JP2015216854A - Cleaning method and cleaning facility of culture medium - Google Patents

Cleaning method and cleaning facility of culture medium Download PDF

Info

Publication number
JP2015216854A
JP2015216854A JP2014100615A JP2014100615A JP2015216854A JP 2015216854 A JP2015216854 A JP 2015216854A JP 2014100615 A JP2014100615 A JP 2014100615A JP 2014100615 A JP2014100615 A JP 2014100615A JP 2015216854 A JP2015216854 A JP 2015216854A
Authority
JP
Japan
Prior art keywords
culture solution
residual chlorine
electrolysis
purifying
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014100615A
Other languages
Japanese (ja)
Other versions
JP6361274B2 (en
Inventor
三剣 緒方
Mitsuken Ogata
三剣 緒方
丸尾 達
Tatsu Maruo
達 丸尾
貴寛 大塩
Takahiro Oshio
貴寛 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Kurita Engineering Co Ltd
Original Assignee
Chiba University NUC
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Kurita Engineering Co Ltd filed Critical Chiba University NUC
Priority to JP2014100615A priority Critical patent/JP6361274B2/en
Publication of JP2015216854A publication Critical patent/JP2015216854A/en
Application granted granted Critical
Publication of JP6361274B2 publication Critical patent/JP6361274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent diffusion of disease damage by effectively sterilizing disease damage fungus in a culture medium after inhibiting plant growth inhibition, in a cleaning method and cleaning facility which clean the culture medium by electrolyzing the culture medium.SOLUTION: An electrolysis is performed so that the total residual chlorine concentration in a culture medium becomes 1.0 mg-Cl/L or less. Even if the total residual chlorine concentration of the hypochlorous acid produced by electrolysis in the culture medium is a low concentration of 1.0 mg-Cl/L or less, a sufficient sterilization effect is obtained, and thereby sterilization treatment in such a low concentration can inhibit plant growth inhibition.

Description

本発明は、植物の養液栽培(水耕栽培も含む)において、培養液中に発生する病害菌等の細菌及びそれによる病害の拡散を抑制するための培養液の浄化方法及び浄化装置に関するものである。   TECHNICAL FIELD The present invention relates to a culture liquid purification method and a purification apparatus for suppressing bacteria such as disease-causing bacteria generated in a culture solution and the spread of disease caused thereby in hydroponic culture (including hydroponics) of plants. It is.

植物の栽培方法の一つとして、植物を土壌と隔離し、液体肥料を供給する養液栽培がある。養液栽培は、土耕と比較すると、肉体労働を軽減でき、根などの地下部の肥料濃度や温度などの環境条件の制御が容易であることから、システムの自動化や年間を通じた安定生産が可能であるといった利点を有し、養液栽培施設の設置面積は年々増加している。   As one of the methods for cultivating plants, there is hydroponics that isolates plants from soil and supplies liquid fertilizer. Hydroponic cultivation can reduce manual labor compared to soil cultivation, and it is easy to control environmental conditions such as fertilizer concentration and temperature in the underground such as roots, so system automation and stable production throughout the year can be achieved. It has the advantage that it is possible, and the installation area of hydroponic cultivation facilities is increasing year by year.

養液栽培では、土壌と植物は隔離されているため、連作障害や土壌伝染性病害の発生はないとされているが、実際の養液栽培では病害が発生し、培養液が循環使用される場合は、病害が栽培槽全体に拡散する。病害が拡散した場合には、培養液の全量交換や栽培槽の殺菌処理が必要となり、生産計画に大きな影響を及ぼすこととなる。   In hydroponic culture, soil and plants are isolated, so there are no continuous cropping problems or soil-borne diseases. However, in actual hydroponic cultivation, diseases occur and the culture solution is used in a circulating manner. In case, the disease spreads throughout the cultivation tank. When the disease spreads, it is necessary to change the whole amount of the culture solution and sterilize the cultivation tank, which greatly affects the production plan.

近年、食品に対する安全志向の高まりや環境保護など社会的背景から、土耕に限らず養液栽培においても、低農薬栽培や無農薬栽培の評価が高まり、農薬に頼らない病害防止技術が求められている。養液栽培における農薬に頼らない病害防止技術としては、培養液への紫外線照射、オゾン注入、濾過、加熱、光触媒処理など多様な手法が提案されているが、いずれもエネルギー消費量や消耗資材の交換頻度などコスト面の課題がある。また、栽培システムの自動化に伴い、生育状況や栽培環境に応じた病害防止技術の確立及び栽培システムとの統合が望まれている。   In recent years, due to social backgrounds such as increased food safety and environmental protection, the evaluation of low pesticide-free and pesticide-free cultivation has been increased not only in soil cultivation but also in hydroponic cultivation, and disease prevention technology that does not rely on agricultural chemicals is required. ing. Various methods such as ultraviolet irradiation, ozone injection, filtration, heating, and photocatalyst treatment have been proposed as disease prevention technologies that do not rely on pesticides in hydroponic cultivation. There are cost issues such as replacement frequency. Moreover, with automation of a cultivation system, establishment of the disease prevention technique according to a growth condition and cultivation environment and integration with a cultivation system are desired.

特許文献1には、電気分解による病害防止方法が提案されており、循環する培養液の電気分解により発生する電界及び次亜塩素酸により、病原菌や作物の根から排出される老廃物(水溶性有機物)が酸化分解され除菌されると説明されている。   Patent Document 1 proposes a disease prevention method by electrolysis, and waste products (water-soluble) discharged from pathogenic fungi and crop roots by an electric field and hypochlorous acid generated by electrolysis of a circulating culture solution. It is explained that organic matter) is oxidatively decomposed and sterilized.

特許文献2には、培養液の電気分解により培養液中の生育抑制物質濃度を低減し、その電気分解の後工程として鉄のキレート剤を含む養液成分を補充する養液栽培方法が提案されており、電気分解により生育抑制物質を低減することができ、また、副生する次亜塩素酸で病害菌の防除ができると共に、溶存酸素濃度の上昇により果実収量を増加させることができると記載されている。   Patent Document 2 proposes a hydroponic cultivation method in which the growth inhibitory substance concentration in the culture solution is reduced by electrolysis of the culture solution, and a nutrient solution component containing an iron chelating agent is replenished as a subsequent step of the electrolysis. It is described that growth inhibitory substances can be reduced by electrolysis, and that by-product hypochlorous acid can control disease-causing bacteria and increase the yield of dissolved oxygen by increasing dissolved oxygen concentration. Has been.

なお、特許文献1,2には、電気分解で生成させる次亜塩素酸量についての記載はなされていないが、一般に、殺菌効果が得られるとされる全残留塩素濃度は、数mg−Cl/L以上と考えられており、従って、特許文献1,2においても、電気分解により培養液中に全残留塩素濃度として数mg−Cl/L以上の次亜塩素酸を生成させていると考えられる。 Patent Documents 1 and 2 do not describe the amount of hypochlorous acid produced by electrolysis, but generally, the total residual chlorine concentration at which a bactericidal effect is obtained is several mg-Cl 2. Therefore, even in Patent Documents 1 and 2, hypochlorous acid having a total residual chlorine concentration of several mg-Cl 2 / L or more is generated in the culture solution by electrolysis. Conceivable.

特開2002−51651号公報JP 2002-51651 A 特許第5177739号公報Japanese Patent No. 517739

養液栽培システムにおいては、計画的で効率的な生産方法の確立が求められているが、従来の病害防止技術のうち、紫外線照射、オゾン注入、濾過、加熱、光触媒処理などはコスト面に課題があり、一方で、電気分解による方法では、電気分解条件の調整が容易でないため、電気分解の程度が弱い場合は効果が得られず、電気分解の程度か強い場合は植物の生育への悪影響及びエネルギー消費量の増大の課題がある。
即ち、培養液の電気分解で次亜塩素酸を生成させることにより病害菌を殺菌して病害の拡散を抑制することはできるが、発生した次亜塩素酸は栽培している植物及び培養液中の肥料成分に悪影響を及ぼし、次亜塩素酸の存在で植物の生育が阻害される。
In the hydroponic culture system, the establishment of a planned and efficient production method is required, but among the conventional disease prevention technologies, ultraviolet irradiation, ozone injection, filtration, heating, photocatalytic treatment, etc. are problems in terms of cost On the other hand, since the method of electrolysis is not easy to adjust the electrolysis conditions, the effect is not obtained if the degree of electrolysis is weak, and if the degree of electrolysis is strong or weak, it has an adverse effect on plant growth. And there is a problem of increasing energy consumption.
That is, the hypochlorite can be sterilized by producing hypochlorous acid by electrolysis of the culture solution to suppress the spread of the disease, but the generated hypochlorous acid is contained in the plant being grown and the culture solution. Adversely affects the fertilizer components of plants, and the presence of hypochlorous acid inhibits plant growth.

