JP2012228265A - Hydroponic method for plant - Google Patents
Hydroponic method for plant Download PDFInfo
- Publication number
- JP2012228265A JP2012228265A JP2012162841A JP2012162841A JP2012228265A JP 2012228265 A JP2012228265 A JP 2012228265A JP 2012162841 A JP2012162841 A JP 2012162841A JP 2012162841 A JP2012162841 A JP 2012162841A JP 2012228265 A JP2012228265 A JP 2012228265A
- Authority
- JP
- Japan
- Prior art keywords
- electrolysis
- benzoic acid
- culture
- nutrient solution
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02P60/216—
Landscapes
- Hydroponics (AREA)
Abstract
Description
この発明は、植物の自家中毒が発生し難い養液栽培方法に関するものである。 The present invention relates to a hydroponic cultivation method in which self-poisoning of plants hardly occurs.
これまでイチゴの養液栽培では培養液を系外に排出するかけ流し方式が多くみられたが、環境への配慮や水・肥料の効率的利用のために、培養液を系外に排出しないいわゆる閉鎖系にすることを検討した。
ところが、閉鎖系の養液栽培にすると生育後半に原因不明の収量低下が発生した。原因を追求していくと、培養液を交換せずにイチゴの養液栽培を行うと、根から生成抑制物質(アレロパシー)が培養液中に滲出して蓄積していき、栄養生長及び生殖生長の阻害すなわち自家中毒が発生するものと推測された。すなわち、閉鎖系養液栽培において、生育後半の収量低下は根から滲出し培養液中に蓄積された生長抑制物質によって引き起こされるものと考えられた。
このような自家中毒による栄養生長や生殖生長の阻害は、培養液中に蓄積される生育抑制物質を除去することにより回避できるものと考えられ、その方法として活性炭による生育抑制物質の吸着等を発明者は提案した(特許文献1参照)。
しかし、前記のように活性炭を用いた場合、そのコストや使用後の回収・処理について実用上の問題があった。
However, in the case of closed-system hydroponics, unexplained yield reduction occurred in the latter half of the growth. In pursuit of the cause, when cultivating strawberry without changing the culture solution, the production inhibitory substance (allelopathy) exudes and accumulates in the culture solution from the roots, causing vegetative and reproductive growth. It was speculated that inhibition of self-intoxication would occur. That is, in closed-system hydroponics, the yield reduction in the latter half of the growth was thought to be caused by the growth-suppressing substances that exuded from the roots and accumulated in the culture solution.
Inhibition of vegetative growth and reproductive growth due to such self-poisoning is considered to be avoided by removing growth inhibitory substances accumulated in the culture solution. Proposed (see Patent Document 1).
However, when activated carbon is used as described above, there are practical problems with respect to its cost and recovery / treatment after use.
そこでこの発明は、自家中毒が発生し難く従来よりも実用的な植物の養液栽培方法を提供しようとするものである。 Accordingly, the present invention is intended to provide a hydroponic cultivation method for plants that is less likely to cause self-poisoning and that is more practical than before.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1) この発明の植物の養液栽培方法は、植物の略閉鎖系養液栽培方法であって、植物の根から養液中に滲出する生育抑制物質の濃度を、前記養液の電気分解をすることにより低減するようにしたことを特徴とする。
この植物の養液栽培方法では、植物の根から養液中に滲出する生育抑制物質の濃度を、前記養液の電気分解をすることにより低減するようにしたので、電気分解という比較的に扱い易い方法によって生育抑制物質を低減することができる。また、電気分解により次亜塩素酸が副成(食塩が共存すると生成する)すると植物の病原菌の防除ができると共に、電気分解により養液中の溶存酸素の濃度を向上させて果実の収量を増加させることができる。
ここで前記植物として、イチゴ、トマト、キュウリ、ナス,ピーマン,レタス,ホウレンソウ,コマツナ,ミツバ,シュンギク,サラダナ,ミズナ,セロリ,ネギ,パセリ(野菜)、トルコギキョウ,ユリ,ストック,スターチス,カーネーション,バラ,アスター,キク,ガーベラ(花)などを例示することができる。前記生育抑制物質として安息香酸を例示することができる。
(2) 略閉鎖系で循環せしめる植物の養液の電気分解をすることにより、前記植物の根から養液中に滲出する生育抑制物質の濃度を低減するようにしとしてもよい。
このように構成し、略閉鎖系で循環せしめる植物の養液の電気分解をすると、電気分解の効果すなわち抑制物質の分解効果が電極の近くだけでなく培養液全体に及ばせることができ、電解効果を均一に及ぼすことができる。また培養液を一括管理しやすくなり、大規模に安定した栽培を行うことが出来る。更に循環しない大きめの水槽を用いる場合、培養液の組成や水温などのバラツキが出て栽培植物であるイチゴの果実品質や収量が不安定になることがあり得、これは生産者にとってマイナスであるが、このような不具合を解消することができる。
(3) 前記電気分解する工程の後に鉄のキレート剤を含む養液成分の補充工程を設けるようにしてもよい。
栽培期間中常時電気分解するのではなく所定の時間に電気分解するようにし、前記のように構成すると、電気分解により養液成分中の鉄のキレート剤が分解することを防止して養液を補充することができる。前記鉄のキレート剤として、Fe-EDTA(エチレンジアミン四酢酸)を例示することができる。
(4)前記生成抑制物質が所定の低濃度となるように電気分解を調整するようにしてもよい。このように構成すると、低濃度の生成抑制物質により逆に植物を刺激して生長を促進することが期待できる。この電気分解の調整は、電気分解の強さ(電流値等)や頻度などにより制御することができる。
この植物の養液栽培方法は、イチゴ、トマト、キュウリなどの水耕栽培、アクアリウム(水中盆栽)の水質維持装置、切花を入れる水槽の水質維持装置などの各種の用途に好適に適用することができる。
In order to solve the above problems, the present invention takes the following technical means.
(1) The plant hydroponic cultivation method of the present invention is a substantially closed hydroponic cultivation method for a plant, wherein the concentration of the growth inhibitory substance exuded from the root of the plant into the nutrient solution is determined by electrolysis of the nutrient solution. It is characterized by reducing by doing.
