JP2012227315A - 発光素子、発光装置、認証装置および電子機器 - Google Patents

発光素子、発光装置、認証装置および電子機器 Download PDF

Info

Publication number
JP2012227315A
JP2012227315A JP2011092745A JP2011092745A JP2012227315A JP 2012227315 A JP2012227315 A JP 2012227315A JP 2011092745 A JP2011092745 A JP 2011092745A JP 2011092745 A JP2011092745 A JP 2011092745A JP 2012227315 A JP2012227315 A JP 2012227315A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
layer
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011092745A
Other languages
English (en)
Other versions
JP5793929B2 (ja
Inventor
Tetsuji Fujita
徹司 藤田
Hidetoshi Yamamoto
英利 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2011092745A priority Critical patent/JP5793929B2/ja
Priority to US13/447,777 priority patent/US20120268003A1/en
Publication of JP2012227315A publication Critical patent/JP2012227315A/ja
Application granted granted Critical
Publication of JP5793929B2 publication Critical patent/JP5793929B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】近赤外域で発光する高効率かつ長寿命な有機EL素子、この発光素子を備える発光装置、認証装置および電子機器を提供。
【解決手段】発光層の少なくとも1層にはアントラセン基本骨格を有する有機物質を1種類以上と、(IV)で表される化合物と、を有する。
Figure 2012227315

