JP5415999B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP5415999B2
JP5415999B2 JP2010055260A JP2010055260A JP5415999B2 JP 5415999 B2 JP5415999 B2 JP 5415999B2 JP 2010055260 A JP2010055260 A JP 2010055260A JP 2010055260 A JP2010055260 A JP 2010055260A JP 5415999 B2 JP5415999 B2 JP 5415999B2
Authority
JP
Japan
Prior art keywords
wheel
stress relaxation
bearing device
hub
wheel bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010055260A
Other languages
Japanese (ja)
Other versions
JP2011189771A (en
Inventor
哲也 橋本
孝康 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2010055260A priority Critical patent/JP5415999B2/en
Publication of JP2011189771A publication Critical patent/JP2011189771A/en
Application granted granted Critical
Publication of JP5415999B2 publication Critical patent/JP5415999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/60Thickness, e.g. thickness of coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、自動車等の車輪を回転自在に支承する車輪用軸受装置、特に、軽量・コンパクト化を図りつつ、ハブ輪の疲れ強さを高め、強度・耐久性の向上を図った車輪用軸受装置に関するものである。   The present invention relates to a wheel bearing device for rotatably supporting a wheel of an automobile or the like, and more particularly, to a wheel bearing device that increases the fatigue strength of a hub wheel and improves strength and durability while reducing weight and size. It relates to the device.

従来から自動車等の車輪を支持する車輪用軸受装置は、車輪を取り付けるためのハブ輪を転がり軸受を介して回転自在に支承するもので、駆動輪用と従動輪用とがある。構造上の理由から、駆動輪用では内輪回転方式が、従動輪用では内輪回転と外輪回転の両方式が一般的に採用されている。この車輪用軸受装置には、所望の軸受剛性を有し、ミスアライメントに対しても耐久性を発揮すると共に、燃費向上の観点から回転トルクが小さい複列アンギュラ玉軸受が多用されている。この複列アンギュラ玉軸受は、固定輪と回転輪との間に複数のボールを介在させ、このボールに所定の接触角を付与して固定輪および回転輪に接触させている。   2. Description of the Related Art Conventionally, a wheel bearing device for supporting a wheel of an automobile or the like is such that a hub wheel for mounting a wheel is rotatably supported via a rolling bearing, and there are a drive wheel and a driven wheel. For structural reasons, an inner ring rotation method is generally used for driving wheels, and an inner ring rotation method and an outer ring rotation method are generally used for driven wheels. As the wheel bearing device, a double-row angular ball bearing having a desired bearing rigidity, exhibiting durability against misalignment, and having a small rotational torque from the viewpoint of improving fuel efficiency is often used. In this double row angular contact ball bearing, a plurality of balls are interposed between a fixed ring and a rotating ring, and a predetermined contact angle is given to the balls so as to contact the fixed ring and the rotating ring.

また、車輪用軸受装置には、懸架装置を構成するナックルとハブ輪との間に複列アンギュラ玉軸受等からなる車輪用軸受を嵌合させた第1世代と称される構造から、外方部材の外周に直接車体取付フランジまたは車輪取付フランジが形成された第2世代構造、また、ハブ輪の外周に一方の内側転走面が直接形成された第3世代構造、あるいは、ハブ輪と等速自在継手の外側継手部材の外周にそれぞれ内側転走面が直接形成された第4世代構造とに大別されている。   Further, the wheel bearing device has a structure called a first generation in which a wheel bearing composed of a double row angular ball bearing or the like is fitted between a knuckle and a hub wheel constituting a suspension device. Second generation structure in which body mounting flange or wheel mounting flange is formed directly on the outer periphery of the member, third generation structure in which one inner rolling surface is directly formed on the outer periphery of the hub wheel, or hub wheel, etc. It is roughly classified into a fourth generation structure in which the inner rolling surface is directly formed on the outer periphery of the outer joint member of the speed universal joint.

こうした車輪用軸受装置において、近年、省資源あるいは公害等の面から燃費向上に対する要求は厳しいものがある。自動車部品において、特に、車輪用軸受装置の軽量化はこうした要求に応える要因として注目され、強く望まれて久しい。しかし、一方、軽量化のためにハブ輪を中空構造にすることが考えられるが、この軽量化に伴い剛性の低下が生じる。すなわち、大きな荷重がかかった時にハブ輪に変形が生じ、異常振動や内側転走面の早期剥離、あるいは、ハブ輪に圧入された内輪とが相対回転する、所謂クリープが生じることがある。   In these wheel bearing devices, in recent years, there are severe demands for improving fuel efficiency in terms of resource saving or pollution. In automobile parts, in particular, weight reduction of a wheel bearing device has been attracting attention and strongly desired as a factor to meet such demands. On the other hand, it is conceivable to make the hub wheel have a hollow structure in order to reduce the weight, but the rigidity is reduced as the weight is reduced. That is, when a large load is applied, the hub wheel may be deformed, and abnormal vibration, early separation of the inner raceway surface, or so-called creep may occur in which the inner ring press-fitted into the hub wheel rotates relative to each other.

こうした問題を解決したものとして、図8に示すような車輪用軸受装置が知られている。この車輪用軸受装置は、内方部材51と外方部材52、および両部材51、52間に転動自在に収容された複列のボール53、53とを備えている。内方部材51は、ハブ輪54と、このハブ輪54に所定のシメシロを介して圧入された内輪55とからなる。   As a solution to these problems, a wheel bearing device as shown in FIG. 8 is known. This wheel bearing device includes an inner member 51, an outer member 52, and double-row balls 53, 53 accommodated between the members 51, 52 so as to roll freely. The inner member 51 includes a hub ring 54 and an inner ring 55 that is press-fitted into the hub ring 54 through a predetermined shimiro.

ハブ輪54は、一端部に車輪(図示せず)を取り付けるための車輪取付フランジ56を一体に有し、外周に一方の内側転走面54aと、この内側転走面54aから軸方向に延びる軸状部57を介して小径段部54bが形成されている。一方、内輪55は、外周に他方の内側転走面55aが形成され、ハブ輪54の小径段部54bに圧入されると共に、この小径段部54bの端部を塑性変形させて形成した加締部58によって軸方向に固定されている。   The hub wheel 54 integrally has a wheel mounting flange 56 for mounting a wheel (not shown) at one end, and has an inner rolling surface 54a on the outer periphery and an axial direction extending from the inner rolling surface 54a. A small diameter step portion 54 b is formed through the shaft-like portion 57. On the other hand, the inner ring 55 is formed by forming the other inner rolling surface 55a on the outer periphery, press-fitted into the small-diameter step portion 54b of the hub wheel 54, and forming the end portion of the small-diameter step portion 54b by plastic deformation. The portion 58 is fixed in the axial direction.

外方部材52は、外周にナックル(図示せず)に取り付けられるための車体取付フランジ52bを一体に有し、内周にハブ輪54の内側転走面54aに対向する一方の外側転走面52aと、内輪55の内側転走面55aに対向する他方の外側転走面52aが一体に形成されている。これら両転走面間に複列のボール53、53が収容され、保持器59、59によって転動自在に保持されている。また、外方部材52とハブ輪54との間の環状空間を密封するためにシール60が装着されると共に、外方部材52の端部内周面には、鋼鈑からプレス成形により形成された有底短円筒形状のカバー61が装着されている。   The outer member 52 integrally has a vehicle body mounting flange 52b to be attached to a knuckle (not shown) on the outer periphery, and one outer rolling surface facing the inner rolling surface 54a of the hub wheel 54 on the inner periphery. 52a and the other outer rolling surface 52a facing the inner rolling surface 55a of the inner ring 55 are integrally formed. Double-row balls 53 and 53 are accommodated between these rolling surfaces, and are held by the cages 59 and 59 so as to be freely rollable. A seal 60 is attached to seal the annular space between the outer member 52 and the hub wheel 54, and the inner peripheral surface of the end portion of the outer member 52 is formed by pressing from a steel plate. A bottomed short cylindrical cover 61 is attached.

