JP2013146769A - Method for manufacturing shaft member of wheel rolling bearing device - Google Patents

Method for manufacturing shaft member of wheel rolling bearing device Download PDF

Info

Publication number
JP2013146769A
JP2013146769A JP2012010003A JP2012010003A JP2013146769A JP 2013146769 A JP2013146769 A JP 2013146769A JP 2012010003 A JP2012010003 A JP 2012010003A JP 2012010003 A JP2012010003 A JP 2012010003A JP 2013146769 A JP2013146769 A JP 2013146769A
Authority
JP
Japan
Prior art keywords
molded product
rolling bearing
shaft member
bearing device
forged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012010003A
Other languages
Japanese (ja)
Inventor
Yoshiaki Masuda
善紀 増田
Tatsuya Yokota
竜哉 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012010003A priority Critical patent/JP2013146769A/en
Priority to CN2013100139005A priority patent/CN103216531A/en
Publication of JP2013146769A publication Critical patent/JP2013146769A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a shaft member of a wheel rolling bearing device, which can efficiently manufacture the shaft member of the wheel rolling bearing device with a simpler die by appropriately securing a desired dimensional accuracy and surface roughness.SOLUTION: In a method for manufacturing a shaft member of a wheel rolling bearing device, a cylindrical fitting shaft part having a recess opening in an axial direction, a flange part having a disk shape or a radial shape orthogonal to the axial direction, and a shaft part having a columnar shape in which an inner ring raceway surface is formed on an outer peripheral surface thereof are coaxially arranged along the axial direction. The method includes: a heating step (B) of heating steel to a hot rolling temperature of a transformation point temperature or above; hot-forging steps (C)-(E) of molding the steel of the hot rolling temperature into a forging intermediate molded product 7E; and a cold forging step (J) of molding the forging intermediate molded product into a forging final molded product 7J by cold forging.

Description

本発明は、車輪用転がり軸受装置の軸部材の製造方法に関する。   The present invention relates to a method for manufacturing a shaft member of a wheel rolling bearing device.

車輪用転がり軸受装置(いわゆる車輪用ハブユニット)を製造する方法においては、例えば特許文献1及び特許文献2に開示されている。
特許文献1に開示された、車輪支持用転がり軸受ユニットの製造方法では、車輪用転がり軸受装置の軸部材は、複数工程の熱間鍛造が順次実施されて鍛造最終成型品へと段階的に成型され、更に冷却した後に冷間加工が施されている。また、冷間加工を施す位置は、車輪用転がり軸受装置の軸部材に内輪をかしめるかしめ部であり、冷間加工は、かしめ加工である。
また特許文献2に開示された、車輪支持用転がり軸受ユニットを構成する軌道輪部材の製造方法では、車輪用転がり軸受装置の軸部材が、複数工程の冷間鍛造にて段階的に成型されている。そして冷間鍛造の金型には、フローティングダイが備えられた特殊な金型が用いられている。
For example, Patent Document 1 and Patent Document 2 disclose a method of manufacturing a wheel rolling bearing device (a so-called wheel hub unit).
In the method of manufacturing a wheel-supporting rolling bearing unit disclosed in Patent Document 1, the shaft member of the wheel-rolling bearing device is formed in stages into a final forged product by sequentially performing hot forging in a plurality of steps. Then, after further cooling, cold working is performed. The position where the cold working is performed is a caulking portion for caulking the inner ring to the shaft member of the wheel rolling bearing device, and the cold working is caulking.
Moreover, in the manufacturing method of the bearing ring member which comprises the wheel bearing rolling bearing unit disclosed by patent document 2, the shaft member of the wheel rolling bearing apparatus is shape | molded in steps by cold forging of multiple processes. Yes. As a cold forging die, a special die provided with a floating die is used.

特開2009−226460号公報JP 2009-226460 A 特開2007−152413号公報JP 2007-152413 A

特許文献1に記載された従来技術では、車輪用転がり軸受装置の軸部材の鍛造最終成型品が、熱間鍛造にて成型されており、冷間鍛造にて成型した場合よりも、寸法精度、表面粗さの点で劣る。寸法精度が劣る理由は、熱間鍛造では冷却時に厚い部分に熱が集まり、たわみが発生し易いためである。また表面粗さが劣る理由は、素材を変態点以上の温度に加熱すると、表面に酸化スケールが発生するためである。
なお本明細書にて記載する変態点温度とは、いわゆるAC1変態温度を指し、加熱時にオーステナイトが生成し始める温度を指す。またオーステナイトとは、鉄と炭素の固溶体のうち、比較的高温で析出する相であり、いわゆるγ鉄のことを指す。
また特許文献2に記載された従来技術では、車輪用転がり軸受装置の軸部材の鍛造最終成型品が、冷間鍛造にて成型されており、熱間鍛造にて成型した場合よりも、寸法精度、表面粗さの点で勝る。しかし冷間鍛造は、熱間鍛造よりも塑性変形しにくいため、段階的に成型する工程数が多く、且つ金型にもフローティングダイを備えた複雑な金型が使用されている。
本発明は、このような点に鑑みて創案されたものであり、車輪用転がり軸受装置の軸部材を、より単純な金型にて、所望する寸法精度、表面粗さを適切に確保して効率良く製造することができる、車輪用転がり軸受装置の軸部材の製造方法を提供することを課題とする。
In the prior art described in Patent Document 1, the forged final molded product of the shaft member of the wheel rolling bearing device is molded by hot forging, and has a dimensional accuracy higher than that formed by cold forging. Inferior in terms of surface roughness. The reason why the dimensional accuracy is inferior is that in hot forging, heat gathers in a thick part during cooling and deflection is likely to occur. The reason why the surface roughness is inferior is that when the material is heated to a temperature equal to or higher than the transformation point, oxide scale is generated on the surface.
The transformation point temperature described in this specification refers to a so-called AC1 transformation temperature, and refers to a temperature at which austenite starts to be generated during heating. Austenite is a phase that precipitates at a relatively high temperature in a solid solution of iron and carbon, and refers to so-called γ iron.
Moreover, in the prior art described in Patent Document 2, the forged final molded product of the shaft member of the wheel rolling bearing device is formed by cold forging, and the dimensional accuracy is higher than the case of forming by hot forging. , Superior in terms of surface roughness. However, since cold forging is less susceptible to plastic deformation than hot forging, there are many steps to be molded step by step, and complex molds having floating dies are also used for the molds.
The present invention was devised in view of such points, and the shaft member of the wheel rolling bearing device is appropriately secured with a simpler mold so as to ensure the desired dimensional accuracy and surface roughness. It aims at providing the manufacturing method of the shaft member of the rolling bearing apparatus for wheels which can be manufactured efficiently.

上記課題を解決するため、本発明に係る車輪用転がり軸受装置の軸部材の製造方法は次の手段をとる。
本発明は、軸方向に開口する凹部を備えた円筒形状を有する嵌合軸部と、軸方向に直交する円板形状あるいは放射形状を有するフランジ部と、外周面に内輪軌道面が形成された円柱形状を有する軸部と、が軸方向に沿って同軸上に配置された車輪用転がり軸受装置の軸部材の製造方法である。
そして車輪用転がり軸受装置の軸部材の製造方法は、鋼材を、当該鋼材の変態点温度以上の温度である熱間温度となるように加熱する加熱工程と、前記熱間温度の鋼材を、前記鋼材の形状と、鍛造における最終形状である鍛造最終成型品と、の中間の形状を有する鍛造中間成型品となるように中間成型品用金型を用いて成型する熱間鍛造工程と、前記最終成型品用金型を用いて前記鍛造中間成型品を冷間鍛造することで前記嵌合軸部と前記フランジ部と前記軸部の形状を前記鍛造最終成型品の形状に成型する冷間鍛造工程と、を有する。
In order to solve the above-described problems, the method for manufacturing the shaft member of the rolling bearing device for wheels according to the present invention takes the following means.
In the present invention, a fitting shaft portion having a cylindrical shape with a recess opening in the axial direction, a flange portion having a disk shape or radial shape orthogonal to the axial direction, and an inner ring raceway surface are formed on the outer peripheral surface. It is a manufacturing method of the shaft member of the rolling bearing device for wheels by which the shaft part which has a column shape is arranged on the same axis along the axial direction.
And the manufacturing method of the shaft member of the rolling bearing device for wheels includes a heating step of heating a steel material so as to have a hot temperature that is equal to or higher than a transformation point temperature of the steel material, and the steel material having the hot temperature, A hot forging step in which a forging intermediate molded product having an intermediate shape between the shape of the steel material and the forged final molded product which is the final shape in forging is formed using a mold for intermediate molded products, and the final Cold forging process in which the shape of the fitting shaft portion, the flange portion, and the shaft portion is formed into the shape of the forged final molded product by cold forging the forged intermediate molded product using a mold for a molded product And having.