【選択図】なし

Description

本発明は、発光素子、発光装置、認証装置および電子機器に関するものである。
有機エレクトロルミネッセンス素子(いわゆる有機EL素子)は、陽極と陰極との間に少なくとも1層の発光性有機層を介挿した構造を有する発光素子である。このような発光素子では、陰極と陽極との間に電界を印加することにより、発光層に陰極側から電子が注入されるとともに陽極側から正孔が注入され、発光層中で電子と正孔が再結合することにより励起子が生成し、この励起子が基底状態に戻る際に、そのエネルギー分が光として放出される。
このような発光素子としては、近赤外領域である700nmを超える長波長域で発光するものが知られている(例えば、特許文献1、2参照)。
例えば、特許文献1、2に記載の発光素子では、分子内に官能基として電子供与体であるアミンと電子受容体であるニトリル基を共存させた材料を発光層のドーパントとして用いることにより、発光波長を長波長化している。
しかし、従来では、近赤外領域で発光する高効率かつ長寿命な素子を実現することはできなかった。
また、近赤外領域で面発光する高効率かつ長寿命な発光素子は、例えば、静脈、指紋等の生体情報を用いて個人を認証する生体認証用の光源として、その実現が望まれている。
特開2000−091973号公報 特開2001−110570号公報
本発明の目的は、近赤外域で発光する高効率かつ長寿命な発光素子、この発光素子を備える発光装置、認証装置および電子機器を提供することにある。
このような目的は、少なくとも下記の適用例により達成される。
[適用例1]本適用例の発光素子は、一対の電極間に少なくとも発光機能に関与する1種または2種以上の有機層を有し、前記有機層の少なくとも1層には下記式(I)〜(III)で表される基本骨格を有する有機物質を1種類以上と(IV)で表される化合物とを有することを特徴とする。
Figure 2012227315
式(I)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
Figure 2012227315
式(II)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
Figure 2012227315
式(III)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
Figure 2012227315
式(IV)はPt(II)テトラフェニル−テトラベンゾ−ポルフィリンを表す。
このように構成された発光素子によれば、発光材料として前記式(IV)で表わされる化合物を用いているので、700nm以上の波長域(近赤外域)での発光を得ることができる。
また、ホスト材料としてアントラセン系材料を用いているので、ホスト材料から発光材料へエネルギーを効率的に移動させることができる。そのため、発光素子の発光効率を優れたものとすることができる。
また、アントラセン系材料は電子およびホールに対する安定性(耐性)に優れるため、発光層の長寿命化、ひいては、発光素子の長寿命化を図ることができる。
[適用例2]上記適用例の発光素子において、前記有機層の少なくとも1層にはホスト物質と、ドーパントとを含有し、前記ホスト物質は、式(I)〜(III)で表される基本骨格を有する有機物質から選択される1種又は2種以上であり、前記ドーパントは、式(IV)で表されるであることを特徴とする。
本適用例によれば、発光ドーパントとして化合物(IV)とホスト物質として化合物(I)〜(III)から少なくとも1種類をEL素子に用いることにより高効率で長寿命な素子を得ることが可能となる。
[適用例3]上記適用例の発光素子において、前記ホスト物質の含有量は、80〜99質量%であることを特徴とする。
本適用例によれば、ホスト物質の含有量を、80〜99質量%にすることにより高効率で長寿命なEL素子を得ることが可能となる。
[適用例4]上記適用例の発光素子において、前記一対の電極間にホール注入輸送層を有することを特徴とする。
本適用例によれば、ホール注入性に優れた材料層を導入することにより低電圧でかつ高効率、長寿命な素子を得ることが可能となる。
[適用例5]上記適用例の発光素子において、前記一対の電極間に電子注入輸送層を有することを特徴とする。
本適用例によれば、電子注入性に優れた材料層を導入することにより低電圧でかつ高効率、長寿命な素子を得ることが可能となる。
[適用例6]本適用例の発光装置は、上記適用例のいずれかに記載の発光素子を備えることを特徴とする。
このような発光装置によれば、近赤外域での発光が可能である。また、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
[適用例7]本適用例の認証装置は、上記適用例のいずれかに記載の発光素子を備えることを特徴とする。
このような認証装置によれば、近赤外光を用いて生体認証を行うことができる。また、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
[適用例8]本適用例の電子機器は、上記適用例のいずれかに記載の発光素子を備えることを特徴とする。
このような電子機器によれば、高効率および長寿命な発光素子を備えるので、信頼性に優れる。
本発明の実施形態に係る発光素子の縦断面を模式的に示す図である。 本発明の発光装置を適用したディスプレイ装置の実施形態を示す縦断面図である。 本発明の認証装置の実施形態を示す図である。 本発明の電子機器を適用した一実施形態としての、モバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。 本発明の実施例1における発光素子の発光スペクトルを示す図である。 本発明の比較例における発光素子の発光スペクトルを示す図である。
以下、本発明の発光素子、発光装置、認証装置および電子機器の好適な実施形態について、添付図面を示し説明する。
図1は、本発明の実施形態に係る発光素子を模式的に示す断面図である。なお、以下では、説明の都合上、図1中の上側を「上」、下側を「下」として説明を行う。
図1に示す発光素子(エレクトロルミネッセンス素子)1は、陽極3と、正孔注入層4と、正孔輸送層5と、発光層6と、電子輸送層7と、電子注入層8と、陰極9と、がこの順に積層されてなるものである。
すなわち、発光素子1では、陽極3と陰極9との間に、陽極3側から陰極9側へ、正孔注入層4と、正孔輸送層5と、発光層6と、電子輸送層7と、電子注入層8と、がこの順で積層された積層体14が介挿されている。
そして、発光素子1は、その全体が基板2上に設けられるとともに、封止部材10で封止されている。
このような発光素子1にあっては、陽極3および陰極9に駆動電圧が印加されることにより、発光層6に対し、それぞれ、陰極9側から電子が供給(注入)されるとともに、陽極3側から正孔が供給(注入)される。そして、発光層6では、正孔と電子とが再結合し、この再結合に際して放出されたエネルギーによりエキシトン(励起子)が生成し、エキシトンが基底状態に戻る際にエネルギー(蛍光やりん光)を放出(発光)する。これにより、発光素子1は、発光する。
特に、この発光素子1は、後述するように発光層6の発光材料としてPt(II)テトラフェニル−テトラベンゾ−ポルフィリン化合物(Frontier Science INC.)を用いることにより、赤外域(より具体的には近赤外域)で発光する。なお、近赤外域とは700〜1500nmを意味する。
基板2は、陽極3を支持するものである。本実施形態の発光素子1は、基板2側から光を取り出す構成(ボトムエミッション型)であるため、基板2および陽極3は、それぞれ、実質的に透明(無色透明、着色透明または半透明)とされている。
基板2の構成材料としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、シクロオレフィンポリマー、ポリアミド、ポリエーテルサルフォン、ポリメチルメタクリレート、ポリカーボネート、ポリアリレートのような樹脂材料や、石英ガラス、ソーダガラスのようなガラス材料等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
このような基板2の平均厚さは、特に限定されないが、0.1〜30mm程度であるのが好ましく、0.1〜10mm程度であるのがより好ましい。
なお、発光素子1が基板2と反対側から光を取り出す構成(トップエミッション型)の場合、基板2には、透明基板および不透明基板のいずれも用いることができる。
不透明基板としては、例えば、アルミナのようなセラミックス材料で構成された基板、ステンレス鋼のような金属基板の表面に酸化膜(絶縁膜)を形成したもの、樹脂材料で構成された基板等が挙げられる。
また、このような発光素子1では、陽極3と陰極9との間の距離(すなわち積層体14の平均厚さ)は、150〜300nmであるのが好ましく、150〜250nmであるのがより好ましい。これにより、簡単かつ確実に、発光素子1の駆動電圧を実用的な範囲内にすることができる。
以下、発光素子1を構成する各部を順次説明する。
[陽極]
陽極3は、後述する正孔注入層4を介して正孔輸送層5に正孔を注入する電極である。この陽極3の構成材料としては、仕事関数が大きく、導電性に優れる材料を用いるのが好ましい。
陽極3の構成材料としては、例えば、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、In33、SnO2、Sb含有SnO2、Al含有ZnO等の酸化物、Au、Pt、Ag、Cuまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
