。
なお、図6(A)は第1の側方押出し加工の金型と素材の断面図を示しており、図6(B)は第2の側方押出し加工の金型と素材の断面図を示しており、図6(C)は前方押出し加工の金型と素材の断面図を示している。また、図6(D)は第1の側方押出し加工前の素材の概略形状を示しており、図6(E)は第1の側方押出し加工後の素材の概略形状を示しており、図6(F)は第2の側方押出し加工後の素材の概略形状を示しており、図6(G)は前方押出し加工後の素材の概略形状を示している。
● [Details of Cold Forging Process in Second Embodiment (FIG. 6)]
Next, the details of the first to third cold forging processes in the second embodiment will be described with reference to FIG. In the second embodiment, compared to the first embodiment shown in FIG. 5, the intermediate diameter flange portion and the flange portion formed in the first cold forging step and the second cold forging step are extended. The difference is that the exit direction is inclined toward the fitting shaft portion 30 and that the mold has an inclined surface. Moreover, in the example of FIG. 6, the description of the floating island-shaped thick portion 29 of the flange portion 21 is omitted.
As in the first embodiment, the coated shaft material 62 (axial shape) having an outer diameter that is substantially the same (equal or slightly smaller) than the outer diameter (φE) of the final fitting shaft portion 30. Material) is subjected to two side extrusion processes and one forward extrusion process to obtain a cold forged product integrally having a fitting shaft part 30, a flange part 21, a large diameter shaft part 11, and a small diameter shaft part 12. Form.
6A shows a sectional view of the first side extrusion mold and material, and FIG. 6B shows a sectional view of the second side extrusion mold and material. FIG. 6 (C) shows a cross-sectional view of a die and material for forward extrusion. FIG. 6 (D) shows a schematic shape of the material before the first side extrusion, and FIG. 6 (E) shows a schematic shape of the material after the first side extrusion. FIG. 6 (F) shows a schematic shape of the material after the second lateral extrusion, and FIG. 6 (G) shows a schematic shape of the material after the forward extrusion.

次に図6(A)、(D)、(E)を用いて第1の冷間鍛造工程(第1の側方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図6(A)に示すように、第1の冷間鍛造工程では、第4一方側金型K41、第4他方側金型K42、第4中間金型K43、を用いて被膜処理済軸状素材62を側方押出し加工する。
第4一方側金型K41は、嵌合軸部30の径(φE)よりも大きく且つ最終的なフランジ部21の径(φG)よりも小さな径である中間径(φF)を有するとともに嵌合軸部30の側に鋭角的に傾斜(傾斜角度A[°])した円錐状の形状を有する中間径傾斜フランジ部の外周面と、中間径傾斜フランジ部における軸部10の側の面であって円錐状である一方側中間径傾斜フランジ面21Fとに形成されている。
第4中間金型K43は、中間径傾斜フランジ部における嵌合軸部30の側の面であって円錐状である他方側中間径傾斜フランジ面21Eと、嵌合軸部30の外周面の形状と、に形成されている。また第4中間金型K43は、中間径傾斜フランジ部の外径に対応する外径(φF)を有しているとともに中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有しており、第4一方側金型K41と嵌合する略円筒形状に形成されている。
第4他方側金型K42は、第4中間金型K43の空洞部に嵌合可能であるとともに嵌合軸部30の外径に対応する外径を有する略円柱形状に形成されている。
そして第4一方側金型K41における嵌合軸部30の位置となる中央部に被膜処理済軸状素材62(図6(D)参照)を配置し、第4中間金型K43を下降させて第4一方側金型K41と嵌合させて嵌合軸部30の外周面と他方側中間径傾斜フランジ面21Eの位置を位置決めする。そして、第4他方側金型K42を下降させて第4中間金型K43の空洞部に嵌合させて側方押出し加工をすることで、嵌合軸部30の外周面と、中間径傾斜フランジ部における一方側中間径傾斜フランジ面21Fと他方側中間径傾斜フランジ面21Eとが形成された1次冷間鍛造品63(図6(E)参照)を形成することができる。
なお、金型の破損等を防止するために、「第4一方側金型K41と第4中間金型K43と第4他方側金型K42にて囲まれる空間の体積」のほうが、「被膜処理済軸状素材62の体積」よりも大きく設定されている。
なお、図6(A)〜(C)における傾斜角度Aを20°≦θ≦60°に設定すると、一方側中間径傾斜フランジ面21F、一方側傾斜フランジ面21Hにおいて(浮島状肉厚部29が形成されていない部分において)中心側の肉厚部から徐々に外周側の肉薄部へと厚さを変更する個所の傾斜部の傾斜角度に近くなるので、より好ましい形状に形成することができる。
Next, using FIG. 6 (A), (D), (E), the shape and configuration of the mold in the first cold forging step (first lateral extrusion), and the material before and after the cold forging The shape of will be described.
As shown in FIG. 6 (A), in the first cold forging step, a film-treated shaft shape using a fourth one-side mold K41, a fourth other-side mold K42, and a fourth intermediate mold K43. The material 62 is subjected to a side extrusion process.
The fourth one-side mold K41 has an intermediate diameter (φF) that is larger than the diameter (φE) of the fitting shaft portion 30 and smaller than the final diameter (φG) of the flange portion 21, and is fitted. The outer peripheral surface of the intermediate diameter inclined flange portion having a conical shape inclined acutely (inclination angle A [°]) toward the shaft portion 30 side, and the surface on the shaft portion 10 side in the intermediate diameter inclined flange portion. And a conical one side intermediate diameter inclined flange surface 21F.
The fourth intermediate mold K43 has a conical concentric shape on the other side intermediate diameter inclined flange surface 21E on the side of the fitting shaft portion 30 in the intermediate diameter inclined flange portion, and the shape of the outer peripheral surface of the fitting shaft portion 30. And is formed. The fourth intermediate mold K43 has an outer diameter (φF) corresponding to the outer diameter of the intermediate-diameter inclined flange portion, and has a cavity with an inner diameter dimension corresponding to the outer diameter of the fitting shaft portion 30 in the center portion. And has a substantially cylindrical shape that fits into the fourth one-side mold K41.
The fourth other mold K42 is formed in a substantially cylindrical shape that can be fitted into the cavity of the fourth intermediate mold K43 and has an outer diameter corresponding to the outer diameter of the fitting shaft part 30.
Then, the coated shaft material 62 (see FIG. 6D) is disposed at the center portion of the fourth one-side mold K41 where the fitting shaft portion 30 is located, and the fourth intermediate mold K43 is lowered. The position of the outer peripheral surface of the fitting shaft portion 30 and the other side intermediate diameter inclined flange surface 21E is determined by fitting with the fourth one side mold K41. Then, by lowering the fourth other side mold K42 and fitting it into the cavity of the fourth intermediate mold K43 and performing side extrusion processing, the outer peripheral surface of the fitting shaft part 30 and the intermediate diameter inclined flange A primary cold forged product 63 (see FIG. 6E) in which the one side intermediate diameter inclined flange surface 21F and the other side intermediate diameter inclined flange surface 21E are formed can be formed.
In order to prevent damage to the mold, etc., “the volume of the space surrounded by the fourth one-side mold K41, the fourth intermediate mold K43, and the fourth other-side mold K42” is “the coating treatment. It is set to be larger than the “volume of the finished shaft material 62”.
When the inclination angle A in FIGS. 6A to 6C is set to 20 ° ≦ θ ≦ 60 °, the one-side intermediate-diameter inclined flange surface 21F and the one-side inclined flange surface 21H (the floating island-shaped thick portion 29 (In the portion where the thickness is not formed) Since the inclination angle of the inclined portion where the thickness is gradually changed from the thick portion on the center side to the thin portion on the outer peripheral side becomes closer, it can be formed in a more preferable shape. .