本発明によれば、車輪用転がり軸受装置の軸部材を、熱間鍛造のみまたは冷間鍛造のみで成型するのでなく、まず比較的塑性変形し易い熱間鍛造を用いて鋼材(素材)から鍛造中間成型品へと成型する。そして鍛造中間成型品から鍛造最終成型品までの塑性変形を、冷間鍛造を用いて行う。
このように、鍛造最終成型品の成型を冷間鍛造で行っているので、寸法精度、表面粗さを適切に確保することができる。また、冷間鍛造の前に熱間鍛造を行って鍛造中間成型品を成型しており、冷間鍛造による塑性変形の変形量が特許文献2に記載の発明よりも少ないので、より単純な金型にて効率良く冷間鍛造を行うことができる。
According to the present invention, the shaft member of the rolling bearing device for a wheel is not formed by only hot forging or only cold forging, but is first forged from a steel material (material) using hot forging that is relatively easy to plastically deform. Mold into an intermediate molded product. Then, plastic deformation from the forged intermediate molded product to the final forged product is performed using cold forging.
Thus, since the forging final molded product is formed by cold forging, dimensional accuracy and surface roughness can be appropriately ensured. Further, the forging intermediate molded product is formed by performing hot forging before cold forging, and the amount of plastic deformation caused by cold forging is less than that of the invention described in Patent Document 2, so simpler gold Cold forging can be performed efficiently with a die.

本発明の車輪用転がり軸受装置の製造方法にて製造された車輪用転がり軸受装置の軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図である。It is an axial sectional view showing the state where shaft member 1 of the rolling bearing device for wheels manufactured with the manufacturing method of the rolling bearing device for wheels of the present invention was assembled as rolling bearing device A for wheels. 図1に示す車輪用転がり軸受装置の軸部材1をB方向から見た図であり、(A)は複数のフランジ部21が外径方向に放射状に延出しているフランジ部21の例を説明する図であり、(B)は外径方向に円板状に延出しているフランジ部21の例を説明する図である。It is the figure which looked at the shaft member 1 of the rolling bearing device for wheels shown in Drawing 1 from the B direction, and (A) explains the example of flange part 21 in which a plurality of flange parts 21 have extended radially in the direction of an outer diameter. (B) is a figure explaining the example of the flange part 21 extended in the disk shape in the outer-diameter direction. 車輪用転がり軸受装置の軸部材1の軸方向断面図である。It is an axial sectional view of the shaft member 1 of the rolling bearing device for wheels. 軸状素材7Aから車輪用転がり軸受装置の軸部材を成形するまでの工程(A)〜(N)による素材の形状の変化等を示す図である。It is a figure which shows the change of the shape of the raw material by process (A)-(N) until it forms the shaft member of the rolling bearing apparatus for wheels from the shaft-shaped raw material 7A. 冷間鍛造にて成型される前である被膜後鍛造中間成型品7I(図4(I)の表面処理工程後)の外観を示す図である。It is a figure which shows the external appearance of the post-coating forging intermediate molded product 7I (after the surface treatment process of FIG. 4 (I)) before being molded by cold forging.

以下に本発明を実施するための形態を図面を用いて説明する。
●[車輪用転がり軸受装置の全体構造(図1)と、車輪用転がり軸受装置の軸部材1の構造(図2、図3)]
次に図1〜図3を用いて、車輪用転がり軸受装置Aの全体構造、及び車輪用転がり軸受装置の軸部材1(以降、「車輪用転がり軸受装置の軸部材1」を「軸部材1」と記載する)の構造について説明する。図1は、本発明の車輪用転がり軸受装置の軸部材1の製造方法にて製造された軸部材1が車輪用転がり軸受装置Aとして組み付けられた状態を示す軸方向断面図を示している。また図2は図1に示す軸部材1をB方向から見た図であり、図3は図1から軸部材1を抽出して軸部材1を詳細に説明する図である。
図1に示すように、車輪用転がり軸受装置A(いわゆる車輪用ハブユニット)は、軸部材1と、外輪45と、内輪42と、第1転動体50と、第2転動体51等にて構成されている。
そして軸部材1(いわゆるハブホイール)は、軸部10と、嵌合軸部30と、フランジ基部20と、フランジ部21とを一体に有している。
なお、車輪用転がり軸受装置Aが車両に取り付けられた場合、軸部10は車両内側に位置しており、嵌合軸部30は車両外側に位置しており、図1においては紙面の左方向が車両内側を示し、紙面の右方向が車両外側を示している。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing.
● [Whole rolling bearing device structure (FIG. 1) and wheel rolling bearing device shaft member 1 structure (FIGS. 2 and 3)]
Next, the whole structure of the wheel rolling bearing device A and the shaft member 1 of the wheel rolling bearing device (hereinafter referred to as “the shaft member 1 of the wheel rolling bearing device” will be referred to as the “shaft member 1” with reference to FIGS. Will be described. FIG. 1: has shown the axial sectional drawing which shows the state with which the shaft member 1 manufactured with the manufacturing method of the shaft member 1 of the rolling bearing device for wheels of this invention was assembled | attached as the rolling bearing device A for wheels. 2 is a view of the shaft member 1 shown in FIG. 1 as viewed from the B direction, and FIG. 3 is a view for explaining the shaft member 1 in detail by extracting the shaft member 1 from FIG.
As shown in FIG. 1, a wheel rolling bearing device A (a so-called wheel hub unit) includes a shaft member 1, an outer ring 45, an inner ring 42, a first rolling element 50, a second rolling element 51, and the like. It is configured.
The shaft member 1 (so-called hub wheel) integrally includes a shaft portion 10, a fitting shaft portion 30, a flange base portion 20, and a flange portion 21.
When the wheel rolling bearing device A is attached to the vehicle, the shaft portion 10 is located inside the vehicle, the fitting shaft portion 30 is located outside the vehicle, and in FIG. Indicates the inside of the vehicle, and the right direction of the page indicates the outside of the vehicle.

