JP2012225824A - Method and apparatus for inspecting three-dimensional defect - Google Patents

Method and apparatus for inspecting three-dimensional defect Download PDF

Info

Publication number
JP2012225824A
JP2012225824A JP2011095023A JP2011095023A JP2012225824A JP 2012225824 A JP2012225824 A JP 2012225824A JP 2011095023 A JP2011095023 A JP 2011095023A JP 2011095023 A JP2011095023 A JP 2011095023A JP 2012225824 A JP2012225824 A JP 2012225824A
Authority
JP
Japan
Prior art keywords
color filter
filter substrate
defect inspection
defect
inspection apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011095023A
Other languages
Japanese (ja)
Inventor
Shinichi Egawa
慎一 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011095023A priority Critical patent/JP2012225824A/en
Publication of JP2012225824A publication Critical patent/JP2012225824A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional defect inspection apparatus which is an automatic defect inspection apparatus of a color filter substrate and is capable of performing extremely efficient defect inspection of a defect on the color filter substrate by performing not only area size determination of a plane but also simultaneously performing defect determination in a height direction.SOLUTION: The three-dimensional defect inspection apparatus for simultaneously detecting defects in a plane direction and a height direction of the color filter substrate includes: conveyance means for placing the color filter substrate and conveying the color filter substrate on an XY plane; imaging means in which a camera and a light source can be synchronously and axially moved on the color filter substrate; image processing means for performing arithmetic processing of imaged data obtained by the imaging means; and means for determining acceptance of the color filter substrate by three-dimensional defect data obtained by the image processing means.

Description

本発明は、液晶表示装置用カラーフィルタの欠陥検査方法に関わり、特に自動検査機においてその欠陥種別を自動的に判定する方法に関するものである。   The present invention relates to a defect inspection method for a color filter for a liquid crystal display device, and more particularly to a method for automatically determining the defect type in an automatic inspection machine.

一般に液晶表示装置用カラーフィルタ基板は、例えば図5に示すような、クロムまたは酸化クロム膜をパターンエッチングして形成したブラックマトリクス(BM:遮光部)15、および赤色、緑色、青色の透明着色層からなる赤色画素12、緑色画素13、青色画素14を透明基板(ガラス基板)11上に形成し、その上に透明電極層(ITO層)16を形成し、さらにスペーサー17が設けられた構造からなっている。このような構成のカラーフィルタ基板10の製造過程で生じる欠陥(キズ、異物、突起、白欠陥など)を検査する欠陥検査機は、以下の方式のものが主流となっている。   In general, a color filter substrate for a liquid crystal display device includes, for example, a black matrix (BM: light-shielding portion) 15 formed by pattern etching of a chromium or chromium oxide film and transparent colored layers of red, green, and blue as shown in FIG. The red pixel 12, green pixel 13, and blue pixel 14 are formed on a transparent substrate (glass substrate) 11, a transparent electrode layer (ITO layer) 16 is formed thereon, and a spacer 17 is further provided. It has become. Defect inspection machines for inspecting defects (scratches, foreign matter, protrusions, white defects, etc.) generated in the manufacturing process of the color filter substrate 10 having such a configuration are mainly used in the following methods.

例えば特許文献1では、以下のような提案がされている。図6に示すように、光源2として白色光またはレーザー光を利用し、その光源2からの光をカラーフィルタ基板10上の赤色、緑色、青色の透明着色層からなる各画素パターンに照射する。次いで、画素パターンより反射、透過もしくは散乱した光を電荷結合素子(CCD)を用いたカメラ1で受け、光から変換された電気信号を処理して欠陥検出を行うものである。   For example, in Patent Document 1, the following proposal is made. As shown in FIG. 6, white light or laser light is used as the light source 2, and light from the light source 2 is irradiated on each pixel pattern composed of red, green, and blue transparent colored layers on the color filter substrate 10. Next, light reflected, transmitted or scattered from the pixel pattern is received by the camera 1 using a charge coupled device (CCD), and an electric signal converted from the light is processed to detect a defect.