In this nutrient solution cultivation method for plants, the concentration of the growth inhibitory substance exuded from the roots of the plant into the nutrient solution is reduced by electrolyzing the nutrient solution. The growth inhibiting substance can be reduced by an easy method. In addition, when hypochlorous acid is by-produced by electrolysis (generated when salt is present), it can control plant pathogens and increase the concentration of dissolved oxygen in the nutrient solution by electrolysis to increase fruit yield. Can be made.
Here, strawberries, tomatoes, cucumbers, eggplants, peppers, lettuce, spinach, komatsuna, honeybees, shungikus, saladna, mizuna, celery, leek, parsley (vegetables), eustoma, lilies, stocks, starches, carnations, roses , Aster, chrysanthemum, gerbera (flower) and the like. A benzoic acid can be illustrated as said growth inhibitory substance.
(2) The concentration of the growth inhibitory substance exuded from the root of the plant into the nutrient solution may be reduced by electrolyzing the nutrient solution of the plant circulated in a substantially closed system.
When constructed in this way and electrolyzed plant nutrient solution circulated in a substantially closed system, the electrolysis effect, that is, the decomposition effect of the inhibitory substance, can be applied not only to the vicinity of the electrode but also to the whole culture solution. The effect can be exerted uniformly. Moreover, it becomes easy to manage the culture solution at once, and stable cultivation can be performed on a large scale. Furthermore, when using a large aquarium that does not circulate, the fruit quality and yield of the strawberry, which is a cultivated plant, may become unstable due to variations in the composition of the culture solution and water temperature, which is negative for the producer. However, such a problem can be solved.
(3) You may make it provide the replenishment process of the nutrient solution component containing an iron chelating agent after the process of electrolyzing.
Instead of constantly electrolyzing during the cultivation period, it is electrolyzed at a predetermined time, and when configured as described above, the iron chelating agent in the nutrient solution component is prevented from being decomposed by electrolysis and the nutrient solution is Can be replenished. Examples of the iron chelating agent include Fe-EDTA (ethylenediaminetetraacetic acid).
(4) The electrolysis may be adjusted so that the production-suppressing substance has a predetermined low concentration. If comprised in this way, it can be anticipated that a plant will be stimulated by a low concentration production inhibitor to promote growth. The adjustment of this electrolysis can be controlled by the electrolysis intensity (current value, etc.) and frequency.
This hydroponic cultivation method for plants can be suitably applied to various uses such as hydroponics for strawberries, tomatoes, cucumbers, water quality maintenance devices for aquariums (underwater bonsai), and water quality maintenance devices for aquariums where cut flowers are placed. it can.
この発明は上述のような構成であり、次の効果を有する。
電気分解という比較的に扱い易い方法によって生育抑制物質を低減することができるので、自家中毒が発生し難く従来よりも実用的な植物の養液栽培方法を提供することができる。
The present invention is configured as described above and has the following effects.
Since growth inhibitory substances can be reduced by a relatively easy method of electrolysis, it is possible to provide a hydroponic cultivation method for plants that is less likely to cause self-poisoning and that is more practical than before.
以下、この発明の実施の形態を説明する。
この実施形態の植物の養液栽培方法はイチゴの略閉鎖系養液栽培方法(水耕栽培)であって、略閉鎖系で循環せしめる植物(イチゴ)の養液の電気分解をすることにより、前記植物の根から養液中に滲出する生育抑制物質(安息香酸に着目)の濃度を低減するようにした。
また、前記電気分解を行う工程の後に鉄のキレート剤を含む養液成分の補充工程を設け、イチゴの生育期間中一定期間毎に養液を補充するようにした。前記鉄のキレート剤として、Fe-EDTA(エチレンジアミン四酢酸)を例示することができる。
Embodiments of the present invention will be described below.
The hydroponic cultivation method of the plant of this embodiment is a substantially closed system hydroponic cultivation method (hydroponic cultivation) of strawberries, and by electrolyzing the nutrient solution of the plant (strawberry) to be circulated in a substantially closed system, The concentration of a growth inhibitory substance (focusing on benzoic acid) that exudes from the roots of the plant into the nutrient solution was reduced.
In addition, a replenishment step of a nutrient solution component containing an iron chelating agent was provided after the electrolysis step, so that the nutrient solution was replenished at regular intervals during the strawberry growth period. Examples of the iron chelating agent include Fe-EDTA (ethylenediaminetetraacetic acid).
次に、この実施形態の植物の養液栽培方法の使用状態を説明する。
この植物(イチゴ)の養液栽培方法では、略閉鎖系で循環せしめる植物の養液の電気分解をすることにより、前記植物の根から養液中に滲出する生育抑制物質(安息香酸)の濃度を低減するようにしたので、電気分解という比較的に扱い易い方法によって生育抑制物質を低減することができ、自家中毒が発生し難く従来よりも実用的であるという利点がある。
また、電気分解により次亜塩素酸が副成(食塩が共存すると生成する)すると植物の病原菌の防除ができると共に、電気分解により養液中の溶存酸素の濃度を向上させて果実の収量を増加させることができるという利点がある。
さらに、栽培期間中常時電気分解するのではなく所定の時間に電気分解するようにし、電気分解を行う工程の後に鉄のキレート剤を含む養液成分の補充工程を設けるようにしており、電気分解により養液成分中の鉄のキレート剤が分解することを防止して養液を補充していくことができる。
ところで、前記生成抑制物質(安息香酸等)は全て分解するのではなく所定の低濃度となるように電気分解を調整するようにしてもよい。この電気分解の調整は、電気分解の強さ(電流値等)や頻度などにより制御することができる。このようにすると、低濃度の生成抑制物質により逆に植物を刺激して生長を促進することが期待できる。
Next, the usage state of the plant hydroponics method of this embodiment is demonstrated.
In this method of hydroponic cultivation of plants (strawberry), the concentration of a growth inhibitory substance (benzoic acid) that exudes from the root of the plant into the nutrient solution by electrolyzing the nutrient solution of the plant that is circulated in a substantially closed system. Therefore, there is an advantage that the growth inhibitory substance can be reduced by a relatively easy method such as electrolysis, and self-poisoning hardly occurs and is more practical than before.