軸部10は略円柱形状であり、軸部10には、フランジ部21に近い側に径が大きな大径軸部11が形成され、フランジ部21から遠い端部に大径軸部11よりも小さな径の小径軸部12が形成されている。また、大径軸部11と小径軸部12との段差部には、軸部10の回転軸に直交する面である内輪突き当て面12aが形成されている。
フランジ基部20は、上記の軸部10と後述する嵌合軸部30との間に位置しており、このフランジ基部20の外周面に外径方向に放射状に延出された複数のフランジ部21(図2参照)が形成されている。また複数のフランジ部21には、車輪を締め付けるハブボルト27が圧入によって配置されるボルト孔24が貫設されている。
なお、以降の本実施の形態では、フランジ部21が外径方向に円板状に延出された図2(B)に示す形状のフランジ部21を有する軸部材を例にして説明する。なお、図2(A)に示すように、複数のフランジ部21が外径方向に放射状に延出された形状のフランジ部21を有する軸部材にも適用可能である。
嵌合軸部30は、軸部10の一端側(小径軸部12と反対の側)に、軸部10と同軸上に、連続する略円筒形状に成形されており、車輪(図示省略)の中心孔が嵌め込まれる。
また嵌合軸部30には、フランジ部21側にブレーキロータ用嵌合部31が形成され、先端側にブレーキロータ用嵌合部31よりも若干小径の車輪用嵌合部32が形成されている。
またフランジ部21における嵌合軸部30の側の面であるロータ支持面22には、図1に示すようにブレーキロータ55の中心孔の周囲の面が当接する。
また図3に示すように、軸部材1は、回転軸方向に沿って、嵌合軸部30、中間軸部23、軸部10、が同軸状に形成されている。なお中間軸部23にはフランジ基部20とフランジ部21が含まれている。
また嵌合軸部30の内径側には、凹状の鍛造凹部35が形成されている。
The shaft portion 10 has a substantially cylindrical shape. The shaft portion 10 is formed with a large-diameter shaft portion 11 having a large diameter on the side close to the flange portion 21, and at an end portion far from the flange portion 21 than the large-diameter shaft portion 11. A small-diameter shaft portion 12 having a small diameter is formed. Further, an inner ring abutting surface 12 a that is a surface orthogonal to the rotation axis of the shaft portion 10 is formed at the step portion between the large diameter shaft portion 11 and the small diameter shaft portion 12.
The flange base portion 20 is located between the shaft portion 10 and the fitting shaft portion 30 described later, and a plurality of flange portions 21 that extend radially outward from the outer peripheral surface of the flange base portion 20. (See FIG. 2) is formed. The plurality of flange portions 21 are provided with bolt holes 24 through which hub bolts 27 for fastening the wheels are arranged by press fitting.
In the following description of the present embodiment, a shaft member having the flange portion 21 having the shape shown in FIG. 2B in which the flange portion 21 extends in a disk shape in the outer diameter direction will be described as an example. In addition, as shown to FIG. 2 (A), it is applicable also to the shaft member which has the flange part 21 of the shape where the some flange part 21 was radially extended in the outer-diameter direction.
The fitting shaft portion 30 is formed on one end side of the shaft portion 10 (on the side opposite to the small-diameter shaft portion 12), is coaxially formed with the shaft portion 10 and is formed into a continuous, substantially cylindrical shape, and has a wheel (not shown). Center hole is fitted.
The fitting shaft portion 30 is formed with a brake rotor fitting portion 31 on the flange portion 21 side, and a wheel fitting portion 32 having a slightly smaller diameter than the brake rotor fitting portion 31 on the distal end side. Yes.
Further, as shown in FIG. 1, the surface around the center hole of the brake rotor 55 abuts on the rotor support surface 22 that is the surface of the flange portion 21 on the side of the fitting shaft portion 30.
As shown in FIG. 3, the shaft member 1 has a fitting shaft portion 30, an intermediate shaft portion 23, and a shaft portion 10 formed coaxially along the rotation axis direction. The intermediate shaft portion 23 includes a flange base portion 20 and a flange portion 21.
A concave forged concave portion 35 is formed on the inner diameter side of the fitting shaft portion 30.

また、大径軸部11におけるフランジ部21(フランジ基部20)との境界部の近傍における外周面の一部には、転がり軸受としての複列のアンギュラ玉軸受における一方の軸受部を構成する第1内輪軌道面18が、円周方向に連続するように形成されている。
また、第1内輪軌道面18に隣接してフランジ部21に近い側における外周面の一部には、円周方向に連続する後述のシール面19が形成されている。
また小径軸部12の外周面には、円周方向に連続するように形成された第2内輪軌道面44を外周面に有する内輪42が嵌め込まれる。なお内輪42は、内輪突き当て面12aに突き当たるまで嵌め込まれている。
そして、小径軸部12における内輪42からの突出部(図1中の軸端部15)は径方向外側にかしめられて、かしめ部17が形成され、かしめ部17と内輪突き当て面12aにて内輪42が固定されている。
Further, a part of the outer peripheral surface of the large-diameter shaft portion 11 in the vicinity of the boundary portion with the flange portion 21 (flange base portion 20) constitutes one bearing portion in a double row angular ball bearing as a rolling bearing. One inner ring raceway surface 18 is formed to be continuous in the circumferential direction.
Further, a seal surface 19 described later that is continuous in the circumferential direction is formed on a part of the outer peripheral surface adjacent to the first inner ring raceway surface 18 and close to the flange portion 21.
Further, an inner ring 42 having a second inner ring raceway surface 44 formed so as to be continuous in the circumferential direction is fitted on the outer circumferential surface of the small-diameter shaft portion 12. The inner ring 42 is fitted until it hits the inner ring abutting surface 12a.
And the protrusion part from the inner ring | wheel 42 in the small diameter shaft part 12 (shaft end part 15 in FIG. 1) is caulked radially outward to form a caulking part 17, and the caulking part 17 and the inner ring abutting surface 12a The inner ring 42 is fixed.

軸部材1の軸部10の外周面には、環状空間を保って外輪45が配置されている。
外輪45の内周面には、軸部材1に形成されている第1内輪軌道面18に対向する第1外輪軌道面46と、内輪42に形成されている第2内輪軌道面44に対向する第2外輪軌道面47と、が形成されている。なお、各内輪軌道面、各外輪軌道面は、それぞれの面において円周方向に連続するように形成されている。
そして第1内輪軌道面18と第1外輪軌道面46との間には、複数の第1転動体50が保持器52によって保持されて転動可能に配置されている。また、第2内輪軌道面44と第2外輪軌道面47との間には、複数の第2転動体51が保持器53によって保持されて転動可能に配置されている。
なお、複数の第1転動体50、及び複数の第2転動体51には、小径軸部12の端部をかしめてかしめ部17を形成した際のかしめ力に基づいて、軸方向の予圧が付与されてアンギュラ玉軸受を構成している。
An outer ring 45 is disposed on the outer peripheral surface of the shaft portion 10 of the shaft member 1 while maintaining an annular space.
On the inner circumferential surface of the outer ring 45, the first outer ring raceway surface 46 facing the first inner ring raceway surface 18 formed on the shaft member 1 and the second inner ring raceway surface 44 formed on the inner ring 42 are opposed. A second outer ring raceway surface 47 is formed. Each inner ring raceway surface and each outer ring raceway surface are formed to be continuous in the circumferential direction on each surface.
Between the first inner ring raceway surface 18 and the first outer ring raceway surface 46, a plurality of first rolling elements 50 are held by a cage 52 and arranged so as to be able to roll. Further, between the second inner ring raceway surface 44 and the second outer ring raceway surface 47, a plurality of second rolling elements 51 are held by a cage 53 and arranged so as to be able to roll.
The plurality of first rolling elements 50 and the plurality of second rolling elements 51 are subjected to axial preload based on the caulking force when the caulking portion 17 is formed by caulking the end of the small diameter shaft portion 12. An angular ball bearing is provided.

また外輪45の外周面には、車体側フランジ48が一体に形成されており、当該車体側フランジは、車両の懸架装置(図示省略)に支持されたナックル、キャリア等の車体側部材の取付面にボルト等によって締結される。
また外輪45における第1外輪軌道面46に隣接する開口部の内周面には、シール部材56が圧入されて組み付けられている。そして、当該シール部材56のリップ58の先端が、シール面19に摺接(接触)して外輪45と軸部材1との隙間をシールしている。
なお、シール面19は、第1内輪軌道面18に隣接してフランジ部21(フランジ基部20)に近い側における外周面の一部に、円周方向に連続するように形成されている。
Further, a vehicle body side flange 48 is integrally formed on the outer peripheral surface of the outer ring 45, and the vehicle body side flange is a mounting surface of a vehicle body side member such as a knuckle or a carrier supported by a vehicle suspension device (not shown). Fastened with bolts or the like.
A seal member 56 is press-fitted and assembled to the inner peripheral surface of the opening of the outer ring 45 adjacent to the first outer ring raceway surface 46. The tip of the lip 58 of the seal member 56 is in sliding contact (contact) with the seal surface 19 to seal the gap between the outer ring 45 and the shaft member 1.
The seal surface 19 is formed on a part of the outer peripheral surface adjacent to the first inner ring raceway surface 18 and close to the flange portion 21 (flange base portion 20) so as to be continuous in the circumferential direction.