このような欠陥検査装置において、従来の自動欠陥検査では平面の欠陥サイズのみで判定を行い、別途、面積サイズを基にレビュー機にてレビュー測定して高さ管理を行っている。しかしながら、実際のカラーフィルタ基板は面積サイズも大小様々であり、また、高さ方法の欠陥の有無も様々で一様ではない。このような状況にもかかわらず、実際の検査はあらゆる状況を想定して、全てのカラーフィルタ基板の検査に、別途、レビュー機で高さ測定を行っている為、効率が悪いなどの問題がある。   In such a defect inspection apparatus, in the conventional automatic defect inspection, the determination is made only by the planar defect size, and the height management is separately performed by the review measurement based on the area size. However, the actual color filter substrate has various sizes and sizes, and the presence or absence of defects in the height method varies and is not uniform. Regardless of this situation, the actual inspection assumes every situation, and since the height is measured separately by the review machine for the inspection of all color filter substrates, there are problems such as inefficiency is there.

特開平10−221041号公報Japanese Patent Laid-Open No. 10-222101

本発明は、自動欠陥検査装置にて平面の面積サイズ判定だけでなく、同時に高さ方向の欠陥判定を行うことで、極めて効率のよい欠陥検査が行える立体欠陥検査装置を提供することを目的とする。   It is an object of the present invention to provide a three-dimensional defect inspection apparatus capable of performing extremely efficient defect inspection by performing not only plane area size determination but also height direction defect determination at the same time with an automatic defect inspection apparatus. To do.

本発明は上記課題を解決するためのものであり、本発明の請求項1に係る発明は、カラーフィルタ基板の平面方向と高さ方向の欠陥を同時に検出する立体欠陥検査装置であって、
前記カラーフィルタ基板を載置しXY平面上を搬送させる搬送手段と、
前記カラーフィルタ基板上をカメラと光源が同期かつ軸移動可能な撮像手段と、
前記撮像手段により得られた撮像データに対して演算処理を行う画像処理手段と、
前記画像処理手段で得られた立体欠陥データにより前記カラーフィルタ基板の合否判定を行う手段を具備することを特徴とする立体欠陥検査装置である。
The present invention is for solving the above-mentioned problems, and the invention according to claim 1 of the present invention is a three-dimensional defect inspection apparatus for simultaneously detecting defects in the planar direction and the height direction of a color filter substrate,
Conveying means for placing the color filter substrate and conveying it on the XY plane;
An imaging unit capable of synchronizing and axially moving a camera and a light source on the color filter substrate;
Image processing means for performing arithmetic processing on imaging data obtained by the imaging means;
A three-dimensional defect inspection apparatus comprising: means for performing pass / fail judgment of the color filter substrate based on the three-dimensional defect data obtained by the image processing means.

本発明の請求項2に係る発明は、前記カメラがエリアセンサカメラまたはラインセンサ
カメラであることを特徴とする請求項1に記載の立体欠陥検査装置である。
The invention according to claim 2 of the present invention is the three-dimensional defect inspection apparatus according to claim 1, wherein the camera is an area sensor camera or a line sensor camera.

本発明の請求項3に係る発明は、前記カメラが複数台具備されてなることを特徴とする請求項1または2に記載の立体欠陥検査装置である。   The invention according to claim 3 of the present invention is the three-dimensional defect inspection apparatus according to claim 1 or 2, wherein a plurality of the cameras are provided.

本発明の請求項4に係る発明は、請求項1〜3のいずれかに記載の立体欠陥検査装置を用いて、前記前記カラーフィルタ基板の欠陥検査の対象領域を、2箇所の異なるカメラ位置から撮像し、得られた画像データから高さ方向の立体欠陥データを演算することを特徴とする立体欠陥検査方法である。   The invention according to claim 4 of the present invention uses the three-dimensional defect inspection apparatus according to any one of claims 1 to 3 to determine a target region for defect inspection of the color filter substrate from two different camera positions. This is a three-dimensional defect inspection method characterized in that three-dimensional defect data in the height direction is calculated from image data obtained by imaging.

本発明の立体欠陥検査装置を用いた検査の自動化により、平面の面積サイズ判定だけでなく、同時に高さ方向の欠陥判定を行うことができ、カラーフィルタ基板の検査処理速度が向上する。また、不良の傾向解析が自動化・高速化されるため、不良原因の早期解析により製造工程へのフィードバックが迅速に行えるようになる By automating the inspection using the three-dimensional defect inspection apparatus of the present invention, not only the planar area size determination but also the defect determination in the height direction can be performed simultaneously, and the inspection processing speed of the color filter substrate is improved. In addition, failure trend analysis is automated and speeded up so that early analysis of the cause of failure enables quick feedback to the manufacturing process.