特に、陽極3は、ITOで構成されているのが好ましい。ITOは、透明性を有するとともに、仕事関数が大きく、導電性に優れる材料である。これにより、陽極3から正孔注入層4へ効率的に正孔を注入することができる。
また、陽極3の正孔注入層4側の面(図1にて上面)は、プラズマ処理が施されているのが好ましい。これにより、陽極3と正孔注入層4との接合面の化学的および機械的な安定性を高めることができる。その結果、陽極3から正孔注入層4への正孔注入性を向上させることができる。なお、かかるプラズマ処理については、後述する発光素子1の製造方法の説明において詳述する。
このような陽極3の平均厚さは、特に限定されないが、10〜200nm程度であるのが好ましく、50〜150nm程度であるのがより好ましい。
[陰極]
一方、陰極9は、後述する電子注入層8を介して電子輸送層7に電子を注入する電極である。この陰極9の構成材料としては、仕事関数の小さい材料を用いるのが好ましい。
陰極9の構成材料としては、例えば、Li、Mg、Ca、Sr、La、Ce、Er、Eu、Sc、Y、Yb、Ag、Cu、Al、Cs、Rbまたはこれらを含む合金等が挙げられ、これらのうちの1種または2種以上を組み合わせて(例えば、複数層の積層体、複数種の混合層等として)用いることができる。
特に、陰極9の構成材料として合金を用いる場合には、Ag、Al、Cu等の安定な金属元素を含む合金、具体的には、MgAg、AlLi、CuLi等の合金を用いるのが好ましい。かかる合金を陰極9の構成材料として用いることにより、陰極9の電子注入効率および安定性の向上を図ることができる。
このような陰極9の平均厚さは、特に限定されないが、100〜10000nm程度であるのが好ましく、100〜500nm程度であるのがより好ましい。
なお、本実施形態の発光素子1は、ボトムエミッション型であるため、陰極9に、光透過性は、特に要求されない。
[正孔注入層]
正孔注入層4は、陽極3からの正孔注入効率を向上させる機能を有する(すなわち正孔注入性を有する)ものである。
このように陽極3と後述する正孔輸送層5との間に正孔注入層4を設けることにより、陽極3からの正孔性を向上させ、その結果、発光素子1の発光効率を高めることができる。
この正孔注入層4は、正孔注入性を有する材料(すなわち正孔注入性材料)を含んでいる。
この正孔注入層4に含まれる正孔注入性材料としては、特に限定されないが、例えば、銅フタロシアニンや、4,4’,4’’−トリス(N,N−フェニル−3−メチルフェニルアミノ)トリフェニルアミン(m−MTDATA)、N,N’−ビス−(4−ジフェニルアミノ−フェニル)−N,N’−ジフェニル−ビフェニル−4−4’−ジアミン等が挙げられる。
中でも、正孔注入層4に含まれる正孔注入性材料としては、正孔注入性および正孔輸送性に優れるという観点から、アミン系材料を用いるのが好ましく、ジアミノベンゼン誘導体、ベンジジン誘導体(ベンジジン骨格を有する材料)、分子内に「ジアミノベンゼン」ユニットと「ベンジジン」ユニットとの両方を有するトリアミン系化合物、テトラアミン系化合物を用いるのがより好ましい。
このような正孔注入層4の平均厚さは、特に限定されないが、5〜90nm程度であるのが好ましく、10〜70nm程度であるのがより好ましい。
なお、正孔注入層4は、陽極3および正孔輸送層5の構成材料によっては、省略してもよい。
(正孔輸送層)
正孔輸送層5は、陽極3から正孔注入層4を介して注入された正孔を発光層6まで輸送する機能を有する(すなわち正孔輸送性を有する)ものである。
この正孔輸送層5は、正孔輸送性を有する材料(すなわち正孔輸送性材料)を含んで構成されている。
この正孔輸送層5に含まれる正孔輸送性材料には、各種p型の高分子材料や、各種p型の低分子材料を単独または組み合わせて用いることができ、例えば、N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ジフェニル−4,4’−ジアミン(NPD)、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ジフェニル−4,4’−ジアミン(TPD)等のテトラアリールベンジジン誘導体、テトラアリールジアミノフルオレン化合物またはその誘導体(アミン系化合物)等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
中でも、正孔輸送層5に含まれる正孔輸送性材料としては、正孔注入性および正孔輸送性に優れるという観点から、アミン系材料であるのが好ましく、ベンジジン誘導体(ベンジジン骨格を有する材料)であるのがより好ましい。
このような正孔輸送層5の平均厚さは、特に限定されないが、5〜90nm程度であるのが好ましく、10〜70nm程度であるのがより好ましい。
(発光層)
この発光層6は、前述した陽極3と陰極9との間に通電することにより、発光するものである。
このような発光層6は、発光材料を含んで構成されている。
特に、この発光層6は、発光材料として、下記式(IV)で表わされる化合物(以下、単に「Pt−TPTBP」ともいう)を含んで構成されている。
Figure 2012227315
このPt−TPTBPを含む発光層6は、700nm以上の波長域(近赤外域)での発光を得ることができる。特に770nm付近にピークを有する発光を得ることができる。
なお、発光層6は、上述した発光材料以外の発光材料(各種蛍光材料、各種燐光材料)が含まれていてもよい。
また、発光層6の構成材料としては、前述したような発光材料に加えて、この発光材料がゲスト材料(ドーパント)として添加(担持)されるホスト材料を用いる。このホスト材料は、正孔と電子とを再結合して励起子を生成するとともに、その励起子のエネルギーを発光材料に移動(フェルスター移動またはデクスター移動)させて、発光材料を励起する機能を有する。そのため、発光素子1の発光効率を高めることができる。このようなホスト材料は、例えば、ゲスト材料である発光材料をドーパントとしてホスト材料にドープして用いることができる。
特に、このようなホスト材料としては、アセン系材料であるアントラセン系材料を用いる。発光層6のホスト材料がアセン系材料を含んで構成されていると、電子輸送層7中の電子輸送性材料のアントラセン骨格部分から発光層6中のアセン系材料へ電子を効率的に受け渡すことができる。
アセン系材料は、前述したような発光材料との不本意な相互材用が少ない。また、ホスト材料としてアセン系材料(特にアントラセン系材料、テトラセン系材料)を用いると、ホスト材料から発光材料へのエネルギー移動を効率的に行うことができる。これは、(a)アセン系材料の三重項励起状態からのエネルギー移動による発光材料の一重項励起状態の生成が可能となること、(b)アセン系材料のπ電子雲と発光材料の電子雲との重なりが大きくなること、(c)アセン系材料の蛍光スペクトルと発光材料の吸収スペクトルとの重なりが大きくなること等によるものと考えられる。
このようなことから、ホスト材料としてアセン系材料を用いると、発光素子1の発光効率を高めることができる。
また、アセン系材料は、電子および正孔に対する耐性に優れる。また、アセン系材料は、熱安定性にも優れる。そのため、発光素子1は、長寿命化を図ることができる。また、アセン系材料は、熱安定性に優れるため、気相成膜法を用いて発光層を形成する場合に、成膜時の熱によるホスト材料の分解を防止することができる。そのため、優れた膜質を有する発光層を形成することができ、その結果、この点でも、発光素子1の発光効率を高めるとともに長寿命化を図ることができる。
さらに、アセン系材料は、それ自体発光しにくいので、ホスト材料が発光素子1の発光スペクトルに悪影響を及ぼすのを防止することもできる。
また、このようなアセン系材料として、アントラセン誘導体(アントラセン系材料)を用いると、電子輸送層7中の電子輸送性材料のアントラセン骨格部分から発光層6中のアントラセン系材料へ電子を効率的に受け渡すことができる。
具体的には、アントラセン系材料としては、下記式IRH−4で表わされる化合物またはその誘導体が用いられ、特に、下記式IRH5〜IRH−8で表わされる化合物を用いるのが好ましい。これにより、発光素子1の発光効率をより高めるとともに、発光素子1の長寿命化を図ることができる。
Figure 2012227315
[前記式IRH−4中、nは、1〜10の自然数を示し、Rは、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。また、前記式IRH−5〜IRH−8中、R1、R2は、それぞれ独立に、水素原子、アルキル基、置換基を有していてもよいアリール基、アリールアミノ基を示す。また、R1、R2は、互いに同じであっても異なっていてもよい。]
また、アントラセン系材料は、炭素原子および水素原子で構成されているのが好ましい。これにより、ホスト材料と発光材料との不本意な相互作用が生じるのを防止することができる。そのため、発光素子1の発光効率を高めることができる。また、電位および正孔に対するホスト材料の耐性を高めることができる。そのため、発光素子1の長寿命化を図ることができる。
具体的には、アントラセン系材料としては、例えば、下記式H2−1〜H2−80で表わされる化合物を用いるのが好ましい。
Figure 2012227315
Figure 2012227315
Figure 2012227315