●[軸部材1の製造方法(図4、図5)]
次に図4、図5を用いて、軸部材1の製造方法について説明する。
図4(A)〜(N)は軸状素材7Aから各工程を経て軸部材1を成形する様子を示しており、図5は、冷間鍛造にて成型される前の被膜後鍛造中間成型品7I(図4(I)参照)の外観を示している。
本実施の形態にて説明する軸部材1は、図4に示すように、(A)に示す軸状素材7Aから、加熱工程(B)、第1熱間鍛造工程(C)、第2熱間鍛造工程(D)、第3熱間鍛造工程(E)、第1冷却工程(F)、第2冷却工程(G)、第1表面処理工程(H)、第2表面処理工程(I)、冷間鍛造工程(J)、旋削工程(K)、熱処理工程(L)、穴あけ工程(M)、研磨工程(N)を経て製造される。
まず図4(A)では、加熱工程(B)に先立って、S45C、S50C、S55C等の炭素量0.5%前後の略円柱形状の構造用炭素鋼が所定長さに切断されて軸状素材7Aが形成される。
● [Method of manufacturing shaft member 1 (FIGS. 4 and 5)]
Next, the manufacturing method of the shaft member 1 is demonstrated using FIG. 4, FIG.
FIGS. 4A to 4N show how the shaft member 1 is molded from the shaft-shaped material 7A through each step, and FIG. 5 shows the post-coating forging intermediate molding before being molded by cold forging. The external appearance of the product 7I (see FIG. 4I) is shown.
As shown in FIG. 4, the shaft member 1 described in the present embodiment has a heating process (B), a first hot forging process (C), and a second heat from the shaft-shaped material 7A shown in (A). Hot forging step (D), third hot forging step (E), first cooling step (F), second cooling step (G), first surface treatment step (H), second surface treatment step (I) It is manufactured through a cold forging process (J), a turning process (K), a heat treatment process (L), a drilling process (M), and a polishing process (N).
First, in FIG. 4A, prior to the heating step (B), a substantially cylindrical structural carbon steel having a carbon content of about 0.5%, such as S45C, S50C, S55C, etc., is cut into a predetermined length to form a shaft. A material 7A is formed.

[加熱工程(図4(B))]
加熱工程は、軸状素材7Aを変態点温度以上の温度である熱間温度となるように加熱して、流動性を有する加熱後素材7Bを得る工程である(図4(B)参照)。例えば軸状素材7Aは、変態点温度が950[℃]前後である場合、1000[℃]以上となるように加熱される。この場合、加熱後素材7Bの表面は、変態点温度以上の温度であるため、酸化スケールが発生する。
[Heating step (FIG. 4B)]
The heating step is a step of heating the shaft-shaped material 7A to a hot temperature that is equal to or higher than the transformation point temperature to obtain a heated material 7B having fluidity (see FIG. 4B). For example, when the transformation point temperature is around 950 [° C.], the shaft-shaped material 7A is heated to 1000 [° C.] or higher. In this case, since the surface of the post-heating material 7B is at a temperature equal to or higher than the transformation point temperature, an oxide scale is generated.

[第1熱間鍛造工程(図4(C))〜第3熱間鍛造工程(図4(E))]
熱間鍛造工程は、金型を用いて、流動性を有して変態点温度以上の加熱後素材7Bを熱間鍛造して鍛造中間成型品7Eを得る工程である(図4(C)〜(E)参照)。図4に示す例では、熱間鍛造工程は、第1熱間鍛造工程(図4(C))〜第3熱間鍛造工程(図4(E))にて構成されており、それぞれの熱間鍛造工程にて、加熱後素材7Bは段階的に成型される。この場合、第1熱間鍛造工程〜第3熱間鍛造工程にて、加熱後素材7Bは、軸状素材7Aの形状(鋼材の形状に相当)と、鍛造における最終形状である鍛造最終成型品7J(図4(J)に示す冷間鍛造工程にて得られる成型品)と、の中間の形状を有する鍛造中間成型品7Eとなるように、各熱間鍛造工程にてそれぞれの形状を得るための中間成型品用金型が用いられて中間成型品7C、7D等を経由して鍛造中間成型品7Eへと成型される。
また加熱後素材7Bは熱間温度(例えば1000[℃]以上)に加熱されて流動性を有しているので成型の自由度が大きく、第1熱間鍛造工程〜第3熱間鍛造工程にて用いられる各中間成型品用金型は、比較的単純な構造の金型でよい。
また鍛造中間成型品7Eは、嵌合軸部30´、フランジ部21´、軸部10´が成型されているが、鍛造最終成型品7Jに対して80%程度の成型品である。例えば鍛造中間成型品7Eのフランジ部21´の径D1は、鍛造最終成型品7Jのフランジ部21の径D2よりも小さく、鍛造中間成型品7Eの鍛造凹部35´の深さE1は、鍛造最終成型品7Jの鍛造凹部35の深さE2よりも浅い。
また図4の例では、3回の熱間鍛造工程(図4(C)〜(E))にて段階的に鍛造中間成型品7Eを成型する例を説明したが、3回に限定されるものではない。
[First Hot Forging Process (FIG. 4C) to Third Hot Forging Process (FIG. 4E)]
The hot forging step is a step for obtaining a forged intermediate molded product 7E by hot forging the post-heating material 7B having a fluidity and having a temperature equal to or higher than the transformation point temperature using a mold (FIG. 4C). (See (E)). In the example shown in FIG. 4, the hot forging process includes a first hot forging process (FIG. 4C) to a third hot forging process (FIG. 4E), and each heat In the intermediate forging process, the post-heating material 7B is molded stepwise. In this case, in the first hot forging process to the third hot forging process, the post-heating material 7B is a forged final molded product that is the shape of the shaft-shaped material 7A (corresponding to the shape of the steel material) and the final shape in forging. 7J (molded product obtained in the cold forging process shown in FIG. 4 (J)) and a forged intermediate molded product 7E having an intermediate shape are obtained in each hot forging step. Therefore, the intermediate mold product mold is used to form the forged intermediate molded product 7E via the intermediate molded products 7C, 7D and the like.
Moreover, since the post-heating material 7B is heated to a hot temperature (for example, 1000 [° C.] or higher) and has fluidity, the degree of freedom in molding is large, and the first hot forging process to the third hot forging process are performed. Each of the intermediate molds used in the above may be a mold having a relatively simple structure.
Further, the forged intermediate molded product 7E has a fitting shaft portion 30 ′, a flange portion 21 ′, and a shaft portion 10 ′ molded therein, and is a molded product of about 80% with respect to the forged final molded product 7J. For example, the diameter D1 of the flange portion 21 ′ of the forged intermediate molded product 7E is smaller than the diameter D2 of the flange portion 21 of the forged final molded product 7J, and the depth E1 of the forged concave portion 35 ′ of the forged intermediate molded product 7E is the final forged shape. It is shallower than the depth E2 of the forged recess 35 of the molded product 7J.
Moreover, although the example of FIG. 4 demonstrated the example which shape | molds the forge intermediate molded product 7E in steps in three hot forging processes (FIG.4 (C)-(E)), it is limited to 3 times. It is not a thing.