次に図6(B)、(E)、(F)を用いて第2の冷間鍛造工程(第2の側方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図6(B)に示すように、第2の冷間鍛造工程では、第5一方側金型K51、第5他方側金型K52、第5中間金型K53、を用いて1次冷間鍛造品64(第2の焼鈍・被膜処理後の1次冷間鍛造品63)を側方押出し加工する。
第5一方側金型K51は、中間径傾斜フランジ部の径(φF)を最終的なフランジ部21の径(φG)と同等の径(φG´)まで拡径した傾斜フランジ部の外周面と、傾斜フランジ部における軸部10の側の面であって円錐状である一方側傾斜フランジ面21Hとに形成されている。
第5中間金型K53は、傾斜フランジ部における嵌合軸部30の側の面であって円錐状である他方側傾斜フランジ面21Gと、嵌合軸部30の外周面の形状と、に形成されている。また第5中間金型K53は、傾斜フランジ部の外径に対応する外径(φG´)を有しているとともに中央部には嵌合軸部30の外径に対応する内径寸法の空洞部を有しており、第5一方側金型K51と嵌合する略円筒形状に形成されている。
第5他方側金型K52は、第5中間金型K53の空洞部に嵌合可能であるとともに嵌合軸部30の外径に対応する外径を有する略円柱形状に形成されている。
そして、1次冷間鍛造品63に対して前述の第2の焼鈍・被膜工程を行い、第5一方側金型K51の中央部に焼鈍・被膜処理後の1次冷間鍛造品64を配置し、第5中間金型K53を下降させて第5一方側金型K51と嵌合させて嵌合軸部30の外周面と他方側傾斜フランジ面21Gの位置を位置決めする。そして、第5他方側金型K52を下降させて第5中間金型K53の空洞部に嵌合させて側方押出し加工をすることで、嵌合軸部30の外周面と、一方側傾斜フランジ面21Hと、他方側傾斜フランジ面21Gと、が形成された2次冷間鍛造品65(図6(F)参照)を形成することができる。
なお、金型の破損等を防止するために、「第5一方側金型K51と第5中間金型K53と第5他方側金型K52にて囲まれる空間の体積」のほうが、「2次冷間鍛造品65の体積」よりも大きく設定されている。
Next, using FIG. 6 (B), (E), (F), the shape and configuration of the mold in the second cold forging step (second lateral extrusion process), and the material before and after the cold forging The shape of will be described.
As shown in FIG. 6B, in the second cold forging step, primary cold forging using the fifth one-side mold K51, the fifth other-side mold K52, and the fifth intermediate mold K53. The product 64 (the first cold forged product 63 after the second annealing / coating treatment) is subjected to side extrusion.
The fifth one-side mold K51 includes an outer peripheral surface of the inclined flange portion in which the diameter (φF) of the intermediate diameter inclined flange portion is increased to a diameter (φG ′) equivalent to the diameter (φG ′) of the final flange portion 21. The inclined flange portion is formed on the shaft 10 side surface of the inclined flange portion and a conical one-side inclined flange surface 21H.
The fifth intermediate die K53 is formed on the other side inclined flange surface 21G which is a conical shape on the side of the fitting shaft portion 30 in the inclined flange portion and the shape of the outer peripheral surface of the fitting shaft portion 30. Has been. The fifth intermediate mold K53 has an outer diameter (φG ′) corresponding to the outer diameter of the inclined flange portion, and a hollow portion having an inner diameter dimension corresponding to the outer diameter of the fitting shaft portion 30 at the center portion. And is formed in a substantially cylindrical shape that fits into the fifth one-side mold K51.
The fifth other mold K52 is formed in a substantially cylindrical shape that can be fitted into the cavity of the fifth intermediate mold K53 and has an outer diameter corresponding to the outer diameter of the fitting shaft part 30.
Then, the first cold forging product 63 is subjected to the second annealing / coating process described above, and the primary cold forging product 64 after the annealing / coating treatment is arranged in the center of the fifth one-side mold K51. Then, the fifth intermediate mold K53 is lowered and fitted with the fifth one-side mold K51 to position the outer peripheral surface of the fitting shaft portion 30 and the other-side inclined flange surface 21G. Then, by lowering the fifth other mold K52 and fitting it into the cavity of the fifth intermediate mold K53 and performing side extrusion, the outer peripheral surface of the fitting shaft part 30 and the one-side inclined flange A secondary cold forged product 65 (see FIG. 6F) in which the surface 21H and the other inclined flange surface 21G are formed can be formed.
In order to prevent damage to the mold, the “volume of the space surrounded by the fifth first mold K51, the fifth intermediate mold K53, and the fifth other mold K52” is more “secondary. It is set larger than the “volume of the cold forged product 65”.