本発明の検査装置の一実施例の概略図(平面図、側面図)。BRIEF DESCRIPTION OF THE DRAWINGS Schematic (top view, side view) of one Example of the inspection apparatus of this invention. 本発明の立体欠陥検出判定フロー。Fig. 3 is a flow diagram for determining and detecting a three-dimensional defect according to the present invention. 本発明の高さ方向の情報取得方法の概略図。The schematic of the information acquisition method of the height direction of the present invention. 本発明のステレオ視による高さ方向の情報算出の模式図。The schematic diagram of the information calculation of the height direction by the stereo vision of this invention. カラーフィルタ基板の構造を示す一実施例の概略断面図。1 is a schematic cross-sectional view of an example showing the structure of a color filter substrate. 従来の検査装置の一実施例の側面概略図。The side schematic diagram of one example of the conventional inspection device.

本発明の欠陥検査方法の判定の形態を、以下に図面を用いて説明する。   The form of determination of the defect inspection method of the present invention will be described below with reference to the drawings.

図1は本発明の検査装置の一実施例の概略図を示す。図1(a)は平面図であり、図1(b)は側面図を示す。図2は本発明の立体欠陥検出判定フローを示す。図3は本発明の高さ方向の情報取得方法の概略図を示す。図3(a)は検査対象となるPに対して、カメラがA点及びB点の異なる2箇所に位置する時の、それぞれの撮像A´及びB´をX軸、Y軸、Z軸の3次元に示した図である。図3(b)はX軸、Z軸の2次元に示した図である。図4は本発明のステレオ視による高さ方向の情報を算出するための模式図である。図5はカラーフィルタ基板の構造を示す一実施例の概略断面図である。図6は従来の検査装置の一実施例の側面概略図を示す。   FIG. 1 shows a schematic view of an embodiment of the inspection apparatus of the present invention. Fig.1 (a) is a top view, FIG.1 (b) shows a side view. FIG. 2 shows a three-dimensional defect detection determination flow of the present invention. FIG. 3 shows a schematic diagram of the information acquisition method in the height direction of the present invention. FIG. 3A shows the images A ′ and B ′ of the X axis, the Y axis, and the Z axis when the camera is located at two different points A and B with respect to P to be inspected. It is the figure shown in three dimensions. FIG. 3B is a diagram showing two dimensions of the X axis and the Z axis. FIG. 4 is a schematic diagram for calculating information in the height direction by stereo vision according to the present invention. FIG. 5 is a schematic sectional view of an embodiment showing the structure of the color filter substrate. FIG. 6 shows a schematic side view of an embodiment of a conventional inspection apparatus.

一般に従来のカラーフィルタ基板(CF基板)10の構造は、図5に示すように、ガラス基板11上に赤色画素12、緑色画素13、青色画素14およびブラックマトリクス(BM)15が形成され、その上に透明電極層(ITO層)16が積層され、さらにスペーサー17が設けられた構造からなっている。   In general, the structure of a conventional color filter substrate (CF substrate) 10 includes a red pixel 12, a green pixel 13, a blue pixel 14, and a black matrix (BM) 15 formed on a glass substrate 11, as shown in FIG. A transparent electrode layer (ITO layer) 16 is laminated thereon, and a spacer 17 is further provided.

本発明の立体欠陥検査装置20は、図1(b)の側面図に示すように、CF基板10が搬送ステージ3に載置され、その上部に設置された同期かつ軸移動可能な光源2とカメラ1により、前記CF基板10の検査対象領域の立体欠陥を検出する装置である。図1(a)の平面図で示すように、上記の同期かつ軸移動可能な光源2とカメラ1は、画素の横列30(第一列R)、画素の縦列40(第一列L)の位置からスタートして、画素(L,R)から順次画素(L,R)へとT方向に移動して、画素の横列Rの検査対象領域を検査する。検査が終了すると、次に、S方向に移動して画素の横列Rの検査を前記横列Rの検査と同様に行う。この動作を繰り返すことで前記CF基板10の全面を検査する。なお、上記の光源2とカメラ1は1台に限定するものではないが、検査処理時間をより短縮するに複数台具備されることがより好ましい。また、さらに検査処理時間をより短縮するに、カメラ1はエリアセンサカメラまたはラインセンサカメラが好ましい。 As shown in the side view of FIG. 1B, the three-dimensional defect inspection apparatus 20 according to the present invention includes a light source 2 that can be moved in a synchronous and axial manner, with a CF substrate 10 placed on a transfer stage 3, and an upper part thereof. This is a device for detecting a three-dimensional defect in the inspection target area of the CF substrate 10 by the camera 1. As shown in the plan view of FIG. 1 (a), the above-mentioned light source 2 and the camera 1 that can move axially and synchronously have a pixel row 30 (first row R 1 ) and a pixel column 40 (first row L 1). ), The pixel (L 1 , R 1 ) is sequentially moved from the pixel (L 1 , R 1 ) to the pixel (L n , R 1 ) in the T direction, and the inspection target region of the pixel row R 1 is inspected. When the inspection is finished, the pixel is moved in the S direction and the pixel row R 2 is inspected in the same manner as the inspection of the row R 1 . By repeating this operation, the entire surface of the CF substrate 10 is inspected. The light source 2 and the camera 1 are not limited to one, but it is more preferable that a plurality of the light source 2 and the camera 1 are provided in order to further reduce the inspection processing time. In order to further reduce the inspection processing time, the camera 1 is preferably an area sensor camera or a line sensor camera.