ここで、ハブ輪54は、小径段部54bの内輪55の嵌合面Aのみに対応する部分に中実構造部62が形成され、当該部分以外は中空構造部63とされている。すなわち、面取り部55bと嵌合面Aとの境界を通る軸方向に直交する平面上に中実構造部62の両端面62a、62bが設けられ、中実構造部62の内端側にも新たに中空構造部63が設けられている。そして、当該中空構造部63は、ハブ輪54の剛性を確保できる範囲で最大限の容積を有しており、ハブ輪54の強度・剛性を確保しつつ、軽量化を達成することができる(例えば、特許文献1参照。)。   Here, in the hub wheel 54, a solid structure portion 62 is formed in a portion corresponding only to the fitting surface A of the inner ring 55 of the small diameter step portion 54b, and the other portion is a hollow structure portion 63. That is, both end surfaces 62a and 62b of the solid structure portion 62 are provided on a plane orthogonal to the axial direction passing through the boundary between the chamfered portion 55b and the fitting surface A, and the inner end side of the solid structure portion 62 is newly provided. The hollow structure part 63 is provided in this. And the said hollow structure part 63 has the maximum volume in the range which can ensure the rigidity of the hub ring 54, and can achieve weight reduction, ensuring the intensity | strength and rigidity of the hub ring 54 ( For example, see Patent Document 1.)

特開2007−269066号公報JP 2007-269066 A

こうした従来の車輪用軸受装置では、ハブ輪54の中空構造部63の容積が大きくなるにつれ軽量化を達成することができるが、ハブ輪54の輪郭を高周波焼入れした時に生じる熱処理歪みが中空構造部63へ引張残留応力として作用するため、回転曲げ負荷による応力振幅がこの中空構造部63に作用した場合に、ハブ輪の中空構造部63に亀裂が生じる恐れがある。また、鍛造加工による素材の肉の流れが悪くなって鍛造性が低下するだけでなく、鍛造の金型寿命の低下や鍛造加工時に鍛造傷が発生する恐れがあった。   In such a conventional wheel bearing device, the weight can be reduced as the volume of the hollow structure portion 63 of the hub wheel 54 increases. However, the heat treatment distortion generated when the contour of the hub wheel 54 is induction-hardened is reduced. Since it acts as a tensile residual stress on 63, there is a possibility that cracks may occur in the hollow structure portion 63 of the hub wheel when the stress amplitude due to the rotational bending load acts on this hollow structure portion 63. In addition, the flow of raw material due to the forging process deteriorates and the forgeability deteriorates, and there is a possibility that forging damage may occur during the forging process and the forging die life.

本発明は、このような事情に鑑みてなされたもので、軽量・コンパクト化を図りつつ、ハブ輪の疲れ強さを高め、強度・耐久性の向上を図った車輪用軸受装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and provides a wheel bearing device that increases the fatigue strength of the hub wheel and improves the strength and durability while reducing the weight and size. It is an object.

係る目的を達成すべく、本発明のうち請求項1記載の発明は、外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸状部を介して軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体と、前記外方部材と内方部材との間に形成される環状空間の両端開口部に装着されたシールとを備えた車輪用軸受装置において、前記シールのうちアウター側のシールの摺接面となる前記車輪取付フランジのインナー側の基部が所定の曲率半径からなる円弧面に形成され、前記ハブ輪の内側転走面をはじめ、前記基部から小径段部に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層が形成されると共に、前記ハブ輪のアウター側の端部にすり鉢状の凹所が鍛造加工によって形成され、この凹所の深さが、前記ハブ輪のアウター側の端面から前記基部の位置に対応する付近までとされ、前記ハブ輪の高周波焼入れ後、前記凹所からさらにインナー側に応力緩和穴が切削加工により形成されている。   In order to achieve such an object, the invention described in claim 1 of the present invention has a vehicle body mounting flange integrally attached to the knuckle on the outer periphery, and a double row outer rolling surface is integrally formed on the inner periphery. The outer member, and a wheel mounting flange for mounting the wheel at one end of the outer member, and one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and the inner rolling surface A hub wheel formed with a small-diameter step portion extending in the axial direction from the shaft to the shaft portion, and the other inwardly rolling member that is press-fitted into the small-diameter step portion of the hub wheel and that faces the outer rolling surface of the double row on the outer periphery. An inner member formed of an inner ring formed with a running surface, a double row rolling element accommodated between the rolling surfaces of the inner member and the outer member via a retainer, and A seal mounted at both ends of the annular space formed between the outer member and the inner member. In the wheel bearing device, an inner base portion of the wheel mounting flange that is a sliding contact surface of the outer seal of the seals is formed as an arc surface having a predetermined radius of curvature, and the inner rolling surface of the hub wheel. In addition, a predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening from the base portion to the small-diameter step portion, and a mortar-like concave portion is formed on the outer side end portion of the hub wheel. The recess is formed by forging, and the depth of the recess is from the end surface on the outer side of the hub wheel to the vicinity corresponding to the position of the base, and after induction hardening of the hub wheel, further from the recess A stress relaxation hole is formed on the inner side by cutting.

このように、ハブ輪の外周に内側転走面が直接形成された第3世代構造の車輪用軸受装置において、シールのうちアウター側のシールの摺接面となる車輪取付フランジのインナー側の基部が所定の曲率半径からなる円弧面に形成され、ハブ輪の内側転走面をはじめ、基部から小径段部に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層が形成されると共に、ハブ輪のアウター側の端部にすり鉢状の凹所が鍛造加工によって形成され、この凹所の深さが、ハブ輪のアウター側の端面から基部の位置に対応する付近までとされ、ハブ輪の高周波焼入れ後、凹所からさらにインナー側に応力緩和穴が切削加工により形成されているので、軽量・コンパクト化を図りつつ、中空状となるハブ輪の内径面の熱処理歪みによる残留引張応力を開放することができ、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪の疲れ強さを高め、強度・耐久性の向上を図った車輪用軸受装置を提供することができる。また、鍛造性を損なうことなく鍛造の金型寿命の向上を図ると共に、鍛造加工時に鍛造傷が発生するのを防止することができる。   In this manner, in the third-generation wheel bearing device in which the inner rolling surface is directly formed on the outer periphery of the hub wheel, the base portion on the inner side of the wheel mounting flange that becomes the sliding contact surface of the seal on the outer side of the seal Is formed in a circular arc surface having a predetermined radius of curvature, and a predetermined hardened layer is formed within a range of 58 to 64 HRC by induction hardening from the inner rolling surface of the hub wheel to the small diameter step portion from the base portion. A mortar-shaped recess is formed in the outer end of the hub wheel by forging, and the depth of this recess extends from the end surface on the outer side of the hub wheel to the vicinity corresponding to the position of the base. After induction hardening of the hub wheel, stress relief holes are formed by cutting from the recess to the inner side, so that heat treatment distortion of the inner surface of the hub ring that is hollow while reducing weight and size By Residual tensile stress can be released, and the wheel bearing is designed to increase the fatigue strength of the hub wheel and improve its strength and durability even when a rotating bending moment is applied when the vehicle turns and a repeated stress is applied. An apparatus can be provided. Further, it is possible to improve the forging die life without impairing the forgeability and to prevent the forging damage from occurring during the forging process.

好ましくは、請求項2に記載の発明のように、前記応力緩和穴の先端部が、前記内輪の小端面が当接する肩部の位置に対応する付近に止められていれば、断面急変形状となって応力集中が発生することなくハブ輪の強度・耐久性の向上を図ることができる。   Preferably, as in the invention described in claim 2, if the tip of the stress relaxation hole is stopped in the vicinity corresponding to the position of the shoulder where the small end surface of the inner ring contacts, Thus, the strength and durability of the hub wheel can be improved without causing stress concentration.

また、請求項3に記載の発明のように、前記ハブ輪のアウター側の端部のうち少なくとも前記基部部分の最小肉厚と前記軸状部部分の最小肉厚が略等しくなるように前記応力緩和穴が所望の内径に設定されていれば、軽量・コンパクト化を図りつつ、ハブ輪の疲れ強さを高め、強度・耐久性の向上を図ることができる。   According to a third aspect of the present invention, the stress is applied so that at least the minimum thickness of the base portion and the minimum thickness of the shaft-shaped portion of the outer end portion of the hub wheel are substantially equal. If the relaxation hole is set to a desired inner diameter, the fatigue strength of the hub wheel can be increased and the strength and durability can be improved while reducing the weight and size.