次に図6(C)、(F)、(G)を用いて第3の冷間鍛造工程(前方押出し加工)における金型の形状及び構成と、冷間鍛造の前後の素材の形状について説明する。
図6(C)に示すように、第3の冷間鍛造工程では、第6一方側金型K61、第6他方側金型K62、第6中間金型K63、を用いて2次冷間鍛造品65を前方押出し加工する。なお、本実施の形態では補助金型K64も用いているが、補助金型K64は省略してもよい。
第2の実施の形態における第6一方側金型K61と補助金型K64は、第1の実施の形態における第3一方側金型K31と補助金型K34と同様であり、第6一方側金型K61は、フランジ部21の外周面の形状と、フランジ部21の一方側フランジ面21Dの形状と、当該一方側フランジ面21Dの先に大径軸部11の形状と小径軸部12の形状とに形成されている。
補助金型K64は、第6一方側金型K61の小径軸部の形状の先に弾性体K64Sにて弾性力等が付与されて支持されており、押出されてきた素材を支持しながら移動可能であり、素材の体積のばらつきに応じて適切な位置に移動するので、バリの発生を防止することができる。
第2の実施の形態における第6中間金型K63と第6他方側金型K62も、第1の実施の形態における第3中間金型K33と第3他方側金型K32と同様であり、第6中間金型K63は、フランジ部21の他方側フランジ面21Cの形状と、嵌合軸部30の外周面の形状とに形成されている。また第6他方側金型K62は、嵌合軸部30の凹部(鍛造凹部35)の形状に形成されている。
そして第6一方側金型K61内に2次冷間鍛造品65を配置し、第6中間金型K63を第6一方側金型K61に嵌合させて押し込み、2次冷間鍛造品65の一方側傾斜フランジ面21Hと他方側傾斜フランジ面21Gとを最終的な一方側フランジ面21Dと最終的な他方側フランジ面21Cに形成する。そして第6他方側金型K62を第6中間金型K63の空洞部に下降させて前方押出し加工をすることで、嵌合軸部30の外周面と鍛造凹部35と、フランジ部21の外周面と一方側フランジ面21Dと他方側フランジ面21Cと、大径軸部11と、小径軸部12と、が形成された3次冷間鍛造品66を形成することができる。
なお、第2の冷間鍛造工程と第3の冷間鍛造工程との間にて、第1の冷間鍛造工程と第2の冷間鍛造工程との間で行った第2の焼鈍・被膜工程と同様の工程を行っても良い。
Next, with reference to FIGS. 6C, 6 </ b> F, and 6 </ b> G, the shape and configuration of the mold in the third cold forging step (forward extrusion process) and the shape of the material before and after the cold forging will be described. To do.
As shown in FIG. 6C, in the third cold forging step, secondary cold forging is performed using the sixth one-side mold K61, the sixth other-side mold K62, and the sixth intermediate mold K63. Article 65 is forward extruded. Although the auxiliary mold K64 is also used in the present embodiment, the auxiliary mold K64 may be omitted.
The sixth one-side mold K61 and the auxiliary mold K64 in the second embodiment are the same as the third one-side mold K31 and the auxiliary mold K34 in the first embodiment, and the sixth one-side mold The mold K61 includes a shape of the outer peripheral surface of the flange portion 21, a shape of the one-side flange surface 21D of the flange portion 21, and a shape of the large-diameter shaft portion 11 and a shape of the small-diameter shaft portion 12 at the tip of the one-side flange surface 21D. And formed.
The auxiliary mold K64 is supported by the elastic body K64S with an elastic force applied to the tip of the small-diameter shaft portion of the sixth one-side mold K61, and is movable while supporting the extruded material. Since it moves to an appropriate position according to the variation in the volume of the material, it is possible to prevent the occurrence of burrs.
The sixth intermediate mold K63 and the sixth other mold K62 in the second embodiment are the same as the third intermediate mold K33 and the third other mold K32 in the first embodiment, and the The six intermediate mold K63 is formed in the shape of the other flange surface 21C of the flange portion 21 and the shape of the outer peripheral surface of the fitting shaft portion 30. The sixth other mold K62 is formed in the shape of the recess (forged recess 35) of the fitting shaft portion 30.
Then, the secondary cold forging product 65 is disposed in the sixth one-side mold K61, and the sixth intermediate mold K63 is fitted into the sixth one-side mold K61 and pushed in. The one side inclined flange surface 21H and the other side inclined flange surface 21G are formed on the final one side flange surface 21D and the final other side flange surface 21C. Then, by lowering the sixth other mold K62 into the cavity of the sixth intermediate mold K63 and performing forward extrusion processing, the outer peripheral surface of the fitting shaft portion 30, the forged recess 35, and the outer peripheral surface of the flange portion 21 The third cold forged product 66 in which the one-side flange surface 21D, the other-side flange surface 21C, the large-diameter shaft portion 11, and the small-diameter shaft portion 12 are formed can be formed.
The second annealing / coating performed between the first cold forging process and the second cold forging process between the second cold forging process and the third cold forging process. You may perform the process similar to a process.