図2に示す発明の立体欠陥検出判定フローにより、本発明の検査方法のより具体的な説明とする。   A more detailed description of the inspection method of the present invention will be given by the three-dimensional defect detection determination flow of the invention shown in FIG.

本発明の立体欠陥検査方法は、前記CF基板10の検査対象領域Pを異なる2つのポジション(図3の位置A、位置B)から、一台の同じカメラ1または別々のカメラ1にて撮像するステレオ視法を用いることを特徴としている。この場合、例えば位置A(1ポジション目)の撮像データから得られ画像を基本画像としてメインに使用し、画素の横列Rの撮像データを基準にしてRとの周期的なパターンの比較を行い、その双方が異なる場合に欠陥と判定し、一定領域内の欠陥をまとめて面積サイスの欠陥の判定とする。 In the three-dimensional defect inspection method of the present invention, the inspection target area P of the CF substrate 10 is imaged from two different positions (position A and position B in FIG. 3) with one same camera 1 or different cameras 1. It is characterized by using stereo vision. In this case, for example, an image obtained from imaging data at position A (first position) is mainly used as a basic image, and a periodic pattern comparison with R 2 is performed on the basis of imaging data of a row of pixels R 1. If both are different, it is determined as a defect, and defects in a certain region are collectively determined as a defect of area size.

一方、高さ方向の欠陥については、上記の面積サイズの欠陥判定で、欠陥と判定された画素に対して、位置B(2ポジション目)の撮像データから得られる画像を参照画像として、位置Aと位置Bの撮像データから視差を求めて高さ情報を算出して高さの欠陥とし、最後に前記面積ザイスの欠陥と高さの欠陥とを結合させて欠陥の検出を終了する。   On the other hand, for a defect in the height direction, an image obtained from imaging data at position B (second position) is used as a reference image for a pixel determined as a defect in the defect determination of the area size described above. Then, the parallax is obtained from the imaging data at the position B, height information is calculated to obtain a height defect, and finally, the defect of the area size and the defect of the height are combined to finish the detection of the defect.

上記の位置Aと位置Bの撮像データから視差を求めて高さ情報を算出する方法につい低下に説明する。図4の模式図から、△PA´B´と△PABは相似関係であることから、以下の式(1)が成り立つ。
d:(d−Xa+Xb)=Zp:(Zp−f) 式(1)
従って、点Pでの高さ情報であるZ座標値Zpは以下の式(2)より得られる。
Zp=df/(Xa−Xb) 式(2)
なお、式(1)および式(2)中で、dはカメラ間距離(位置Aと位置Bとの間隔)、fはカメラの焦点距離、Xaは位置AのX座標値、Xbは位置BのX座標値、Zpは位置PのZ座標値を表す。
A method of calculating the height information by obtaining the parallax from the imaging data at the positions A and B will be described below. From the schematic diagram of FIG. 4, since ΔPA′B ′ and ΔPAB are similar, the following equation (1) holds.
d: (d−Xa + Xb) = Zp: (Zp−f) Formula (1)
Therefore, the Z coordinate value Zp, which is the height information at the point P, is obtained from the following equation (2).
Zp = df / (Xa−Xb) Formula (2)
In Expressions (1) and (2), d is the inter-camera distance (interval between position A and position B), f is the focal length of the camera, Xa is the X coordinate value of position A, and Xb is position B. X coordinate value, Zp represents the Z coordinate value of the position P.