In addition, when hypochlorous acid is by-produced by electrolysis (generated when salt is present), it can control plant pathogens and increase the concentration of dissolved oxygen in the nutrient solution by electrolysis to increase fruit yield. There is an advantage that can be made.
In addition, it is not always electrolyzed during the cultivation period, but is electrolyzed at a predetermined time, and after the electrolyzing step, a replenishment step of a nutrient solution component containing an iron chelating agent is provided. By this, it is possible to prevent the iron chelating agent in the nutrient solution component from being decomposed and replenish the nutrient solution.
By the way, not all of the production-suppressing substances (benzoic acid and the like) are decomposed, but electrolysis may be adjusted so as to obtain a predetermined low concentration. The adjustment of this electrolysis can be controlled by the electrolysis intensity (current value, etc.) and frequency. If it does in this way, it can be anticipated that a plant will be stimulated by a low concentration production inhibitor to promote growth.
〔実験1〕
培養液中に添加された安息香酸の電気分解処理による分解。
1Lの培養液をガラスビーカーに入れ,実験を行った.培養液は園試処方第一例標準液12)に準じ,希釈・調整し,EC 0.8dS m-1とした(以下,基準液とする).処理区は基準液のみをガラスビーカーに入れた区(対照区),基準液に安息香酸400μMを添加する区(安息香酸添加区)とし,安息香酸添加区には電気分解処理を行う区(電気分解区)を設け,計3処理区とした.
図1に示すように、電気分解区では,陰極1に表面積約180cm2のチタン,陽極2に同42cm2のフェライトを用いた電極をガラスビーカー(図示せず)内に設置し,24時間通電を行った.通電中の電圧および電流は,それぞれ10.0Vおよび0.6Aであった.実験中の室温は18℃,ガラスビーカーはウォーターバスで,内部の液温を20℃に維持した.実験開始時,2,6,12および24時間後にガラスビーカー内を攪拌するとともに,培養液のサンプリングを行った.シリンジフィルター(0.45μ)で濾過した25μlの培養液を分析型高速液体クロマトグラフィー(HPLC.カラムオーブン:L-2350,検出器:L-2400,ポンプ:L-2130;日立製作所およびデータ処理装置:クロマトパックC-R8A;島津製作所)に注入し,培養液中の安息香酸の測定を行った.分析条件は,溶媒10mMリン酸-アセトニトリル混合液(70%:30%),流速1.0ml min-1,分析温度30℃,検出波長254nm,カラム4.0×200mm(Wakosil 10C18,和光純薬工業)とした.
ここで,エチレンジアミン四酢酸(EDTA)を含有する水溶液中で電気分解処理を行った場合,EDTAが分解され,園試処方において鉄源として添加されるFe-EDTAが電気分解処理により分解される可能性が考えられた.そこで,同様の分析条件によりFe-EDTAの濃度推移を測定した.
図2(培養液に添加された安息香酸濃度の推移のグラフ)に示すように、安息香酸添加区の安息香酸濃度は2時間後380,6時間後352,12時間後347および24時間後322μMに推移し,24時間後,培養液中に安息香酸の残存量は実験開始時の81%であった.一方,電気分解区では2時間後259,6時間後223,12時間後185および24時間後67μMに推移し,24時間後の培養液中の安息香酸の残存量は実験開始時の17%であった.本実験において,培養液中での電気分解処理により,添加された安息香酸の大幅な減少がみられたことから,フェノール酸である安息香酸は電気分解処理により分解されたと考えられた.なお,電気分解処理を行わなかった安息香酸添加区においても,培養液中の安息香酸が81%まで減少した.培養液中に存在する微生物により,フェノール酸が分解されることが考えられ,本実験においても培養液中に存在した微生物により,添加した安息香酸が微生物によって分解された可能性が推察された.
図3(電気分解処理が培養液中のFe-EDTAの濃度に及ぼす影響のグラフ)に示すように、実験開始時25mgL-1であった培養液中のFe-EDTAの濃度は24時間後,安息香酸添加区では18.3mgL-1であった.一方,電気分解区では2.3mgL-1であった.電気分解区におけるFe-EDTAの減少は,電気分解処理による分解によるものと考えられた.また,電気分解処理を行わなかった安息香酸添加区においても,Fe-EDTAの減少がみられた.培養液中のFe-EDTAは通常,光線とくに紫外線により分解を受けるとされていることから,培養液中のFe-EDTAが室外や蛍光灯に由来する紫外線により分解を受けた可能性が考えられた.
以上より,電気分解処理により,イチゴの自家中毒における主な原因物質である安息香酸が分解され,生育抑制の回避につながる可能性が示唆された.しかし,イチゴの自家中毒を示す根からの滲出物質は安息香酸だけではない.そこで次に,イチゴの養液栽培で使用した培養残液を用い,電気分解処理による生育抑制物質の分解が可能かどうか,イチゴ苗によるバイオアッセイで検討した.
[Experiment 1]
Decomposition of benzoic acid added to the culture by electrolysis.
1 L of the culture was placed in a glass beaker for experiments. The culture solution was diluted and adjusted to EC 0.8dS m -1 (hereinafter referred to as the reference solution) according to the standard solution 12). The treatment group is a group in which only the reference solution is placed in a glass beaker (control group), a group in which 400 μM benzoic acid is added to the reference solution (benzoic acid addition group), and an electrolysis treatment is performed in the benzoic acid addition group (electricity treatment) Decomposition zone) was set up for a total of 3 treatment zones.
As shown in FIG. 1, in the electrolysis section, an electrode using titanium having a surface area of about 180 cm 2 for the cathode 1 and 42 cm 2 for the anode 2 is placed in a glass beaker (not shown) and energized for 24 hours. Was performed. The voltage and current during energization were 10.0 V and 0.6 A, respectively. During the experiment, the room temperature was 18 ° C, the glass beaker was kept in a water bath, and the internal liquid temperature was maintained at 20 ° C. At the start of the experiment, the glass beaker was agitated and the culture was sampled 2, 6, 12 and 24 hours later. Analytical high performance liquid chromatography (HPLC. Column oven: L-2350, detector: L-2400, pump: L-2130; Hitachi, Ltd. and data processing equipment: 25 μl of the culture solution filtered through a syringe filter (0.45μ) Chromatopack C-R8A (Shimadzu Corporation) was measured and benzoic acid in the culture was measured. The analysis conditions were as follows: solvent 10 mM phosphoric acid-acetonitrile mixture (70%: 30%), flow rate 1.0 ml min-1, analysis temperature 30 ° C., detection wavelength 254 nm, column 4.0 × 200 mm (Wakosil 10C18, Wako Pure Chemical Industries) did.