上記の説明では、図6(A)における第4中間金型K43と第4他方側金型K42とを別体で構成した例を説明したが、第4中間金型K43と第4他方側金型K42とを一体化した金型である第4一体金型を形成して、第1の冷間鍛造工程に利用してもよい。この場合、1次冷間鍛造品を更に効率よく形成することができる。
また、図6(B)における第5中間金型K53と第5他方側金型K52とを別体で構成した例を説明したが、第5中間金型K53と第5他方側金型K52とを一体化した金型である第5一体金型を形成して、第2の冷間鍛造工程に利用してもよい。この場合、2次冷間鍛造品を更に効率よく形成することができる。
また、図6(C)における第6中間金型K63と第6他方側金型K62とを別体で構成した例を説明したが、第6中間金型K63と第6他方側金型K62とを一体化した金型である第6一体金型を形成して、第3の冷間鍛造工程に利用してもよい。この場合、3次冷間鍛造品を更に効率よく形成することができる。
In the above description, the example in which the fourth intermediate mold K43 and the fourth other mold K42 in FIG. 6A are configured separately has been described. However, the fourth intermediate mold K43 and the fourth other mold A fourth integrated die that is a die integrated with the die K42 may be formed and used in the first cold forging step. In this case, the primary cold forged product can be formed more efficiently.
Further, the example in which the fifth intermediate mold K53 and the fifth other mold K52 in FIG. 6B are configured separately has been described, but the fifth intermediate mold K53 and the fifth other mold K52 A fifth integrated die, which is a die integrated with each other, may be formed and used in the second cold forging step. In this case, a secondary cold forged product can be formed more efficiently.
Further, the example in which the sixth intermediate mold K63 and the sixth other mold K62 in FIG. 6C are configured separately has been described. However, the sixth intermediate mold K63, the sixth other mold K62, A sixth integrated die, which is a die integrated with, may be formed and used for the third cold forging step. In this case, the third cold forged product can be formed more efficiently.

本実施の形態にて説明した車輪用転がり軸受装置の軸部材の製造方法では、上記のように、焼鈍処理工程においてS45C、S50C、S55C等の構造用炭素鋼を変態点温度以上の温度で加熱して焼鈍済軸状素材61を形成し、続く被膜処理工程において焼鈍済軸状素材61の表面に、冷間鍛造の成形型との間に生じる摩擦力を低減する潤滑剤被膜36を施して被膜処理済軸状素材62を形成し、鍛造性に優れた素材としている。
更に、最終的な嵌合軸部30の外径を有する軸状素材60を用いることで、続く冷間鍛造工程では、1次冷間鍛造工程と2次冷間鍛造工程と3次冷間鍛造工程の、2回の側方押出し加工と、1回の前方押出し加工によって、嵌合軸部30、フランジ部21、大径軸部11、小径軸部12とを一体に有する冷間鍛造品(3次冷間鍛造品66)を効率よく形成することができる。
また、本実施の形態の説明では、第1の冷間鍛造工程の前に、第1の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を軸状素材に対して行った。また第1の冷間鍛造工程の後、且つ第2の冷間鍛造工程の前に、第2の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を軸状素材に対して行った。しかし、これら第1の焼鈍・被膜工程、第2の焼鈍・被膜工程は、省略してもよい。
In the method of manufacturing the shaft member of the wheel rolling bearing device described in the present embodiment, as described above, structural carbon steel such as S45C, S50C, and S55C is heated at a temperature equal to or higher than the transformation point temperature in the annealing process. Then, an annealed shaft-shaped material 61 is formed, and a lubricant film 36 is applied to the surface of the annealed shaft-shaped material 61 in the subsequent coating process to reduce the frictional force generated between the cold forging mold. The film-treated shaft-shaped material 62 is formed, and the material is excellent in forgeability.
Furthermore, by using the shaft-shaped raw material 60 having the outer diameter of the final fitting shaft portion 30, in the subsequent cold forging process, the primary cold forging process, the secondary cold forging process, and the tertiary cold forging. A cold forging product having a fitting shaft portion 30, a flange portion 21, a large-diameter shaft portion 11, and a small-diameter shaft portion 12 integrally by two lateral extrusion processes and one forward extrusion process ( The tertiary cold forging product 66) can be formed efficiently.
In the description of the present embodiment, at least the annealing treatment and the coating treatment are performed on the shaft-like material in the first annealing / coating step before the first cold forging step. In addition, after the first cold forging step and before the second cold forging step, at least annealing treatment and coating treatment were performed on the shaft-shaped material in the second annealing / coating step. However, the first annealing / coating process and the second annealing / coating process may be omitted.

本発明の車輪用転がり軸受装置の軸部材とその製造方法は、本実施の形態で説明した処理、工程等の製造方法、外観、構成、構造等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
また、本実施の形態の説明では、ボルト孔24が4個の例で説明したが、ボルト孔24は複数個であり、4個に限定されるものではない。もちろん、ボルト孔24の個数に応じて図2(B)に示す浮島状肉厚部29の形状も変更される。
The shaft member of the wheel rolling bearing device of the present invention and the manufacturing method thereof are not limited to the manufacturing method, process, process, etc., appearance, configuration, structure, etc. described in the present embodiment, and do not change the gist of the present invention. Various changes, additions and deletions can be made within the range.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.
In the description of the present embodiment, an example in which the number of bolt holes 24 is four has been described. However, the number of bolt holes 24 is plural, and the number is not limited to four. Of course, the shape of the floating island-shaped thick portion 29 shown in FIG. 2B is also changed according to the number of the bolt holes 24.

1 車輪用転がり軸受装置の軸部材
10 軸部
11 大径軸部
12 小径軸部
12a 内輪突き当て面
15 軸端部
17 かしめ部
18 第1内輪軌道面
19 シール面
21 フランジ部
21A 他方側中間径フランジ面
21B 一方側中間径フランジ面
21C 他方側フランジ面
21D 一方側フランジ面
21E 他方側中間径傾斜フランジ面
21F 一方側中間径傾斜フランジ面
21G 他方側傾斜フランジ面
21H 一方側傾斜フランジ面
30 嵌合軸部
35 鍛造凹部
36 潤滑剤被膜
42 内輪
44 第2内輪軌道面
45 外輪
46 第1外輪軌道面
47 第2外輪軌道面
60 軸状素材
61 焼鈍済軸状素材
62 被膜処理済軸状素材
63 1次冷間鍛造品
64 (第2の焼鈍・被膜工程を行った)1次冷間鍛造品
65 2次冷間鍛造品
66 3次冷間鍛造品
67 旋削済鍛造品
68 熱処理済鍛造品
A 車輪用転がり軸受装置
K11、K41 第1一方側金型
K12、K42 第1他方側金型
K13、K43 第1中間金型
K21、K51 第2一方側金型
K22、K52 第2他方側金型
K23、K53 第2中間金型
K31、K61 第3一方側金型
K32、K62 第3他方側金型
K33、K63 第3中間金型
K34、K64 補助金型