上記のように本発明は、検査対象領域の同位置を異なる2つのカメラ位置(位置A、位置B)から撮像することを特徴とする。この方法により一方の位置(位置A)から得られた基本画像と、他方の位置(位置B)から得られた参照画像を結合することで、面積サイズの欠陥のみならず高さ方法の欠陥を同時に検出することができる。すなわち、位置Aによる基本画像を用いて、画素の横列Rの撮像データを基準にしてRとの周期的なパターンの比較を行うことで欠陥を判定し、同様にしてR、R、・・・Rと一定領域内の欠陥をまとめて面積ザイスの欠陥の検出を行い、また、同時に、位置Bの画像を参照画像として、位置Aと位置Bの撮像データから視差を求めて高さ情報を算出して高さの欠陥を検出し、一台の自動欠陥検査装置によりCF基板全体の欠陥を立体的に検出することができる。 As described above, the present invention is characterized in that the same position of the inspection target region is imaged from two different camera positions (position A and position B). By combining the basic image obtained from one position (position A) and the reference image obtained from the other position (position B) by this method, not only the area size defect but also the height method defect can be obtained. It can be detected at the same time. That is, using the basic image at the position A, the defect is determined by comparing the periodic pattern with R 2 on the basis of the imaging data of the pixel row R 1 , and R 3 and R 4 are similarly detected. , ... performs detection of defects in areas Zeiss collectively defects constant region and R n, At the same time, as a reference image the image at the position B, seeking parallax from the imaging data of the position a and the position B The height information is calculated to detect the height defect, and the defect of the entire CF substrate can be detected three-dimensionally by one automatic defect inspection apparatus.

CF基板の検査において、本発明の立体欠陥検査装置を用いることにより、平面の面積サイズ判定だけでなく、同時に高さ方向の欠陥判定を行うことができ、CF基板の検査処理速度が向上する。また、不良の傾向解析が自動化・高速化されるため、不良原因の早期解析により製造工程へのフィードバックが迅速に行えるようになる   In the inspection of the CF substrate, by using the three-dimensional defect inspection apparatus of the present invention, not only the planar area size determination but also the defect determination in the height direction can be performed at the same time, and the inspection processing speed of the CF substrate is improved. In addition, failure trend analysis is automated and speeded up so that early analysis of the cause of failure enables quick feedback to the manufacturing process.

1 カメラ
2 光源
3 搬送ステージ
10 CF基板
11 ガラス基板
12 赤色画素
13 緑色画素
14 青色画素
15 ブラックマトリクス(BM)
16 ITO層
17 スペーサー
20 欠陥検査装置
21 位置Aのカメラ光軸
22 位置Bのカメラ光軸
23 視差
30 画素の横列(R,R・・・R
40 画素の縦列(L,L・・・L
A カメラの1ポジション(位置A)
B カメラの2ポジション(位置B)
A´ カメラ位置Aでの撮像位置
B´ カメラ位置Bでの撮像位置
P CF基板の検査対象領域
S スキャン方向
T カメラ・光源の可動方向
M CF基板の移動方向
d カメラ間距離(位置Aと位置Bとの間隔)
f カメラの焦点距離
1 Camera 2 Light Source 3 Transport Stage 10 CF Substrate 11 Glass Substrate 12 Red Pixel 13 Green Pixel 14 Blue Pixel 15 Black Matrix (BM)
16 ITO layer 17 Spacer 20 Defect inspection device 21 Camera optical axis at position A 22 Camera optical axis at position B 23 Parallax 30 Row of pixels (R 1 , R 2 ... R n )
40 pixel columns (L 1 , L 2 ... L n )
A 1 position of camera (position A)
B 2 positions of camera (position B)
A ′ Image pickup position at camera position A B ′ Image pickup position at camera position B P CF substrate inspection area S Scan direction T Camera / light source movable direction M CF substrate movement direction d Inter-camera distance (position A and position (B)
f Camera focal length

Claims (4)