[第1冷却工程(図4(F))]
第1冷却工程は、変態点温度以上の熱間温度で成型された鍛造中間成型品7Eを、例えば炉冷却にて所定の冷却速度で冷却して、焼鈍処理が施された焼鈍後鍛造中間成型品7Fを得る工程である(図4(F)参照)。つまり第1冷却工程は、焼鈍処理を行う工程である。なお鍛造中間成型品7Eは、すでに熱間鍛造工程にて熱間温度に加熱されているので、改めて加熱する必要がなく、効率良く焼鈍処理を行うことができる。
鍛造中間成型品7Eは、第1冷却工程にて、中間設定温度(例えば約500[℃]であり、熱間鍛造工程時の温度よりも低い温度)となるまで、冷却設定温度/時間(例えば100[℃]以下/時間)の冷却速度にて冷却されて(球状化)焼鈍されることで、剛性と延性が向上され、冷間鍛造に適した組成を有する焼鈍後鍛造中間成型品7Fとなる。
また第1冷却工程の最初において、鍛造中間成型品7Eを、加熱時にオーステナイトが生成し始める温度(いわゆるAC1変態温度)前後の温度にて、所定時間(例えば3時間程度)保ち、その後、中間設定温度となるまで、冷却設定温度/時間の冷却速度にて冷却するようにしてもよい。
なお特許文献1の冷却速度は、0.25℃/s〜3℃/sと開示されており(換算すると900[℃]/時間〜10800[℃]/時間)、本実施の形態における100[℃]以下/時間に対して、非常に急激な冷却速度である。本実施の形態では、特許文献1と比較して非常に緩やかな冷却速度にて、所望する剛性と延性を得ることができる焼鈍処理を行っている。
[First cooling step (FIG. 4F)]
In the first cooling step, the forged intermediate molded product 7E molded at a hot temperature equal to or higher than the transformation point temperature is cooled at a predetermined cooling rate by, for example, furnace cooling, and is subjected to an annealing treatment after annealing. This is a step of obtaining a product 7F (see FIG. 4F). That is, a 1st cooling process is a process of performing an annealing process. The forged intermediate molded product 7E has already been heated to the hot temperature in the hot forging process, so that it is not necessary to heat it again and the annealing process can be performed efficiently.
The forged intermediate molded product 7E is cooled to a preset temperature / time (for example, about 500 [° C.] and lower than the temperature during the hot forging step) in the first cooling step. And after annealing (spheroidizing) and cooling at a cooling rate of 100 [° C. or less], rigidity and ductility are improved, and a post-annealing forged intermediate molded product 7F having a composition suitable for cold forging and Become.
Further, at the beginning of the first cooling step, the forged intermediate molded product 7E is maintained for a predetermined time (for example, about 3 hours) at a temperature around the temperature at which austenite starts to be generated during heating (so-called AC1 transformation temperature), and then the intermediate setting is performed. You may make it cool with the cooling rate of cooling preset temperature / time until it becomes temperature.
The cooling rate of Patent Document 1 is disclosed as 0.25 ° C./s to 3 ° C./s (in terms of conversion, 900 [° C.] / Hour to 10800 [° C.] / Hour). It is a very rapid cooling rate for [° C.] or less / hour. In the present embodiment, an annealing process capable of obtaining desired rigidity and ductility is performed at a cooling rate that is much slower than that of Patent Document 1.

[第2冷却工程(図4(G))]
第2冷却工程は、中間設定温度まで冷却した焼鈍後鍛造中間成型品7Fを、常温まで冷却して冷却後鍛造中間成型品7Gを得る工程である(図4(G)参照)。第2冷却工程では、冷却速度の規定は特に不要であり、例えば室内に放置して常温となるまで空冷にて冷却するようにしてもよい。つまり第2冷却工程は、特別な熱処理を行う工程ではなく、単純に常温まで冷却(放置)する工程である。
以上に説明した第1冷却工程及び第2冷却工程は、鍛造中間成型品7Eを、500[℃]となるまで100[℃]以下/時間の冷却速度にて冷却(例えば炉冷却)して500[℃]を下回った後は常温となるまで放置等して空冷する例を説明した。しかし第1冷却工程及び第2冷却工程は、鍛造中間成型品7Eを、600[℃]となるまで30[℃]以下/時間の冷却速度にて冷却(例えば炉冷却)して600[℃]を下回った後は常温となるまで放置等して空冷するようにしてもよい。
[Second Cooling Step (FIG. 4G)]
The second cooling step is a step of cooling the post-annealed forged intermediate molded product 7F cooled to an intermediate set temperature to room temperature to obtain a post-cooled forged intermediate molded product 7G (see FIG. 4G). In the second cooling step, the regulation of the cooling rate is not particularly required. For example, the cooling rate may be left in the room and cooled by air cooling until the temperature reaches room temperature. That is, the second cooling step is not a step of performing a special heat treatment but a step of simply cooling (leaving) to room temperature.
In the first cooling step and the second cooling step described above, the forged intermediate molded product 7E is cooled at a cooling rate of 100 [° C.] or less / hour until it reaches 500 [° C.] (for example, furnace cooling). An example of air cooling after leaving below [° C.] by leaving it to room temperature has been described. However, in the first cooling step and the second cooling step, the forged intermediate molded product 7E is cooled at a cooling rate of 30 [° C.] or less / hour until it reaches 600 [° C.] (for example, furnace cooling) to 600 [° C.]. After falling below, it may be allowed to air cool by leaving it to room temperature.

[第1表面処理工程(図4(H))]
第1表面処理工程は、熱間鍛造にて冷却後鍛造中間成型品7Gの表面に発生している酸化スケールを除去して表面が滑らかにされた表面除去後鍛造中間成型品7Hを得る工程である。
冷却後鍛造中間成型品7Gは、ショットブラスト加工にて表面が滑らかにされるとともに、変質部(酸化スケール部)が適切に除去される。
[First surface treatment step (FIG. 4H)]
The first surface treatment step is a step of obtaining an after-removed forged intermediate molded product 7H after removing the oxidized scale generated on the surface of the forged intermediate molded product 7G after cooling by hot forging. is there.
The post-cooling forged intermediate molded product 7G has a smooth surface by shot blasting, and an altered portion (oxidized scale portion) is appropriately removed.

[第2表面処理工程(図4(I))]
第2表面処理工程は、冷間鍛造工程に先立って、表面除去後鍛造中間成型品7Hの表面に、冷間鍛造における金型との摩擦を低減する被膜をコーティングして、被膜36が施された被膜後鍛造中間成型品7Iを得る工程である(図4(I)参照)。なお被膜36は、表面除去後鍛造中間成型品7Hの表面または金型における表面除去後鍛造中間成型品7Hと接する面の少なくとも一方にコーティングされていればよい。図4(I)の例は、表面除去後鍛造中間成型品7Hに被膜処理した例を示している。
例えば、表面除去後鍛造中間成型品7Hは、潤滑剤としてのリン酸塩が表面に塗布されて、リン酸塩被膜でコーティングされた被膜後鍛造中間成型品7Iとなる。
[Second surface treatment step (FIG. 4I)]
Prior to the cold forging step, the second surface treatment step is performed by coating the surface of the post-removed forged intermediate molded product 7H with a coating that reduces friction with the mold in the cold forging, and the coating 36 is applied. This is a step for obtaining a forged intermediate product 7I after coating (see FIG. 4I). The coating 36 may be coated on at least one of the surface of the forged intermediate molded product 7H after surface removal or the surface in contact with the forged intermediate molded product 7H after surface removal in the mold. The example of FIG. 4 (I) shows an example in which the forged intermediate molded product 7H after the surface removal is coated.
For example, the post-surface removal forged intermediate molded product 7H becomes a post-coated forged intermediate molded product 7I coated with a phosphate coating with a phosphate as a lubricant applied to the surface.

[冷間鍛造工程(図4(J))]
冷間鍛造工程は、最終成型品用金型を用いて、被膜後鍛造中間成型品7I(金型のみに被膜処理した場合は表面除去後鍛造中間成型品7H)を冷間鍛造して鍛造最終成型品7Jを得る工程である(図4(J)参照)。
ここで、被膜後鍛造中間成型品7Iの外観を図5(A)及び(B)に示す。被膜後鍛造中間成型品7Iの表面は、光沢を有するほど滑らかであり、金型との摩擦を低減することが可能である。また被膜後鍛造中間成型品7Iの成型形状は、ほとんど鍛造最終成型品7Jに近い形状(例えば80%程度の形状)まで成型されている。従って、冷間鍛造工程による塑性変形の量は非常に少なくてよいので(この場合、残りの20%程度でよい)、最終成型品用金型は単純な金型でよく、短時間で効率良く冷間鍛造を行うことができる。
例えば被膜後鍛造中間成型品7Iは、鍛造凹部35の深さE1が鍛造最終成型品7Jの深さE2となるまで、またフランジ部21の径D1が鍛造最終成型品7Jの径D2となるまで、冷間鍛造にて成型される。
また冷間鍛造にて成型された鍛造最終成型品7Jは、前述した理由により、温間鍛造や熱間鍛造にて鍛造最終成型品を形成した場合よりも、寸法精度、表面の滑らかさの点において勝り、表面硬さの向上を図ることもできる。
[Cold forging process (FIG. 4 (J))]
In the cold forging step, the final forged product is formed by cold forging the post-coated forged intermediate molded product 7I (or the forged intermediate molded product 7H after the surface removal if the coating is applied only to the die). This is a step of obtaining a molded product 7J (see FIG. 4J).
Here, the external appearance of the post-coating forged intermediate molded product 7I is shown in FIGS. 5 (A) and 5 (B). The surface of the post-coating forged intermediate product 7I is so smooth that it has gloss, and it is possible to reduce friction with the mold. In addition, the post-coating forged intermediate molded product 7I is molded to a shape that is almost similar to the forged final molded product 7J (for example, a shape of about 80%). Therefore, since the amount of plastic deformation by the cold forging process may be very small (in this case, the remaining 20% may be sufficient), the final mold may be a simple mold and efficiently in a short time. Cold forging can be performed.
For example, the post-coating forged intermediate molded product 7I is used until the depth E1 of the forged recess 35 becomes the depth E2 of the forged final molded product 7J, and the diameter D1 of the flange portion 21 becomes the diameter D2 of the forged final molded product 7J. Molded by cold forging.
Further, the forged final molded product 7J formed by cold forging is more dimensional accuracy and surface smoothness than the case where the final forged molded product is formed by warm forging or hot forging for the reasons described above. In this case, the surface hardness can be improved.