このような発光材料およびホスト材料を含む発光層6中における発光材料の含有量(ドープ量)は、0.01〜10wt%であるのが好ましく、0.1〜5wt%であるのがより好ましい。発光材料の含有量をこのような範囲内とすることで、発光効率を最適化することができる。
また、発光層6の平均厚さは、特に限定されないが、1〜60nm程度であるのが好ましく、3〜50nm程度であるのがより好ましい。
(電子輸送層)
電子輸送層7は、陰極9から電子注入層8を介して注入された電子を発光層6に輸送する機能を有するものである。
電子輸送層7の構成材料(電子輸送性材料)としては、例えば、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)等のフェナントロリン誘導体、トリス(8−キノリノラト)アルミニウム(Alq3)等の8−キノリノールないしその誘導体を配位子とする有機金属錯体などのキノリン誘導体、アザインドリジン誘導体、オキサジアゾール誘導体、ペリレン誘導体、ピリジン誘導体、ピリミジン誘導体、キノキサリン誘導体、ジフェニルキノン誘導体、ニトロ置換フルオレン誘導体等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
これらの中でも、電子輸送層7に用いる電子輸送性材料としては、アザインドリジン誘導体を用いるのが好ましく、特に、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物(以下、単に「アザインドリジン系化合物」ともいう)を用いるのがより好ましい。
このように、発光層6に隣接する電子輸送層7の電子輸送性材料としてアザインドリジン骨格およびアントラセン骨格を分子内に有する化合物を用いているので、電子輸送層7から発光層6へ電子を効率的に輸送することができる。そのため、発光素子1の発光効率を優れたものとすることができる。
また、電子輸送層7から発光層6への電子輸送を効率的に行なえることから、発光素子1の駆動電圧を低電圧化することができ、それに伴って、発光素子1の長寿命化を図ることができる。
さらに、アザインドリジン骨格およびアントラセン骨格を分子内に有する化合物は電子およびホールに対する安定性(耐性)に優れるため、この点でも、発光素子1の長寿命化を図ることができる。
電子輸送層7に用いる電子輸送性材料(アザインドリジン系化合物)は、1つの分子内に含まれるアザインドリジン骨格およびアントラセン骨格の数がそれぞれ1つまたは2つであるのが好ましい。これにより、電子輸送層7の電子輸送性および電子注入性を優れたものとすることができる。
具体的には、電子輸送層7に用いるアザインドリジン系化合物としては、例えば、下記式ELT−A1〜ELT−A24で表わされるような化合物、下記式ELT−B1〜式ELT−B12で表わされるような化合物、下記ELT−C1〜ELT−C20で表わされる化合物を用いるのが好ましい。
Figure 2012227315
Figure 2012227315
Figure 2012227315
このようなアザインドリジン化合物は、電子輸送性および電子注入性に優れる。そのため、発光素子1の発光効率を向上させることができる。
かかるアザインドリジン化合物の電子輸送性および電子注入性が優れるのは、以下のような理由によるものと考えられる。
前述したようなアザインドリジン骨格およびアントラセン骨格を分子内に有するアザインドリジン系化合物は、その分子全体がπ共役系で繋がっているため、電子雲が分子全体に亘って拡がっている。
そして、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、電子を受け入れる機能と、その受け取った電子をアントラセン骨格の部分へ送り出す機能とを有する。一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、アザインドリジン骨格の部分から電子を受け入れる機能と、その受け入れた電子を、電子輸送層7の陽極3側に隣接する層、すなわち発光層6へ受け渡す機能とを有する。
具体的に説明すると、かかるアザインドリジン系化合物のアザインドリジン骨格の部分は、2つの窒素原子を有し、その一方(アントラセン骨格の部分に近い側)の窒素原子がsp2混成軌道を有し、他方(アントラセン骨格の部分に遠い側)の窒素原子がsp3混成軌道を有する。sp2混成軌道を有する窒素原子は、アザインドリジン系化合物の分子の共役系の一部を構成するとともに、炭素原子よりも電気陰性度が高く、電子を引き付ける強さが大きいため、電子を受け入れる部分として機能する。一方、sp3混成軌道を有する窒素原子は、通常の共役系ではないが、非共有電子対を有するため、その電子がアザインドリジン系化合物の分子の共役系に向けて電子を送り出す部分として機能する。
一方、かかるアザインドリジン系化合物のアントラセン骨格の部分は、電気的に中性であるため、アザインドリジン骨格の部分から電子を容易に受け入れることができる。また、かかるアザインドリジン系化合物のアントラセン骨格の部分は、発光層6の構成材料、特にホスト材料(アセン系材料)と軌道の重なりが大きいため、発光層6のホスト材料へ電子を容易に受け渡すことができる。
また、かかるアザインドリジン系化合物は、前述したように電子輸送性および電子注入性に優れるため、結果として、発光素子1の駆動電圧を低電圧化することができる。
また、アザインドリジン骨格の部分は、sp2混成軌道を有する窒素原子が還元されても安定であり、sp3混成軌道を有する窒素原子が酸化されても安定である。そのため、かかるアザインドリジン系化合物は、電子および正孔に対する安定性が高いものとなる。その結果、発光素子1の長寿命化を図ることができる。
また、電子輸送層7は、前述したような電子輸送性材料のうち2種以上を組み合わせて用いる場合、2種以上の電子輸送性材料を混合した混合材料で構成されていてもよいし、異なる電子輸送性材料で構成された複数の層を積層して構成されていてもよい。
電子輸送層7の平均厚さは、特に限定されないが、0.5〜100nm程度であるのが好ましく、1〜50nm程度であるのがより好ましい。
(電子注入層)
電子注入層8は、陰極9からの電子注入効率を向上させる機能を有するものである。
この電子注入層8の構成材料(電子注入性材料)としては、例えば、各種の無機絶縁材料、各種の無機半導体材料が挙げられる。
このような無機絶縁材料としては、例えば、アルカリ金属カルコゲナイド(酸化物、硫化物、セレン化物、テルル化物)、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物およびアルカリ土類金属のハロゲン化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。これらを主材料として電子注入層8を構成することにより、電子注入性をより向上させることができる。特にアルカリ金属化合物(アルカリ金属カルコゲナイド、アルカリ金属のハロゲン化物等)は仕事関数が非常に小さく、これを用いて電子注入層8を構成することにより、発光素子1は、高い輝度が得られるものとなる。
アルカリ金属カルコゲナイドとしては、例えば、Li2O、LiO、Na2S、Na2Se、NaO等が挙げられる。
アルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS、MgO、CaSe等が挙げられる。
アルカリ金属のハロゲン化物としては、例えば、CsF、LiF、NaF、KF、LiCl、KCl、NaCl等が挙げられる。
アルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2、BeF2等が挙げられる。
また、無機半導体材料としては、例えば、Li、Na、Ba、Ca、Sr、Yb、Al、Ga、In、Cd、Mg、Si、Ta、SbおよびZnのうちの少なくとも1つの元素を含む酸化物、窒化物または酸化窒化物等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
電子注入層8の平均厚さは、特に限定されないが、0.1〜1000nm程度であるのが好ましく、0.2〜100nm程度であるのがより好ましく、0.2〜50nm程度であるのがさらに好ましい。
なお、この電子注入層8は、陰極9および電子輸送層7の構成材料や厚さ等によっては、省略してもよい。
(封止部材)
封止部材10は、陽極3、積層体14、および陰極9を覆うように設けられ、これらを気密的に封止し、酸素や水分を遮断する機能を有する。封止部材10を設けることにより、発光素子1の信頼性の向上や、変質・劣化の防止(耐久性向上)等の効果が得られる。
封止部材10の構成材料としては、例えば、Al、Au、Cr、Nb、Ta、Tiまたはこれらを含む合金、酸化シリコン、各種樹脂材料等を挙げることができる。なお、封止部材10の構成材料として導電性を有する材料を用いる場合には、短絡を防止するために、封止部材10と陽極3、積層体14および陰極9との間には、必要に応じて、絶縁膜を設けるのが好ましい。
また、封止部材10は、平板状として、基板2と対向させ、これらの間を、例えば熱硬化性樹脂等のシール材で封止するようにしてもよい。
以上のように構成された発光素子1によれば、発光層6の発光材料としてPt−TPTBPを用いるとともに、発光層6のホスト材料としてアントラセン系材料を用いることにより、近赤外域での発光を可能とするとともに、高効率化および長寿命化を図ることができる。
以上のような発光素子1は、例えば、次のようにして製造することができる。
[1]まず、基板2を用意し、この基板2上に陽極3を形成する。