Here, when electrolysis is performed in an aqueous solution containing ethylenediaminetetraacetic acid (EDTA), EDTA is decomposed and Fe-EDTA added as an iron source in the garden trial formulation can be decomposed by electrolysis Sex was considered. Therefore, the concentration transition of Fe-EDTA was measured under the same analytical conditions.
As shown in FIG. 2 (graph of the transition of the concentration of benzoic acid added to the culture solution), the benzoic acid concentration in the benzoic acid-added section was 380 after 2 hours, 352 after 6 hours, 347 after 12 hours and 347 μm after 24 hours. After 24 hours, the remaining amount of benzoic acid in the culture was 81% at the start of the experiment. On the other hand, in the electrolysis section, it changed to 259 after 2 hours, 223 after 6 hours, 185 after 12 hours, and 67 μM after 24 hours, and the residual amount of benzoic acid in the culture medium after 24 hours was 17% at the start of the experiment. there were. In this experiment, benzoic acid, a phenolic acid, was considered to have been decomposed by the electrolysis treatment because the benzoic acid added was greatly reduced by the electrolysis treatment in the culture medium. In addition, benzoic acid in the culture broth decreased to 81% even in the benzoic acid-added section where electrolysis was not performed. It is considered that phenolic acid is decomposed by microorganisms present in the culture solution. In this experiment, it was assumed that the added benzoic acid was decomposed by microorganisms due to the microorganisms present in the culture solution.
As shown in Fig. 3 (graph of the effect of electrolysis treatment on the concentration of Fe-EDTA in the culture solution), the concentration of Fe-EDTA in the culture solution, which was 25 mgL -1 at the start of the experiment, was 24 hours later. In the benzoic acid group, it was 18.3 mgL- 1 . On the other hand, it was 2.3 mgL -1 in the electrolysis section. The decrease of Fe-EDTA in the electrolysis zone was considered to be due to the decomposition by electrolysis. Fe-EDTA was also reduced in the benzoic acid-added section where electrolysis was not performed. Since Fe-EDTA in the culture solution is usually supposed to be decomposed by light, particularly ultraviolet rays, it is possible that Fe-EDTA in the culture solution was decomposed by ultraviolet rays derived from outdoor or fluorescent lamps. It was.
These results suggest that benzoic acid, which is the main causative substance in self-poisoning of strawberries, is decomposed by electrolysis, which may lead to avoidance of growth inhibition. However, benzoic acid is not the only exudate from roots that indicates self-poisoning of strawberries. Next, we investigated whether the growth inhibitory substances can be decomposed by electrolysis using the culture residue used in the hydroponics of strawberry.
〔実験2〕
培養液に添加された安息香酸,および培養残液の電気分解処理がイチゴ幼苗の生育に及ぼす影響。
供試品種は‘とよのか(イチゴの品種名)’を用いた.本葉4枚展開期の苗をウレタンキューブで支持し,培養液を3L入れたプラスチックコンテナ(17cm× 29cm×9.5cm)に定植した.栽植本数は1コンテナあたり10株とした.処理区は基準液を用いる区(新液区,対照区),新液に400μM濃度の安息香酸を添加する区(安息香酸添加区)およびイチゴ‘とよのか’の養液栽培に約8ヶ月間使用した培養残液を用いる区(残液区)とし,安息香酸添加区および残液区には電気分解処理を行う区(それぞれ安息香酸電解区および残液電解区)を設け,計5処理区とした.安息香酸電解区および残液電解区では,実験開始前にそれぞれの培養液に電気分解処理を行った.電気分解条件は実験1に準じ,24時間行った.また,全ての処理区において,4〜5日毎に培養液を全量交換した.その際,各処理区とも実験開始時と同じ培養液を用いた.なお,安息香酸電解区,残液区および残液電解区ではイチゴ幼苗を定植する直前に,それぞれの培養液中のNO3 -,PO4 3-,K+,Ca2+,Mg2+およびFe3+の各イオン濃度が基準液とほぼ同じになるように調整を行った.その際,NO3 -イオンについては比色計(RQflex2,Merck),PO4 3-イオンについてはモリブデンブルー法14),K+,Ca2+,Mg2+およびFe3+の各イオン濃度については原子吸光光度計(Z-5010,日立製作所)を用いて分析した.また,培養液のpHおよびECを,pHメーター(F-52,堀場製作所)およびECメーター(ES-12,堀場製作所)で測定し,基準液(pH=7.0,EC=0.8 dS m-1.実測値)と同じになるように調整した.その際,pHについては0.4M NaOH,ECについては水道水を用いた.
蛍光灯付き培養装置を用いて,室温25℃,光量子束密度74〜81μmolm-2s-1,16時間日長条件で2週間培養を行った.実験終了時,株の葉数,最大葉長,最大葉幅,地上部生体重および最大根長を測定した.
表1に示すように、実験終了時の葉数について,処理区による有意な差はみられなかった.次に地上部生体重について,安息香酸添加区では,対照区の55%となり有意に減少した.残液区では対照区の61%となり,安息香酸添加区と同様に有意に減少した.安息香酸電解区および残液電解区では,有意差はみられなかった.なお最大葉長および最大葉幅について,安息香酸添加区では,それぞれ対照区の78%および72%となり、有意に減少した.残液区においても,それぞれ対照区の77%および69%となり有意に減少した.一方,安息香酸電解区および残液電解区では,対照区と比べて有意な差はみられなかった.最大根長については,処理区間に有意な差はなかった.
[Experiment 2]
Effects of benzoic acid added to the culture solution and electrolysis of the culture residue on the growth of strawberry seedlings.