このように、次亜塩素酸は殺菌作用を示す反面、栽培する植物の生育に悪影響を及ぼすため、植物の成長や代謝などの生育状況、また光量や気温、液温など環境要因に対応して電気分解条件の調整を行う必要あるが、特許文献1では、栽培する植物の生育への悪影響の回避策や、次亜塩素酸濃度の低濃度での運用方法や電気分解条件の調整方法についての検討がなされていない。
同様に、特許文献2においても、電気分解条件の調整は電気分解の強さ(電流値等)や頻度により制御する程度にとどまっており、植物の成長や代謝などの生育状況、光量や気温、液温など環境要因に対応する電気分解条件の調整は行われていない。
In this way, hypochlorous acid has a bactericidal effect, but adversely affects the growth of the plant to be cultivated, so it responds to the growth conditions such as plant growth and metabolism, and environmental factors such as light intensity, temperature, and liquid temperature. Although it is necessary to adjust the electrolysis conditions, Patent Document 1 discloses a method for avoiding adverse effects on the growth of plants to be cultivated, an operation method at a low concentration of hypochlorous acid, and an adjustment method for electrolysis conditions. It has not been examined.
Similarly, in Patent Document 2, the adjustment of the electrolysis conditions is limited to the level controlled by the intensity (current value, etc.) and frequency of electrolysis, and the growth situation such as plant growth and metabolism, light quantity and temperature, The electrolysis conditions corresponding to environmental factors such as liquid temperature have not been adjusted.

浄化対象となる細菌等の濃度は、植物の成長や代謝などの生育状況、光量や気温、液温などの環境要因の影響を受けるため、効率的に浄化処理を行うためには、これら生育状況や環境要因に応じた電気分解条件の調整が必要となる。
しかし、細菌等の測定には、細菌の培養などに長時間を必要とするため、これらの測定及び測定結果に応じた電気分解条件の調整は現実的でなく、代替手段が必要となる。
The concentration of bacteria and other substances to be purified is affected by environmental factors such as plant growth and metabolism, light intensity, air temperature, and liquid temperature. It is necessary to adjust the electrolysis conditions according to the environmental factors.
However, since measurement of bacteria and the like requires a long time for culturing bacteria, adjustment of electrolysis conditions according to these measurements and measurement results is not practical, and alternative means are required.

本発明は上記従来の問題点を解決し、培養液の電気分解を利用した培養液の浄化方法及び浄化装置において、植物の生育阻害を抑制して、培養液中の病害菌を効果的に殺菌して病害の拡散を防止する培養液の浄化方法及び浄化装置、或いは、植物の成長や代謝などの生育状況、光量や気温、液温などの環境要因に対応して、電気分解条件を的確に調整することができる培養液の浄化方法及び浄化装置、更には、電気分解に必要な電力量を削減することができる培養液の浄化方法及び浄化装置を提供することを課題とする。   The present invention solves the above-mentioned conventional problems, and in a culture liquid purification method and purification apparatus utilizing electrolysis of a culture liquid, it suppresses plant growth inhibition and effectively sterilizes disease-causing bacteria in the culture liquid. The method and device for purifying the culture solution to prevent the spread of disease or the growth conditions such as plant growth and metabolism, the environmental conditions such as light quantity, air temperature, liquid temperature, etc. It is an object of the present invention to provide a culture medium purification method and purification apparatus that can be adjusted, and a culture medium purification method and purification apparatus that can reduce the amount of electric power required for electrolysis.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、電気分解により生成する培養液中の次亜塩素酸が、全残留塩素濃度として1.0mg−Cl/L以下の低濃度であっても、十分な殺菌効果が得られること、従って、このような低濃度条件であれば、植物の生育阻害を抑制できること、また、電気分解後の培養液の全残留塩素濃度の測定及びそれに基づく電気分解条件の制御、電気分解後の培養液中の全残留塩素の除去、栽培槽に循環される培養液の全残留塩素濃度の測定及びそれに基づく電気分解条件の制御、電気分解に供する培養液の塩化物イオン濃度の測定及びそれに基づく電解質の添加、といった制御システムを構築することで、電気分解法による培養液の浄化を、植物の生育阻害を抑制した上で効率的に行うことができ、また、植物の成長や代謝などの生育状況、光量や気温、液温などの環境要因に対応して、電気分解条件を的確に調整することができると共に、電気分解に必要な電力量を低減することも可能となることができることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that hypochlorous acid in the culture solution produced by electrolysis is a low concentration of 1.0 mg-Cl 2 / L or less as a total residual chlorine concentration. Even so, a sufficient bactericidal effect can be obtained. Therefore, under such low concentration conditions, plant growth inhibition can be suppressed, and the total residual chlorine concentration in the culture solution after electrolysis can be measured. Control of electrolysis conditions based on it, removal of total residual chlorine in the culture broth after electrolysis, measurement of total residual chlorine concentration in culture broth circulated in the cultivation tank, control of electrolysis conditions based on it, and electrolysis By constructing a control system for measuring the chloride ion concentration of the culture solution and adding an electrolyte based on it, it is possible to efficiently purify the culture solution by electrolysis while suppressing plant growth inhibition. so In addition, the electrolysis conditions can be adjusted accurately and the amount of power required for electrolysis can be reduced in response to environmental factors such as plant growth and metabolism, light intensity, air temperature, and liquid temperature. I have found that it can also be possible.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、該培養液の全残留塩素濃度が1.0mg−Cl/L以下となるように電気分解を行うことを特徴とする培養液の浄化方法。 [1] In a method for purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the total residual chlorine concentration of the culture solution is 1.0 mg-Cl 2 / L or less. A method for purifying a culture solution, comprising performing electrolysis.

[2] [1]において、電気分解後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することを特徴とする培養液の浄化方法。 [2] A method for purifying a culture solution according to [1], wherein the total residual chlorine concentration of the culture solution after electrolysis is measured, and the electrolysis conditions are adjusted based on the measurement result.

[3] [1]又は[2]において、栽培槽内の培養液を抜き出して電気分解した後、該栽培槽に返送する培養液の浄化方法であって、該電気分解後の培養液中の残留塩素を除去した後、該栽培槽に返送することを特徴とする培養液の浄化方法。 [3] In [1] or [2], a method for purifying a culture solution after extracting and electrolyzing the culture solution in the cultivation tank, and returning the culture solution to the cultivation tank, A method for purifying a culture solution, comprising removing residual chlorine and then returning it to the cultivation tank.

[4] [3]において、該残留塩素除去後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて、電気分解条件を調整することを特徴とする培養液の浄化方法。 [4] A method for purifying a culture solution according to [3], wherein the total residual chlorine concentration of the culture solution after removing the residual chlorine is measured, and electrolysis conditions are adjusted based on the measurement result.

[5] [1]ないし[4]のいずれかにおいて、電気分解に供する培養液の塩化物イオン濃度を測定し、この測定結果に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整することを特徴とする培養液の浄化方法。 [5] In any one of [1] to [4], the chloride ion concentration of the culture solution to be subjected to electrolysis is measured, and based on the measurement result, the chloride ion concentration of the culture solution is not more than a predetermined value. In this case, a method for purifying a culture solution, comprising adjusting an chloride ion concentration by adding an electrolyte containing chloride ions to the culture solution.

[6] 培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、電気分解後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することを特徴とする培養液の浄化方法。 [6] In a method for purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the total residual chlorine concentration of the culture solution after the electrolysis is measured, and based on the measurement result, A method for purifying a culture solution, comprising adjusting the decomposition conditions.

[7] 栽培槽内の培養液を抜き出して電気分解した後、該栽培槽に返送する培養液の浄化方法において、該電気分解後の培養液中の残留塩素を除去した後、該栽培槽に返送することを特徴とする培養液の浄化方法。 [7] In a method for purifying a culture solution that is extracted from a culture tank and electrolyzed and then returned to the culture tank, after removing residual chlorine in the culture solution after the electrolysis, A method for purifying the culture broth, which is returned.

[8] [7]において、該残留塩素除去後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて、電気分解条件を調整することを特徴とする培養液の浄化方法。 [8] The method for purifying a culture solution according to [7], wherein the total residual chlorine concentration of the culture solution after removing the residual chlorine is measured, and the electrolysis conditions are adjusted based on the measurement result.

[9] 培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、電気分解に供する培養液の塩化物イオン濃度を測定し、この測定結果に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整することを特徴とする培養液の浄化方法。 [9] In a method for purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the chloride ion concentration of the culture solution to be subjected to electrolysis is measured, and based on the measurement result, A method for purifying a culture solution, comprising adjusting an chloride ion concentration by adding an electrolyte containing chloride ions to the culture solution when the chloride ion concentration of the culture solution is a predetermined value or less.