また、請求項4に記載の発明のように、前記応力緩和穴がインナー側に漸次縮径するテーパ状に形成されていても良い。   Further, as in the invention described in claim 4, the stress relaxation hole may be formed in a tapered shape that gradually decreases in diameter toward the inner side.

また、請求項5に記載の発明のように、前記応力緩和穴が、インナー側に漸次縮径するテーパ状に形成され、その深さが前記複列の転動体列の間に設定された第1の応力緩和穴と、この第1の応力緩和穴よりも小径の第2の応力緩和穴とで構成されていても良い。   According to a fifth aspect of the present invention, the stress relaxation hole is formed in a tapered shape that gradually decreases in diameter toward the inner side, and a depth thereof is set between the two rows of rolling element rows. One stress relaxation hole and a second stress relaxation hole having a smaller diameter than the first stress relaxation hole may be used.

また、請求項6に記載の発明のように、前記応力緩和穴が、円筒状でその深さが前記複列の転動体列の間に設定された第1の応力緩和穴と、この第1の応力緩和穴よりも小径の第2の応力緩和穴とで構成されていても良い。   According to a sixth aspect of the present invention, the stress relaxation hole is cylindrical and has a first stress relaxation hole whose depth is set between the two rows of rolling element rows. The second stress relaxation hole may have a smaller diameter than the stress relaxation hole.

また、請求項7に記載の発明のように、前記応力緩和穴の先端部が円弧状に形成されていても良い。   Further, as in the invention described in claim 7, the tip portion of the stress relaxation hole may be formed in an arc shape.

また、請求項8に記載の発明のように、前記応力緩和穴の先端部が切削加工時のセンタ穴となる円錐穴に形成されていても良い。   Further, as in the invention described in claim 8, the tip portion of the stress relaxation hole may be formed in a conical hole serving as a center hole at the time of cutting.

また、請求項9に記載の発明のように、前記ハブ輪がC0.40〜0.80wt%を含む中高炭素鋼で形成されると共に、予め調質処理が施され、その表面硬さが35HRC以下に設定されていれば、組織が粒状化し、引張、曲げ、衝撃値等の機械的性質が上昇して延性や靭性が高まると共に、熱処理変形を抑制することができ、切削等の加工性を向上させることができる。   Further, as in the invention according to claim 9, the hub wheel is made of medium and high carbon steel containing C0.40 to 0.80wt%, and is subjected to a tempering treatment in advance, and its surface hardness is 35HRC. If set to the following, the structure is granulated, mechanical properties such as tension, bending, impact value are increased, ductility and toughness are increased, heat treatment deformation can be suppressed, and workability such as cutting is improved. Can be improved.

また、請求項10に記載の発明のように、前記ハブ輪の少なくとも内径面にショットピーニングによる表面改質で圧縮残留応力が付与されていれば、所望の形状・寸法のまま疲れ強さを一層増大させることができる。   Further, as in the invention according to claim 10, if compressive residual stress is applied to at least the inner diameter surface of the hub wheel by surface modification by shot peening, the fatigue strength is further increased while maintaining a desired shape and size. Can be increased.

また、請求項11に記載の発明のように、前記ハブ輪の内径部に発泡樹脂が充填されていれば、軽量化や応力緩和効果を阻害することなく、中空部に雨水やダスト等が侵入し、ハブ輪の内径部に堆積して発錆するのを確実に防止することができる。   Further, as in the invention described in claim 11, if the inner diameter portion of the hub wheel is filled with foamed resin, rainwater, dust or the like enters the hollow portion without hindering the weight reduction or stress relaxation effect. And it can prevent reliably that it accumulates on the internal diameter part of a hub ring and rusts.

本発明に係る車輪用軸受装置は、外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸状部を介して軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体と、前記外方部材と内方部材との間に形成される環状空間の両端開口部に装着されたシールとを備えた車輪用軸受装置において、前記シールのうちアウター側のシールの摺接面となる前記車輪取付フランジのインナー側の基部が所定の曲率半径からなる円弧面に形成され、前記ハブ輪の内側転走面をはじめ、前記基部から小径段部に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層が形成されると共に、前記ハブ輪のアウター側の端部にすり鉢状の凹所が鍛造加工によって形成され、この凹所の深さが、前記ハブ輪のアウター側の端面から前記基部の位置に対応する付近までとされ、前記ハブ輪の高周波焼入れ後、前記凹所からさらにインナー側に応力緩和穴が切削加工により形成されているので、軽量・コンパクト化を図りつつ、中空状となるハブ輪の内径面の熱処理歪みによる残留引張応力を開放することができ、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪の疲れ強さを高め、強度・耐久性の向上を図った車輪用軸受装置を提供することができる。また、鍛造性を損なうことなく鍛造の金型寿命の向上を図ると共に、鍛造加工時に鍛造傷が発生するのを防止することができる。   The wheel bearing device according to the present invention has an outer member integrally formed with a vehicle body mounting flange to be attached to a knuckle on the outer periphery, and an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and one end portion A wheel mounting flange for mounting the wheel on the outer surface, and one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and the axial direction from the inner rolling surface via the shaft portion A hub ring formed with a small-diameter step portion extending to the inner ring, and an inner ring press-fitted into the small-diameter step portion of the hub ring and having the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery. An inner member, a double row rolling element housed between the rolling surfaces of the inner member and the outer member via a cage, and the outer member and the inner member. In a wheel bearing device provided with seals attached to both end openings of an annular space formed between, The base part on the inner side of the wheel mounting flange that becomes the sliding contact surface of the seal on the outer side is formed in an arc surface having a predetermined radius of curvature, including the inner rolling surface of the hub wheel, and the base part. A predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening over the small diameter step, and a mortar-shaped recess is formed by forging at the outer end of the hub wheel. The depth of the recess is from the end surface on the outer side of the hub wheel to the vicinity corresponding to the position of the base, and after induction hardening of the hub wheel, a stress relaxation hole is further formed on the inner side from the recess. Since it is formed by cutting, it is possible to release residual tensile stress due to heat treatment distortion of the inner surface of the hollow hub wheel while reducing the weight and size, and to rotate when the vehicle turns Also act repeatedly stresses are lower moment load, increases the fatigue strength of the wheel hub, it is possible to provide a wheel bearing apparatus with improved strength and durability. Further, it is possible to improve the forging die life without impairing the forgeability and to prevent the forging damage from occurring during the forging process.

本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. 本発明に係るハブ輪の応力緩和効果を示すグッドマン線図である。It is a Goodman diagram which shows the stress relaxation effect of the hub ring concerning this invention. 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 4th Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第5の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 5th Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第6の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 6th Embodiment of the wheel bearing apparatus which concerns on this invention. 従来の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional wheel bearing apparatus.