陽極3は、例えば、プラズマCVD、熱CVDのような化学蒸着法(CVD)、真空蒸着等の乾式メッキ法、電解メッキ等の湿式メッキ法、溶射法、ゾル・ゲル法、MOD法、金属箔の接合等を用いて形成することができる。
[2]次に、陽極3上に正孔注入層4を形成する。
正孔注入層4は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、正孔注入層4は、例えば、正孔注入性材料を溶媒に溶解または分散媒に分散してなる正孔注入層形成用材料を、陽極3上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
正孔注入層形成用材料の供給方法としては、例えば、スピンコート法、ロールコート法、インクジェット印刷法等の各種塗布法を用いることもできる。かかる塗布法を用いることにより、正孔注入層4を比較的容易に形成することができる。
正孔注入層形成用材料の調製に用いる溶媒または分散媒としては、例えば、各種無機溶媒や、各種有機溶媒、または、これらを含む混合溶媒等が挙げられる。
なお、乾燥は、例えば、大気圧または減圧雰囲気中での放置、加熱処理、不活性ガスの吹付け等により行うことができる。
また、本工程に先立って、陽極3の上面には、酸素プラズマ処理を施すようにしてもよい。これにより、陽極3の上面に親液性を付与すること、陽極3の上面に付着する有機物を除去(洗浄)すること、陽極3の上面付近の仕事関数を調整すること等を行うことができる。
ここで、酸素プラズマ処理の条件としては、例えば、プラズマパワー100〜800W程度、酸素ガス流量50〜100mL/min程度、被処理部材(陽極3)の搬送速度0.5〜10mm/sec程度、基板2の温度70〜90℃程度とするのが好ましい。
[3]次に、正孔注入層4上に正孔輸送層5を形成する。
正孔輸送層5は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、正孔輸送性材料を溶媒に溶解または分散媒に分散してなる正孔輸送層形成用材料を、正孔注入層4上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[4]次に、正孔輸送層5上に、発光層6を形成する。
発光層6は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成することができる。
[5]次に、発光層6上に、電子輸送層7を形成する。
電子輸送層7は、例えば、真空蒸着等の乾式メッキ法等を用いた気相プロセスにより形成するのが好ましい。
なお、電子輸送層7は、例えば、電子輸送性材料を溶媒に溶解または分散媒に分散してなる電子輸送層形成用材料を、発光層6上に供給した後、乾燥(脱溶媒または脱分散媒)することによっても形成することができる。
[6]次に、電子輸送層7上に、電子注入層8を形成する。
電子注入層8の構成材料として無機材料を用いる場合、電子注入層8は、例えば、CVD法や、真空蒸着、スパッタリング等の乾式メッキ法等を用いた気相プロセス、無機微粒子インクの塗布および焼成等を用いて形成することができる。
[7]次に、電子注入層8上に、陰極9を形成する。
陰極9は、例えば、真空蒸着法、スパッタリング法、金属箔の接合、金属微粒子インクの塗布および焼成等を用いて形成することができる。
以上のような工程を経て、発光素子1が得られる。
最後に、得られた発光素子1を覆うように封止部材10を被せ、基板2に接合する。
(発光装置)
次に、本発明の発光装置の実施形態について説明する。
図2は、本発明にかかる発光装置を適用したディスプレイ装置の実施形態を示す縦断面図である。
図2に示すディスプレイ装置100は、基板21と、複数の発光素子1Aと、各発光素子1Aをそれぞれ駆動するための複数の駆動用トランジスター24とを有している。ここで、ディスプレイ装置100は、トップエミッション構造のディスプレイパネルである。
基板21上には、複数の駆動用トランジスター24が設けられ、これらの駆動用トランジスター24を覆うように、絶縁材料で構成された平坦化層22が形成されている。
各駆動用トランジスター24は、シリコンからなる半導体層241と、半導体層241上に形成されたゲート絶縁層242と、ゲート絶縁層242上に形成されたゲート電極243と、ソース電極244と、ドレイン電極245とを有している。
平坦化層22上には、各駆動用トランジスター24に対応して発光素子1Aが設けられている。
発光素子1Aは、平坦化層22上に、反射膜32、腐食防止膜33、陽極3、積層体(有機EL発光部)14、陰極13、陰極カバー34がこの順に積層されている。本実施形態では、各発光素子1Aの陽極3は、画素電極を構成し、各駆動用トランジスター24のドレイン電極245に導電部(配線)27により電気的に接続されている。また、各発光素子1Aの陰極13は、共通電極とされている。
図2における発光素子1Aは、近赤外域で発光するものである。
隣接する発光素子1A同士の間には、隔壁31が設けられている。また、これらの発光素子1A上には、これらを覆うように、エポキシ樹脂で構成されたエポキシ層35が形成されている。
そして、エポキシ層35上には、これらを覆うように封止基板20が設けられている。
以上説明したようなディスプレイ装置100は、例えば、暗視装置などの近赤外線ディスプレイとして用いることができる。
このようなディスプレイ装置100によれば、近赤外域での発光が可能である。また、高効率および長寿命な発光素子1Aを備えるので、信頼性に優れる。
(認証装置)
次に、本発明にかかる認証装置の実施形態を説明する。
図3は、本発明の認証装置の実施形態を示す図である。
図3に示す認証装置1000は、生体F(本実施形態では指先)の生体情報を用いて個人を認証する生体認証装置である。
この認証装置1000は、光源100Bと、カバーガラス1001と、マイクロレンズアレイ1002と、受光素子群1003と、発光素子駆動部1006と、受光素子駆動部1004と、制御部1005とを有する。
光源100Bは、前述した発光素子1を複数備えるものであり、撮像対象物である生体Fへ向けて、近赤外領域の光を照射する。例えば、この光源100Bの複数の発光素子1は、カバーガラス1001の外周部に沿って配置される。
カバーガラス1001は、生体Fが接触または近接する部位である。
マイクロレンズアレイ1002は、カバーガラス1001に対して、生体Fが接触または近接する側と反対側に設けられている。このマイクロレンズアレイ1002は、複数のマイクロレンズがマトリックス状に配列して構成されている。
受光素子群1003は、マイクロレンズアレイ1002に対してカバーガラス1001とは反対側に設けられている。この受光素子群1003は、マイクロレンズアレイ1002の複数のマイクロレンズに対応してマトリックス状に設けられた複数の受光素子で構成されている。この受光素子群1003の各受光素子としては、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等を用いることができる。
発光素子駆動部1006は、光源100Bを駆動する駆動回路である。
受光素子駆動部1004は、受光素子群1003を駆動する駆動回路である。
制御部1005は、例えば、MPU(Micro-Processing Unit)であり、発光素子駆動部1006および受光素子駆動部1004の駆動を制御する機能を有する。
また、制御部1005は、受光素子群1003の受光結果と、予め記憶された生体認証情報との比較により、生体Fの認証を行う機能を有する。
例えば、制御部1005は、受光素子群1003の受光結果に基づいて、生体Fに関する画像パターン(例えば静脈パターン)を生成する。そして、制御部1005は、その画像パターンと、生体認証情報として予め記憶された画像パターンとを比較し、その比較結果に基づいて、生体Fの認証(例えば静脈認証)を行う。
このような認証装置1000によれば、近赤外光を用いて生体認証を行うことができる。また、高効率および長寿命な発光素子1を備えるので、信頼性に優れる。
このような認証装置1000は、各種の電子機器に組み込むことができる。
(電子機器)
図4は、本発明の電子機器を適用した一実施形態としての、モバイル型(またはノート型)のパーソナルコンピューターの構成を示す斜視図である。
この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部を備える表示ユニット1106とにより構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。
このパーソナルコンピューター1100において、表示ユニット1106には前述したディスプレイ装置100が設けられ、本体部1104には、前述した認証装置1000が設けられている。
このようなパーソナルコンピューター1100によれば、高効率および長寿命な発光装置、および認証装置1000を備えるので、信頼性に優れる。
なお、本発明の電子機器は、図4のパーソナルコンピューター(モバイル型パーソナルコンピューター)の他にも、例えば、携帯電話機、ディジタルスチールカメラ、テレビ、ビデオカメラ、ビューファインダー型、またはモニター直視型のビデオテープレコーダー、ラップトップ型パーソナルコンピューター、カーナビゲーション装置、ページャー、電子手帳(通信機能付も含む)、電子辞書、電卓、電子ゲーム機器、ワードプロセッサー、ワークステーション、テレビ電話、防犯用テレビモニター、電子双眼鏡、POS端末、タッチパネルを備えた機器(例えば金融機関のキャッシュディスペンサー、自動券売機)、医療機器(例えば電子体温計、血圧計、血糖計、脈拍計測装置、脈波計測装置、心電表示装置、超音波診断装置、内視鏡用表示装置)、魚群探知機、各種測定機器、計器類(例えば、車両、航空機、船舶の計器類)、フライトシュミレーター、その他各種モニター類、プロジェクター等の投射型表示装置等に適用することができる。