[10] 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該電気分解後の培養液の全残留塩素濃度を測定する全残留塩素濃度測定手段と、該全残留塩素濃度測定手段の測定値に基づいて、該電気分解装置の電気分解条件を調整する制御手段とを有することを特徴とする培養液の浄化装置。 [10] In a culture solution purification apparatus comprising an electrolysis device that generates hypochlorous acid by purifying the culture solution by extracting and electrolyzing the culture solution in the cultivation tank, and then returning the culture solution to the cultivation tank. Total residual chlorine concentration measuring means for measuring the total residual chlorine concentration of the culture broth after the electrolysis, and control means for adjusting the electrolysis conditions of the electrolysis apparatus based on the measurement value of the total residual chlorine concentration measuring means A culture medium purification apparatus comprising:

[11] [10]において、前記全残留塩素濃度測定手段による測定値が1.0mg−Cl/L以下となるように前記制御手段による電気分解条件の制御が行われることを特徴とする培養液の浄化装置。 [11] The culture according to [10], wherein the electrolysis conditions are controlled by the control means so that the measured value by the total residual chlorine concentration measuring means is 1.0 mg-Cl 2 / L or less. Liquid purification device.

[12] 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該電気分解装置で浄化された培養液中の残留塩素を除去する残留塩素除去手段を有し、該残留塩素除去手段で残留塩素が除去された後の培養液が前記栽培槽に返送されることを特徴とする培養液の浄化装置。 [12] In a culture solution purification apparatus comprising an electrolysis device that generates hypochlorous acid by purifying the culture solution by extracting and electrolyzing the culture solution in the cultivation tank, and then returning the culture solution to the cultivation tank. A residual chlorine removing means for removing residual chlorine in the culture solution purified by the electrolyzer, and the culture solution after the residual chlorine is removed by the residual chlorine removing means is returned to the cultivation tank; An apparatus for purifying a culture solution.

[13] [12]において、前記残留塩素除去手段で残留塩素が除去された培養液の全残留塩素濃度を測定する全残留塩素濃度測定手段と、該全残留塩素濃度測定手段の測定値に基づいて、前記電気分解装置の電気分解条件を調整する制御手段とを有することを特徴とする培養液の浄化装置。 [13] In [12], based on the total residual chlorine concentration measuring means for measuring the total residual chlorine concentration of the culture solution from which the residual chlorine has been removed by the residual chlorine removing means, and the measurement value of the total residual chlorine concentration measuring means And a control means for adjusting electrolysis conditions of the electrolyzer.

[14] 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該培養液の塩化物イオン濃度を測定する塩化物イオン濃度測定手段と、該塩化物イオン濃度測定手段の測定値に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整する塩化物イオン濃度調整手段とを有することを特徴とする培養液の浄化装置。 [14] In a culture solution purification apparatus comprising an electrolyzer that generates hypochlorous acid by purifying the culture solution by extracting and electrolyzing the culture solution in the cultivation tank and then returning the culture solution to the cultivation tank. Based on the measured value of the chloride ion concentration measuring means for measuring the chloride ion concentration of the culture broth and the chloride ion concentration measuring means, when the chloride ion concentration of the culture broth is a predetermined value or less, An apparatus for purifying culture broth, comprising: chloride ion concentration adjusting means for adjusting chloride ion concentration by adding an electrolyte containing chloride ions to the culture broth.

本発明によれば、電気分解により次亜塩素酸を発生させて該培養液中の病害菌を効果的に殺菌して浄化することにより、病害の拡散を防止することができる。しかも、その際に発生させる次亜塩素酸量は、全残留塩素で1.0mg−Cl/L以下という低濃度であるため、次亜塩素酸による植物の生育阻害を抑制することができる(請求項1、11)。 According to the present invention, hypochlorous acid is generated by electrolysis to effectively sterilize and purify disease-causing bacteria in the culture solution, thereby preventing the spread of disease. Moreover, since the amount of hypochlorous acid generated at that time is a low concentration of 1.0 mg-Cl 2 / L or less in the total residual chlorine, plant growth inhibition by hypochlorous acid can be suppressed ( Claims 1 and 11).

このような低濃度の次亜塩素酸を発生させるために、電気分解後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することが好ましい(請求項2、6、10)。   In order to generate such a low concentration of hypochlorous acid, it is preferable to measure the total residual chlorine concentration of the culture broth after the electrolysis and to adjust the electrolysis conditions based on the measurement result (claim 2). , 6, 10).

また、電気分解による浄化後の培養液中の残留塩素を除去することにより、次亜塩素酸による植物の生育阻害を確実に防止することができる(請求項3、7、12)。この際、残留塩素除去後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することにより、電気分解に必要な電力量と、残留塩素除去手段の負荷を小さくして、効率的な浄化を行える(請求項4、8、13)。   Further, by removing residual chlorine in the culture solution after purification by electrolysis, it is possible to reliably prevent plant growth inhibition by hypochlorous acid (claims 3, 7, and 12). At this time, by measuring the total residual chlorine concentration of the culture broth after residual chlorine removal and adjusting the electrolysis conditions based on this measurement result, the amount of electric power required for electrolysis and the load of the residual chlorine removal means are reduced. It can be made small and efficient purification can be performed (claims 4, 8, and 13).

また、電気分解に供される培養液中の塩化物イオン濃度を測定し、この測定結果に基づいて、培養液中の塩化物イオン濃度が不足する場合には、塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整することにより、電気分解に必要な電力量を削減して効率的な浄化を行える(請求項5、9、14)。   Also, measure the chloride ion concentration in the culture solution to be subjected to electrolysis. If the chloride ion concentration in the culture solution is insufficient based on this measurement result, add an electrolyte containing chloride ions. By adjusting the chloride ion concentration, the amount of power required for electrolysis can be reduced and efficient purification can be performed (claims 5, 9, and 14).

培養液の浄化に、このような本発明の浄化技術を適用することにより、従来の技術と比較してエネルギー消費量及び消耗資材にかかわる費用を削減でき、また、植物の生育状況や環境要因に起因する細菌、病害菌、老廃物、生育抑制物質、藻類などの混入を全残留塩素濃度で代替評価することで、培養液の管理及び浄化のシステムを自動化できる。
本発明では、培養液中の細菌濃度を計測する場合に必要な複雑な計器や煩雑な操作かつ長時間の計測時間を必要とすることなく、培養液への細菌等の混入状況の把握に残留塩素濃度測定器を用い、また培養液の電気分解適性の評価に塩化物イオン濃度測定器を用いるが、これらはいずれも汎用の計器であり、実用化が容易である。また、これらの計器を使用することにより即時的な計測が可能となる。また、残留塩素除去装置出口に設置した全残留塩素濃度測定器、及び電解槽に設置した残留塩素濃度測定器の各測定結果に基づき電気分解条件を自動調整することにより、次亜塩素酸による植物の生育への悪影響を回避した上で、効果的に浄化を行える。これらの即時的な計測と自動調整の機能を組み合わせることで、浄化システムの自動化と栽培システムとの統合が容易に行える。
By applying the purification technology of the present invention to the purification of the culture solution, energy consumption and expenses related to consumable materials can be reduced compared to the conventional technology. By substituting the total residual chlorine concentration for contamination caused by bacteria, disease bacteria, waste products, growth-inhibiting substances, algae, etc., it is possible to automate the management and purification system of the culture solution.
In the present invention, it does not require complicated instruments and complicated operations necessary for measuring the concentration of bacteria in a culture solution and a long measurement time, and it remains in grasping the state of contamination of bacteria into the culture solution. Although a chlorine concentration measuring device is used and a chloride ion concentration measuring device is used for evaluating the electrolysis suitability of the culture solution, these are general-purpose meters and are easy to put into practical use. In addition, immediate measurement is possible by using these instruments. In addition, by automatically adjusting the electrolysis conditions based on the measurement results of the total residual chlorine concentration measuring device installed at the outlet of the residual chlorine removal device and the residual chlorine concentration measuring device installed in the electrolytic cell, the plant with hypochlorous acid Purification can be performed effectively while avoiding adverse effects on the growth of the plant. By combining these instantaneous measurement and automatic adjustment functions, the purification system can be easily automated and integrated with the cultivation system.

本発明の培養液の浄化装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the culture solution purification apparatus of this invention.

以下に本発明の実施の形態を図面を参照して詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

なお、本発明において、全残留塩素とは、遊離残留塩素と結合残留塩素とを合わせたものであり、全残留塩素濃度とは、遊離残留塩素濃度と結合残留塩素濃度との合計を意味する。   In the present invention, the total residual chlorine is a combination of free residual chlorine and combined residual chlorine, and the total residual chlorine concentration means the sum of the free residual chlorine concentration and the combined residual chlorine concentration.

図1は、本発明の培養液の浄化装置の実施の形態の一例を示す系統図である。   FIG. 1 is a system diagram showing an example of an embodiment of a culture solution purification apparatus of the present invention.

図1において、1は栽培槽であり、培養液による植物20の栽培が行われている。栽培槽1内の培養液は、配管11より抜き出され、一部は配管11Aから電解槽2に導入され、残部は配管11Bより調整槽3に導入される。11a、11bは開閉バルブである。本実施の形態において、電解槽2と調整槽3とは、一つの浄化槽4内に仕切壁4Aで区画して設けられている。   In FIG. 1, 1 is a cultivation tank and the cultivation of the plant 20 by a culture solution is performed. The culture solution in the cultivation tank 1 is extracted from the pipe 11, a part is introduced from the pipe 11A to the electrolytic tank 2, and the remaining part is introduced from the pipe 11B to the adjustment tank 3. 11a and 11b are open / close valves. In this Embodiment, the electrolytic cell 2 and the adjustment tank 3 are provided in the one septic tank 4 divided by the partition wall 4A.