The test varieties used were 'Toyonoka (strawberry variety)'. The seedlings in the four leaf development stage were supported by urethane cubes and planted in a plastic container (17cm x 29cm x 9.5cm) containing 3L of the culture solution. The number of trees planted was 10 per container. The treatment group is a group using a reference solution (new solution group, control group), a group where benzoic acid at a concentration of 400 μM is added to the new solution (benzoic acid added group), and about 8 months for hydroponics of strawberry 'Toyonoka' Use the culture residue used during the period (residual liquid group), and in the benzoic acid-added group and the residual liquid group, there are sections to be electrolyzed (benzoic acid electrolytic zone and residual liquid electrolytic zone, respectively) for a total of 5 treatments It was warded. In the benzoic acid electrolysis section and the residual liquid electrolysis section, each culture solution was electrolyzed before starting the experiment. The electrolysis was performed for 24 hours according to Experiment 1. In all treatment sections, the entire culture was changed every 4-5 days. At that time, the same culture solution was used in each treatment section as at the start of the experiment. In the benzoic acid electrolysis zone, the residual liquor zone, and the residual liquor electrolysis zone, the NO 3 − , PO 4 3− , K + , Ca 2+ , Mg 2+ and Mg 2+ Adjustment was made so that each ion concentration of Fe 3+ was almost the same as the reference solution. At this time, NO 3 - colorimeter for ions (RQflex2, Merck), PO 4 3- ions molybdenum blue method 14 for), K +, Ca 2+, for each ion concentration of Mg 2+ and Fe 3+ Were analyzed using an atomic absorption photometer (Z-5010, Hitachi, Ltd.). In addition, the pH and EC of the culture solution were measured with a pH meter (F-52, Horiba Seisakusho) and EC meter (ES-12, Horiba Seisakusho), and the standard solution (pH = 7.0, EC = 0.8 dS m −1) . It was adjusted to be the same as the actual measured value. At that time, 0.4M NaOH was used for pH, and tap water was used for EC.
Using a culture apparatus equipped with a fluorescent lamp, the cells were cultured for 2 weeks under conditions of room temperature of 25 ° C, photon flux density of 74-81μmolm-2s-1, and 16 hours of day length. At the end of the experiment, the number of leaves, maximum leaf length, maximum leaf width, above-ground weight and maximum root length were measured.
As shown in Table 1, there was no significant difference in the number of leaves at the end of the experiment depending on the treatment group. Next, the body weight of the ground part decreased significantly in the benzoic acid-added group to 55% of the control group. In the residual liquid group, it was 61% of the control group, and it was significantly decreased as in the benzoic acid-added group. There was no significant difference between the benzoic acid electrolysis section and the residual liquid electrolysis section. The maximum leaf length and maximum leaf width were significantly decreased in the benzoic acid-added group, 78% and 72%, respectively, in the control group. Also in the residual liquid group, it decreased significantly to 77% and 69% of the control group, respectively. On the other hand, there was no significant difference in the benzoic acid electrolysis section and the residual liquid electrolysis section compared with the control section. There was no significant difference in the treatment interval for the maximum root length.
安息香酸を添加した培養液を用いてイチゴ幼苗を培養した場合,幼苗の生育が抑制される結果がみられたことから,安息香酸添加区における地上部の生育抑制は安息香酸により引き起こされたと考えられた.一方,実験1より,電気分解処理による安息香酸の分解が示唆されたことから,安息香酸電解区における地上部の生育抑制の軽減は,培養液中の安息香酸が電気分解処理により分解されたためと考えられた.
トマトやキュウリの水耕において,根から滲出した生育阻害物質が培養液中に蓄積する.したがって,本実験における,生育の減少は培養液中に蓄積した生育抑制物質によるものと考えられた.イチゴの培養液非交換における栄養生長および生殖生長阻害の主な原因物質として,根から滲出し培養液中に蓄積する安息香酸の存在がある.したがって,本実験においても培養残液中に存在する主な生育抑制物質は安息香酸であると考えられた.また実験1より,電気分解処理による培養液中の安息香酸の分解が示唆されたことから,残液電解区における生育抑制の軽減は電気分解による安息香酸などの生育抑制物質の分解によると考えられた.
以上より,培養残液中に蓄積したと考えられる生育抑制物質が電気分解により分解され,生育抑制が回避したことが示唆された.次に培養液の電気分解処理がイチゴの生殖成長,すなわち開花および収量に及ぼす影響について検討を行った.
When strawberry seedlings were cultivated using a culture solution to which benzoic acid was added, the growth of seedlings was suppressed, and it was considered that the above-ground growth suppression in the benzoic acid-added section was caused by benzoic acid. It was. On the other hand, experiment 1 suggested that benzoic acid was decomposed by electrolysis, so the suppression of above-ground growth in the benzoic acid electrolysis zone was because benzoic acid in the culture broth was decomposed by electrolysis. it was thought.
In hydroponic tomatoes and cucumbers, growth-inhibiting substances leached from the roots accumulate in the culture. Therefore, the decrease in growth in this experiment was thought to be due to growth inhibitory substances accumulated in the culture medium. The main causative agent of vegetative and reproductive growth inhibition in strawberry culture medium exchange is the presence of benzoic acid that exudes from the roots and accumulates in the culture medium. Therefore, in this experiment, benzoic acid was considered to be the main growth inhibitor in the culture residue. In addition, experiment 1 suggested that benzoic acid in the culture broth was decomposed by electrolysis treatment. Therefore, the reduction of growth inhibition in the residual liquid electrolytic zone is thought to be due to the decomposition of growth inhibitory substances such as benzoic acid by electrolysis. It was.
These results suggested that the growth inhibitory substances thought to have accumulated in the culture residue were decomposed by electrolysis and the growth inhibition was avoided. Next, we investigated the effects of electrolysis of the broth on the reproductive growth, that is, flowering and yield of strawberries.