[旋削工程(図4(K))]
旋削工程は、鍛造最終成型品7Jの一部を旋削し、旋削後最終成型品7Kを得る工程である(図4(K)参照)。鍛造最終成型品7Jは、例えば、ロータ支持面22、嵌合軸部30の端面33、第1内輪軌道面18、大径軸部11、小径軸部12、内輪突き当て面12aが旋削され、旋削されない部分には被膜36が残される(図3参照)。
この旋削工程において、鍛造最終成型品7Jの少なくとも嵌合軸部30の車輪用嵌合部32(図3参照)の被膜36は、旋削されることなく残される。
また本実施の形態では、図3に示すように、フランジ部21のロータ支持面22の反対側の面と、第1内輪軌道面18の肩部に隣接して形成されたシール面19(隣接外周面に相当)と、鍛造凹部35の表面と、軸部10の小径軸部12の先端の軸端部15の端面においても被膜36は、旋削されることなく残される。そして、被膜36を残した分だけ旋削加工範囲が小さくなり、旋削加工が容易に、且つ短時間となる。
[Turning process (Fig. 4K)]
The turning process is a process of turning a part of the forged final molded product 7J to obtain a final molded product 7K after the turning (see FIG. 4K). In the forged final molded product 7J, for example, the rotor support surface 22, the end surface 33 of the fitting shaft portion 30, the first inner ring raceway surface 18, the large diameter shaft portion 11, the small diameter shaft portion 12, and the inner ring abutting surface 12a are turned. The coating 36 is left on the part that is not turned (see FIG. 3).
In this turning process, at least the coating 36 of the wheel fitting portion 32 (see FIG. 3) of the fitting shaft portion 30 of the forged final molded product 7J is left without being turned.
In the present embodiment, as shown in FIG. 3, a seal surface 19 (adjacent to the surface of the flange portion 21 opposite to the rotor support surface 22 and the shoulder portion of the first inner ring raceway surface 18 is provided. Equivalent to the outer peripheral surface), the surface of the forged recess 35, and the end face of the shaft end portion 15 at the tip of the small diameter shaft portion 12 of the shaft portion 10 are also left without being turned. Then, the turning range is reduced by the amount of the coating film 36 left, and the turning process is easy and takes a short time.

[熱処理工程(図4(L))]
熱処理工程(焼入れ焼き戻し工程)は、旋削後最終成型品7Kの軸部10の第1内輪軌道面18を高周波焼入れした後、焼き戻しして熱処理後最終成型品7Lを得る工程である(図4(L)参照)。これにより、第1内輪軌道面18の周囲には焼入れ焼き戻しによる硬化層Sが形成される(図3参照)。
なお、シール面19、小径軸部12の外周面、内輪突き当て面12aには、あえて高周波焼入れを行わないことにより、熱処理工程の時間を短縮化することができる。
本実施の形態では、比較的炭素量が多く高硬度の構造用炭素鋼を用いているので、シール面19の周囲である軸部10とフランジ部21(フランジ基部20)との境界部に高周波焼入れを行わなくても、必要な強度を確保することができる。
[Heat treatment process (FIG. 4 (L))]
The heat treatment step (quenching and tempering step) is a step in which the first inner ring raceway surface 18 of the shaft portion 10 of the final molded product 7K after turning is induction-quenched and then tempered to obtain a final molded product 7L after the heat treatment (FIG. 4 (L)). As a result, a hardened layer S is formed around the first inner ring raceway surface 18 by quenching and tempering (see FIG. 3).
Note that the heat treatment step time can be shortened by not subjecting the seal surface 19, the outer peripheral surface of the small-diameter shaft portion 12, and the inner ring abutting surface 12a to induction hardening.
In the present embodiment, structural carbon steel having a relatively large amount of carbon and high hardness is used, so that a high frequency is provided at the boundary portion between the shaft portion 10 and the flange portion 21 (flange base portion 20) around the seal surface 19. The necessary strength can be ensured without quenching.

[穴あけ工程(図4(M))]
穴あけ工程は、熱処理後最終成型品7Lのフランジ部21にボルト孔24を穴あけ加工して穴あけ後最終成型品7Mを得る工程である(図4(M)参照)。
[Drilling process (Fig. 4 (M))]
The drilling step is a step of drilling the bolt holes 24 in the flange portion 21 of the final molded product 7L after heat treatment to obtain the final molded product 7M after drilling (see FIG. 4M).

[研磨工程(図4(N))]
研磨工程は、穴あけ後最終成型品7Mの第1内輪軌道面18を研磨加工して研磨後最終成型品7Nを得る工程である(図4(N)参照)。
以上にて車輪用転がり軸受装置の軸部材1の製造工程が完了し、図4(A)〜(N)の工程によって得られた研磨後最終成型品7Nが、軸部材1となる。
[Polishing process (FIG. 4 (N))]
The polishing step is a step of polishing the first inner ring raceway surface 18 of the final molded product 7M after drilling to obtain a final molded product 7N after polishing (see FIG. 4 (N)).
The manufacturing process of the shaft member 1 of the rolling bearing device for wheels is thus completed, and the final molded product 7N after polishing obtained by the steps of FIGS.