電解槽2には、直流電源5及び電極5A,5Bと、塩化物イオン濃度測定器7及び全残留塩素濃度測定器8が設けられている。電解槽2に導入された培養液は、正負の電極5A,5B間で電気分解される。   The electrolytic cell 2 is provided with a DC power source 5 and electrodes 5A and 5B, a chloride ion concentration measuring device 7 and a total residual chlorine concentration measuring device 8. The culture solution introduced into the electrolytic cell 2 is electrolyzed between the positive and negative electrodes 5A and 5B.

本発明では、エネルギー消費量及び消耗資材の交換頻度が少なく、また自動化及びメンテナンスが容易な浄化方法として、直流電圧を印加して電解槽内に隔膜を設けない方式での電気分解を採用する。培養液の電気分解による浄化機構は以下の通りである。   In the present invention, as a purification method that requires less energy consumption and less frequent replacement of consumables, and that is easy to automate and maintain, electrolysis is employed in which a DC voltage is applied and no diaphragm is provided in the electrolytic cell. The purification mechanism by electrolysis of the culture solution is as follows.

培養液を電気分解すると陽極で酸素ガスや塩素ガスが、陰極で水素ガスが発生する。培養液のpHは通常5〜8の範囲にあり、発生した塩素ガスは遊離残留塩素(次亜塩素酸及び次亜塩素酸イオン)として存在する。これら遊離残留塩素は水道水の消毒用途や、有機物質の酸化処理などで幅広く使用されており、電気分解で発生した遊離残留塩素が培養液と接触することにより細菌等が殺菌される。   When the culture solution is electrolyzed, oxygen gas and chlorine gas are generated at the anode and hydrogen gas is generated at the cathode. The pH of the culture solution is usually in the range of 5 to 8, and the generated chlorine gas exists as free residual chlorine (hypochlorous acid and hypochlorite ions). These free residual chlorines are widely used for tap water disinfection and oxidation treatment of organic substances, and bacteria and the like are sterilized when free residual chlorine generated by electrolysis comes into contact with the culture solution.

また、培養液のpH域のような中性域において、細菌細胞表面はカルボキシル基やリン酸基などが解離し負に帯電している場合が多いとされるが、培養液の電気分解では、陽極で塩素ガスが発生するため、静電引力で細菌等が陽極に引き寄せられることにより遊離残留塩素との接触が促進され、効率的に浄化されるものと推定される。   In addition, in the neutral range such as the pH range of the culture solution, the bacterial cell surface is often negatively charged due to dissociation of carboxyl groups and phosphate groups, but in the electrolysis of the culture solution, Since chlorine gas is generated at the anode, it is presumed that bacteria and the like are attracted to the anode by electrostatic attraction, thereby promoting contact with free residual chlorine and efficient purification.

なお、培養液の電気分解によれば、病害菌の殺菌による病害の拡散のみならず、特許文献1に記載されているように老廃物の酸化分解、特許文献2に記載されているように生育抑制物質の低減もなされる。また、藻類の発生も抑制され、水耕栽培で使用されるウレタンマットへの藻類の繁殖及びそれによる病害の拡散も抑制される。   In addition, according to the electrolysis of the culture solution, not only the diffusion of the disease due to the sterilization of the disease bacteria, but also the oxidative decomposition of the waste as described in Patent Document 1, and the growth as described in Patent Document 2. Inhibitors are also reduced. Moreover, generation | occurrence | production of algae is also suppressed and the proliferation of the algae to the urethane mat used by hydroponics, and the spreading | diffusion of a disease by it are also suppressed.

電解槽2における電気分解は、連続的に行ってもよく、間欠的に行ってもよい。間欠的に行う場合の1回の電気分解時間や電気分解頻度には特に制限はないが、例えば、1日に1〜20回の頻度で1回当たり5〜120分程度の時間電気分解を行うことができる。
なお、電気分解に伴い陰極表面で水酸化物が生成して付着する場合があるが、電極の極性を定期的に反転することで水酸化物の析出は回避できる。
The electrolysis in the electrolytic cell 2 may be performed continuously or intermittently. There is no particular limitation on the time and the frequency of electrolysis once when performing intermittently, but for example, electrolysis is performed for about 5 to 120 minutes per time at a frequency of 1 to 20 times a day. be able to.
In addition, although hydroxide may be generated and attached on the cathode surface with electrolysis, precipitation of hydroxide can be avoided by periodically inverting the polarity of the electrode.

図1の装置では、塩化物イオン濃度測定器7により、培養液の塩化物イオン濃度が測定され、その測定値に基づいて必要に応じて塩化物イオンを含む電解質の水溶液が配管14より電解槽2に添加される。即ち、塩化物イオン濃度測定器7に連動する流量調整バルブ14Aにより、必要に応じて電解質水溶液の所定量が添加され、不要な場合には、バルブ14は閉とされ、電解質水溶液の添加は停止される。   In the apparatus of FIG. 1, the chloride ion concentration measuring device 7 measures the chloride ion concentration of the culture solution, and an electrolyte aqueous solution containing chloride ions is supplied from the pipe 14 as needed based on the measured value. 2 is added. That is, a predetermined amount of the aqueous electrolyte solution is added as necessary by the flow rate adjusting valve 14A linked to the chloride ion concentration measuring device 7, and when unnecessary, the valve 14 is closed and the addition of the aqueous electrolyte solution is stopped. Is done.

培養液には、培養液の調製に用いた用水由来の塩化物イオンが微量ながら含まれるが、培養液の循環利用に伴い、培養液中の塩化物イオン濃度は変化する。電気分解により塩化物イオンから次亜塩素酸を発生させるために必要な電圧は、塩化物イオン濃度の影響を受け、塩化物イオン濃度が低下すると、所定濃度の次亜塩素酸を得るために必要な電圧は上昇する。
培養液中の細菌の殺菌に必要量の次亜塩素酸を生成させるために高電圧を印加するとランニングコストが上昇するため、培養液中の塩化物イオン濃度が低い場合は塩化物イオンを含む電解質を少量添加して電気分解に必要な電力量を削減することが好ましい。
The culture solution contains a small amount of chloride ions derived from the water used for the preparation of the culture solution, but the chloride ion concentration in the culture solution changes with the circulation of the culture solution. The voltage required to generate hypochlorous acid from chloride ions by electrolysis is affected by the chloride ion concentration. When the chloride ion concentration decreases, it is necessary to obtain hypochlorous acid at the specified concentration. Voltage rises.
When high voltage is applied to generate hypochlorous acid necessary for sterilizing bacteria in the culture solution, the running cost increases, so if the chloride ion concentration in the culture solution is low, the electrolyte contains chloride ions. It is preferable to add a small amount of to reduce the amount of power required for electrolysis.

電解質としては植物の生育に悪影響を及ぼさないものであればよく、塩化カリウム、塩化アンモニウム、塩化カルシウム、塩化マグネシウム、塩化ナトリウムなどが適用できる。   Any electrolyte that does not adversely affect the growth of the plant may be used, and potassium chloride, ammonium chloride, calcium chloride, magnesium chloride, sodium chloride, and the like can be applied.

添加する電解質量は、培養液及び培養液の調製に用いた用水の水質によるが、塩化物イオン濃度として30mg/L相当でも10%程度の電圧低下が認められる。通常の場合、電気分解に供される培養液の塩化物イオン濃度が10mg/Lより少ない場合には、塩化物イオンを含む電解質を添加して、培養液の塩化物イオン濃度を30mg/L以上とすることが好ましい。電気分解に供する培養液の塩化物イオン濃度の上限は、栽培する植物にもよるが、一般的には200mg/L以下が望ましい。   The electrolytic mass to be added depends on the culture solution and the quality of the water used for the preparation of the culture solution, but a voltage drop of about 10% is observed even when the chloride ion concentration is equivalent to 30 mg / L. Usually, when the chloride ion concentration of the culture solution to be subjected to electrolysis is less than 10 mg / L, an electrolyte containing chloride ions is added so that the chloride ion concentration of the culture solution is 30 mg / L or more. It is preferable that The upper limit of the chloride ion concentration of the culture solution to be subjected to electrolysis is generally 200 mg / L or less, although it depends on the plant to be cultivated.

図1に示す装置のように、電気分解に供される培養液の塩化物イオン濃度を測定し、その測定結果に基づいて、塩化物イオンを含む電解質を即時的かつ自動的に注入することができるように構成することにより、培養液の電気分解に必要な電力量を削減して効率的な浄化を行える。   As in the apparatus shown in FIG. 1, it is possible to measure the chloride ion concentration of a culture solution to be subjected to electrolysis and to immediately and automatically inject an electrolyte containing chloride ions based on the measurement result. By being configured so as to be able to perform efficient purification by reducing the amount of power required for electrolysis of the culture solution.