〔実験3〕
培養液非交換および電気分解処理がイチゴの生育および収量に及ぼす影響。
供試品種は,‘とよのか’を用いた.実験は島根大学生物資源科学部附属生物資源教育研究センター(島根県松江市上本庄町)内のガラス温室で行った.実験は水耕法で行った.培養液は基準液とした.図4(ワグネルポットを利用した培養装置)に示すように、培養液の容量が3Lとなるように加工した1.0×5000-1aワグネルポット3,容量約50Lの培養液タンク4,水中ポンプ5(KP-101,工進),内径φ4mmの潅水チューブ6,内径φ15mmの塩化ビニール製給液管7および排水管8から成る栽培装置を用いた.本葉3〜4枚,クラウン径約10mmの苗をウレタンキューブ(縦23mm×横23mm×高さ27mm)4個を用いて支持し,栽培装置に移植した.培養液はプログラムタイマー(KS-1500,井内盛栄堂)を用いて5分間循環,30分間休止の繰り返しで行い,供給量は1Lmin-1とした.
処理区は培養液を2週毎に交換する区(以下,交換区とする.対照区)および培養液を交換しない区(以下,非交換区とする)とし,非交換区に第3花房収穫開始期以降,2週毎に培養液中で電気分解処理を行う区(以下,電解区)を設け,計3処理区とした.電解区における電気分解処理は培養液タンク内で行った.電極および通電時間は実験1に準じ,通電中の電圧および電流は,それぞれ18.0Vおよび0.2Aであった.
非交換区および電解区では,減少した培養液を2週毎に追加するとともにNO3 -,PO4 3-,K+,Ca2+,Mg2+およびFe3+の各イオン濃度を分析し,基準液と同じ濃度となるように調整した.なお,電気分解処理により培養液中のFe-EDTAが分解されることが考えられたので,これらの調整は電気分解処理終了後に行った.無機養分の調整方法は実験2に準じた.
栽植本数は1ポットあたり1株とし,10反復行った.実験中の日平均気温は13.1〜28.1℃,日平均水温は5.6〜25.4℃で推移した.いずれの処理区においても培養液のpHおよびECは,それぞれ5.8〜7.6,0.7〜1.2 dS m-1で推移した.授粉は絵筆を用いて行った.果実の収穫は果実全体が着色した際に行い,果実の収穫が終了した約6ヶ月後に実験を終了した.その際,株当たりの葉数,クラウン径,地上部生体重および乾物重,地下部乾物重,最大根長を調査した.また,実験期間中の株当たりの花房数,開花数,収穫果実数,および収量を記録した.
[Experiment 3]
Effects of medium exchange and electrolysis on growth and yield of strawberries.
The test varieties used were 'Toyonoka'. The experiment was conducted in a glass greenhouse in the Bioresource Education Research Center attached to the Faculty of Bioresource Sciences, Shimane University (Kamihonjo Town, Matsue City, Shimane Prefecture). The experiment was conducted by hydroponics. The culture solution was used as a reference solution. As shown in FIG. 4 (culture apparatus using Wagner pot), a 1.0 × 5000-1a Wagner pot processed to a volume of 3 L, a culture tank with a capacity of about 50 L, a submersible pump 5 ( KP-101, Kojin), a cultivation device consisting of an irrigation tube with an inner diameter of φ4 mm 6, a vinyl chloride feed pipe 7 with an inner diameter of φ15 mm, and a drain pipe 8 was used. Three to four true leaves and a seedling with a crown diameter of about 10 mm were supported by four urethane cubes (length 23 mm x width 23 mm x height 27 mm) and transplanted to a cultivation device. The culture medium was circulated for 5 minutes and rested for 30 minutes using a program timer (KS-1500, Seiei Iuchi), and the supply volume was 1 Lmin- 1 .
The treatment group is a group in which the culture medium is exchanged every two weeks (hereinafter referred to as an exchange group) and a group in which the culture medium is not exchanged (hereinafter referred to as a non-exchange area). After the start period, a zone (hereinafter referred to as electrolysis zone) in which electrolysis treatment was performed in the culture solution every 2 weeks was established for a total of 3 treatment zones. The electrolysis process in the electrolytic zone was performed in the culture tank. The electrodes and energization time were in accordance with Experiment 1, and the voltage and current during energization were 18.0 V and 0.2 A, respectively.
In a non-exchange group and the electrolyte-ku, NO 3 with adding a reduced culture every two weeks -, PO 4 3-, K + , Ca 2+, analyzes each ion concentration of Mg 2+ and Fe 3+ The concentration was adjusted to the same as that of the reference solution. Since it was considered that Fe-EDTA in the culture broth was decomposed by electrolysis, these adjustments were made after the electrolysis. The method for adjusting inorganic nutrients was the same as Experiment 2.
The number of planted plants was one per pot and 10 iterations were performed. During the experiment, the daily average temperature was 13.1 to 28.1 ° C, and the daily average water temperature was 5.6 to 25.4 ° C. In both treatments, the pH and EC of the cultures were 5.8 to 7.6 and 0.7 to 1.2 dS m -1 , respectively. Pollination was performed using a paint brush. The fruit was harvested when the whole fruit was colored, and the experiment was terminated about 6 months after the fruit was harvested. At that time, the number of leaves per strain, crown diameter, ground weight and dry weight, underground dry weight and maximum root length were investigated. In addition, the number of florets, the number of blooms, the number of fruits harvested, and the yield were recorded during the experiment.