外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸状部を介して軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体と、前記外方部材と内方部材との間に形成される環状空間の両端開口部に装着されたシールとを備えた車輪用軸受装置において、前記シールのうちアウター側のシールの摺接面となる前記車輪取付フランジのインナー側の基部が所定の曲率半径からなる円弧面に形成され、前記ハブ輪の内側転走面をはじめ、前記基部から小径段部に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層が形成されると共に、前記ハブ輪のアウター側の端部にすり鉢状の凹所が鍛造加工によって形成され、この凹所の深さが、前記ハブ輪のアウター側の端面から前記基部の位置に対応する付近までとされ、前記ハブ輪の高周波焼入れ後、前記凹所からさらにインナー側に応力緩和穴が切削加工により形成され、この応力緩和穴が、インナー側に漸次縮径するテーパ状に形成され、その深さが前記複列の転動体列の間に設定された第1の応力緩和穴と、この第1の応力緩和穴よりも小径の第2の応力緩和穴とで構成され、この第2の応力緩和穴の先端部が、前記内輪の小端面が当接する肩部の位置に対応する付近に止められている。   A vehicle body mounting flange to be attached to the knuckle on the outer periphery, an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel mounting flange to mount a wheel on one end A hub that is integrally formed with one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a small-diameter step portion extending in the axial direction from the inner rolling surface via the shaft-shaped portion. An inner member formed of an inner ring formed by press-fitting into a small-diameter step portion of the wheel and the hub wheel and having the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery; and the inner member Both ends of an annular space formed between the outer row member and the inner member, and a double row rolling element accommodated between the rolling surfaces of the outer member via a cage. A bearing device for a wheel provided with a seal attached to a portion of the seal. The base portion on the inner side of the wheel mounting flange that becomes the sliding contact surface of the wheel is formed in an arc surface having a predetermined radius of curvature, and extends from the base portion to the small diameter step portion including the inner rolling surface of the hub wheel. A predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening, and a mortar-shaped recess is formed by forging at the outer end of the hub wheel. From the outer end surface of the hub wheel to the vicinity corresponding to the position of the base, after induction hardening of the hub wheel, a stress relaxation hole is further formed from the recess to the inner side by cutting, The stress relaxation hole is formed in a tapered shape that gradually decreases in diameter toward the inner side, and the depth is set between the double row rolling element rows, and the first stress relaxation hole. Second response smaller in diameter than the hole Is composed of a relaxation hole, the tip portion of the second stress relieving holes, small end face of the inner ring is fastened in the vicinity corresponding to the position of the shoulder portion abuts.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2は、本発明に係るハブ輪の応力緩和効果を示すグッドマン線図である。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図1の左側)、中央寄り側をインナー側(図1の右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, and FIG. 2 is a Goodman diagram showing the stress relaxation effect of the hub wheel according to the present invention. In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outer side (left side in FIG. 1), and the side closer to the center is referred to as the inner side (right side in FIG. 1).

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材1と外方部材2、および両部材1、2間に転動自在に収容された複列の転動体(ボール)3、3とを備えている。内方部材1は、ハブ輪4と、このハブ輪4に圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel referred to as a third generation, and is a double row rolling element housed in a freely rollable manner between the inner member 1 and the outer member 2, and both members 1 and 2. (Balls) 3 and 3. The inner member 1 includes a hub ring 4 and an inner ring 5 press-fitted into the hub ring 4.

ハブ輪4は、一端部に車輪(図示せず)を取り付けるための花弁状の車輪取付フランジ6を一体に有し、所定の曲率半径からなる円弧面に形成された車輪取付フランジ6のインナー側の基部6aを介して外周に一方(アウター側)の内側転走面4aと、この内側転走面4aから軸方向に延びる軸状部7を介して小径段部4bが形成されている。車輪取付フランジ6にはハブボルト(図示せず)が周方向等配に植設されている。   The hub wheel 4 integrally has a petal-like wheel mounting flange 6 for mounting a wheel (not shown) at one end, and is formed on an inner surface of the wheel mounting flange 6 formed on an arc surface having a predetermined radius of curvature. A small-diameter stepped portion 4b is formed on the outer periphery of the inner rolling surface 4a on one side (outer side) and a shaft-like portion 7 extending in the axial direction from the inner rolling surface 4a. Hub bolts (not shown) are implanted in the wheel mounting flange 6 at equal intervals in the circumferential direction.

内輪5は、外周に他方(インナー側)の内側転走面5aが形成され、ハブ輪4の小径段部4bに所定のシメシロを介して圧入されると共に、この小径段部4bの端部を塑性変形させて形成した加締部8によって軸方向に固定されている。   The inner ring 5 is formed with the other (inner side) inner raceway surface 5a on the outer periphery, and is press-fitted into the small-diameter step portion 4b of the hub wheel 4 via a predetermined shimiro, and the end portion of the small-diameter step portion 4b is It is fixed in the axial direction by a caulking portion 8 formed by plastic deformation.

ハブ輪4はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、内側転走面4aをはじめ、車輪取付フランジ6のインナー側の基部6aから小径段部4bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層10(図中クロスハッチングにて示す)が形成されている。なお、加締部8は鍛造加工後の表面硬さのままとされている。これにより、車輪取付フランジ6に負荷される回転曲げ荷重に対して充分な機械的強度を有し、内輪5の嵌合部となる小径段部4bの耐フレッティング性が向上すると共に、加締加工時に微小なクラック等の発生がなく加締部8の塑性加工をスムーズに行うことができる。なお、内輪5および転動体3はSUJ2等の高炭素クロム鋼で形成され、ズブ焼入れによって芯部まで58〜64HRCの範囲に硬化処理されている。   The hub wheel 4 is formed of medium and high carbon steel containing C0.40 to 0.80 wt% such as S53C, and extends from the inner raceway surface 4a to the small diameter step portion 4b from the base portion 6a on the inner side of the wheel mounting flange 6. Thus, a predetermined hardened layer 10 (indicated by cross-hatching in the figure) is formed in a surface hardness of 58 to 64 HRC by induction hardening. The caulking portion 8 is kept in the surface hardness after forging. This has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 6, improves the fretting resistance of the small-diameter stepped portion 4b serving as the fitting portion of the inner ring 5, and performs caulking. There is no occurrence of minute cracks or the like during processing, and the plastic processing of the crimped portion 8 can be performed smoothly. The inner ring 5 and the rolling element 3 are made of high carbon chrome steel such as SUJ2, and are hardened in the range of 58 to 64 HRC to the core part by quenching.

外方部材2は、外周にナックル(図示せず)に取り付けられるための車体取付フランジ2bを一体に有し、内周に内方部材1の内側転走面4a、5aに対向する複列の外側転走面2a、2aが一体に形成されている。これら両転走面間に複列の転動体3、3が収容され、保持器9、9によって転動自在に保持されている。   The outer member 2 integrally has a vehicle body mounting flange 2b to be attached to a knuckle (not shown) on the outer periphery, and a double row of inner rows facing the inner rolling surfaces 4a and 5a of the inner member 1 on the inner periphery. The outer rolling surfaces 2a and 2a are integrally formed. Double-row rolling elements 3 and 3 are accommodated between these rolling surfaces and are held by the cages 9 and 9 so as to roll freely.

この外方部材2はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、少なくとも複列の外側転走面2a、2aが高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化処理されている。そして、外方部材2と内方部材1との間に形成される環状空間のアウター側の開口部にはシール11が装着され、インナー側端部(内輪5)には車輪の回転速度を検出するための磁気エンコーダ12が固定されると共に、外方部材2の開口端部を覆うキャップ(図示せず)が装着されている。これらシール11およびキャップによって、軸受内部に封入されたグリースの外部への漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   This outer member 2 is formed of medium and high carbon steel containing C0.40 to 0.80 wt% such as S53C, and at least double row outer raceway surfaces 2a and 2a have a surface hardness of 58 to 64HRC by induction hardening. Has been cured. A seal 11 is attached to the outer opening of the annular space formed between the outer member 2 and the inner member 1, and the rotational speed of the wheel is detected at the inner end (inner ring 5). A magnetic encoder 12 is fixed, and a cap (not shown) that covers the open end of the outer member 2 is attached. The seal 11 and the cap prevent leakage of grease sealed inside the bearing and intrusion of rainwater, dust, and the like from the outside into the bearing.

なお、本実施形態では、転動体3にボールを使用した複列アンギュラ玉軸受で構成された車輪用軸受装置を例示したが、これに限らず、例えば、転動体3に円錐ころを用いた複列円錐ころ軸受で構成されていても良い。また、車輪取付フランジ6が花弁状のものを例示したが、外径形状はこれに限らず、一般的な円形形状であっても良い。   In the present embodiment, a wheel bearing device configured by a double row angular contact ball bearing using a ball as the rolling element 3 has been exemplified. However, the present invention is not limited to this. For example, a double bearing using a tapered roller for the rolling element 3 is exemplified. You may comprise the row tapered roller bearing. Moreover, although the wheel attachment flange 6 illustrated the thing of a petal shape, an outer diameter shape is not restricted to this, A general circular shape may be sufficient.