また、電解槽2における電気分解条件は、全残留塩素濃度測定器8で測定される電気分解後の培養液の全残留塩素濃度が1.0mg−Cl/L以下となるように行われる。
即ち、全残留塩素濃度測定器8の測定値は制御装置10に入力され、この結果に基づいて、制御装置10から直流電源5に制御信号が出力される。この制御信号は、例えば、電気分解を連続的に行う場合は、電流値の制御信号として、また、電気分解を間欠的に行う場合は、1回当たりの電気分解時間及び/又は電気分解頻度(所定時間内の電気分解回数)の制御信号として出力される。なお、本実施の形態では、後述の全残留塩素濃度測定器9の測定値も制御装置10に入力されており、制御装置10により、全残留塩素濃度測定器8と全残留塩素濃度測定器9の両方の測定値に基づいて電気分解条件の制御が行われている。
Moreover, the electrolysis conditions in the electrolytic cell 2 are performed so that the total residual chlorine concentration of the culture solution after the electrolysis measured by the total residual chlorine concentration measuring device 8 is 1.0 mg-Cl 2 / L or less.
That is, the measured value of the total residual chlorine concentration measuring device 8 is input to the control device 10, and a control signal is output from the control device 10 to the DC power source 5 based on this result. This control signal is, for example, a current value control signal when electrolysis is performed continuously, and an electrolysis time and / or electrolysis frequency per time (when electrolysis is performed intermittently). The number of times of electrolysis within a predetermined time is output as a control signal. In the present embodiment, a measurement value of a total residual chlorine concentration measuring device 9 to be described later is also input to the control device 10, and the control device 10 makes a total residual chlorine concentration measuring device 8 and a total residual chlorine concentration measuring device 9. The electrolysis conditions are controlled based on both measured values.

電気分解により培養液中に生成する次亜塩素酸量は多い程浄化効果の面では好ましいが、全残留塩素濃度として1.0mg−Cl/Lを超えると植物の生育阻害の問題があり好ましくない。本実施の形態では、電気分解後、栽培槽1に返送される培養液から残留塩素を除去するための残留塩素除去装置6が設けられているため、電解槽2内の全残留塩素濃度は1.0mg−Cl/Lを超えても植物の生育阻害の問題はないが、全残留塩素濃度が過度に多いと残留塩素除去装置6の負荷が増大する上に、電気分解のための電力量も増大するため、全残留塩素濃度は1.0mg−Cl/L以下、特に0.5mg−Cl/L以下、とりわけ0.1mg−Cl/L以下とすることが好ましい。 The greater the amount of hypochlorous acid produced in the culture solution by electrolysis, the better the purification effect. However, if the total residual chlorine concentration exceeds 1.0 mg-Cl 2 / L, there is a problem of plant growth inhibition, which is preferable. Absent. In this Embodiment, since the residual chlorine removal apparatus 6 for removing a residual chlorine from the culture solution returned to the cultivation tank 1 after electrolysis is provided, the total residual chlorine concentration in the electrolytic cell 2 is 1 Even if it exceeds 0.0 mg-Cl 2 / L, there is no problem of plant growth inhibition. However, if the total residual chlorine concentration is excessively high, the load of the residual chlorine removing device 6 is increased and the electric energy for electrolysis is increased. Therefore, the total residual chlorine concentration is preferably 1.0 mg-Cl 2 / L or less, more preferably 0.5 mg-Cl 2 / L or less, and particularly preferably 0.1 mg-Cl 2 / L or less.

即ち、本発明は、電気分解により生成する次亜塩素酸量が、従来一般的な殺菌に必要な全残留塩素濃度である数mg−Cl/Lよりも少なくても、十分に培養液中の細菌の殺菌を行えるという知見に基づいて達成されたものであり、このように、電気分解後の全残留塩素濃度を低濃度に抑えることにより、植物の生育阻害を防止すると共に、電気分解に必要な電力量を低減することができる。電気分解後の培養液の全残留塩素濃度は、全残留塩素が検出される程度以上であればよい。全残留塩素濃度の検出に通常用いられる一般的な遊離残留塩素濃度測定器の検出限界値は通常0.01mg−Cl/Lであるため、全残留塩素濃度の下限としては0.01mg−Cl/L以上である。ただし、全残留塩素濃度が0.01mg−Cl/L未満であっても浄化効果が認められる場合がある。 That is, the present invention is sufficient in the culture solution even if the amount of hypochlorous acid produced by electrolysis is less than several mg-Cl 2 / L, which is the total residual chlorine concentration required for conventional general sterilization. In this way, the total residual chlorine concentration after electrolysis is suppressed to a low level, thereby preventing plant growth inhibition and preventing electrolysis. The required amount of power can be reduced. The total residual chlorine concentration of the culture solution after electrolysis may be higher than the level at which total residual chlorine is detected. Since the detection limit value of a general free residual chlorine concentration measuring device usually used for detecting the total residual chlorine concentration is usually 0.01 mg-Cl 2 / L, the lower limit of the total residual chlorine concentration is 0.01 mg-Cl. 2 / L or more. However, the purification effect may be observed even when the total residual chlorine concentration is less than 0.01 mg-Cl 2 / L.

全残留塩素濃度測定器8及び後述の全残留塩素濃度測定器9としては、遊離残留塩素濃度測定器を用いることができる。即ち、電気分解後の培養液中の全残留塩素は、その殆どが遊離残留塩素の形態で存在し、結合残留塩素は殆ど存在しないと考えられることから、遊離残留塩素濃度測定器による測定値を全残留塩素濃度とすることができる。   As the total residual chlorine concentration measuring device 8 and the total residual chlorine concentration measuring device 9 described later, a free residual chlorine concentration measuring device can be used. That is, most of the residual chlorine in the culture broth after electrolysis is present in the form of free residual chlorine, and it is considered that there is almost no residual residual chlorine. It can be the total residual chlorine concentration.

電気分解後の培養液は、浄化槽4の仕切壁4Aの上縁を超えて調整槽3に流入し、配管11Bからの培養液と共に、配管15より、用水、空気、肥料等が補給されて成分調整される。即ち、循環使用に伴い培養液中の重金属成分濃度や溶存酸素量に不足が生じたり、培養液量自体が不足したりするため、肥料、空気を添加して栽培槽1に返送することで不要な沈殿物発生や植物の肥料欠乏や溶存酸素不足を回避する。また、用水を補給することで培養液量を保つことができる。   The culture solution after electrolysis flows into the adjustment tank 3 beyond the upper edge of the partition wall 4A of the septic tank 4, and is supplied with water, air, fertilizer, etc. from the pipe 15 together with the culture liquid from the pipe 11B. Adjusted. In other words, the concentration of heavy metals in the culture solution and the amount of dissolved oxygen are insufficient with the circulation use, or the amount of the culture solution itself is insufficient, so it is not necessary to add fertilizer and air and return it to the cultivation tank 1 To avoid excessive sediment formation, plant fertilizer deficiency and dissolved oxygen deficiency. In addition, the amount of the culture solution can be maintained by supplying water.

調整槽3で成分調整された培養液は、ポンプPにより、配管12を経て、残留塩素除去装置6に送給され、残留塩素除去装置6で残留塩素が除去された後、配管13より栽培槽1に戻される。   The culture solution whose components have been adjusted in the adjustment tank 3 is supplied to the residual chlorine removing device 6 through the pipe 12 by the pump P. After the residual chlorine is removed by the residual chlorine removing apparatus 6, the cultivation tank is supplied from the pipe 13. Returned to 1.

残留塩素の除去方法としては、加熱、光照射、還元剤添加、活性炭吸着など種々の方法があり、栽培環境に応じて選択する。エネルギー使用量や消耗資材の交換頻度、必要スペースなどを勘案すると活性炭吸着が適当である。   As a method for removing residual chlorine, there are various methods such as heating, light irradiation, addition of a reducing agent, adsorption of activated carbon, and the like, which is selected according to the cultivation environment. Taking into account the amount of energy used, the frequency of replacement of consumables, the required space, etc., activated carbon adsorption is appropriate.