表2に示すように,実験終了時の葉数について,非交換区および電解区では有意に減少し,それぞれ対照区の59%および60%になった.クラウン径は各処理区により有意な差はみられなかった.地上部生体重および乾物重,地下部乾物重は,非交換区および電解区で対照区と比べて有意に小さくなったが,電解区で少し大きくなる傾向にあった.最大根長については,各処理区間に有意な差はみられなかった.培養液を交換せずにイチゴの栽培を行った場合,根から滲出する生育抑制物質により栄養生長が抑制される.したがって,本実験における非交換区での生育抑制は,根から滲出し培養液中に存在した生育抑制物質によるものと考えられた.実験2において,培養残液中で電気分解処理により,生育抑制物質が分解されたことが示唆されたにもかかわらず,本実験では電解区においても葉数,地上部生体重および地下部乾物重は対照区と比較し有意に減少した.したがって,培養液非交換による生育抑制が電気分解処理により回避されなかったと考えられた.本実験では,電気分解処理を第3花房収穫開始期以降に行った.このことから,根から滲出した生育抑制物質による栄養生長の抑制は,少なくとも第3花房収穫開始期以前に発生していた可能性が推察された.なお,本実験においては電気分解処理後に培養液中の無機養分の調整を行ったことから、Fe-EDTAなどの差は処理区間でなかったと考えられた. As shown in Table 2, the number of leaves at the end of the experiment decreased significantly in the non-exchange zone and the electrolysis zone, reaching 59% and 60% of the control zone, respectively. There was no significant difference in crown diameter between treatment groups. The above-ground living weight, dry weight, and underground dry weight were significantly smaller in the non-exchange zone and electrolytic zone than in the control zone, but tended to be slightly higher in the electrolytic zone. There was no significant difference in the maximum root length in each treatment interval. When strawberry cultivation is performed without changing the culture solution, vegetative growth is suppressed by growth inhibitory substances that exude from the roots. Therefore, the growth inhibition in the non-exchange zone in this experiment was considered to be due to the growth inhibitory substance that exuded from the roots and was present in the culture solution. In Experiment 2, it was suggested that the growth inhibitory substance was decomposed by electrolysis in the culture residue, but in this experiment, the number of leaves, the weight of above-ground biological weight and the weight of underground dry matter were also measured in the electrolytic zone. Was significantly reduced compared with the control group. Therefore, it was considered that growth inhibition due to non-exchange of culture medium was not avoided by electrolysis. In this experiment, the electrolysis treatment was performed after the beginning of the 3rd inflorescence harvest. This suggests that the suppression of vegetative growth by growth-suppressing substances exuded from the root may have occurred at least before the start of the third inflorescence harvest. In this experiment, the mineral nutrients in the culture broth were adjusted after the electrolysis treatment, so the difference in Fe-EDTA was not considered to be in the treatment section.
培養液を交換せずにイチゴの栽培を行った場合,根から滲出する生育抑制物質により,栄養生長および生殖生長が抑制されること,その主な原因物質が安息香酸である可能性がある.また,その原因として,植物における生殖生長の発現やイチゴにおいて果実肥大を制御しているとされるオーキシンの作用が、根から吸収された安息香酸により,阻害される可能性がある.したがって,本実験における,非交換区での生殖生長の抑制は,培養液中に蓄積した安息香酸が根から吸収され,引き起こされたと考えられた.
一方,電解区の開花数および収穫果実数は,対照区と同等であった.また収量は,対照区と比較して有意に減少したが,非交換区と比較し有意に増加したことから,培養液非交換による収量の減少は軽減されたと考えられた.実験1および実験2より,電気分解処理による培養液中の安息香酸の分解が示唆されたことから,電解区における開花数,収穫果実数の回復および収量低下の軽減は,イチゴの根から滲出し,培養液中に蓄積したと考えられる安息香酸が電気分解されたことによると考えられた.
以上より,イチゴの根から滲出し,培養液に蓄積される生育抑制物質による収量の低下,すなわち自家中毒は,培養液に電気分解処理を行うことにより軽減される可能性が考えられた.なお,培養液中のFe-EDTAは電気分解処理により分解されたと考えられたことから,今後イチゴの水耕において電気分解処理を行う場合,培養液の調整直前に処理を行うようにするなど,処理を行うタイミングを検討する必要があると考えられた.
When strawberry cultivation is carried out without changing the culture solution, growth inhibition and reproductive growth are suppressed by the growth inhibitory substance exuded from the root, and the main causative substance may be benzoic acid. Moreover, it is possible that auxin, which is said to control the development of reproductive growth in plants and the fruit enlargement in strawberry, is inhibited by benzoic acid absorbed from the roots. Therefore, it was considered that the suppression of reproductive growth in the non-exchange zone in this experiment was caused by absorption of benzoic acid accumulated in the culture medium from the roots.
On the other hand, the number of flowers and the number of fruits harvested in the electrolysis plot were the same as those in the control plot. The yield decreased significantly compared to the control group, but increased significantly compared to the non-exchanged group, suggesting that the decrease in yield due to non-exchanged medium was alleviated. Experiments 1 and 2 suggested that benzoic acid in the culture broth was decomposed by electrolysis. Therefore, the number of flowers in the electrolytic zone, the recovery of the number of harvested fruits, and the reduction in yield loss were exuded from the roots of strawberries. This was probably due to the electrolysis of benzoic acid, which was thought to have accumulated in the culture medium.
These results suggest that the decrease in yield due to growth inhibitory substances that exude from strawberry roots and accumulate in the culture, that is, autotoxicity, may be reduced by electrolyzing the culture. In addition, since Fe-EDTA in the culture solution was considered to have been decomposed by electrolysis treatment, in the future, when performing electrolysis treatment in strawberry hydroponics, the treatment should be performed immediately before the adjustment of the culture solution. It was considered necessary to examine the timing of processing.
電気分解という比較的に扱い易い方法によって生育抑制物質を低減することができ、自家中毒が発生し難く従来よりも実用的であることによって、種々の植物の養液栽培の用途に適用することができる。 The growth inhibitory substance can be reduced by a relatively easy method of electrolysis, and self-poisoning is less likely to occur and is more practical than before, so that it can be applied to the hydroponic use of various plants. it can.