DESCRIPTION OF SYMBOLS 1 Shaft member of rolling bearing apparatus for wheels 10 Shaft part 11 Large diameter shaft part 12 Small diameter shaft part 12a Inner ring abutting surface 15 Shaft end part 17 Caulking part 18 1st inner ring raceway surface 19 Sealing surface 21 Flange part 21A The other side intermediate diameter Flange surface 21B One side intermediate flange surface 21C The other side flange surface 21D One side flange surface 21E The other side intermediate diameter inclined flange surface 21F One side intermediate diameter inclined flange surface 21G The other side inclined flange surface 21H One side inclined flange surface 30 Fitting Shaft portion 35 Forged recess 36 Lubricant coating 42 Inner ring 44 Second inner ring raceway surface 45 Outer ring 46 First outer ring raceway surface 47 Second outer ring raceway surface 60 Shaft material 61 Annealed shaft material 62 Coated shaft material 63 1 Secondary cold forged product 64 Primary cold forged product (second annealing / coating process performed) 65 Secondary cold forged product 66 Third cold Structure 67 Turned forged product 68 Heat treated forged product A Rolling bearing device for wheels K11, K41 First one side mold K12, K42 First other side mold K13, K43 First intermediate mold K21, K51 Second one Side mold K22, K52 Second other mold K23, K53 Second intermediate mold K31, K61 Third one mold K32, K62 Third other mold K33, K63 Third intermediate mold K34, K64 Auxiliary Mold

Claims (7)