この培養液の返送配管13には全残留塩素濃度測定器9が設けられており、全残留塩素濃度測定器9での測定値が制御装置10に入力され、この測定値に基づいて電気分解条件が制御される。
即ち、残留塩素除去後の培養液の全残留塩素濃度が過度に高いと栽培槽1における植物の生育阻害の問題があるため、この場合には、電気分解条件を下げる(電流値、電気分解時間、電気分解間隔を下げる)ようにする。
また、この全残留塩素濃度測定器9の測定値が急激に増大した場合は、残留塩素除去装置6の故障、或いは残留塩素除去装置6が活性炭吸着塔である場合は、活性炭の吸着能が破過に達したことになるため、その場合には、残留塩素除去装置6のメンテナンスを行う。
The culture liquid return pipe 13 is provided with a total residual chlorine concentration measuring device 9, and the measurement value of the total residual chlorine concentration measuring device 9 is input to the control device 10, and the electrolysis conditions are based on this measurement value. Is controlled.
That is, if the total residual chlorine concentration in the culture solution after removing residual chlorine is excessively high, there is a problem of plant growth inhibition in the cultivation tank 1, and in this case, electrolysis conditions are lowered (current value, electrolysis time). , Lower the electrolysis interval).
Further, when the measured value of the total residual chlorine concentration measuring device 9 increases rapidly, the adsorption capacity of the activated carbon is broken when the residual chlorine removing device 6 fails or when the residual chlorine removing device 6 is an activated carbon adsorption tower. In this case, maintenance of the residual chlorine removing device 6 is performed.

残留塩素除去装置6で残留塩素が除去された後、栽培槽1に返送される培養液の全残留塩素濃度は、植物の生育阻害を防止するために0.1mg−Cl/L以下、好ましくは検出されないことが望ましい。 After the residual chlorine is removed by the residual chlorine removing device 6, the total residual chlorine concentration of the culture solution returned to the cultivation tank 1 is 0.1 mg-Cl 2 / L or less, preferably in order to prevent plant growth inhibition Should not be detected.

なお、図1に示す浄化装置は、本発明の実施の形態の一例であり、本発明はその要旨を超えない限り、何ら図1の装置に限定されるものではない。
図1の装置では、栽培槽1から抜き出された培養液のうちの一部を電解槽2に送給して電気分解を行っているが、全量を電気分解槽2に送給して電気分解を行ってもよい。また、電気分解を行う培養液と、水、空気、肥料等を添加して成分調整する培養液とは別々にし、即ち、電解槽と調整槽とをそれぞれ別々に設け、栽培槽1から抜き出した培養液の一部を電解槽で電気分解し、残部を調整槽で成分調整し、これらを合流させて栽培槽1に返送するようにしてもよい。
また、全残留塩素濃度測定器8や塩化物イオン濃度測定器7の設置場所についても、電解槽2に限らず、培養液の移送配管であってもよい。
The purification device shown in FIG. 1 is an example of an embodiment of the present invention, and the present invention is not limited to the device of FIG. 1 as long as the gist thereof is not exceeded.
In the apparatus of FIG. 1, a part of the culture solution extracted from the cultivation tank 1 is fed to the electrolysis tank 2 for electrolysis, but the entire amount is fed to the electrolysis tank 2 for electricity. Decomposition may be performed. Moreover, the culture solution for electrolysis and the culture solution for adjusting the components by adding water, air, fertilizer, etc. are separated, that is, the electrolytic cell and the adjustment vessel are provided separately, and are extracted from the cultivation vessel 1. A part of the culture solution may be electrolyzed in an electrolytic tank, the remaining part may be adjusted in the adjustment tank, and these may be merged and returned to the cultivation tank 1.
Further, the installation location of the total residual chlorine concentration measuring device 8 and the chloride ion concentration measuring device 7 is not limited to the electrolytic cell 2 but may be a culture fluid transfer pipe.

以下に実施例に代わる試験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to test examples in place of the examples.

[試験例1]
地下水を用水としてレタス用培養液を9L調製した。培養液中の塩化物イオン濃度は20mg/Lで、これに所定量の塩化カリウムを添加した後の塩化物イオン濃度は52mg/Lであった。また、この培養液を後記する電気分解条件にて定電流電解を実施した際の電圧は塩化カリウム添加前で約9ボルト、塩化カリウム添加後で約8ボルトであった。
[Test Example 1]
9 L of a lettuce culture solution was prepared using groundwater as water. The chloride ion concentration in the culture solution was 20 mg / L, and the chloride ion concentration after addition of a predetermined amount of potassium chloride was 52 mg / L. In addition, when the culture solution was subjected to constant current electrolysis under the electrolysis conditions described later, the voltage was about 9 volts before the addition of potassium chloride and about 8 volts after the addition of potassium chloride.

塩化カリウム添加後の培養液をバケツに受け、発泡スチロールを浮かべ、ウレタンキューブに播種したレタスを4株定植して栽培槽としたものを3個作成し、それぞれ以下の試験区として試験を行った。
対照区 : レタス定植後に空気の供給のみを継続した試験区
弱電解区: バケツ底部に電極(白金鍍金チタン電極,表面積約20cm)を設置
し、レタス定植後に空気を供給すると共に、一定電流値(0.2A)で、
下記条件にて断続的に電気分解を実施した試験区
1回あたりの電気分解時間:6分間
電気分解頻度:1日6回(電気分解間隔は一定)
強電解区: バケツ底部に電極(白金鍍金チタン電極,表面積約20cm)を設置
し、レタス定植後に空気を供給すると共に、一定電流値(0.2A)で、
下記条件にて断続的に電気分解を実施した試験区
1回あたりの電気分解時間:30分間
電気分解頻度:1日3回(電気分解間隔は一定)
なお、弱電解区も強電解区も、電気分解中の電圧は約8ボルトで安定していた。
The culture solution after the addition of potassium chloride was received in a bucket, floated with polystyrene foam, and three lettuce seeded on urethane cubes were planted to prepare three culture tanks, which were tested as the following test sections.
Control group: Test group that continued to supply air after lettuce planting Weak electrolysis group: Electrode (platinum-plated titanium electrode, surface area of about 20 cm 2 ) installed at the bottom of the bucket
And after supplying lettuce planting, with a constant current value (0.2A),
Test area where electrolysis was conducted intermittently under the following conditions
Electrolysis time per time: 6 minutes
Electrolysis frequency: 6 times a day (electrolysis interval is constant)
Strong electrolytic zone: An electrode (platinum-plated titanium electrode, surface area about 20 cm 2 ) is installed at the bottom of the bucket
And after supplying lettuce planting, with a constant current value (0.2A),
Test area where electrolysis was conducted intermittently under the following conditions
Electrolysis time per time: 30 minutes
Electrolysis frequency: 3 times a day (electrolysis interval is constant)
Note that the voltage during electrolysis was stable at about 8 volts in both the weak electrolysis zone and the strong electrolysis zone.

上記3試験区において、6月26日から7月13日までプラスチックハウス内にて18日間栽培を行った。栽培終了後に、培養液については以下の細菌試験を実施した。また、レタスについては、地上部生体重と地下部生体重の測定を行い、それぞれ4株の平均値を求めた。結果を表1,2に示す。   Cultivation was carried out for 18 days in a plastic house from June 26 to July 13 in the three test zones. After the cultivation, the following bacterial test was performed on the culture solution. Moreover, about lettuce, the above-ground part weight and the underground part weight were measured, and the average value of 4 each was calculated | required. The results are shown in Tables 1 and 2.

<細菌試験>
一般細菌数:標準寒天培地にて36℃で24時間培養後の集落数を求めた。
大腸菌群数:デソキシコレート寒天培地にて36℃で24時間培養後の集落数を求めた。
<Bacteria test>
Number of general bacteria: The number of colonies after culturing at 36 ° C. for 24 hours on a standard agar medium was determined.
E. coli group number: The number of colonies after culturing at 36 ° C. for 24 hours on a desoxycholate agar medium was determined.

また、弱電解区と強電解区については、1回の電気分解終了直後(弱電解区では6分の電気分解後、強電解区では30分の電気分解後)の培養液の遊離残留塩素濃度をポータブル残留塩素計(東亜ディーケーケー株式会社製 RC−31P−F,遊離残留塩素分解能0.01mg/L)を用いて測定し、結果を表1に併記した。なお、本試験例では、遊離残留塩素濃度を測定したが、電気分解後の培養液の残留塩素はその殆どが遊離残留塩素の形態であると考えられ、遊離残留塩素濃度=全残留塩素濃度とみなすことができる。   For weak electrolysis and strong electrolysis, the concentration of free residual chlorine in the culture immediately after the end of one electrolysis (after electrolysis for 6 minutes in the weak electrolysis area and after 30 minutes electrolysis in the strong electrolysis area) Was measured using a portable residual chlorine meter (RC-31P-F manufactured by Toa DKK Corporation, free residual chlorine resolution 0.01 mg / L), and the results are also shown in Table 1. In this test example, the free residual chlorine concentration was measured, but most of the residual chlorine in the culture broth after electrolysis is considered to be in the form of free residual chlorine. Can be considered.