1 陰極
2 陽極
1 cathode 2 anode
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162841A JP2012228265A (en) | 2012-07-23 | 2012-07-23 | Hydroponic method for plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162841A JP2012228265A (en) | 2012-07-23 | 2012-07-23 | Hydroponic method for plant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007245673A Division JP5177739B2 (en) | 2007-09-21 | 2007-09-21 | Hydroponic cultivation method for plants |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012228265A true JP2012228265A (en) | 2012-11-22 |
Family
ID=47430381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012162841A Pending JP2012228265A (en) | 2012-07-23 | 2012-07-23 | Hydroponic method for plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012228265A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015216854A (en) * | 2014-05-14 | 2015-12-07 | 栗田エンジニアリング株式会社 | Cleaning method and cleaning facility of culture medium |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08214722A (en) * | 1995-02-15 | 1996-08-27 | Japan Tobacco Inc | Culturing device using nourishing solution |
JP2001019958A (en) * | 1999-07-05 | 2001-01-23 | Dainichiseika Color & Chem Mfg Co Ltd | Soil treating agent for controlling injury by continuous cropping of plant |
JP2001320990A (en) * | 2000-05-15 | 2001-11-20 | Hoshizaki Electric Co Ltd | Preparation liquid for culture solution for hydroponic culture and method for preparation of the same |
JP2002051651A (en) * | 2000-08-10 | 2002-02-19 | Fuji Electric Co Ltd | Water culture method and apparatus therefor |
JP2003018929A (en) * | 2001-07-09 | 2003-01-21 | Hoshizaki Electric Co Ltd | Method and apparatus for hydroponics |
JP2004236528A (en) * | 2003-02-04 | 2004-08-26 | M Shiki Suiko Kenkyusho:Kk | Apparatus and method each for hydroponics |
JP2004329005A (en) * | 2003-04-30 | 2004-11-25 | Univ Shimane | Hydroponic culture device |
JP2005176748A (en) * | 2003-12-19 | 2005-07-07 | Shimane Univ | Method for determining succeeding cropping plant and method for continuously culturing plant |
JP2006045088A (en) * | 2004-08-02 | 2006-02-16 | Idemitsu Kosan Co Ltd | Removing agent of plant growth-inhibiting substance, and removing method for plant growth-inhibiting substance in culture solution |
JP2006151881A (en) * | 2004-11-30 | 2006-06-15 | Institute Of Physical & Chemical Research | Composition for furnishing plant with environmental-stress resistance |
JP2007152156A (en) * | 2005-11-30 | 2007-06-21 | Tokyo Micro Device Kk | Electrolyzed reduced water generator for farm product, water for foliar application, soil irrigation water or water irrigated into soil, and cultivation method of farm product |
-
2012
- 2012-07-23 JP JP2012162841A patent/JP2012228265A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08214722A (en) * | 1995-02-15 | 1996-08-27 | Japan Tobacco Inc | Culturing device using nourishing solution |
JP2001019958A (en) * | 1999-07-05 | 2001-01-23 | Dainichiseika Color & Chem Mfg Co Ltd | Soil treating agent for controlling injury by continuous cropping of plant |
JP2001320990A (en) * | 2000-05-15 | 2001-11-20 | Hoshizaki Electric Co Ltd | Preparation liquid for culture solution for hydroponic culture and method for preparation of the same |
JP2002051651A (en) * | 2000-08-10 | 2002-02-19 | Fuji Electric Co Ltd | Water culture method and apparatus therefor |
JP2003018929A (en) * | 2001-07-09 | 2003-01-21 | Hoshizaki Electric Co Ltd | Method and apparatus for hydroponics |
JP2004236528A (en) * | 2003-02-04 | 2004-08-26 | M Shiki Suiko Kenkyusho:Kk | Apparatus and method each for hydroponics |
JP2004329005A (en) * | 2003-04-30 | 2004-11-25 | Univ Shimane | Hydroponic culture device |
JP2005176748A (en) * | 2003-12-19 | 2005-07-07 | Shimane Univ | Method for determining succeeding cropping plant and method for continuously culturing plant |
JP2006045088A (en) * | 2004-08-02 | 2006-02-16 | Idemitsu Kosan Co Ltd | Removing agent of plant growth-inhibiting substance, and removing method for plant growth-inhibiting substance in culture solution |
JP2006151881A (en) * | 2004-11-30 | 2006-06-15 | Institute Of Physical & Chemical Research | Composition for furnishing plant with environmental-stress resistance |
JP2007152156A (en) * | 2005-11-30 | 2007-06-21 | Tokyo Micro Device Kk | Electrolyzed reduced water generator for farm product, water for foliar application, soil irrigation water or water irrigated into soil, and cultivation method of farm product |
Non-Patent Citations (2)
Title |
---|
JPN7013004719; ひかりファーム: '有機栽培と水耕栽培のちがい' online , 2004 * |
JPN7013004720; 島地英夫: 'online' 養液栽培の給液制御 , 2003 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015216854A (en) * | 2014-05-14 | 2015-12-07 | 栗田エンジニアリング株式会社 | Cleaning method and cleaning facility of culture medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2675096T3 (en) | Floral preservative | |
KR102471773B1 (en) | System for manufacturing of sprout ginseng | |
Asaduzzaman et al. | Growth and yield recovery in strawberry plants under autotoxicity through electrodegradation | |
CN103621392A (en) | Method for cultivating industrial hemp liquid | |
JP5177739B2 (en) | Hydroponic cultivation method for plants | |
JPWO2017135236A1 (en) | Method for breeding salt-tolerant seedling and method for hydroponics plant cultivation | |
CN105165581A (en) | Chili hydroponic method | |
EP3369310A1 (en) | Nutriculture system | |
Arumugam et al. | Soilless farming of vegetable crops: An overview | |
US11343984B2 (en) | Hydroponic system using seawater and cultivation system for growing seeds and seedlings | |
KR20160026375A (en) | Recycling system for nutriculture | |
Kumar et al. | Trends in Hydroponics Practice/Technology in Horticultural Crops: A Review | |
Asao et al. | Electrodegradation of root exudates to mitigate autotoxicity in hydroponically grown strawberry (Fragaria× ananassa Duch.) plants | |
Vergote et al. | Recirculation aquaculture system (RAS) with tilapia in a hydroponic system with tomatoes | |
Talukder et al. | Application of alternating current electro-degradation improves retarded growth and quality in lettuce under autotoxicity in successive cultivation | |
Zheng | Current nutrient management practices and technologies used in North American greenhouse and nursery industries | |
JP2012228265A (en) | Hydroponic method for plant | |
JP6551731B2 (en) | Hydroponic cultivation method, electrolysis apparatus for hydroponic cultivation | |
Lodeta et al. | Response of poinsettia to drench application of growth regulators | |
CN108886988A (en) | A kind of blueberry sponge cuttage and seedling culture method | |
KR20150007094A (en) | Growth method of corn sprout | |
Kaur et al. | Hydroponics: A Review on Revolutionary Technology for Sustainable Agriculture | |
JP2005333854A (en) | Method for raising plant | |
Venezia et al. | Water and nutrient use efficiency of tomato soilless culture as affected by irrigation method and water quality | |
Al-Absi | Effect of irrigation with treated industrial effluent on growth and biochemical constituents of olives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131002 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150122 |