カラーフィルタ基板の平面方向と高さ方向の欠陥を同時に検出する立体欠陥検査装置であって、
前記カラーフィルタ基板を載置しXY平面上を搬送させる搬送手段と、
前記カラーフィルタ基板上をカメラと光源が同期かつ軸移動可能な撮像手段と、
前記撮像手段により得られた撮像データに対して演算処理を行う画像処理手段と、
前記画像処理手段で得られた立体欠陥データにより前記カラーフィルタ基板の合否判定を行う手段を具備することを特徴とする立体欠陥検査装置。
A three-dimensional defect inspection apparatus for simultaneously detecting defects in a planar direction and a height direction of a color filter substrate,
Conveying means for placing the color filter substrate and conveying it on the XY plane;
An imaging unit capable of synchronizing and axially moving a camera and a light source on the color filter substrate;
Image processing means for performing arithmetic processing on imaging data obtained by the imaging means;
A three-dimensional defect inspection apparatus, comprising: means for performing pass / fail judgment of the color filter substrate based on the three-dimensional defect data obtained by the image processing means.
前記カメラがエリアセンサカメラまたはラインセンサカメラであることを特徴とする請求項1に記載の立体欠陥検査装置。   The three-dimensional defect inspection apparatus according to claim 1, wherein the camera is an area sensor camera or a line sensor camera. 前記カメラが複数台具備されてなることを特徴とする請求項1または2に記載の立体欠陥検査装置。   The three-dimensional defect inspection apparatus according to claim 1, wherein a plurality of the cameras are provided. 請求項1〜3のいずれかに記載の立体欠陥検査装置を用いて、前記前記カラーフィルタ基板の欠陥検査の対象領域を、2箇所の異なるカメラ位置から撮像し、得られた画像データから高さ方向の立体欠陥データを演算することを特徴とする立体欠陥検査方法。   Using the three-dimensional defect inspection apparatus according to any one of claims 1 to 3, a target region for defect inspection of the color filter substrate is imaged from two different camera positions, and height is obtained from the obtained image data. A three-dimensional defect inspection method characterized by calculating three-dimensional defect data in a direction.
JP2011095023A 2011-04-21 2011-04-21 Method and apparatus for inspecting three-dimensional defect Withdrawn JP2012225824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011095023A JP2012225824A (en) 2011-04-21 2011-04-21 Method and apparatus for inspecting three-dimensional defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011095023A JP2012225824A (en) 2011-04-21 2011-04-21 Method and apparatus for inspecting three-dimensional defect

Publications (1)

Publication Number Publication Date
JP2012225824A true JP2012225824A (en) 2012-11-15

Family

ID=47276148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011095023A Withdrawn JP2012225824A (en) 2011-04-21 2011-04-21 Method and apparatus for inspecting three-dimensional defect

Country Status (1)

Country Link
JP (1) JP2012225824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792793A (en) * 2015-04-28 2015-07-22 刘凯 Optical defect detecting method and system
CN113607081A (en) * 2021-07-28 2021-11-05 清华大学 Contact type welding surface defect three-dimensional measurement system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792793A (en) * 2015-04-28 2015-07-22 刘凯 Optical defect detecting method and system
CN113607081A (en) * 2021-07-28 2021-11-05 清华大学 Contact type welding surface defect three-dimensional measurement system and method

Similar Documents

Publication Publication Date Title
TWI444613B (en) Photograph inspecting device and photograph inspecting method
TW201523760A (en) Workpiece processing apparatus and workpiece transfer system
TWI435071B (en) Defect pixel address detection method and detection device
US20110064297A1 (en) Monitoring apparatus, monitoring method, inspecting apparatus and inspecting method
TW202043759A (en) Three-dimensional phase shift defect detection method and system for detecting and marking on defects of surface bumps and depressions for a to-be-tested three-dimensional curve surface
CN106248684B (en) Optical device and method for detecting internal defects of transparent substrate
KR20110078958A (en) Apparatus for inspecting outward aspect of lcd panel
TWI490481B (en) On - line Inspection Method for Panel 3D Defects
JP2006276454A (en) Image correcting method and pattern defect inspecting method using same
CN110286132A (en) Optical detection method and device for display panel
KR101261016B1 (en) method and apparatus for automatic optical inspection of flat panel substrate
TWI585395B (en) Panel inspection apparatus and method
JP2012225824A (en) Method and apparatus for inspecting three-dimensional defect
JP6031751B2 (en) Glass substrate inspection apparatus and glass substrate manufacturing method
JP2012088139A (en) Device and method for inspecting defect of coating film
TWI477768B (en) Method and apparatus for automatic optical inspection of flat panel substrate
CN115713491A (en) Liquid crystal display panel defect detection method and device and electronic equipment
CN116997927A (en) Curved substrate bubble detection method and detection system
TWM477571U (en) Image inspection device
JP5407442B2 (en) Color filter dirt defect selection method
JP5559508B2 (en) Appearance inspection system and appearance inspection method
US20130278925A1 (en) Detecting device and method for substrate
KR102584696B1 (en) Method for optical inspection of display panel
TW201929116A (en) Workpiece processing apparatus and workpiece transfer system
JP4302028B2 (en) Inspection apparatus and method for transparent electrode film substrate, and program

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701