ここで、ハブ輪4のアウター側端部にすり鉢状の凹所13が鍛造加工によって形成されている。この凹所13の深さは、ハブ輪4のアウター側の端面から車輪取付フランジ6のインナー側の基部6aの位置に対応する付近までとされている。そして、前述したハブ輪4の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に、第1の応力緩和穴14と、この第1の応力緩和穴14よりも小径の第2の応力緩和穴15が形成されている。第1の応力緩和穴14は、インナー側に漸次縮径するテーパ状に形成され、その深さが複列の転動体3、3列の間に設定されると共に、第2の応力緩和穴15の深さ(先端部)は、断面急変形状となって応力集中が発生しないように、内輪5の小端面が当接する肩部4cの位置に対応する付近に止められている。   Here, a mortar-shaped recess 13 is formed at the outer end of the hub wheel 4 by forging. The depth of the recess 13 is from the end face on the outer side of the hub wheel 4 to the vicinity corresponding to the position of the base 6a on the inner side of the wheel mounting flange 6. Then, after induction hardening of the outer peripheral surface of the hub wheel 4 described above, the first stress relaxation hole 14 and the first stress relaxation hole are further formed on the inner side from the recess 13 by cutting using a lathe or a drill. A second stress relaxation hole 15 having a diameter smaller than 14 is formed. The first stress relaxation hole 14 is formed in a tapered shape that gradually decreases in diameter toward the inner side, the depth is set between the double row rolling elements 3 and 3 rows, and the second stress relaxation hole 15. The depth (tip portion) is stopped in the vicinity of the position corresponding to the position of the shoulder portion 4c with which the small end surface of the inner ring 5 comes into contact so that stress concentration does not occur due to the sudden deformation of the cross section.

また、ハブ輪4のアウター側の端部、すなわち、基部6a部分の最小肉厚L0と内側転走面4a部分の最小肉厚L1および軸状部7部分の最小肉厚L2が略等しくなるように第1の応力緩和穴14と第2の応力緩和穴15が所望の内径に設定されている。これにより、軽量・コンパクト化を図りつつ、中空状となるハブ輪4の内径面の熱処理歪みによる残留引張応力を開放することができ、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪4の疲れ強さを高め、強度・耐久性の向上を図った車輪用軸受装置を提供することができる。また、鍛造性を損なうことなく鍛造の金型寿命の向上を図ると共に、鍛造加工時に鍛造傷が発生するのを防止することができる。   Further, the outer end of the hub wheel 4, that is, the minimum thickness L0 of the base 6a portion, the minimum thickness L1 of the inner rolling surface 4a portion, and the minimum thickness L2 of the shaft-like portion 7 are substantially equal. Further, the first stress relaxation hole 14 and the second stress relaxation hole 15 are set to have desired inner diameters. This makes it possible to release the residual tensile stress due to heat treatment distortion of the inner surface of the hollow hub wheel 4 while reducing the weight and size, and when the vehicle turns, a rotating bending moment is applied and repeated stress acts. Even so, it is possible to provide a wheel bearing device in which the fatigue strength of the hub wheel 4 is increased and the strength and durability are improved. Further, it is possible to improve the forging die life without impairing the forgeability and to prevent the forging damage from occurring during the forging process.

本実施形態では、ハブ輪4は、予め高周波による400℃以上の高温焼戻しをして、トルースタイトまたはソルバイト組織にする、所謂調質処理が施されている。この調質処理により組織は粒状化し、引張、曲げ、衝撃値等の機械的性質が上昇して延性や靭性が高まる。ここでは、ハブ輪4の調質処理後の表面硬さが35HRC以下に設定されている。これにより、熱処理変形を抑制することができ、切削等の加工性を向上させることができると共に、強度、疲れ強さをさらに高めることができる。   In the present embodiment, the hub wheel 4 is subjected to a so-called tempering treatment in which high-temperature tempering at 400 ° C. or higher with a high frequency is performed in advance to obtain a troostite or sorbite structure. By this tempering treatment, the structure is granulated, and mechanical properties such as tension, bending, and impact value are increased, and ductility and toughness are increased. Here, the surface hardness of the hub wheel 4 after the tempering process is set to 35 HRC or less. Thereby, heat treatment deformation can be suppressed, workability such as cutting can be improved, and strength and fatigue strength can be further increased.

なお、ハブ輪4の少なくとも内径面にショットピーニングによる表面改質で圧縮残留応力を付与しても良いし、調質処理とショットピーニングを組み合せても良い。これにより、所望の形状・寸法のまま疲れ強さを一層増大させることができる。   Note that compressive residual stress may be applied to at least the inner diameter surface of the hub wheel 4 by surface modification by shot peening, or a tempering treatment and shot peening may be combined. As a result, the fatigue strength can be further increased while maintaining the desired shape and dimensions.

図2に示すように、ハブ輪4の疲労限度、すなわち、破断応力を横軸の交点として、応力振幅と平均応力で表される修正グッドマン線図でも明らかなように、前述した応力緩和穴14、15を形成することにより、この種の応力緩和穴がないものに比べ、繰返し応力を低減させることができる。   As shown in FIG. 2, the stress relaxation hole 14 described above is apparent from the modified Goodman diagram represented by the stress amplitude and the average stress with the fatigue limit of the hub wheel 4, that is, the breaking stress as the intersection of the horizontal axes. , 15 can be used to reduce the repeated stress as compared with those having no stress relaxation holes of this type.

図3は、本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。なお、この実施形態は、前述した実施形態(図1)と基本的にはハブ輪の応力緩和穴の構成が異なるだけで、その他同一の部位、同一の部品、あるいは同一の機能を有する部品や部位には同じ符号を付けてその詳細な説明を省略する。   FIG. 3 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention. This embodiment is basically different from the above-described embodiment (FIG. 1) only in the configuration of the stress relief holes of the hub wheel, and other parts having the same parts, the same parts, or the same functions. Parts are denoted by the same reference numerals and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材16と外方部材2、および両部材16、2間に転動自在に収容された複列の転動体3、3とを備えている。内方部材16は、ハブ輪17と、このハブ輪17に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel called a third generation, and is an inner member 16 and an outer member 2, and a double row rolling element housed between the members 16 and 2 so as to be freely rollable. 3 and 3. The inner member 16 includes a hub ring 17 and an inner ring 5 press-fitted into the hub ring 17 via a predetermined shimiro.

ハブ輪17はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の端部にすり鉢状の凹所13が鍛造加工によって形成されている。ハブ輪17の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に応力緩和穴18が形成されている。この応力緩和穴18はインナー側に漸次縮径するテーパ状に形成され、その深さが肩部4cの位置に対応する付近に止められている。そして、ハブ輪17のアウター側の端部、すなわち、基部6a部分の最小肉厚L0と軸状部7部分の最小肉厚L2が略等しくなるように応力緩和穴18が所望の内径に設定されている。これにより、軽量・コンパクト化を図りつつ、ハブ輪17の内径面の熱処理歪みによる残留引張応力を開放することができ、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪17の疲れ強さを高め、強度・耐久性の向上を図ることができる。   The hub wheel 17 is made of medium-high carbon steel containing C0.40 to 0.80 wt% such as S53C, and a mortar-shaped recess 13 is formed on the outer end by forging. After induction hardening of the outer peripheral surface of the hub wheel 17, a stress relaxation hole 18 is formed further on the inner side from the recess 13 by cutting using a lathe or a drill. The stress relaxation hole 18 is formed in a tapered shape that gradually decreases in diameter toward the inner side, and its depth is stopped in the vicinity corresponding to the position of the shoulder 4c. Then, the stress relaxation hole 18 is set to a desired inner diameter so that the outer side end of the hub wheel 17, that is, the minimum thickness L 0 of the base portion 6 a and the minimum thickness L 2 of the shaft-like portion 7 are substantially equal. ing. This makes it possible to release the residual tensile stress due to heat treatment distortion of the inner diameter surface of the hub wheel 17 while achieving light weight and compactness. The fatigue strength of the hub wheel 17 can be increased, and the strength and durability can be improved.