熱間鍛造(素材の変態点温度以上の温度で鍛造)のみで鍛造最終成型品を鍛造した従来の製造方法では、成型の自由度が大きく冷間鍛造と比較して鍛造の圧力が小さくて済むので比較的小さく単純な金型で良いというメリットを有しているが、冷間鍛造と比較して寸法精度と表面粗さが劣るので鍛造後に切削等にて表面を滑らかにして寸法精度を出す工程を必要とするデメリットを有している。寸法精度が劣る理由は、熱間鍛造では冷却時に厚い部分に熱が集まり、たわみが発生し易いためであり、表面粗さが劣る理由は、素材を変態点以上の温度に加熱すると表面に酸化スケールが発生するためである。
また冷間鍛造のみで鍛造最終成型品を鍛造した従来の製造方法では、熱間鍛造と比較して寸法精度と表面粗さが優れているというメリットを有しているが、鍛造の圧力が熱間鍛造よりも高いので比較的大きく複雑な金型を必要とするというデメリットを有している。
しかし、本実施の形態にて説明した車輪用転がり軸受装置の軸部材1の製造方法は、鍛造による成型において熱間鍛造と冷間鍛造を組み合わせる、という適切な工程にて、熱間鍛造のメリットと冷間鍛造のメリットの双方を得ることができる。
すなわち、成型の自由度が大きな熱間鍛造にて大部分の成型を行って熱間鍛造のメリットを得た後、残りの成型量(より少ない塑性変形量)を冷間鍛造にて行って冷間鍛造のメリットを得る。熱間鍛造の金型は上記のとおり比較的小さく単純なものでよく、塑性変形量を少なくした冷間鍛造の金型も比較的小さく単純なものでよい。従って、より単純な金型にて、より効率良く鍛造による成型を行うことができる。
また軸部材1の大部分の成型を、熱間鍛造で行っているので、表面に酸化スケールが発生するが、冷間鍛造前に表面を滑らかにするショットブラスト加工を行うことで、表面を滑らかにするとともに変質部を適切に除去することができる。
また鍛造中間成型品7Eの焼鈍処理は、第1冷却工程にて、熱間鍛造の後、且つ冷間鍛造の前に、熱間鍛造時の熱を利用して行われるので、改めて加熱する必要がなく、より効率良く焼鈍処理を行うことができる。また鍛造中間成型品7Eは、適切な冷却速度等にて冷却されて焼鈍処理が施され、所望する剛性と延性を兼ね備えた冷却後鍛造中間成型品7Gとなる。
また第1冷却工程にて適切な温度管理が必要な焼鈍処理を適切な中間設定温度まで行った後は、第2冷却工程にて特別な温度管理をすることなく常温まで冷却(放置)するので、第2冷却工程では特別な設備が不要であるとともに工程も単純である。
また熱間鍛造にて発生した酸化スケールをショットブラスト加工(第1表面処理工程)にて除去することで、適切な表面粗さを確保するとともに変質部を適切に除去することができる。
そして冷間鍛造工程の前に第2表面処理工程にて被膜処理を施すことで、鍛造中間成型品と金型との抵抗を低減してより効率良く冷間鍛造を行うことを可能とするとともに、鍛造最終成型品の表面をより滑らかにすることができる。
そして表面除去後鍛造中間成型品7Hに被膜処理した被膜後鍛造中間成型品7Iから冷間鍛造された鍛造最終成型品7Jは、前述した理由により、温間鍛造や熱間鍛造にて成型した場合よりも寸法精度が高く、表面が滑らかとなり、表面硬さも向上される。
In the conventional manufacturing method in which the final forged product is forged only by hot forging (forging at a temperature equal to or higher than the transformation temperature of the material), the degree of freedom of molding is large and the forging pressure can be reduced compared to cold forging. Therefore, it has the merit that a relatively small and simple mold may be used, but the dimensional accuracy and surface roughness are inferior to those of cold forging. It has a demerit that requires a process. The reason why the dimensional accuracy is inferior is that in hot forging, heat gathers in the thick part during cooling and deflection tends to occur, and the reason why the surface roughness is inferior is that the surface is oxidized when heated to a temperature above the transformation point. This is because scale occurs.
In addition, the conventional manufacturing method in which the final forged product is forged only by cold forging has the advantage of superior dimensional accuracy and surface roughness compared to hot forging, but the forging pressure is hot. Since it is higher than intermediate forging, it has the disadvantage of requiring a relatively large and complicated mold.
However, the manufacturing method of the shaft member 1 of the rolling bearing device for a wheel described in the present embodiment is an advantage of hot forging in an appropriate process of combining hot forging and cold forging in molding by forging. And the advantages of cold forging can be obtained.
That is, most of the molding is performed by hot forging with a large degree of freedom of molding to obtain the merits of hot forging, and then the remaining molding amount (less plastic deformation amount) is performed by cold forging. Get the benefits of cold forging. As described above, the hot forging die may be relatively small and simple, and the cold forging die having a small amount of plastic deformation may be relatively small and simple. Accordingly, forging can be performed more efficiently with a simpler mold.
Also, since most of the shaft member 1 is molded by hot forging, oxidized scale is generated on the surface, but the surface is smoothed by performing shot blasting to smooth the surface before cold forging. In addition, the altered portion can be appropriately removed.
Further, the annealing process of the forged intermediate molded product 7E is performed by using the heat at the time of hot forging after the hot forging and before the cold forging in the first cooling step, so it is necessary to heat it again. Therefore, the annealing process can be performed more efficiently. Further, the forged intermediate molded product 7E is cooled at an appropriate cooling rate or the like and is subjected to an annealing process, and becomes a post-cooling forged intermediate molded product 7G having both desired rigidity and ductility.
In addition, after performing the annealing process, which requires appropriate temperature control in the first cooling process, to an appropriate intermediate set temperature, the second cooling process cools (stands) to room temperature without special temperature control. In the second cooling process, no special equipment is required and the process is simple.
Moreover, by removing the oxide scale generated by hot forging by shot blasting (first surface treatment step), it is possible to ensure an appropriate surface roughness and to appropriately remove the altered portion.
And, by applying a film treatment in the second surface treatment step before the cold forging step, it is possible to reduce the resistance between the forged intermediate molded product and the die and perform cold forging more efficiently. The surface of the final forged product can be made smoother.
And when the forged final molded product 7J cold forged from the post-coated forged intermediate molded product 7I coated on the forged intermediate molded product 7H after surface removal is molded by warm forging or hot forging for the reasons described above. The dimensional accuracy is higher than that, the surface becomes smooth, and the surface hardness is improved.

本発明の車輪用転がり軸受装置の軸部材の製造方法は、本実施の形態で説明した工程、処理等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。また製造される軸部材1の形状等は、本実施の形態にて説明した軸部材1の形状等に限定されるものではない。
また本実施の形態にて説明した車輪用転がり軸受装置の製造方法は、大径軸部11と小径軸部12と内輪突き当て面12aが形成された軸部10の例を用いて説明した。しかし、本実施の形態にて説明した車輪用転がり軸受装置の製造方法は、大径軸部11と小径軸部12と内輪突き当て面12aを有していない軸部を備えた車輪用転がり軸受装置の軸部材の製造方法にも適用することが可能である。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
The method of manufacturing the shaft member of the rolling bearing device for a wheel according to the present invention is not limited to the steps and processes described in the present embodiment, and various modifications, additions and deletions are possible without departing from the scope of the present invention. It is. Further, the shape or the like of the shaft member 1 to be manufactured is not limited to the shape or the like of the shaft member 1 described in the present embodiment.
Moreover, the manufacturing method of the rolling bearing device for wheels demonstrated in this Embodiment was demonstrated using the example of the axial part 10 in which the large diameter axial part 11, the small diameter axial part 12, and the inner ring butting surface 12a were formed. However, the wheel rolling bearing device manufacturing method described in the present embodiment is a wheel rolling bearing including a large-diameter shaft portion 11, a small-diameter shaft portion 12, and a shaft portion that does not have the inner ring abutting surface 12a. It is possible to apply also to the manufacturing method of the shaft member of an apparatus.
The numerical values used in the description of the present embodiment are examples, and are not limited to these numerical values.

1 軸部材(車輪用転がり軸受装置の軸部材)
10 軸部
11 大径軸部
12 小径軸部
12a 内輪突き当て面
15 軸端部
17 かしめ部
18 第1内輪軌道面
19 シール面(隣接外周面)
20 フランジ基部
21 フランジ部
30 嵌合軸部
36 潤滑剤被膜
42 内輪
44 第2内輪軌道面
45 外輪
46 第1外輪軌道面
47 第2外輪軌道面
7A 軸状素材
7E 鍛造中間成型品
7J 鍛造最終成型品
A 車輪用転がり軸受装置

1 Shaft member (shaft member of rolling bearing device for wheels)
DESCRIPTION OF SYMBOLS 10 Shaft part 11 Large diameter shaft part 12 Small diameter shaft part 12a Inner ring contact surface 15 Shaft end part 17 Caulking part 18 1st inner ring raceway surface 19 Seal surface (adjacent outer peripheral surface)
20 Flange base portion 21 Flange portion 30 Fitting shaft portion 36 Lubricant coating 42 Inner ring 44 Second inner ring raceway surface 45 Outer ring 46 First outer ring raceway surface 47 Second outer ring raceway surface 7A Shaft material 7E Forging intermediate molding 7J Forging final molding A Rolling bearing device for wheel

Claims (5)