嵌合軸部とフランジ部と軸部とが軸方向に沿って同軸上に配置されている車輪用転がり軸受装置の軸部材の製造方法において、
前記嵌合軸部は軸方向に開口する凹部を有する円筒形状であり、
前記フランジ部は軸方向に直交する円板状であり、
前記フランジ部における軸方向に直交する方向の径であるフランジ径は、前記嵌合軸部における軸方向に直交する方向の径である嵌合軸部径よりも大きく、
前記軸部は円柱形状であって外周面には内輪軌道面が形成されており、
前記車輪用転がり軸受装置の軸部材は冷間鍛造によって製造されており、
前記嵌合軸部の外径に対応する外径を有する円柱状の軸状素材を用い、
第1の冷間鍛造工程にて前記軸状素材における軸方向の一方の端部の径が前記嵌合軸部径よりも大きく且つ前記フランジ径よりも小さな中間径のフランジ部である中間径フランジ部を形成するように第1の側方押出し加工を行い、
第2の冷間鍛造工程にて前記中間径フランジ部の径が前記フランジ径となるまで第2の側方押出し加工を行い、
第3の冷間鍛造工程にて前記軸状素材における軸方向の他方の端部から前記嵌合軸部の前記凹部と前記軸部とを形成するように前方押出し加工を行い、前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
In the manufacturing method of the shaft member of the rolling bearing device for a wheel in which the fitting shaft portion, the flange portion, and the shaft portion are arranged coaxially along the axial direction.
The fitting shaft portion has a cylindrical shape having a recess opening in the axial direction;
The flange portion has a disk shape orthogonal to the axial direction,
A flange diameter that is a diameter in a direction orthogonal to the axial direction in the flange portion is larger than a fitting shaft portion diameter that is a diameter in a direction orthogonal to the axial direction in the fitting shaft portion,
The shaft portion has a cylindrical shape, and an outer ring surface is formed on the outer peripheral surface,
The shaft member of the rolling bearing device for wheels is manufactured by cold forging,
Using a cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion,
An intermediate diameter flange that is a flange portion having an intermediate diameter smaller than the fitting shaft diameter and having a diameter at one end in the axial direction of the shaft-shaped material in the first cold forging step Perform the first lateral extrusion to form the part,
In the second cold forging process, the second side extrusion is performed until the diameter of the intermediate flange portion becomes the flange diameter,
In the third cold forging step, forward extrusion is performed so as to form the concave portion and the shaft portion of the fitting shaft portion from the other axial end portion of the shaft-shaped material, and the wheel rolling Forming a shaft member of the bearing device;
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1の冷間鍛造工程における前記第1の側方押出し加工では、
前記中間径フランジ部における外周面の形状と、前記中間径フランジ部における前記軸部の側の面である一方側中間径フランジ面の形状と、に形成された第1一方側金型と、
前記中間径フランジ部における前記嵌合軸部の側の面である他方側中間径フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記中間径フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第1一方側金型と嵌合する略円筒形状の第1中間金型と、
略円筒形状の前記第1中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第1他方側金型と、を用いて側方押出し加工して、
前記軸状素材から前記嵌合軸部の外周面と、前記中間径フランジ部の外周面と、前記一方側中間径フランジ面と、前記他方側中間径フランジ面と、が形成された1次冷間鍛造品を形成し、
前記第2の冷間鍛造工程における前記第2の側方押出し加工では、
前記フランジ部における外周面の形状と、前記フランジ部における前記軸部の側の面である一方側フランジ面の形状と、に形成された第2一方側金型と、
前記フランジ部における前記嵌合軸部の側の面である他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第2一方側金型と嵌合する略円筒形状の第2中間金型と、
略円筒形状の前記第2中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第2他方側金型と、を用いて側方押出し加工して、
前記1次冷間鍛造品から前記嵌合軸部の外周面と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された2次冷間鍛造品を形成し、
前記第3の冷間鍛造工程における前記前方押出し加工では、
前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第3一方側金型と、
前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第3一方側金型と嵌合する略円筒形状の第3中間金型と、
略円筒形状の前記第3中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第3他方側金型と、を用いて前方押出し加工して、
前記2次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 1,
In the first lateral extrusion process in the first cold forging step,
A first one-side mold formed on the shape of the outer peripheral surface of the intermediate-diameter flange portion and the shape of the one-side intermediate-diameter flange surface that is the surface of the shaft portion side of the intermediate-diameter flange portion;
The intermediate-diameter flange portion is formed into a shape of the other-side intermediate-diameter flange surface, which is a surface on the fitting shaft portion side, and a shape of the outer peripheral surface of the fitting shaft portion, and is formed outside the intermediate-diameter flange portion. A first intermediate mold having a substantially cylindrical shape having an outer diameter corresponding to the diameter and having a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and fitting to the first one-side mold; ,
A first cylindrical mold having a substantially cylindrical shape that can be fitted into a hollow portion of the first intermediate mold having a substantially cylindrical shape and has an outer diameter corresponding to the outer diameter of the fitting shaft portion; Side extrusion,
Primary cooling in which an outer peripheral surface of the fitting shaft portion, an outer peripheral surface of the intermediate-diameter flange portion, the one-side intermediate-diameter flange surface, and the other-side intermediate-diameter flange surface are formed from the shaft-shaped material. Forming a forged product,
In the second lateral extrusion process in the second cold forging step,
A second one-side mold formed on the shape of the outer peripheral surface of the flange portion and the shape of the one-side flange surface that is the surface of the flange portion on the side of the shaft portion;
An outer diameter corresponding to the outer diameter of the flange portion formed in the shape of the other side flange surface which is a surface of the flange portion on the side of the fitting shaft portion and the shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical second intermediate mold that has a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and is fitted to the second one-side mold,
A second cylindrical mold having a substantially cylindrical shape that can be fitted into a hollow portion of the second intermediate mold having a substantially cylindrical shape and has an outer diameter corresponding to the outer diameter of the fitting shaft portion; Side extrusion,
Secondary cold forged product in which the outer peripheral surface of the fitting shaft portion, the outer peripheral surface of the flange portion, the one side flange surface, and the other side flange surface are formed from the primary cold forged product. Form the
In the forward extrusion process in the third cold forging step,
A third one-side mold formed on the shape of the outer peripheral surface of the flange portion, the shape of the one-side flange surface, and the shape of the shaft portion at the tip of the one-side flange surface;
It is formed in the shape of the other side flange surface and the shape of the outer peripheral surface of the fitting shaft portion, has an outer diameter corresponding to the outer diameter of the flange portion, and corresponds to the outer diameter of the fitting shaft portion. A substantially cylindrical third intermediate mold having a hollow portion with an inner diameter dimension and fitted to the third one-side mold;
A third cylindrical mold that can be fitted into the hollow part of the third intermediate mold having a substantially cylindrical shape and that is formed in the shape of the concave part of the fitting shaft part, and is extruded forward,
Forming a shaft member of the rolling bearing device for a wheel, which is a tertiary cold forged product in which the recessed portion of the fitting shaft portion and the shaft portion are formed from the secondary cold forged product,
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項2に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1の冷間鍛造工程において、前記第1中間金型と前記第1他方側金型を用いる代わりに、前記第1中間金型と前記第1他方側金型とが一体的に形成された第1一体金型を用いて側方押出し加工を行うことで、前記軸状素材から前記嵌合軸部の外周面と、前記中間径フランジ部の外周面と前記一方側中間径フランジ面と前記他方側中間径フランジ面とが形成された1次冷間鍛造品を形成する、
あるいは、前記第2の冷間鍛造工程において、前記第2中間金型と前記第2他方側金型を用いる代わりに、前記第2中間金型と前記第2他方側金型とが一体的に形成された第2一体金型を用いて側方押出し加工を行うことで、前記1次冷間鍛造品から前記嵌合軸部の外周面と、前記フランジ部の外周面と前記一方側フランジ面と前記他方側フランジ面とが形成された2次冷間鍛造品を形成する、
あるいは、前記第3の冷間鍛造工程において、前記第3中間金型と前記第3他方側金型を用いる代わりに、前記第3中間金型と前記第3他方側金型とが一体的に形成された第3一体金型を用いて前方押出し加工を行うことで、前記2次冷間鍛造品から前記嵌合軸部の凹部と前記軸部とが形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 2,
In the first cold forging step, instead of using the first intermediate mold and the first other mold, the first intermediate mold and the first other mold are integrally formed. By performing side extrusion using the first integral mold, the outer peripheral surface of the fitting shaft portion, the outer peripheral surface of the intermediate flange portion, and the one intermediate flange surface from the shaft-shaped material Forming a primary cold forged product in which the other side intermediate diameter flange surface is formed;
Alternatively, in the second cold forging step, instead of using the second intermediate mold and the second other mold, the second intermediate mold and the second other mold are integrally formed. By performing a side extrusion process using the formed second integrated mold, the outer peripheral surface of the fitting shaft portion, the outer peripheral surface of the flange portion, and the one-side flange surface from the primary cold forged product And forming a secondary cold forged product in which the other flange surface is formed,
Alternatively, in the third cold forging step, instead of using the third intermediate mold and the third other mold, the third intermediate mold and the third other mold are integrally formed. By performing forward extrusion using the formed third integrated die, the third cold forged product in which the concave portion of the fitting shaft portion and the shaft portion are formed from the secondary cold forged product. Forming a shaft member of the wheel rolling bearing device;
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記中間径フランジ部は、前記嵌合軸部の側に傾斜した円錐形状を有する中間径傾斜フランジ部であり、
前記第1の冷間鍛造工程における前記第1の側方押出し加工では、
前記中間径傾斜フランジ部における外周面の形状と、前記中間径傾斜フランジ部における前記軸部の側の面であって円錐状の一方側中間径傾斜フランジ面の形状と、に形成された第4一方側金型と、
前記中間径傾斜フランジ部における前記嵌合軸部の側の面であって円錐状の他方側中間径傾斜フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記中間径傾斜フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第4一方側金型と嵌合する略円筒形状の第4中間金型と、
略円筒形状の前記第4中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第4他方側金型と、を用いて側方押出し加工して、