以上、本発明の発光素子、発光装置、認証装置および電子機器を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものでない。
次に、本発明の具体的実施例について説明する。
1.ホスト材料(アントラセン系材料)の製造
(合成例C1)式H2−34で表わされる化合物の合成
Figure 2012227315
合成(C1−1)
市販の2−ナフタレンボロン酸2.1gと9,10−ジブロモアントラセン5gを50mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水50mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.4gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製した。
これにより、薄黄白色結晶(9−ブロモ−10−ナフタレン−2−イル−アントラセン)3gを得た。
合成(C1−2)
Ar下、500mlのフラスコに、市販の2−ナフタレンボロン酸10.5gと1,4−ジブロベンゼン17.5gを250mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム30gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)2gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製した。
これにより、白色結晶(2−(4−ブロモフェニル)−ナフタレン)10gを得た。
合成(C1−3)
Ar下、1リットルのフラスコに、合成(C1−2)で得られた2−(4−ブロモフェニル)−ナフタレン10g、脱水テトラヒドロフラン500mlを入れ、−60℃で1.6M n−BuLi/ヘキサン溶液22mlを30分かけて滴下した。30分後ホウ酸トリイソプロピル7gを添加した。滴下後は成り行きの温度で一晩反応させた。反応後、水100mlを滴下し、その後トルエン2リットルで抽出、分液した。有機層を濃縮、再結晶し、ろ過、乾燥させて白色のフェニルボロン酸誘導体5gを得た。
合成(C1−4)
Ar下、500mlのフラスコに、合成(C1−1)で得られた9−ブロモ−10−ナフタレン−2−イル−アントラセン3gと、合成(C1−3)で得られたボロン酸3gを200mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲルクロマトグラフィーにより精製を行った。
これにより、薄黄白色固体(前記式H2−34で表わされる化合物)3gを得た。
(合成例C2)式H2−61で表わされる化合物の合成
Figure 2012227315
合成(C2−1)
Ar下、300mlのフラスコに、ビアントロン5gと乾燥ジエチルエーテル150mlを入れた。そこへ市販のフェニルリチウム試薬(19% ブチルエーテル溶液)を5.5ml加えて、3時間室温にて攪拌させた。その後、10mlの水を投入後、分液ロートに移してトルエンにて目的物を抽出、乾燥させ、シリカゲル(SiO2 500g)にて分離精製した。
これにより、白色の目的物(10、10'−ジフェニル−10H、10'H−[9、9']ビアントラセニリデン−10、10'−ジオール)5gを得た。
合成(C2−2)
合成(C2−1)で得られたジオール体5gと酢酸300mlを500mlのフラスコに入れた。そこへ塩酸(35%)5gに塩化スズ(II)(無水)5gを溶かしたものを入れ、30分攪拌した。その後、分液ロートに移し、トルエンを加えて、蒸留水にて分液洗浄し、乾燥させた。得られた固体をシリカゲル(SiO2 500g)で精製し、黄色白色固体(前記式H2−71で表わされる化合物)5.5gを得た。
(合成例C3)式H2−66で表わされる化合物
Figure 2012227315
合成(C3−1)
市販のフェニルボロン酸2.2gと9,10−ジブロモアントラセン6gを100mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水50mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲル(SiO2 500g)で精製を行った。
これにより、黄白色結晶(9−ブロモ−10−フェニル−アントラセン)4gを得た。
合成(C3−2)
Ar下、500mlのフラスコに、合成(C3−1)で得られた9−ブロモ−10−フェニル−アントラセン4gと市販品のフェニレンジボロン酸0.8gを200mlのジメトキシエタンに溶解させ、80℃に加熱した。そこへ蒸留水250mlおよび炭酸ナトリウム10gを入れた。さらにそこへテトラキストリフェニルホスフィンパラジウム(0)0.5gを入れた。
3時間後分液ロートにてトルエン抽出を行い、シリカゲルクロマトグラフィーを用いて精製を行った。
これにより、薄黄白色固体(前記式H2−76で表わされる化合物)2gを得た。
2.発光素子の製造
(実施例1)
<1>まず、平均厚さ0.5mmの透明なガラス基板を用意した。次に、この基板上に、スパッタ法により、平均厚さ100nmのITO電極(陽極)を形成した。
そして、基板をアセトン、2−プロパノールの順に浸漬し、超音波洗浄した後、酸素プラズマ処理およびアルゴンプラズマ処理を施した。これらのプラズマ処理は、それぞれ、基板を70〜90℃に加温した状態で、プラズマパワー100W、ガス流量20sccm、処理時間5secで行った。
<2>次に、ITO電極上に、アミン系の正孔輸送性材料(テトラキス−p−ビフェニリル―ベンジジン)を真空蒸着法により蒸着させ、平均厚さ50nmの正孔輸送層を形成した。
<3>次に、正孔輸送層上に、発光層の構成材料を真空蒸着法により蒸着させ、平均厚さ25nmの発光層を形成した。発光層の構成材料としては、発光材料(ゲスト材料)として前記式D−2で表わされる化合物を用い、ホスト材料として前記式H2−34で表わされる化合物(アントラセン系材料)を用いた。また、発光層中の発光材料(ドーパント)の含有量(ドープ濃度)を4.0wt%とした。
<4>次に、発光層上に、2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン(BCP)を真空蒸着法により成膜し、平均厚さ80nmの電子輸送層を形成した。
<5>次に、電子輸送層上に、フッ化リチウム(LiF)を真空蒸着法により成膜し、平均厚さ1nmの電子注入層を形成した。
<6>次に、電子注入層上に、Alを真空蒸着法により成膜した。これにより、Alで構成される平均厚さ100nmの陰極を形成した。
<7>次に、形成した各層を覆うように、ガラス製の保護カバー(封止部材)を被せ、エポキシ樹脂により固定、封止した。
以上の工程により、発光素子を製造した。
(実施例2)
発光層のホスト材料として前記式H2−61で表わされる化合物(アントラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(実施例3)
発光層のホスト材料として前記式H2−66で表わされる化合物(アントラセン系材料)を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
(比較例)
発光層のホスト材料としてAlq3を用いた以外は、前述した実施例1と同様にして発光素子を製造した。
3.評価
各実施例および比較例について、一定電流電源(株式会社東陽テクニカ製 KEITHLEY2400)を用いて、発光素子に100mA/cm2の定電流を流し、そのときの発光ピーク波長および発光パワーを分光放射輝度計(コニカミノルタセンシング株式会社製 CS−2000)を用いて測定した。なお、発光パワーの測定には、株式会社エーディーシー製 光パワーメーター8230を用いた。
また、そのときの電圧値(駆動電圧)も測定した。
さらに、輝度が初期の輝度の80%となる時間(LT80)を測定した。
これらの測定結果を表1に示す。なお、実施例1における発光素子の発光スペクトルを図5に、比較例における発光素子の発光スペクトルを図6示す。
Figure 2012227315
表1から明らかなように、各実施例の発光素子は、近赤外域で発光するととともに、比較例の発光素子に比し、高い発光パワーが得られる。また、各実施例の発光素子は、比較例の発光素子に比し、駆動電圧を抑えることができる。このようなことから、各実施例の発光素子は、優れた発光効率を有する。
また、各実施例の発光素子は、比較例の発光素子に比し、長い寿命を有する。
1、1A……発光素子 2……基板 3……陽極 4……正孔注入層 5……正孔輸送層 6……発光層 7……電子輸送層 8……電子注入層 9……陰極 10……封止部材 13……陰極 14……積層体 100……ディスプレイ装置 20……封止基板 21……基板 22……平坦化層 24……駆動用トランジスター 241……半導体層 242……ゲート絶縁層 243……ゲート電極 244……ソース電極 245……ドレイン電極 27……配線 31……隔壁 32……反射膜 33……腐食防止膜 34……陰極カバー 35……エポキシ層 36……遮光層 1100……パーソナルコンピューター 1102……キーボード 1104……本体部 1106……表示ユニット。