なお、本実施形態では、中空状のハブ輪17の内径部に発泡樹脂19が充填されている。これにより、軽量化や応力緩和効果を阻害することなく、中空部に雨水やダスト等が侵入し、ハブ輪17の内径部に堆積して発錆するのを確実に防止することができる。ここで、発泡樹脂19としては、発泡ウレタン、発泡ポリエチレン、ポリアミド樹脂等からなるPP(ポリプロピレン)樹脂、硬質ウレタン、発泡ウレタン等のウレタン樹脂を例示することができる。   In the present embodiment, the foamed resin 19 is filled in the inner diameter portion of the hollow hub wheel 17. Accordingly, it is possible to reliably prevent rainwater, dust, and the like from entering the hollow portion and accumulating on the inner diameter portion of the hub wheel 17 and rusting without hindering weight reduction and stress relaxation effect. Here, examples of the foamed resin 19 include urethane resins such as PP (polypropylene) resin, hard urethane, and foamed urethane made of foamed urethane, foamed polyethylene, polyamide resin, and the like.

図4は、本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。なお、この実施形態は、前述した第1の実施形態(図1)と基本的にはハブ輪の応力緩和穴の形状が一部異なるだけで、その他同一の部位、同一の部品、あるいは同一の機能を有する部品や部位には同じ符号を付けてその詳細な説明を省略する。   FIG. 4 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention. This embodiment is basically different from the first embodiment (FIG. 1) described above except that the shape of the stress relief hole of the hub wheel is partially different, and the same parts, the same parts, or the same parts. Parts and parts having functions are denoted by the same reference numerals, and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材20と外方部材2、および両部材20、2間に転動自在に収容された複列の転動体3、3とを備えている。内方部材20は、ハブ輪21と、このハブ輪21に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel called a third generation, and is an inner member 20, an outer member 2, and a double row rolling element accommodated between the members 20 and 2 so as to roll freely. 3 and 3. The inner member 20 includes a hub ring 21 and an inner ring 5 that is press-fitted into the hub ring 21 through a predetermined shimiro.

ハブ輪21はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の端部にすり鉢状の凹所13が鍛造加工によって形成されている。ハブ輪21の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に、円筒状の第1の応力緩和穴22と第2の応力緩和穴15が形成されている。この第1の応力緩和穴22の深さが複列の転動体3、3列の間に設定されると共に、第2の応力緩和穴15の先端部が肩部4cの位置に対応する付近に止められている。そして、ハブ輪21のアウター側の端部、すなわち、基部6a部分の最小肉厚L0と内側転走面4a部分の最小肉厚L1および軸状部7部分の最小肉厚L2が略等しくなるように第1の応力緩和穴22と第2の応力緩和穴15が所望の内径に設定されている。これにより、前述した実施形態と同様、軽量・コンパクト化を図りつつ、ハブ輪21の内径面の熱処理歪みによる残留引張応力を開放することができ、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪21の疲れ強さを高め、強度・耐久性の向上を図ることができる。   The hub wheel 21 is formed of medium-high carbon steel containing C0.40 to 0.80 wt% such as S53C, and a mortar-shaped recess 13 is formed at the outer end by forging. After induction hardening of the outer peripheral surface of the hub wheel 21, a cylindrical first stress relaxation hole 22 and a second stress relaxation hole 15 are formed further on the inner side from the recess 13 by cutting such as a lathe or a drill. Has been. The depth of the first stress relaxation hole 22 is set between the double-row rolling elements 3 and 3 and the tip of the second stress relaxation hole 15 is in the vicinity corresponding to the position of the shoulder 4c. Stopped. The outer end of the hub wheel 21, that is, the minimum thickness L0 of the base portion 6a, the minimum thickness L1 of the inner rolling surface 4a portion, and the minimum thickness L2 of the shaft-like portion 7 are substantially equal. In addition, the first stress relaxation hole 22 and the second stress relaxation hole 15 are set to a desired inner diameter. As in the above-described embodiment, this makes it possible to release residual tensile stress due to heat treatment distortion of the inner diameter surface of the hub wheel 21 while reducing the weight and size, and repeatedly applying a rotating bending moment when the vehicle turns. Even if stress acts, the fatigue strength of the hub wheel 21 can be increased, and the strength and durability can be improved.

図5は、本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。なお、この実施形態は、前述した第2の実施形態(図3)と基本的にはハブ輪の応力緩和穴の形状が一部異なるだけで、その他同一の部位、同一の部品、あるいは同一の機能を有する部品や部位には同じ符号を付けてその詳細な説明を省略する。   FIG. 5 is a longitudinal sectional view showing a fourth embodiment of the wheel bearing device according to the present invention. Note that this embodiment is basically different from the second embodiment (FIG. 3) described above except that the shape of the stress relief hole of the hub wheel is partially different, and the other parts are the same, the same parts, or the same. Parts and parts having functions are denoted by the same reference numerals, and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材23と外方部材2、および両部材23、2間に転動自在に収容された複列の転動体3、3とを備えている。内方部材23は、ハブ輪24と、このハブ輪24に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel called the third generation, and is an inner member 23, an outer member 2, and a double row rolling element accommodated between the two members 23, 2 so as to roll freely. 3 and 3. The inward member 23 includes a hub ring 24 and an inner ring 5 press-fitted into the hub ring 24 through a predetermined shimiro.

ハブ輪24はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の端部にすり鉢状の凹所13が鍛造加工によって形成されている。ハブ輪23の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に応力緩和穴25が形成されている。この応力緩和穴25はインナー側に漸次縮径するテーパ状に、その先端部が円弧状に形成され、肩部4cの位置に対応する付近に止められている。そして、ハブ輪24のアウター側の端部、すなわち、基部6a部分の肉厚L0と軸状部7部分の肉厚L2が略等しくなるように応力緩和穴25が所望の内径に設定されている。ハブ輪24の内径面の熱処理歪みによる残留引張応力を開放することができると共に、肩部4cに対して断面急変形状となって応力集中が発生するのを防止し、車両の旋回時に回転曲げモーメントが負荷されて繰り返し応力が作用しても、ハブ輪24の疲れ強さを高め、強度・耐久性の向上を図ることができる。   The hub wheel 24 is made of medium and high carbon steel containing C0.40 to 0.80 wt% such as S53C, and a mortar-shaped recess 13 is formed on the outer end by forging. After induction hardening of the outer peripheral surface of the hub wheel 23, a stress relaxation hole 25 is further formed on the inner side from the recess 13 by cutting using a lathe or a drill. The stress relaxation hole 25 has a tapered shape gradually reducing in diameter toward the inner side, and its tip is formed in an arc shape, and is stopped in the vicinity corresponding to the position of the shoulder 4c. The stress relaxation hole 25 is set to have a desired inner diameter so that the outer end of the hub wheel 24, that is, the thickness L0 of the base portion 6a and the thickness L2 of the shaft-like portion 7 are substantially equal. . The residual tensile stress due to heat treatment distortion of the inner diameter surface of the hub wheel 24 can be released, and the shoulder 4c is deformed suddenly in cross section to prevent stress concentration. Even if stress is applied repeatedly and stress is applied, the fatigue strength of the hub wheel 24 can be increased, and the strength and durability can be improved.

図6は、本発明に係る車輪用軸受装置の第5の実施形態を示す縦断面図である。なお、この実施形態は、前述した第2の実施形態(図3)と基本的にはハブ輪の応力緩和穴の形状が異なるだけで、その他同一の部位、同一の部品、あるいは同一の機能を有する部品や部位には同じ符号を付けてその詳細な説明を省略する。   FIG. 6 is a longitudinal sectional view showing a fifth embodiment of the wheel bearing device according to the present invention. This embodiment basically differs from the second embodiment described above (FIG. 3) only in the shape of the stress relief hole of the hub wheel, and has the same parts, the same parts, or the same functions. The parts and parts that have the same reference numerals are assigned with the same reference numerals, and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材26と外方部材2、および両部材26、2間に転動自在に収容された複列の転動体3、3とを備えている。内方部材26は、ハブ輪27と、このハブ輪27に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel called the third generation, and is an inner member 26, an outer member 2, and a double row rolling element accommodated between the members 26, 2 so as to be freely rollable. 3 and 3. The inner member 26 includes a hub ring 27 and an inner ring 5 that is press-fitted into the hub ring 27 via a predetermined scissors.