前記軸状素材から前記嵌合軸部の外周面と、前記中間径傾斜フランジ部の外周面と、前記一方側中間径傾斜フランジ面と、前記他方側中間径傾斜フランジ面と、が形成された1次冷間鍛造品を形成し、
前記第2の冷間鍛造工程における前記第2の側方押出し加工では、
前記中間径傾斜フランジ部から径を最終的なフランジ部の径まで拡径した傾斜フランジ部における前記軸部の側の面であって円錐状の一方側傾斜フランジ面の形状と、前記傾斜フランジ部の外周面の形状と、に形成された第5一方側金型と、
前記傾斜フランジ部における前記嵌合軸部の側の面であって円錐状の他方側傾斜フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記傾斜フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第5一方側金型と嵌合する略円筒形状の第5中間金型と、
略円筒形状の前記第5中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の外径に対応する外径を有する略円柱形状の第5他方側金型と、を用いて側方押出し加工して、
前記第1冷間鍛造品から前記嵌合軸部の外周面と、前記傾斜フランジ部の外周面と、前記一方側傾斜フランジ面と、前記他方側傾斜フランジ面と、が形成された2次冷間鍛造品を形成し、
前記第3の冷間鍛造工程における前記前方押出し加工では、
前記フランジ部における外周面の形状と、前記一方側フランジ面の形状と、当該一方側フランジ面の先における前記軸部の形状と、に形成された第6一方側金型と、
前記他方側フランジ面の形状と、前記嵌合軸部の外周面の形状と、に形成されて前記フランジ部の外径に対応する外径を有するとともに前記嵌合軸部の外径に対応する内径寸法の空洞部を有して前記第6一方側金型と嵌合する略円筒形状の第6中間金型と、
略円筒形状の前記第6中間金型の空洞部に嵌合可能であるとともに前記嵌合軸部の凹部の形状に形成された第6他方側金型と、を用いて前方押出し加工して、
前記2次冷間鍛造品から前記嵌合軸部の凹部と、前記軸部と、前記フランジ部の外周面と、前記一方側フランジ面と、前記他方側フランジ面と、が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 1,
The intermediate diameter flange portion is an intermediate diameter inclined flange portion having a conical shape inclined toward the fitting shaft portion side,
In the first lateral extrusion process in the first cold forging step,
A shape of the outer peripheral surface of the intermediate diameter inclined flange portion and a shape of a conical one side intermediate diameter inclined flange surface which is a surface on the shaft portion side of the intermediate diameter inclined flange portion. One side mold,
The intermediate diameter inclined flange portion is a surface on the side of the fitting shaft portion, and is formed into a conical shape on the other side intermediate diameter inclined flange surface and a shape of the outer peripheral surface of the fitting shaft portion. A substantially cylindrical shape having an outer diameter corresponding to the outer diameter of the intermediate-diameter inclined flange portion and having a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and fitting to the fourth one-side mold The fourth intermediate mold,
A substantially cylindrical fourth mold on the other side that can be fitted into the hollow portion of the fourth intermediate mold having a substantially cylindrical shape and has an outer diameter corresponding to the outer diameter of the fitting shaft part; Side extrusion,
An outer peripheral surface of the fitting shaft portion, an outer peripheral surface of the intermediate diameter inclined flange portion, the one intermediate diameter inclined flange surface, and the other intermediate diameter inclined flange surface are formed from the shaft-shaped material. Forming a primary cold forged product,
In the second lateral extrusion process in the second cold forging step,
The shape of the conical one side inclined flange surface, which is the surface on the shaft side in the inclined flange portion whose diameter is expanded from the intermediate diameter inclined flange portion to the diameter of the final flange portion, and the inclined flange portion A shape of the outer peripheral surface of the fifth one-side mold formed on,
A surface of the inclined flange portion on the side of the fitting shaft portion that is formed into a conical shape on the other side of the inclined flange surface and a shape of an outer peripheral surface of the fitting shaft portion. A fifth cylindrical intermediate mold having an outer diameter corresponding to the outer diameter and having a hollow portion having an inner diameter corresponding to the outer diameter of the fitting shaft portion and fitted to the fifth first mold. When,
A fifth cylindrical mold having a substantially cylindrical shape that can be fitted into a hollow portion of the fifth intermediate mold having a substantially cylindrical shape and has an outer diameter corresponding to the outer diameter of the fitting shaft portion; Side extrusion,
Secondary cooling in which an outer peripheral surface of the fitting shaft portion, an outer peripheral surface of the inclined flange portion, the one inclined flange surface, and the other inclined flange surface are formed from the first cold forged product. Forming a forged product,
In the forward extrusion process in the third cold forging step,
A sixth one-side mold formed on the shape of the outer peripheral surface of the flange portion, the shape of the one-side flange surface, and the shape of the shaft portion at the tip of the one-side flange surface;
It is formed in the shape of the other side flange surface and the shape of the outer peripheral surface of the fitting shaft portion, has an outer diameter corresponding to the outer diameter of the flange portion, and corresponds to the outer diameter of the fitting shaft portion. A substantially cylindrical sixth intermediate mold having a hollow portion with an inner diameter dimension and fitted to the sixth one-side mold;
A sixth cylindrical mold that can be fitted into the hollow portion of the sixth intermediate mold having a substantially cylindrical shape and that is formed in the shape of the concave portion of the fitting shaft part, and forward-extruding using,
A tertiary in which a concave portion of the fitting shaft portion, the shaft portion, an outer peripheral surface of the flange portion, the one side flange surface, and the other side flange surface are formed from the secondary cold forged product. Forming a shaft member of the rolling bearing device for wheels, which is a cold forged product,
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項4に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1の冷間鍛造工程において、前記第4中間金型と前記第4他方側金型を用いる代わりに、前記第4中間金型と前記第4他方側金型とが一体的に形成された第4一体金型を用いて側方押出し加工を行うことで、前記軸状素材から前記嵌合軸部の外周面と、最終的な一方側フランジ面及び最終的な他方側フランジ面に対して径が小さいとともに傾斜した一方側中間径傾斜フランジ面と他方側中間径傾斜フランジ面とが形成された1次冷間鍛造品を形成する、
あるいは、前記第2の冷間鍛造工程において、前記第5中間金型と前記第5他方側金型を用いる代わりに、前記第5中間金型と前記第5他方側金型とが一体的に形成された第5一体金型を用いて側方押出し加工を行うことで、前記第1冷間鍛造品から前記嵌合軸部の外周面と、最終的な一方側フランジ面及び最終的な他方側フランジ面に対して傾斜した一方側傾斜フランジ面と他方側傾斜フランジ面とが形成された2次冷間鍛造品を形成する、
あるいは、前記第3の冷間鍛造工程において、前記第6中間金型と前記第6他方側金型を用いる代わりに、前記第6中間金型と前記第6他方側金型とが一体的に形成された第6一体金型を用いて前方押出し加工を行うことで、前記2次冷間鍛造品から前記嵌合軸部の凹部と前記軸部と最終的な一方側フランジ面と最終的な他方側フランジ面が形成された3次冷間鍛造品である前記車輪用転がり軸受装置の軸部材を形成する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 4,
In the first cold forging step, instead of using the fourth intermediate mold and the fourth other mold, the fourth intermediate mold and the fourth other mold are integrally formed. By performing side extrusion using the fourth integrated die, the outer peripheral surface of the fitting shaft portion and the final one side flange surface and the final other side flange surface from the shaft-shaped material. Forming a primary cold forged product in which the one side intermediate diameter inclined flange surface and the other side intermediate diameter inclined flange surface are inclined with a small diameter.
Alternatively, in the second cold forging step, instead of using the fifth intermediate mold and the fifth other mold, the fifth intermediate mold and the fifth other mold are integrally formed. By performing a side extrusion process using the formed fifth integrated die, the outer peripheral surface of the fitting shaft portion, the final one-side flange surface, and the final other side from the first cold forged product Forming a secondary cold forged product in which an inclined flange surface on one side and an inclined flange surface on the other side inclined with respect to the side flange surface are formed;
Alternatively, in the third cold forging step, instead of using the sixth intermediate mold and the sixth other mold, the sixth intermediate mold and the sixth other mold are integrally formed. By performing forward extrusion using the formed sixth integrated mold, the concave portion of the fitting shaft portion, the shaft portion, the final one-side flange surface, and the final shape are obtained from the secondary cold forging product. Forming a shaft member of the rolling bearing device for a wheel which is a tertiary cold forging product in which the other side flange surface is formed;
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1〜5のいずれか1項に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1の冷間鍛造工程の前に、第1の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を前記軸状素材に対して行い、
前記第1の冷間鍛造工程を行った後、前記第2の冷間鍛造工程の前に、第2の焼鈍・被膜工程にて少なくとも焼鈍処理と被膜処理を前記軸状素材に対して再度行う、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels given in any 1 paragraph of Claims 1-5,
Before the first cold forging step, at least annealing treatment and coating treatment are performed on the shaft-shaped material in the first annealing / coating step,
After performing the first cold forging process, before the second cold forging process, at least the annealing process and the coating process are performed again on the shaft-shaped material in the second annealing / coating process. ,
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1〜6のいずれか一項に記載の車輪用転がり軸受装置の軸部材の製造方法によって製造された車輪用転がり軸受装置の軸部材であって、
前記第1〜第3の冷間鍛造工程にて前記車輪用転がり軸受装置の軸部材を形成する際に、前記嵌合軸部の外径に対応する外径を有する円柱状の軸状素材から製造され、円板状の前記フランジ部を有する、
車輪用転がり軸受装置の軸部材。
It is a shaft member of the rolling bearing device for wheels manufactured by the manufacturing method of the shaft member of the rolling bearing device for wheels according to any one of claims 1 to 6,
From the cylindrical shaft-shaped material having an outer diameter corresponding to the outer diameter of the fitting shaft portion when forming the shaft member of the wheel rolling bearing device in the first to third cold forging processes. Manufactured and having the disk-like flange portion,
A shaft member of a rolling bearing device for wheels.
JP2011096976A 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel and method for producing the same Withdrawn JP2012228696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011096976A JP2012228696A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011096976A JP2012228696A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012228696A true JP2012228696A (en) 2012-11-22