Claims (8)

  1. 一対の電極間に少なくとも発光機能に関与する1種または2種以上の有機層を有し、前記有機層の少なくとも1層には下記式(I)〜(III)で表される基本骨格を有する有機物質を1種類以上と(IV)で表される化合物とを有することを特徴とする発光素子。
    Figure 2012227315
    式(I)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
    Figure 2012227315
    式(II)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
    Figure 2012227315
    式(III)中R1、R2は同一であっても異なっていても良く、それぞれ、アルキル基、置換または非置換のアリール基、アミノ基、複素環基を表す。
    Figure 2012227315
    式(IV)はPt(II)テトラフェニル−テトラベンゾ−ポルフィリンを表す。
  2. 前記有機層の少なくとも1層にはホスト物質と、ドーパントとを含有し、前記ホスト物質は、式(I)〜(III)で表される基本骨格を有する有機物質から選択される1種又は2種以上であり、前記ドーパントは、式(IV)で表されるであることを特徴とする請求項1に記載の発光素子。
  3. 前記ホスト物質の含有量は、80〜99質量%であることを特徴とする請求項2に記載の発光素子。
  4. 前記一対の電極間にホール注入輸送層を有することを特徴とする請求項1〜3のいずれか一項に記載の発光素子。
  5. 前記一対の電極間に電子注入輸送層を有することを特徴とする請求項1〜4のいずれか一項に記載の発光素子。
  6. 請求項1ないし5のいずれか一項に記載の発光素子を備えることを特徴とする発光装置。
  7. 請求項1ないし5のいずれか一項に記載の発光素子を備えることを特徴とする認証装置。
  8. 請求項1ないし5のいずれか一項に記載の発光素子を備えることを特徴とする電子機器。
JP2011092745A 2011-04-19 2011-04-19 発光素子、発光装置、認証装置および電子機器 Active JP5793929B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011092745A JP5793929B2 (ja) 2011-04-19 2011-04-19 発光素子、発光装置、認証装置および電子機器
US13/447,777 US20120268003A1 (en) 2011-04-19 2012-04-16 Light emitting element, light emitting device, authentication device, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092745A JP5793929B2 (ja) 2011-04-19 2011-04-19 発光素子、発光装置、認証装置および電子機器