Figure 2015216854
Figure 2015216854

Figure 2015216854
Figure 2015216854

<細菌試験結果の考察>
表1の対照区と電解区(弱電解区及び強電解区)を比較すると、一般細菌数及び大腸菌群数ともに電気分解により抑制できていることが確認できた。弱電解区と強電解区を比較すると、電気分解の延べ時間が長い強電解区で細菌拡散の抑制作用が大きいことが確認できた。
また、培養液中の遊離残留塩素濃度の測定結果から、弱電解区の電気分解条件では電気分解の効果は認められるものの細菌拡散の抑制には不十分であり、遊離残留塩素濃度が検出できる程度以上の条件で電気分解を行うことが細菌拡散の抑制に有効であることがわかる。
<Consideration of Bacteria Test Results>
Comparing the control zone and the electrolysis zone (weak electrolysis zone and strong electrolysis zone) in Table 1, it was confirmed that both the number of general bacteria and the number of coliforms could be suppressed by electrolysis. Comparing the weak electrolytic zone and the strong electrolytic zone, it was confirmed that the action of suppressing bacterial diffusion was large in the strong electrolytic zone having a long total electrolysis time.
In addition, from the measurement results of free residual chlorine concentration in the culture solution, although the effect of electrolysis is recognized under the electrolysis conditions in the weak electrolysis zone, it is insufficient for suppressing bacterial diffusion, and the level of free residual chlorine can be detected. It can be seen that electrolysis under the above conditions is effective in suppressing bacterial diffusion.

<生育調査結果の考察>
表2の対照区と電解区(弱電解区及び強電解区)を比較すると、電解区で生育抑制作用が確認され、弱電解区で14〜16%の生育抑制、強電解区では21〜34%の生育抑制があった。特に、強電解区の地下部生体重の抑制が大きい結果となり、根に褐色の変色が認められた。弱電解区では根に褐色の変色は認められなかった。
<Consideration of growth survey results>
When comparing the control zone and the electrolysis zone (weak electrolysis zone and strong electrolysis zone) in Table 2, the growth inhibitory action was confirmed in the electrolysis zone, growth inhibition of 14 to 16% in the weak electrolysis zone, and 21 to 34 in the strong electrolysis zone. % Growth inhibition. In particular, the suppression of the underground weight in the strong electrolysis zone was large, and brown discoloration was observed in the roots. In the weak electrolytic zone, no brown discoloration was observed in the roots.

本試験例は、栽培槽内で電気分解と栽培を同時に行う試験条件であるため、電気分解で発生した次亜塩素酸が培養液中の細菌等に作用する一方で、植物の根にも直接作用する環境にある。実際の栽培では、栽培槽とは異なる槽で電気分解を行うことで、植物の根への影響を防止することができ、また、栽培槽に供給する前に残留塩素を除去する装置を設けることにより、このような生育阻害を防止することができると考えられる。   Since this test example is a test condition in which electrolysis and cultivation are performed simultaneously in a cultivation tank, hypochlorous acid generated by electrolysis acts on bacteria in the culture solution, but also directly on the roots of plants. It is in a working environment. In actual cultivation, by performing electrolysis in a tank different from the cultivation tank, the influence on the roots of the plant can be prevented, and a device for removing residual chlorine before supplying to the cultivation tank is provided. Thus, it is considered that such growth inhibition can be prevented.

電気分解の条件(時間及び頻度)は生育状況や栽培環境に基づき設定することが好ましいが、常に微量の全残留塩素濃度が検出されるよう電流値及び電解時間を自動制御することで自動運転が可能になる。
また、殺菌対象となる病害菌等の性状及び量に応じて全残留塩素濃度や接触時間を設計することが好ましいが、本試験結果より、全残留塩素(遊離残留塩素)濃度0.02mg−Cl/Lであっても大幅に細菌数の減少が認められていることから、電気分解により、全残留塩素濃度0.02mg−Cl/L以下の極微量の次亜塩素酸を生成させるのみでも病害菌の拡散を抑制することができること、また、このように全残留塩素濃度を低く維持することにより、残留塩素除去装置を設ける場合には、その負荷を軽微なものとすることができることが分かる。
The electrolysis conditions (time and frequency) are preferably set based on the growing conditions and cultivation environment, but automatic operation is possible by automatically controlling the current value and electrolysis time so that a very small amount of total residual chlorine concentration is always detected. It becomes possible.
In addition, it is preferable to design the total residual chlorine concentration and contact time according to the nature and amount of the disease-causing bacteria to be sterilized, but from this test result, the total residual chlorine (free residual chlorine) concentration is 0.02 mg-Cl. Since the number of bacteria is significantly reduced even at 2 / L, only a very small amount of hypochlorous acid having a total residual chlorine concentration of 0.02 mg-Cl 2 / L or less is generated by electrolysis. However, the spread of disease-causing bacteria can be suppressed, and when the residual chlorine removal device is provided by keeping the total residual chlorine concentration in this way, the load can be reduced. I understand.

上記の18日間の栽培試験後に、各試験区の培養液水質を比較したが、鉄、カルシウム、マグネシウム、マンガン等の重金属成分に顕著な濃度差は認められなかった。
また、栽培試験後の培養液において、対照区では栽培槽底部の全面に緑藻の発生が認められたが、各電解区では栽培槽底部の一部に緑藻が認められたものの発生量が少なく、特に強電解区で影響が顕著であった。培養液を撹拌して濁度を測定したところ、対照区で16.5度、強電解区で7.1度と電気分解の影響が認められた。この結果から、電気分解により緑藻の発生も抑制することができるため、培養液の電気分解は、病害拡散の抑制はもとより、緑藻による栽培設備の汚れ防止や、緑藻への寄生等による病害の防止にも有効であることが確認された。
After the above 18-day cultivation test, the culture solution water quality of each test section was compared, but no significant concentration difference was observed in heavy metal components such as iron, calcium, magnesium, and manganese.
Moreover, in the culture solution after the cultivation test, green algae was observed on the entire surface of the bottom of the cultivation tank in the control plot, but in each electrolytic zone, the amount of green algae observed on a part of the bottom of the cultivation tank was small, The effect was particularly remarkable in the strong electrolytic zone. When the culture solution was stirred and turbidity was measured, the influence of electrolysis was found to be 16.5 degrees in the control group and 7.1 degrees in the strong electrolysis section. From this result, since the generation of green algae can be suppressed by electrolysis, the electrolysis of the culture solution not only suppresses the spread of diseases, but also prevents contamination of cultivation facilities by green algae and diseases caused by infestation with green algae, etc. It was also confirmed that it is effective.

1 栽培槽
2 電解槽
3 調整槽
4 浄化槽
5 直流電源
6 残留塩素除去装置
7 塩化物イオン濃度測定器
8,9 全残留塩素濃度測定器
10 制御装置
20 植物
DESCRIPTION OF SYMBOLS 1 Cultivation tank 2 Electrolysis tank 3 Adjustment tank 4 Septic tank 5 DC power supply 6 Residual chlorine removal device 7 Chloride ion concentration measuring device 8,9 Total residual chlorine concentration measuring device 10 Control device 20 Plant

Claims (14)