Family

ID=47430708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011096976A Withdrawn JP2012228696A (en) 2011-04-25 2011-04-25 Shaft member of rolling bearing device for wheel and method for producing the same

Country Status (1)

Country Link
JP (1) JP2012228696A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535941B1 (en) * 2013-12-19 2015-07-10 동서정밀 주식회사 Small and light grenade cover manufacturing method
CN111531101A (en) * 2020-05-12 2020-08-14 冠县中圆轴承有限公司 Forging method for outer ring or inner ring of double-row conical bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535941B1 (en) * 2013-12-19 2015-07-10 동서정밀 주식회사 Small and light grenade cover manufacturing method
CN111531101A (en) * 2020-05-12 2020-08-14 冠县中圆轴承有限公司 Forging method for outer ring or inner ring of double-row conical bearing

Similar Documents

Publication Publication Date Title
US9889493B2 (en) Wheel bearing device with a clearance formed between the inner race and the hub wheel
JP2012183563A (en) Method of manufacturing shaft member for wheel rolling bearing device
JP2013146769A (en) Method for manufacturing shaft member of wheel rolling bearing device
JP2012197070A (en) Manufacturing method for wheel rolling bearing device, and wheel rolling bearing device
JP2012228696A (en) Shaft member of rolling bearing device for wheel and method for producing the same
EP2497583B1 (en) Method of manufacturing a shaft member for a wheel hub assembly with rolling bearings
JP5168852B2 (en) Bearing unit
JP2013023086A (en) Hub unit for supporting wheel, and method for manufacturing the same
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP5415999B2 (en) Wheel bearing device
JP2013141698A (en) Method for manufacturing shaft member of rolling bearing device for wheel
JP2010188835A (en) Method of manufacturing wheel bearing device
JP2007051750A (en) Wheel bearing device
JP2012183561A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
JP2012183560A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
WO2012121246A1 (en) Manufacturing method for wheel roller bearing device
WO2015050258A1 (en) Production method for outer member for wheel bearing device
EP2684709A1 (en) Shaft member for rolling bearing device for wheel
WO2012121242A1 (en) Shaft member for wheel rolling bearing device
JP2012184813A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
JP6256585B2 (en) Manufacturing method of rolling bearing device for wheel
JP5776228B2 (en) Shaft member for rolling bearing device for wheel and manufacturing method thereof
JP2008207586A (en) Wheel bearing device and its manufacturing method
WO2015041355A1 (en) Vehicle-wheel bearing device and intermediate body, and method for producing same
WO2014002924A1 (en) Method for manufacturing wheel bearing apparatus, and wheel bearing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701