軸方向に開口する凹部を備えた円筒形状を有する嵌合軸部と、
軸方向に直交する円板形状あるいは放射形状を有するフランジ部と、
外周面に内輪軌道面が形成された円柱形状を有する軸部と、が軸方向に沿って同軸上に配置された車輪用転がり軸受装置の軸部材の製造方法において、
鋼材を、当該鋼材の変態点温度以上の温度である熱間温度となるように加熱する加熱工程と、
前記熱間温度の鋼材を、前記鋼材の形状と、鍛造における最終形状である鍛造最終成型品と、の中間の形状を有する鍛造中間成型品となるように中間成型品用金型を用いて成型する熱間鍛造工程と、
最終成型品用金型を用いて前記鍛造中間成型品を冷間鍛造することで前記嵌合軸部と前記フランジ部と前記軸部の形状を前記鍛造最終成型品の形状に成型する冷間鍛造工程と、を有する、
車輪用転がり軸受装置の軸部材の製造方法。
A fitting shaft portion having a cylindrical shape with a recess opening in the axial direction;
A flange portion having a disk shape or a radial shape perpendicular to the axial direction;
In the method of manufacturing a shaft member of a rolling bearing device for a wheel in which a shaft portion having a columnar shape in which an inner ring raceway surface is formed on an outer peripheral surface, is disposed coaxially along the axial direction.
A heating step of heating the steel material to a hot temperature that is a temperature equal to or higher than the transformation point temperature of the steel material;
Forming the steel material at the hot temperature using a mold for intermediate molded product so as to be a forged intermediate molded product having an intermediate shape between the shape of the steel material and a forged final molded product which is a final shape in forging. A hot forging process,
Cold forging which forms the shape of the fitting shaft portion, the flange portion and the shaft portion into the shape of the forged final molded product by cold forging the forged intermediate molded product using a mold for the final molded product And having a process
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記熱間鍛造工程の後に、前記鍛造中間成型品を、前記熱間鍛造工程時の温度よりも低く設定された中間設定温度となるまで、冷却設定温度/時間の速度で徐々に冷却する第1冷却工程を有する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 1,
After the hot forging step, the first forged intermediate product is gradually cooled at a cooling set temperature / hour rate until it reaches an intermediate set temperature set lower than the temperature during the hot forging step. Having a cooling step,
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項2に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1冷却工程の後に、前記中間設定温度まで冷却した前記鍛造中間成型品を、更に常温まで冷却する第2冷却工程を有する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 2,
After the first cooling step, the second forging intermediate molded product cooled to the intermediate set temperature further has a second cooling step for cooling to room temperature.
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項1〜3のいずれか一項に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記冷間鍛造工程の前に、前記鍛造中間成型品の表面をショットブラスト加工する第1表面処理工程を有する、
車輪用転がり軸受装置の軸部材の製造方法。
It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to any one of claims 1 to 3,
Before the cold forging step, it has a first surface treatment step of shot blasting the surface of the forged intermediate molded product,
Manufacturing method of shaft member of rolling bearing device for wheel.
請求項4に記載の車輪用転がり軸受装置の軸部材の製造方法であって、
前記第1表面処理工程の後に、前記ショットブラスト加工した前記鍛造中間成型品の表面、または前記最終成型品用金型における前記鍛造中間成型品と接する面、の少なくとも一方に、前記鍛造中間成型品と前記最終成型品用金型との間の摩擦力を低減する被膜処理を施す第2表面処理工程を有する、
車輪用転がり軸受装置の軸部材の製造方法。

It is a manufacturing method of the shaft member of the rolling bearing device for wheels according to claim 4,
After the first surface treatment step, the forged intermediate molded product is provided on at least one of the surface of the forged intermediate molded product that has been shot blasted or the surface that contacts the forged intermediate molded product in the mold for the final molded product. And a second surface treatment step of applying a coating treatment to reduce the frictional force between the final molded product mold,
Manufacturing method of shaft member of rolling bearing device for wheel.

JP2012010003A 2012-01-20 2012-01-20 Method for manufacturing shaft member of wheel rolling bearing device Pending JP2013146769A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012010003A JP2013146769A (en) 2012-01-20 2012-01-20 Method for manufacturing shaft member of wheel rolling bearing device
CN2013100139005A CN103216531A (en) 2012-01-20 2013-01-15 A manufacturing method of a shaft component of an antifriction bearing device used for wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010003A JP2013146769A (en) 2012-01-20 2012-01-20 Method for manufacturing shaft member of wheel rolling bearing device

Publications (1)

Publication Number Publication Date
JP2013146769A true JP2013146769A (en) 2013-08-01

Family

ID=48814598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010003A Pending JP2013146769A (en) 2012-01-20 2012-01-20 Method for manufacturing shaft member of wheel rolling bearing device

Country Status (2)

Country Link
JP (1) JP2013146769A (en)
CN (1) CN103216531A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048915A (en) * 2013-09-03 2015-03-16 日本精工株式会社 Wheel supporting rolling bearing unit and method of manufacturing hub for the same
WO2015163574A1 (en) * 2014-04-23 2015-10-29 주식회사 일진글로벌 Driving wheel bearing and method for manufacturing same
CN114589279A (en) * 2020-12-03 2022-06-07 丰田自动车株式会社 Method and apparatus for manufacturing workpiece
CN114833287A (en) * 2022-05-07 2022-08-02 浙江联大锻压有限公司 Forging device and forging method for special material forge piece of marine equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104128744A (en) * 2014-06-26 2014-11-05 梧州恒声电子科技有限公司 Reducing process for producing T iron by cold forging
CN104139142A (en) * 2014-06-26 2014-11-12 梧州恒声电子科技有限公司 Diameter-expanding technique for T iron produced through cold forging
CN114857179B (en) * 2022-04-11 2023-06-27 洛阳轴承研究所有限公司 Assembly method suitable for medium-small double-row groove angular contact bearing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048915A (en) * 2013-09-03 2015-03-16 日本精工株式会社 Wheel supporting rolling bearing unit and method of manufacturing hub for the same
WO2015163574A1 (en) * 2014-04-23 2015-10-29 주식회사 일진글로벌 Driving wheel bearing and method for manufacturing same
KR101573023B1 (en) * 2014-04-23 2015-11-30 주식회사 일진글로벌 A driving wheel bearing and manufacturing method thereof
US10207536B2 (en) 2014-04-23 2019-02-19 Iljin Global Co., Ltd. Drive wheel bearing and method of manufacturing the same
CN114589279A (en) * 2020-12-03 2022-06-07 丰田自动车株式会社 Method and apparatus for manufacturing workpiece
CN114833287A (en) * 2022-05-07 2022-08-02 浙江联大锻压有限公司 Forging device and forging method for special material forge piece of marine equipment
CN114833287B (en) * 2022-05-07 2024-02-02 浙江联大锻压有限公司 Forging device and forging method for marine tool special material forgings

Also Published As

Publication number Publication date
CN103216531A (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP2013146769A (en) Method for manufacturing shaft member of wheel rolling bearing device
JP2012183563A (en) Method of manufacturing shaft member for wheel rolling bearing device
EP2599642A1 (en) Bearing unit
JP5050446B2 (en) Bearing unit
JP2013141698A (en) Method for manufacturing shaft member of rolling bearing device for wheel
JP2012197070A (en) Manufacturing method for wheel rolling bearing device, and wheel rolling bearing device
EP2497583B1 (en) Method of manufacturing a shaft member for a wheel hub assembly with rolling bearings
JP5168852B2 (en) Bearing unit
JP2013023086A (en) Hub unit for supporting wheel, and method for manufacturing the same
JP4893585B2 (en) Manufacturing method of wheel bearing rolling bearing unit
JP2007051750A (en) Wheel bearing device
JP2012228697A (en) Shaft member of rolling bearing device for wheel, and method for manufacturing the same
JP2010188835A (en) Method of manufacturing wheel bearing device
JP2012228696A (en) Shaft member of rolling bearing device for wheel and method for producing the same
JP5776228B2 (en) Shaft member for rolling bearing device for wheel and manufacturing method thereof
JP2012184813A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
WO2012121246A1 (en) Manufacturing method for wheel roller bearing device
JP5195081B2 (en) Rolling bearing unit for wheel support and manufacturing method thereof
JP2013146777A (en) Method for manufacturing inner ring member of rolling bearing device for wheel
JP2008266667A (en) Rolling bearing device for supporting wheel
WO2012121245A1 (en) Shaft member for rolling bearing device for wheel
JP2012183560A (en) Shaft member of rolling bearing for wheel and method for manufacturing the same
JP2012192818A (en) Bearing device for wheel
JP6256585B2 (en) Manufacturing method of rolling bearing device for wheel
JP7180206B2 (en) Bearing manufacturing method and manufacturing device, vehicle manufacturing method, and mechanical device manufacturing method