ハブ輪27はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の端部にすり鉢状の凹所13が鍛造加工によって形成されている。ハブ輪26の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に円筒状の応力緩和穴28が形成され、その深さが肩部4cの位置に対応する付近に止められている。そして、ハブ輪27のアウター側の端部、すなわち、基部6a部分の最小肉厚L0と内側転走面4a部分の最小肉厚L1および軸状部7部分の最小肉厚L2が略等しくなるように応力緩和穴28が所望の内径に設定されている。これにより、簡素な形状で加工効率を高めて低コスト化を図りつつ、ハブ輪27の内径面の熱処理歪みによる残留引張応力を効果的に開放することができる。   The hub wheel 27 is made of medium and high carbon steel containing C0.40 to 0.80 wt% such as S53C, and a mortar-shaped recess 13 is formed at the end on the outer side by forging. After induction hardening of the outer peripheral surface of the hub wheel 26, a cylindrical stress relaxation hole 28 is formed further on the inner side from the recess 13 by cutting such as a lathe or a drill, and the depth thereof is at the position of the shoulder 4c. It is stopped near the corresponding area. The outer end of the hub wheel 27, that is, the minimum thickness L0 of the base 6a portion, the minimum thickness L1 of the inner rolling surface 4a portion, and the minimum thickness L2 of the shaft-like portion 7 are substantially equal. Further, the stress relaxation hole 28 is set to a desired inner diameter. Thereby, the residual tensile stress due to the heat treatment distortion of the inner diameter surface of the hub wheel 27 can be effectively released while increasing the processing efficiency with a simple shape and reducing the cost.

図7は、本発明に係る車輪用軸受装置の第6の実施形態を示す縦断面図である。なお、この実施形態は、前述した第5の実施形態(図6)と基本的にはハブ輪の応力緩和穴の形状が一部異なるだけで、その他同一の部位、同一の部品、あるいは同一の機能を有する部品や部位には同じ符号を付けてその詳細な説明を省略する。   FIG. 7 is a longitudinal sectional view showing a sixth embodiment of the wheel bearing device according to the present invention. This embodiment basically differs from the above-described fifth embodiment (FIG. 6) only in part of the shape of the stress relief hole of the hub wheel, but the other parts, the same parts, or the same Parts and parts having functions are denoted by the same reference numerals, and detailed description thereof is omitted.

この車輪用軸受装置は第3世代と呼称される従動輪用であって、内方部材29と外方部材2、および両部材29、2間に転動自在に収容された複列の転動体3、3とを備えている。内方部材29は、ハブ輪30と、このハブ輪30に所定のシメシロを介して圧入された内輪5とからなる。   This wheel bearing device is for a driven wheel referred to as a third generation, and is a double row rolling element which is accommodated so as to be freely rollable between the inner member 29 and the outer member 2, and both members 29 and 2. 3 and 3. The inner member 29 includes a hub ring 30 and an inner ring 5 press-fitted into the hub ring 30 through a predetermined shimiro.

ハブ輪30はS53C等のC0.40〜0.80wt%を含む中高炭素鋼で形成され、アウター側の端部にすり鉢状の凹所13が鍛造加工によって形成されている。ハブ輪30の外周面の高周波焼入れ後、旋盤あるいはドリル等の切削加工により、この凹所13からさらにインナー側に円筒状の応力緩和穴31が形成されている。この応力緩和穴31は、その深さが肩部4cの位置に対応する付近に止められ、ハブ輪30のアウター側の端部、すなわち、基部6a部分の最小肉厚L0と内側転走面4a部分の最小肉厚L1および軸状部7部分の肉厚L2が略等しくなるように応力緩和穴31が所望の内径に設定されている。さらに、先端部に切削加工時のセンタ穴となる円錐穴31aが形成されている。これにより、さらに加工効率を高めて低コスト化を図りつつ、ハブ輪30の内径面の熱処理歪みによる残留引張応力を効果的に開放することができる。   The hub wheel 30 is made of medium-high carbon steel containing C0.40 to 0.80 wt% such as S53C, and a mortar-shaped recess 13 is formed by forging at the outer end. After induction hardening of the outer peripheral surface of the hub wheel 30, a cylindrical stress relaxation hole 31 is formed further on the inner side from the recess 13 by cutting using a lathe or a drill. The stress relaxation hole 31 is stopped in the vicinity of the depth corresponding to the position of the shoulder portion 4c, and the outer end of the hub wheel 30, that is, the minimum thickness L0 of the base portion 6a and the inner rolling surface 4a. The stress relaxation hole 31 is set to a desired inner diameter so that the minimum thickness L1 of the portion and the thickness L2 of the shaft-like portion 7 portion are substantially equal. Further, a conical hole 31a is formed at the tip portion as a center hole at the time of cutting. Thereby, the residual tensile stress due to the heat treatment distortion of the inner diameter surface of the hub wheel 30 can be effectively released while further reducing the cost by increasing the processing efficiency.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、外周に一方の内側転走面が直接形成された従動輪側の第3世代構造の車輪用軸受装置に適用することができる。   The wheel bearing device according to the present invention can be applied to a third-generation wheel bearing device on the driven wheel side in which one inner rolling surface is directly formed on the outer periphery.

1、16、20、23、26、29 内方部材
2 外方部材
2a 外側転走面
2b 車体取付フランジ
3 転動体
4、17、21、24、27 ハブ輪
4a、5a 内側転走面
4b 小径段部
4c 肩部
5 内輪
6 車輪取付フランジ
6a 車輪取付フランジのインナー側の基部
7 軸状部
8 加締部
9 保持器
10 硬化層
11 シール
12 磁気エンコーダ
13 凹所
14、22 第1の応力緩和穴
15 第2の応力緩和穴
18、25、28、31 応力緩和穴
19 発泡樹脂
31a 円錐穴
51 内方部材
52 外方部材
52a 外側転走面
52b 車体取付フランジ
53 ボール
54 ハブ輪
54a、55a 内側転走面
54b 小径段部
55 内輪
55b 面取り部
56 車輪取付フランジ
57 軸状部
58 加締部
59 保持器
60 シール
61 カバー
62 中実構造部
62a、62b 中実構造部の端面
63 中空構造部
A 嵌合面
L0 基部部分の最小肉厚
L1 内側転走面部分の最小肉厚
L2 軸状部の最小肉厚
1, 16, 20, 23, 26, 29 Inner member 2 Outer member 2a Outer rolling surface 2b Car body mounting flange 3 Rolling elements 4, 17, 21, 24, 27 Hub wheel 4a, 5a Inner rolling surface 4b Small diameter Stepped portion 4c Shoulder portion 5 Inner ring 6 Wheel mounting flange 6a Base portion 7 on the inner side of the wheel mounting flange 7 Shaft-shaped portion 8 Clamping portion 9 Cage 10 Hardened layer 11 Seal 12 Magnetic encoder 13 Recesses 14, 22 First stress relaxation Hole 15 Second stress relief hole 18, 25, 28, 31 Stress relief hole 19 Foamed resin 31a Conical hole 51 Inner member 52 Outer member 52a Outer rolling surface 52b Car body mounting flange 53 Ball 54 Hub wheels 54a, 55a Inside Rolling surface 54b Small diameter step portion 55 Inner ring 55b Chamfering portion 56 Wheel mounting flange 57 Shaft portion 58 Clamping portion 59 Cage 60 Seal 61 Cover 62 Solid structure portions 62a and 62b The minimum thickness of the minimum thickness L2 shaft-like portion of the minimum thickness L1 inner raceway surface portion of the end face 63 hollow part A mating surface L0 base portion of the solid structure portion

Claims (11)