Publications (2)

Publication Number Publication Date
JP2012227315A true JP2012227315A (ja) 2012-11-15
JP5793929B2 JP5793929B2 (ja) 2015-10-14

Family

ID=47020749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092745A Active JP5793929B2 (ja) 2011-04-19 2011-04-19 発光素子、発光装置、認証装置および電子機器

Country Status (2)

Country Link
US (1) US20120268003A1 (ja)
JP (1) JP5793929B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027654A (ja) * 2015-08-05 2016-02-18 セイコーエプソン株式会社 発光素子、発光装置および電子機器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130240850A1 (en) * 2012-03-13 2013-09-19 The Regents Of The University Of Michigan Ultra-high efficiency (125%) phosphorescent organic light emitting diodes using singlet fission
JP2014072120A (ja) * 2012-10-01 2014-04-21 Seiko Epson Corp 有機el装置、有機el装置の製造方法、及び電子機器
KR20160044690A (ko) * 2014-10-15 2016-04-26 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
KR102401011B1 (ko) * 2017-08-16 2022-05-24 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016693A (ja) * 2007-07-07 2009-01-22 Idemitsu Kosan Co Ltd ホスト材料および有機el素子
JP2010254674A (ja) * 2009-03-31 2010-11-11 Semiconductor Energy Lab Co Ltd キノキサリン誘導体、キノキサリン誘導体を用いた発光素子、発光装置、照明装置及び電子機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005091686A1 (ja) * 2004-03-19 2008-02-07 チッソ株式会社 有機電界発光素子
US7598381B2 (en) * 2006-09-11 2009-10-06 The Trustees Of Princeton University Near-infrared emitting organic compounds and organic devices using the same
US8785624B2 (en) * 2007-06-13 2014-07-22 University Of Southern California Organic photosensitive optoelectronic devices with nonplanar porphyrins
JP2009037981A (ja) * 2007-08-03 2009-02-19 Idemitsu Kosan Co Ltd 有機el素子および有機el素子の製造方法
JP2010211756A (ja) * 2009-03-12 2010-09-24 Seiko Epson Corp 生体情報取得装置、生体情報取得方法及び生体認証装置
CN102386341B (zh) * 2010-09-06 2015-11-25 精工爱普生株式会社 发光元件、发光装置、显示装置和电子设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016693A (ja) * 2007-07-07 2009-01-22 Idemitsu Kosan Co Ltd ホスト材料および有機el素子
JP2010254674A (ja) * 2009-03-31 2010-11-11 Semiconductor Energy Lab Co Ltd キノキサリン誘導体、キノキサリン誘導体を用いた発光素子、発光装置、照明装置及び電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027654A (ja) * 2015-08-05 2016-02-18 セイコーエプソン株式会社 発光素子、発光装置および電子機器

Also Published As

Publication number Publication date
JP5793929B2 (ja) 2015-10-14
US20120268003A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5765034B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6613595B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP6149377B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5682429B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
KR20130018547A (ko) 티아디아졸계 화합물, 발광 소자, 발광 장치, 인증 장치, 전자 기기
JP6398226B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5982867B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2018111673A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP5793929B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5879804B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP2018111672A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP6142498B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5935261B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6145989B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP5983289B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP6003087B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5799560B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5793925B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP6171304B2 (ja) チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器
JP2018111674A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP2019147752A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器
JP5879727B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP6191714B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP5831030B2 (ja) 発光素子、発光装置、認証装置および電子機器
JP2018111679A (ja) 化合物、発光素子用化合物、発光素子、発光装置、光源、認証装置および電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5793929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350