培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、該培養液の全残留塩素濃度が1.0mg−Cl/L以下となるように電気分解を行うことを特徴とする培養液の浄化方法。 In the method for purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the electrolysis is performed so that the total residual chlorine concentration of the culture solution is 1.0 mg-Cl 2 / L or less. A method for purifying a culture solution, comprising: 請求項1において、電気分解後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することを特徴とする培養液の浄化方法。   2. The method for purifying a culture solution according to claim 1, wherein the total residual chlorine concentration of the culture solution after electrolysis is measured, and electrolysis conditions are adjusted based on the measurement result. 請求項1又は2において、栽培槽内の培養液を抜き出して電気分解した後、該栽培槽に返送する培養液の浄化方法であって、該電気分解後の培養液中の残留塩素を除去した後、該栽培槽に返送することを特徴とする培養液の浄化方法。   3. The method for purifying a culture solution according to claim 1 or 2, wherein the culture solution in the cultivation tank is extracted and electrolyzed, and then returned to the cultivation tank, and residual chlorine in the culture solution after the electrolysis is removed. Then, it returns to this cultivation tank, The purification method of the culture solution characterized by the above-mentioned. 請求項3において、該残留塩素除去後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて、電気分解条件を調整することを特徴とする培養液の浄化方法。   4. The method for purifying a culture solution according to claim 3, wherein the total residual chlorine concentration of the culture solution after removing the residual chlorine is measured, and the electrolysis conditions are adjusted based on the measurement result. 請求項1ないし4のいずれか1項において、電気分解に供する培養液の塩化物イオン濃度を測定し、この測定結果に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整することを特徴とする培養液の浄化方法。   In any one of Claims 1 thru | or 4, when the chloride ion concentration of the culture solution used for electrolysis is measured, and based on the measurement result, the chloride ion concentration of the culture solution is below a predetermined value, A method for purifying a culture solution, comprising adjusting the chloride ion concentration by adding an electrolyte containing chloride ions to the culture solution. 培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、電気分解後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて電気分解条件を調整することを特徴とする培養液の浄化方法。   In the method of purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the total residual chlorine concentration of the culture solution after the electrolysis is measured, and the electrolysis conditions are determined based on the measurement result. A method for purifying a culture solution, comprising adjusting. 栽培槽内の培養液を抜き出して電気分解した後、該栽培槽に返送する培養液の浄化方法において、該電気分解後の培養液中の残留塩素を除去した後、該栽培槽に返送することを特徴とする培養液の浄化方法。   In the method for purifying the culture solution, which is extracted from the culture solution in the cultivation tank and electrolyzed and then returned to the cultivation tank, the residual chlorine in the culture solution after the electrolysis is removed, and then returned to the cultivation tank. A method for purifying a culture broth characterized by the above. 請求項7において、該残留塩素除去後の培養液の全残留塩素濃度を測定し、この測定結果に基づいて、電気分解条件を調整することを特徴とする培養液の浄化方法。   8. The method for purifying a culture solution according to claim 7, wherein the total residual chlorine concentration of the culture solution after the residual chlorine is removed is measured, and electrolysis conditions are adjusted based on the measurement result. 培養液を電気分解することにより次亜塩素酸を発生させて該培養液を浄化する方法において、電気分解に供する培養液の塩化物イオン濃度を測定し、この測定結果に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整することを特徴とする培養液の浄化方法。   In a method for purifying the culture solution by generating hypochlorous acid by electrolyzing the culture solution, the chloride ion concentration of the culture solution to be subjected to electrolysis is measured, and based on the measurement result, the culture solution A method for purifying a culture solution, comprising adjusting the chloride ion concentration by adding an electrolyte containing chloride ions to the culture solution when the chloride ion concentration is less than a predetermined value. 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該電気分解後の培養液の全残留塩素濃度を測定する全残留塩素濃度測定手段と、該全残留塩素濃度測定手段の測定値に基づいて、該電気分解装置の電気分解条件を調整する制御手段とを有することを特徴とする培養液の浄化装置。   In an apparatus for purifying a culture solution, comprising an electrolyzer for generating hypochlorous acid by purifying the culture solution by extracting and electrolyzing the culture solution in the cultivation tank and then returning the culture solution to the cultivation tank Total residual chlorine concentration measuring means for measuring the total residual chlorine concentration of the culture broth later, and control means for adjusting the electrolysis conditions of the electrolysis apparatus based on the measurement value of the total residual chlorine concentration measuring means An apparatus for purifying a culture solution. 請求項10において、前記全残留塩素濃度測定手段による測定値が1.0mg−Cl/L以下となるように前記制御手段による電気分解条件の制御が行われることを特徴とする培養液の浄化装置。 11. The culture solution purification according to claim 10, wherein the electrolysis conditions are controlled by the control means so that the measured value by the total residual chlorine concentration measuring means is 1.0 mg-Cl 2 / L or less. apparatus. 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該電気分解装置で浄化された培養液中の残留塩素を除去する残留塩素除去手段を有し、該残留塩素除去手段で残留塩素が除去された後の培養液が前記栽培槽に返送されることを特徴とする培養液の浄化装置。   In an apparatus for purifying a culture solution, comprising an electrolyzer for generating hypochlorous acid by purifying the culture solution by extracting and electrolyzing the culture solution in the cultivation tank and then returning the culture solution to the cultivation tank It has a residual chlorine removing means for removing residual chlorine in the culture liquid purified by the apparatus, and the culture liquid after residual chlorine is removed by the residual chlorine removing means is returned to the cultivation tank. Purifying device for culture medium. 請求項12において、前記残留塩素除去手段で残留塩素が除去された培養液の全残留塩素濃度を測定する全残留塩素濃度測定手段と、該全残留塩素濃度測定手段の測定値に基づいて、前記電気分解装置の電気分解条件を調整する制御手段とを有することを特徴とする培養液の浄化装置。   The total residual chlorine concentration measuring means for measuring the total residual chlorine concentration of the culture solution from which residual chlorine has been removed by the residual chlorine removing means according to claim 12, and based on the measurement value of the total residual chlorine concentration measuring means, A culture medium purification apparatus comprising: control means for adjusting electrolysis conditions of the electrolysis apparatus. 栽培槽内の培養液を抜き出して電気分解することにより次亜塩素酸を発生させて該培養液を浄化した後該栽培槽に返送する電気分解装置を備える培養液の浄化装置において、該培養液の塩化物イオン濃度を測定する塩化物イオン濃度測定手段と、該塩化物イオン濃度測定手段の測定値に基づいて、該培養液の塩化物イオン濃度が所定値以下の場合には、該培養液に塩化物イオンを含む電解質を添加して塩化物イオン濃度を調整する塩化物イオン濃度調整手段とを有することを特徴とする培養液の浄化装置。   In a culture solution purification apparatus comprising an electrolysis device for extracting hypochlorous acid by extracting and electrolyzing the culture solution in a cultivation tank to purify the culture solution and then returning it to the cultivation tank, the culture solution A chloride ion concentration measuring means for measuring the chloride ion concentration of the culture medium, and when the chloride ion concentration of the culture broth is below a predetermined value based on the measured value of the chloride ion concentration measuring means, the culture broth And a chloride ion concentration adjusting means for adjusting the chloride ion concentration by adding an electrolyte containing chloride ions to the culture medium purifying device.
JP2014100615A 2014-05-14 2014-05-14 Culture medium purification method and purification apparatus Active JP6361274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014100615A JP6361274B2 (en) 2014-05-14 2014-05-14 Culture medium purification method and purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014100615A JP6361274B2 (en) 2014-05-14 2014-05-14 Culture medium purification method and purification apparatus

Publications (2)

Publication Number Publication Date
JP2015216854A true JP2015216854A (en) 2015-12-07
JP6361274B2 JP6361274B2 (en) 2018-07-25

Family

ID=54776859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014100615A Active JP6361274B2 (en) 2014-05-14 2014-05-14 Culture medium purification method and purification apparatus

Country Status (1)

Country Link
JP (1) JP6361274B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440835A (en) * 1990-06-07 1992-02-12 Toshiba Corp Nutriculture system
JP2002051651A (en) * 2000-08-10 2002-02-19 Fuji Electric Co Ltd Water culture method and apparatus therefor
JP2002079251A (en) * 2000-06-26 2002-03-19 Sanyo Electric Co Ltd Water treatment method and apparatus, and hydroponic culture system using the same
JP2003265057A (en) * 2002-03-19 2003-09-24 Yamane Nobokujo:Kk Hydroponic apparatus, hydroponic method and hydroponic plant
JP2011188841A (en) * 2010-03-12 2011-09-29 Hokuetsu:Kk Hydroponic method
JP2012228265A (en) * 2012-07-23 2012-11-22 Omega:Kk Hydroponic method for plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440835A (en) * 1990-06-07 1992-02-12 Toshiba Corp Nutriculture system
JP2002079251A (en) * 2000-06-26 2002-03-19 Sanyo Electric Co Ltd Water treatment method and apparatus, and hydroponic culture system using the same
JP2002051651A (en) * 2000-08-10 2002-02-19 Fuji Electric Co Ltd Water culture method and apparatus therefor
JP2003265057A (en) * 2002-03-19 2003-09-24 Yamane Nobokujo:Kk Hydroponic apparatus, hydroponic method and hydroponic plant
JP2011188841A (en) * 2010-03-12 2011-09-29 Hokuetsu:Kk Hydroponic method
JP2012228265A (en) * 2012-07-23 2012-11-22 Omega:Kk Hydroponic method for plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
トマト苗の生育からみた弱酸性電解水の利用限界濃度, JPN6018000659, 1 February 2013 (2013-02-01) *

Also Published As

Publication number Publication date
JP6361274B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP4457404B2 (en) Method for adjusting culture solution for hydroponics
CN101010261B (en) Neutral electrolytic water, neutral electrolytic water production method and device thereof
US10232065B2 (en) Electrochemical device for biocide treatment in agricultural applications
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
EA026795B1 (en) Method and system for treating water used for industrial purposes
JP6250492B2 (en) Injection water production system
CA2774707C (en) System and method for preparation of antimicrobial solutions
Haaken et al. Limits of UV disinfection: UV/electrolysis hybrid technology as a promising alternative for direct reuse of biologically treated wastewater
EP2361227B1 (en) Disinfection system
CN106604895A (en) Agricultural electrolyzed water-generating apparatus and agricultural electrolyzed water
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
KR101054233B1 (en) Marine life attachment prevention device and seawater supply device using the same
JP6361274B2 (en) Culture medium purification method and purification apparatus
KR20150093293A (en) Method for Preparing Sterilized Water using Seawater and Sterilization System for Marine Products
KR20060061253A (en) Laver treating method and agent for exterminating seaweeds and preventing diseases of laver
KR101368491B1 (en) Appliance for electrolysis attached ship and the method of sterilizing red tied using it
KR20180076533A (en) Functional water production system using nano bubble
JP4251059B2 (en) Bactericidal electrolyzed water production equipment
JP2016054668A (en) Method of preparing culture solution
CN110065997A (en) A kind of oxidation-reduction potential water generation machine
KR101436111B1 (en) Method and device for generating sterilizing agent
KR102204841B1 (en) Moss removal apparatus in seawater aquarium using the resistance of seawater
CN107417306B (en) Method and equipment for preparing agricultural water fertilizer by electrolysis
JP4846298B2 (en) Seawater disinfection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250