外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、
一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に前記複列の外側転走面に対向する一方の内側転走面と、この内側転走面から軸状部を介して軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面に対向する他方の内側転走面が形成された内輪からなる内方部材と、
この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体と、
前記外方部材と内方部材との間に形成される環状空間の両端開口部に装着されたシールとを備えた車輪用軸受装置において、
前記シールのうちアウター側のシールの摺接面となる前記車輪取付フランジのインナー側の基部が所定の曲率半径からなる円弧面に形成され、前記ハブ輪の内側転走面をはじめ、前記基部から小径段部に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に所定の硬化層が形成されると共に、前記ハブ輪のアウター側の端部にすり鉢状の凹所が鍛造加工によって形成され、この凹所の深さが、前記ハブ輪のアウター側の端面から前記基部の位置に対応する付近までとされ、前記ハブ輪の高周波焼入れ後、前記凹所からさらにインナー側に応力緩和穴が切削加工により形成されていることを特徴とする車輪用軸受装置。
An outer member integrally having a vehicle body mounting flange for being attached to the knuckle on the outer periphery, and an outer rolling surface of a double row integrally formed on the inner periphery;
It has a wheel mounting flange for mounting a wheel at one end, and has one inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a shaft-shaped portion from the inner rolling surface via the shaft-shaped portion. A hub ring having a small-diameter step portion extending in the axial direction, and an inner ring press-fitted into the small-diameter step portion of the hub ring and having the other inner rolling surface facing the outer rolling surface of the double row on the outer periphery An inner member comprising:
A double row rolling element housed between the rolling surfaces of the inner member and the outer member so as to be freely rollable via a cage;
In a wheel bearing device comprising a seal mounted at both ends of an annular space formed between the outer member and the inner member,
The base portion on the inner side of the wheel mounting flange that becomes the sliding surface of the seal on the outer side of the seal is formed in an arc surface having a predetermined radius of curvature, including the inner rolling surface of the hub wheel, and the base portion. A predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening over the small diameter step, and a mortar-shaped recess is formed by forging at the outer end of the hub wheel. The depth of the recess is from the end surface on the outer side of the hub wheel to the vicinity corresponding to the position of the base, and after induction hardening of the hub wheel, a stress relaxation hole is further formed on the inner side from the recess. Is formed by cutting, a wheel bearing device.
前記応力緩和穴の先端部が、前記内輪の小端面が当接する肩部の位置に対応する付近に止められている請求項1に記載の車輪用軸受装置。   The wheel bearing device according to claim 1, wherein a tip end portion of the stress relaxation hole is stopped in a vicinity corresponding to a position of a shoulder portion with which a small end surface of the inner ring abuts. 前記ハブ輪のアウター側の端部のうち少なくとも前記基部部分の最小肉厚と前記軸状部部分の最小肉厚が略等しくなるように前記応力緩和穴が所望の内径に設定されている請求項1または2に記載の車輪用軸受装置。   The stress relaxation hole is set to have a desired inner diameter so that at least the minimum thickness of the base portion and the minimum thickness of the shaft portion of the outer end portion of the hub wheel are substantially equal. The wheel bearing device according to 1 or 2. 前記応力緩和穴がインナー側に漸次縮径するテーパ状に形成されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The wheel bearing device according to claim 1, wherein the stress relaxation hole is formed in a tapered shape that gradually decreases in diameter toward the inner side. 前記応力緩和穴が、インナー側に漸次縮径するテーパ状に形成され、その深さが前記複列の転動体列の間に設定された第1の応力緩和穴と、この第1の応力緩和穴よりも小径の第2の応力緩和穴とで構成されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The stress relaxation hole is formed in a tapered shape that gradually decreases in diameter toward the inner side, and the first stress relaxation hole whose depth is set between the two rows of rolling element rows, and the first stress relaxation hole The wheel bearing device according to any one of claims 1 to 3, comprising a second stress relaxation hole having a smaller diameter than the hole. 前記応力緩和穴が、円筒状でその深さが前記複列の転動体列の間に設定された第1の応力緩和穴と、この第1の応力緩和穴よりも小径の第2の応力緩和穴とで構成されている請求項1乃至3いずれかに記載の車輪用軸受装置。   The stress relaxation hole is cylindrical and has a first stress relaxation hole whose depth is set between the two rows of rolling element rows, and a second stress relaxation having a smaller diameter than the first stress relaxation hole. The wheel bearing device according to any one of claims 1 to 3, comprising a hole. 前記応力緩和穴の先端部が円弧状に形成されている請求項1乃至6いずれかに記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 6, wherein a tip portion of the stress relaxation hole is formed in an arc shape. 前記応力緩和穴の先端部が切削加工時のセンタ穴となる円錐穴に形成されている請求項1乃至6いずれかに記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 6, wherein a tip portion of the stress relaxation hole is formed in a conical hole serving as a center hole at the time of cutting. 前記ハブ輪がC0.40〜0.80wt%を含む中高炭素鋼で形成されると共に、予め調質処理が施され、その表面硬さが35HRC以下に設定されている請求項1乃至8いずれかに記載の車輪用軸受装置。   The hub ring is made of medium-high carbon steel containing C0.40 to 0.80 wt%, and is subjected to a tempering treatment in advance, and its surface hardness is set to 35 HRC or less. The wheel bearing apparatus described in 1. 前記ハブ輪の少なくとも内径面にショットピーニングによる表面改質で圧縮残留応力が付与されている請求項1乃至9いずれかに記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 9, wherein a compressive residual stress is applied to at least an inner diameter surface of the hub wheel by surface modification by shot peening. 前記ハブ輪の内径部に発泡樹脂が充填されている請求項1乃至10いずれかに記載の車輪用軸受装置。   The wheel bearing device according to any one of claims 1 to 10, wherein a foamed resin is filled in an inner diameter portion of the hub wheel.
JP2010055260A 2010-03-12 2010-03-12 Wheel bearing device Expired - Fee Related JP5415999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055260A JP5415999B2 (en) 2010-03-12 2010-03-12 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055260A JP5415999B2 (en) 2010-03-12 2010-03-12 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2011189771A JP2011189771A (en) 2011-09-29
JP5415999B2 true JP5415999B2 (en) 2014-02-12

Family

ID=44795155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055260A Expired - Fee Related JP5415999B2 (en) 2010-03-12 2010-03-12 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP5415999B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20130866A1 (en) * 2013-10-25 2015-04-26 Skf Ab WHEEL HUB UNIT FOR VEHICLES AND ASSOCIATED METHOD
FR3072742B1 (en) * 2017-10-20 2019-11-08 Ntn-Snr Roulements BEARING BEARING
US11731456B2 (en) * 2019-05-24 2023-08-22 Aktiebolaget Skf Wheel hub bearing with radial stiffening

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953635A (en) * 1995-08-09 1997-02-25 Nippon Seiko Kk Rolling bearing unit with rotating speed detecting device
JP5024850B2 (en) * 2005-10-21 2012-09-12 Ntn株式会社 Wheel bearing device
JP5121246B2 (en) * 2007-02-23 2013-01-16 Ntn株式会社 Wheel bearing device and manufacturing method thereof
JP2010089522A (en) * 2008-10-03 2010-04-22 Nsk Ltd Method for manufacturing rolling bearing unit for supporting wheel

Also Published As

Publication number Publication date
JP2011189771A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5278935B2 (en) Wheel bearing device
WO2007049437A1 (en) Bearing device for wheel
JP4998983B2 (en) Wheel bearing device
JP5415999B2 (en) Wheel bearing device
JP4536086B2 (en) Wheel bearing device and manufacturing method thereof
JP5252834B2 (en) Manufacturing method of wheel bearing device
JP4868891B2 (en) Wheel bearing device
JP5852388B2 (en) Wheel bearing device
JP2007100715A (en) Bearing device for vehicle
JP2008051164A (en) Bearing device for wheel
JP5024850B2 (en) Wheel bearing device
JP4994713B2 (en) Wheel bearing device
JP2008296621A (en) Wheel bearing device
JP5236097B2 (en) Wheel bearing device
JP6429441B2 (en) Wheel bearing device, intermediate body, and manufacturing method thereof
JP2012192818A (en) Bearing device for wheel
JP6054124B2 (en) Wheel bearing device
JP2007120594A (en) Wheel bearing device
JP5121603B2 (en) Wheel bearing device
JP2008002607A (en) Bearing device for wheel
JP2007333082A (en) Wheel bearing device
JP4034799B2 (en) Wheel bearing device
JP2007113719A (en) Bearing device for wheel
JP4986277B2 (en) Wheel bearing device
JP2014206192A (en) Bearing device for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5415999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees