JP2012225183A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2012225183A
JP2012225183A JP2011091079A JP2011091079A JP2012225183A JP 2012225183 A JP2012225183 A JP 2012225183A JP 2011091079 A JP2011091079 A JP 2011091079A JP 2011091079 A JP2011091079 A JP 2011091079A JP 2012225183 A JP2012225183 A JP 2012225183A
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
intake
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011091079A
Other languages
English (en)
Other versions
JP5505655B2 (ja
Inventor
Masaru Tanaka
大 田中
Kazuyoshi Nakane
一芳 中根
Kimihiko Sato
公彦 佐藤
Kyohei Yamaguchi
恭平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011091079A priority Critical patent/JP5505655B2/ja
Publication of JP2012225183A publication Critical patent/JP2012225183A/ja
Application granted granted Critical
Publication of JP5505655B2 publication Critical patent/JP5505655B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】エンジンの運転状態に応じて必要量の燃料を燃焼室内に確実に導入することのできる内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジンの運転状態を検出し、吸気行程噴射モード時には、付着率算出マップに基づき付着率Kstickを算出する。更に気化率算出マップに基づき気化率Kevapoを算出し、付着率Kstickと気化率Kevapoを考慮してnサイクルに燃焼室内に導入される燃料量Qcyl_nがエンジンの運転状態に応じて最適となるように燃料噴射量Qnを算出する。また、排気行程噴射モード時には、水温センサの検出情報であるエンジンの冷却水温度に基づき、付着率Kstickと気化率Kevapoとを算出し、吸気行程噴射モードと同様にnサイクルに燃焼室内に導入される燃料量Qcyl_nがエンジンの運転状態に応じて最適となるように燃料噴射量Qnを算出する。
【選択図】図2

Description

本発明は、内燃機関の燃料噴射制御装置に係り、特に吸気弁の開弁中に燃料を噴射する内燃機関の燃料噴射制御技術に関する。
吸気ポートに配置した燃料噴射弁から吸気弁の開口部を狙って、吸気行程中に燃料が燃焼室内に直入するように燃料噴射を行うエンジンでは、吸気バルブ中心を狙って排気行程中に燃料噴射を行う一般的なポートフューエルインジェクションエンジンと比べて、吸気ポート及び吸気弁への燃料の付着を大幅に低減でき、過給運転時のバルブオーバラップの拡大による出力向上、燃料の吹き抜けによる吹き抜けHCの低減、吸気冷却効果による充填効率向上及びノッキング抑制による出力向上や、筒内空気流れの乱れ強化による燃焼改善等をすることができる。
一方、冷機時には燃料の気化が悪く燃料の気化時間が必要であったり、エンジンの回転速度が高く、負荷も高い場合には吸気行程のみの期間では必要な燃料量を全て噴射できなかったりするので、吸気行程中に燃料を噴射するエンジンであっても、排気行程中での燃料噴射が必要とされる場合がある。
このようなエンジンに於いても、排出ガス中の有害成分排出量及びエンジンの出力を正確に制御するために燃料噴射量を正確に制御する必要がある。
そして、燃料噴射量の制御には、エンジンの運転状態に応じて燃料噴射弁から噴射した燃料の吸気ポートや吸気バルブ等の壁面への付着率、吸気ポートや吸気バルブ等の壁面に付着した燃料の残留率を算出し、当該算出結果に基づいて燃料噴射量を算出する技術が知られている(特許文献1,2)。
特開平09−303173号公報 特開平01−300031号公報
しかしながら、上記特許文献1及び2の技術では、燃料の吸気ポートや吸気バルブ等の壁面への付着率の算出に燃料噴射時期を考慮しておらず、特に上記のように吸気行程及び排気行程の双方で燃料噴射を行なうエンジンに適用しようとしても、吸気行程での噴射と排気行程での噴射とで吸気ポートや吸気バルブ等の壁面への燃料の付着率が大幅に変化するため、燃焼室内へ導入される正確な燃料量を算出することができなくなり、ひいては燃料噴射弁より噴射するべき燃料噴射量を正確に算出することができず、排出ガス中の有害成分排出量及びエンジンの出力を正確に制御することができなくなり好ましいことではない。
本発明は、この様な問題を解決するためになされたもので、その目的とするところは、エンジンの運転状態に応じて必要量の燃料を燃焼室内に確実に導入することのできる内燃機関の燃料噴射制御装置を提供することにある。
上記の目的を達成するために、請求項1の内燃機関の燃料噴射制御装置では、吸気通路に設けられた燃料噴射手段から吸気流れ下流の吸気弁方向に燃料を噴射する吸気通路噴射のエンジンであって、前記エンジンの運転状態を検出する運転状態検出手段と、前記運転状態に基づいて前記燃料噴射手段を制御する制御手段と、を備え、前記制御手段は、前記運転状態検出手段の検出結果に基づいて燃料噴射時期を算出し、更に少なくとも前記燃料噴射時期に基づいて燃料噴射量のうち、前記吸気通路及び前記吸気弁のいずれか一方、或いは両方に付着して燃焼室内に直接導入されない割合である燃料の付着率を算出し、前記付着率を考慮して前記燃料噴射手段の燃料噴射量を算出することを特徴とする。
また、請求項2の内燃機関の燃料噴射制御装置では、請求項1において、前記燃料噴射手段より噴射された燃料が付着する燃料付着部の温度を推定する温度推定手段を備え、前記エンジンは、前記吸気弁の開弁中に前記燃料噴射手段から燃焼室内に向けて燃料を噴射する吸気行程噴射モードと、吸気行程の前工程である排気行程、前記吸気行程の2行程前である膨張行程、及び前記吸気行程の3行程前である圧縮行程を含む前記吸気弁の閉弁中に前記燃料噴射手段から前記吸気弁に向けて燃料を噴射する排気行程噴射モードとを有し、前記制御手段は、前記運転状態検出手段の検出結果に基づいて前記吸気行程噴射モードと前記排気行程噴射モードとを切り替え、前記吸気行程噴射モード時には、前記燃料噴射時期に基づいて前記付着率を算出し、前記排気行程噴射モード時には、前記燃料付着部温度に基づいて前記付着率を算出することを特徴とする。
また、請求項3の内燃機関の燃料噴射制御装置では、請求項2において、前記制御手段は、前記運転状態検出手段の検出結果に基づいてエンジン回転速度を算出し、前記吸気行程噴射モード時の前記付着率は、燃料噴射時期とエンジン回転速度からなるマップより算出されることを特徴とする。
また、請求項4の内燃機関の燃料噴射制御装置では、請求項2或いは3において、前記制御手段は、前記吸気行程噴射モード時には、前記燃料噴射時期と前記付着部温度とに基づいて前記燃料付着部に付着した燃料のうち、前記吸気弁の閉弁までに気化して、前記燃焼室内に導入される割合である気化率を算出し、前記気化率を考慮して前記燃焼室内に導入される燃料量が前記燃焼室に導入すべき燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出し、前記排気行程噴射モード時には、前記付着部温度に基づいて前記燃料付着部に付着した燃料の気化率を算出し、前記気化率を考慮して前記燃焼室内に導入される燃料量が前記燃焼室内に導入すべき燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出することを特徴とする。
また、請求項5の内燃機関の燃料噴射制御装置では、請求項2乃至4のいずれかにおいて、前記温度推定手段は、前記エンジンの冷却水温度を検出する冷却水温度検出手段であって、前記冷却水温度に基づいて前記燃料付着部温度を推定することを特徴とする。
また、請求項6の内燃機関の燃料噴射制御装置では、請求項1乃至5のいずれかにおいて、前記制御手段は、前記運転状態に基づいて前記燃焼室内に導入されるべき必要燃料量を算出し、前記燃料噴射量のうち、吸気行程中に前記燃焼室内に導入される燃料量が前記必要燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出することを特徴とする。
請求項1の発明によれば、運転状態検出手段の検出結果に基づいて燃料噴射時期を算出し、更に燃料噴射時期に基づいて吸気通路及び吸気弁に付着する燃料の付着率を算出し、付着率を考慮して燃料噴射手段の燃料噴射量を算出しており、特に燃料噴射時期に応じて変化する付着率を考慮することで、燃焼室内に導入される燃料量がエンジンの運転状態に適した燃料量となるように燃料噴射手段から噴射する燃料噴射量を正確に決定することができるので、エンジンの運転状態に応じた必要量の燃料を燃焼室内に確実に導入することができる。
また、請求項2の発明によれば、吸気行程噴射モード時には、燃料噴射時期に基づいて付着率を算出し、排気行程噴射モード時には、燃料付着部温度に基づいて付着率を算出しており、吸気行程噴射モード及び排気行程噴射モードのそれぞれの噴射モードにおいて、最適な付着率を考慮して燃料噴射手段の燃料噴射量を算出しており、燃焼室内に導入される燃料量がエンジンの運転状態に適した燃料量となるように燃料噴射手段から噴射する燃料噴射量を正確に決定することができるので、エンジンの運転状態に応じた必要量の燃料を更に燃焼室内に確実に導入することができる。
また、請求項3の発明によれば、吸気行程噴射モード時の付着率を燃料噴射時期とエンジン回転速度からなるマップより算出するようにしており、容易に付着率を算出することができる。
また、請求項4の発明によれば、吸気行程噴射モード時では、燃料噴射時期と付着部温度とに基づいて燃料付着部に付着した燃料のうち、吸気弁の閉弁までに気化して燃焼室内に導入される割合である気化率を算出し、排気行程噴射モード時では付着部温度に基づいて燃料付着部に付着した燃料のうち、吸気弁の閉弁までに気化して燃焼室内に導入される割合である気化率を算出し、それぞれでの気化率を考慮して燃料噴射手段の燃料噴射量を算出しており、付着率に加えて付着した燃料の気化率を考慮しているので、燃料噴射手段から噴射する燃料噴射量をより正確に決定することができ、エンジンの運転状態に応じた必要量の燃料を燃焼室内に更に確実に導入することができる。
また、請求項5の発明によれば、冷却水温度に基づいて燃料付着部温度を推定するようにしているので、特別に燃料付着部の温度を検出する検出手段を用いることなく安価に燃料付着部の温度を認識することができる。
また、請求項6の発明によれば、吸気行程中に燃焼室内に導入される燃料量がエンジンの運転状態に適した燃料量と等しくなるように燃料噴射手段から噴射する燃料噴射量を正確に決定することができるので、エンジンの運転状態に応じた必要量の燃料を燃焼室内に確実に導入することができる。
本発明に係る内燃機関の燃料噴射制御装置が適用されたエンジンの概略構成図である。 本発明に係る燃料噴射制御の燃料噴射量の算出手順を示すフローチャートである。 本発明に係る燃料噴射制御の吸気行程噴射モードでの付着率算出マップである。 本発明に係る燃料噴射制御の吸気行程噴射モードでの気化率算出マップである。
以下、本発明の実施の形態を図面に基づき説明する。
図1は、内燃機関の燃料噴射制御装置が適用された吸気ポート燃料噴射エンジン(以下、エンジン1という)の概略構成図である。
図1に示すように、エンジン1は、エンジン1の運転状態に応じて、吸気マニホールド(吸気通路)21、またはシリンダヘッド3に配設された燃料噴射弁22から吸気バルブ(吸気弁)14が開弁している吸気行程中に燃焼室10内へ燃料を噴射する吸気行程噴射モードと、吸気バルブ14が閉弁している排気行程(前行程)、膨張行程(2行程前)、または圧縮行程(3行程前)中に吸気ポート(吸気通路)13内へ燃料を噴射する排気行程噴射モードとを備えた4サイクル直列4気筒型ガソリンエンジンである。ここでは、噴射した燃料が吸気バルブ14近傍に到達した際に、吸気バルブ14が開弁している場合を吸気行程噴射と定義し、吸気バルブ14が開弁前である場合を排気行程噴射と定義する。また、燃料噴射弁22への駆動指令から燃料が吸気バルブ14近傍に到達するまでには、燃料噴射弁22の図示しない針弁の開弁遅れ、燃料噴射弁22から吸気バルブ14までの燃料の輸送遅れなどの時間遅れが存在するので、吸気行程噴射における燃料噴射弁22への駆動指令が排気行程もしくはそれ以前に行われる場合もある。
図1にはエンジン1の1つの気筒についての縦断面が示されている。なお、他の気筒についても同様の構成をしているものとして図示及び説明を省略する。
図1に示すように、エンジン1はシリンダブロック2にシリンダヘッド3が載置されて構成されている。
シリンダブロック2には、エンジン1を冷却する冷却水の温度を検出する水温センサ(運転状態検出手段、冷却水温度検出手段)4が設けられている。また、シリンダブロック2に形成されているシリンダ5内には上下摺動可能にピストン6が設けられている。当該ピストン6はコンロッド7を介してクランクシャフト8に連結されている。また、シリンダブロック2には、当該エンジン1の回転速度及びクランクシャフト8の位相を検出するクランク角センサ(運転状態検出手段)9が設けられている。また、シリンダヘッド3とシリンダ5とピストン6で燃焼室10が形成されている。
シリンダヘッド3には、燃焼室10に臨むようにして点火プラグ11が設けられている。また、シリンダヘッド3には、燃焼室10からシリンダヘッド3の一側面に向かって吸気ポート12が形成されており、燃焼室10からシリンダヘッド3の他側面に向かって排気ポート13が形成されている。そして、シリンダヘッド3には、燃焼室10と吸気ポート12との連通及び遮断を行う吸気バルブ14と、燃焼室10と排気ポート13との連通及び遮断を行う排気バルブ15がそれぞれ設けられている。また、シリンダヘッド3上部には吸気バルブ14及び排気バルブ15を駆動するカム16、17を有したカムシャフト18、19がそれぞれ設けられている。そして、シリンダヘッド3の上部には、カムシャフト18の位相を検出するカム角センサ(運転状態検出手段)20が設けられている。また、シリンダヘッド3の一側面には吸気ポート12と連通するように吸気マニホールド21が接続されている。
吸気マニホールド21には燃焼室10内に向けて燃料を直接噴射する燃料噴射弁22が設けられている。なお、燃料噴射弁22はシリンダヘッド3に設けても良い。燃料噴射弁22は、燃料噴射口が燃焼室10に向けて配置されており、噴射した燃料が燃焼室10内に直接届くように設定されている。また、吸気マニホールド21の吸気上流端には図示しない吸気管、吸入空気流量を調節する図示しない電子制御スロットルバルブが設けられている。そして、電子制御スロットルバルブには、スロットルバルブの開き度合を検出する図示しないスロットルポジションセンサ(運転状態検出手段)が備えられている。
また、運転席に設けられた図示しないアクセルペダルには、運転者のアクセル踏み込み度合いを検出する図示しないアクセルポジションセンサ(運転状態検出手段)が備えられている。
電子制御スロットルバルブの上流側の吸気管には吸入空気流量を検出する図示しないエアフローセンサ(運転状態検出手段)が設けられているとともに、吸気管の吸気上流端には図示しないエアクリーナが設けられている。
一方、シリンダヘッド3の吸気マニホールド21が接続された側面とは反対側の側面には、排気ポート13と連通するように排気マニホールド23が接続されている。排気マニホールド23の排気下流端には、図示しない排気管を介して三元触媒等の排気浄化触媒が備えられている。
そして、上記水温センサ4、クランク角センサ9、カム角センサ20、吸気圧センサ、スロットルポジションセンサ、アクセルポジションセンサ、エアフローセンサ及び車両の車速を検出する図示しない車速センサ等の各種センサ類は、車両に搭載されている電子コントロールユニット(ECU)(制御手段)30の入力側に電気的に接続されており、これらセンサ類からの検出情報がECU30に入力される。
一方、ECU30の出力側には、上記点火プラグ11、燃料噴射弁22、電子制御スロットルバルブ等の各種装置が電気的に接続されており、これら各種装置には各種センサ類からの検出情報に基づき演算された点火時期、燃料噴射量、燃料噴射時期、スロットル開度等がそれぞれ出力される。
次にECU30での燃料噴射量の算出方法について説明する。
図2は、本発明に係る燃料噴射制御の燃料噴射量の算出手順を示すフローチャートである。図3は、吸気行程噴射モードでの付着率算出マップであり、図4は、吸気行程噴射モードでの気化率算出マップである。なお、図中白抜き矢印は、付着率算出マップでは付着率が大、或いは気化率算出マップでは気化率が小となる方向を示す。また、図中斜めハッチングされた長方形は、あるエンジン回転速度での燃料噴射時期の一例を示しており、SOIは、噴射開始時期(Start of Injection)を、EOIは、噴射終了時期(End of Injection)をそれぞれ示す。
図2に示すルーチンはエンジン運転時に繰り返し行なわれる。
始めにステップS10では、エンジン1の運転状態を検出する。例えば、水温センサ4の検出情報である冷却水温度や、クランク角センサ9の検出情報であるエンジン回転速度、吸気圧センサやエアフローセンサ、またはアクセルポジションセンサ、スロットルポジションセンサの検出情報であるエンジン負荷に基づき、エンジン1の運転状態を検出する。そして、ステップS12に進む。
ステップS20では、エンジン1の運転状態が吸気行程噴射適用範囲内であるか、否かを判別する。判別結果が真(Yes)でエンジン1の運転状態が吸気行程噴射適用範囲内であれば、ステップS21に進み、判別結果が偽(No)でエンジン1の運転状態が吸気行程噴射適用範囲内になければ、ステップS24に進む。なお、ここでの吸気行程噴射適用範囲は、例えばエンジン1が冷機状態でないこと(冷却水温度が所定値以上)や、エンジン1の回転速度が低いこと(エンジン回転速度が所定値以下)や、エンジン1の負荷が低くないこと(エンジン負荷が所定値以上)などで示される範囲である。
ステップS21では、燃料噴射弁22の燃料噴射モードを吸気バルブ14が開弁している吸気行程中に燃焼室10内へ燃料が通過するように燃料を噴射する吸気行程噴射モードにする。そして、ステップS22に進む。
ステップS22では、図3の付着率算出マップより、吸気行程噴射モードでの燃料噴射弁22より噴射した燃料が吸気ポート12或いは吸気バルブ14等の壁面に付着する割合である付着率Kstickを算出する。例えば、図3の斜めハッチングされた長方形で示すように、エンジン回転速度において、噴射開始時期SOIより燃料噴射を開始し、噴射終了時期EOIで燃料噴射を終了する場合には、下記式(1)のように噴射時期ITの時間積分式で算出することができる。そして、ステップS23に進む。
Figure 2012225183
ステップS23では、図4の気化率算出マップより、吸気行程噴射モードでの燃料噴射弁22より噴射され、吸気ポート12或いは吸気バルブ14等の壁面に付着した燃料が吸気バルブ14開弁までに気化して燃焼室10内に導入される割合である気化率Kevapoを算出する。例えば、図4の斜めハッチングされた長方形で示すように、エンジン回転速度において、噴射開始時期SOIより燃料噴射を開始し、噴射終了時期EOIで燃料噴射を終了する場合には、下記式(2)のように噴射時期ITの時間積分式で算出することができる。そして、ステップS30に進む。
Figure 2012225183
一方、ステップS24では、燃料噴射弁22の燃料噴射モードを吸気バルブ14が閉弁している圧縮、膨張及び排気行程中に吸気ポート13内へ燃料を噴射する排気行程噴射モードにする。そして、ステップS25に進む。
ステップS25では、水温センサ4の検出情報であるエンジン1の冷却水温度に基づき、燃料が付着する吸気ポート12或いは吸気バルブ14等の壁面の温度を推定し、排気行程噴射モードでの燃料噴射弁22より噴射された燃料が吸気ポート12或いは吸気バルブ14等の壁面に付着する割合である付着率Kstickを算出する。なお、本ステップでは、付着率Kstickは壁面の温度から一義的に求められる。そして、ステップS26に進む。
ステップS26では、水温センサ4の検出情報であるエンジン1の冷却水温度に基づき、燃料が付着する吸気ポート12或いは吸気バルブ14等の壁面の温度を推定し、排気行程噴射モードでの燃料噴射弁22より噴射され、吸気ポート12或いは吸気バルブ14等の壁面に付着した燃料が吸気バルブ14の閉弁までに気化して燃焼室10内に導入される割合である気化率Kevapoを算出する。なお、本ステップでは、気化率Kevapoは壁面の温度から一義的に求められる。そして、ステップS30に進む。
ステップS30では、燃料噴射量Qnを算出する。詳しくは、nサイクルに燃焼室10内に導入される燃料量Qcyl_nは、nサイクル(現サイクル)に噴射する燃料量Qn、n−1サイクル(前サイクル)に噴射した燃料量Qn-1、上記ステップS22〜S26で求めた付着率Kstick及び気化率Kevapoに基づき、下記式(3)で表されるため、当該式(3)を変形した下記式(4)からnサイクルに燃焼室10内に導入される燃料量Qcyl_nが、燃焼室10内に導入されるべき必要燃料量(吸入空気量と目標燃費から算出)と等しくなるようにnサイクルの燃料噴射量Qnを算出する。そして、本ルーチンをリターンする。
Figure 2012225183
Figure 2012225183
このように本発明の内燃機関の燃料噴射制御装置では、吸気行程噴射モード時には、図3の付着率算出マップに基づき式(1)を用いて、噴射時期及びエンジン回転速度より付着率Kstickを算出する。更に図4の気化率算出マップに基づき式(2)を用いて、噴射時期及びエンジン回転速度より気化率Kevapoを算出し、付着率Kstickと気化率Kevapoを考慮してnサイクルに燃焼室10内に導入される燃料量Qcyl_nがエンジンの運転状態に応じて最適となるように燃料噴射量Qnを決定さする。また、排気行程噴射モード時には、水温センサ4の検出情報であるエンジン1の冷却水温度に基づき、付着率Kstickと気化率Kevapoとを算出し、吸気行程噴射モードと同様に燃料量Qcyl_nがエンジンの運転状態に応じて最適となるように燃料噴射量Qnが決定する。
吸気行程噴射モードでは、燃料噴射弁22から噴射した燃料の噴霧が吸気ポート13や吸気バルブ14に殆ど衝突せずに燃焼室10内に導入され、また噴射から吸気バルブ14の開弁までの時間も短いので、燃焼室10内に導入される燃料量はエンジン1の水温の影響が比較的少ない。一方で、吸気バルブ14の開弁中に燃料噴射を行うので、噴射時期に応じて吸気バルブ14の位置及び速度が変化し、噴射期間及び噴射時期の影響が大きくなる。これに対し、排気行程噴射モードでは、燃料噴射弁22から噴射した燃料の噴霧の殆どが吸気ポート13や吸気バルブ14に衝突し、また噴射から吸気バルブ14の開弁までの時間も長いので、エンジン1の水温の影響が比較的大きい。一方で、吸気バルブ14の閉弁中に燃料噴射を行うため、噴射時期に応じて吸気バルブ14の位置及び速度が変化することなく噴射時期の影響は小さい。
このような特性を鑑み、本実施形態では、上記のように吸気行程噴射モード及び排気行程噴射モードのそれぞれの噴射モードに分けて付着率Kstickと気化率Kevapoが設定され、これらの付着率Kstickと気化率Kevapoとを考慮して、nサイクルに燃焼室10内に導入される燃料量Qcyl_nがエンジンの運転状態に応じた必要量となるように燃料噴射弁から噴射する燃料噴射量Qnを正確に決定することができるので、エンジンの運転状態に応じた必要量の燃料を燃焼室内に確実に導入することができる。
また、吸気行程噴射モード時では、付着率Kstickと気化率Kevapoとを予め設定されたマップに基づき算出しているので、容易に付着率Kstickと気化率Kevapoとを算出することができる。
以上で本発明の実施形態の説明を終えるが、本発明の実施形態は上記実施形態に限定されるものではない。
上記実施形態では、吸気行程噴射モード時には、付着率Kstickと気化率Kevapoとをエンジン1の回転速度と燃料噴射時期に基づいて算出しているが、これに限定されるものではなく、エンジン1の回転速度と燃料噴射時期に加え、エンジン1の冷却水温度も考慮して算出するようにしても良い。この場合、更に精度良く付着率Kstickと気化率Kevapoとを算出することができるので、更に正確に燃料噴射弁22から噴射される燃料噴射量Qnを算出することができる。
また、水温センサ4の検出情報であるエンジン1の冷却水温度より、吸気ポート12或いは吸気バルブ14等の壁面の温度を推定して、付着率Kstickと気化率Kevapoとを算出するようにしているが、これに限定されるものではなく、吸気ポート12或いは吸気バルブ14等の壁面の温度をセンサで検出するようにしても良い。この場合、実際に燃料の付着する壁面の温度を検出しているので、更に精度良く付着率Kstickと気化率Kevapoとを算出することができ、更に正確に燃料噴射弁22から噴射する燃料噴射量Qnを算出することができる。
また、吸気行程噴射モードでは、付着率Kstickを0として、演算を簡素化してもよい。
1 エンジン
4 水温センサ(運転状態検出手段、冷却水温度検出手段)
5 シリンダ
9 クランク角センサ(運転状態検出手段)
10 燃焼室
12 吸気ポート(吸気通路)
14 吸気バルブ(吸気弁)
20 カム角センサ(運転状態検出手段)
21 吸気マニホールド(吸気通路)
22 燃料噴射弁(燃料噴射手段)
30 ECU(制御手段)

Claims (6)

  1. 吸気通路に設けられた燃料噴射手段から吸気流れ下流の吸気弁方向に燃料を噴射する吸気通路噴射のエンジンであって、
    前記エンジンの運転状態を検出する運転状態検出手段と、
    前記運転状態に基づいて前記燃料噴射手段を制御する制御手段と、を備え、
    前記制御手段は、前記運転状態検出手段の検出結果に基づいて燃料噴射時期を算出し、更に少なくとも前記燃料噴射時期に基づいて燃料噴射量のうち、前記吸気通路及び前記吸気弁のいずれか一方、或いは両方に付着して燃焼室内に直接導入されない割合である燃料の付着率を算出し、前記付着率を考慮して前記燃料噴射手段の燃料噴射量を算出することを特徴とする内燃機関の燃料噴射制御装置。
  2. 前記燃料噴射手段より噴射された燃料が付着する燃料付着部の温度を推定する温度推定手段を備え、
    前記エンジンは、前記吸気弁の開弁中に前記燃料噴射手段から燃焼室内に向けて燃料を噴射する吸気行程噴射モードと、吸気行程の前工程である排気行程、前記吸気行程の2行程前である膨張行程、及び前記吸気行程の3行程前である圧縮行程を含む前記吸気弁の閉弁中に前記燃料噴射手段から前記吸気弁に向けて燃料を噴射する排気行程噴射モードとを有し、
    前記制御手段は、前記運転状態検出手段の検出結果に基づいて前記吸気行程噴射モードと前記排気行程噴射モードとを切り替え、前記吸気行程噴射モード時には、前記燃料噴射時期に基づいて前記付着率を算出し、前記排気行程噴射モード時には、前記燃料付着部温度に基づいて前記付着率を算出することを特徴とする、請求項1に記載の内燃機関の燃料噴射制御装置。
  3. 前記制御手段は、前記運転状態検出手段の検出結果に基づいてエンジン回転速度を算出し、
    前記吸気行程噴射モード時の前記付着率は、燃料噴射時期とエンジン回転速度からなるマップより算出されることを特徴とする、請求項2に記載の内燃機関の燃料噴射制御装置。
  4. 前記制御手段は、前記吸気行程噴射モード時には、前記燃料噴射時期と前記付着部温度とに基づいて前記燃料付着部に付着した燃料のうち、前記吸気弁の閉弁までに気化して、前記燃焼室内に導入される割合である気化率を算出し、前記気化率を考慮して前記燃焼室内に導入される燃料量が前記燃焼室に導入すべき燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出し、前記排気行程噴射モード時には、前記付着部温度に基づいて前記燃料付着部に付着した燃料の気化率を算出し、前記気化率を考慮して前記燃焼室内に導入される燃料量が前記燃焼室内に導入すべき燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出することを特徴とする、請求項2或いは3に記載の内燃機関の燃料噴射制御装置。
  5. 前記温度推定手段は、前記エンジンの冷却水温度を検出する冷却水温度検出手段であって、前記冷却水温度に基づいて前記燃料付着部温度を推定することを特徴とする、請求項2乃至4のいずれかに記載の内燃機関の燃料噴射制御装置。
  6. 前記制御手段は、前記運転状態に基づいて前記燃焼室内に導入されるべき必要燃料量を算出し、前記燃料噴射量のうち、吸気行程中に前記燃焼室内に導入される燃料量が前記必要燃料量と等しくなるように前記燃料噴射手段の燃料噴射量を算出することを特徴とする、請求項1乃至5のいずれかに記載の内燃機関の燃料噴射制御装置。
JP2011091079A 2011-04-15 2011-04-15 内燃機関の燃料噴射制御装置 Active JP5505655B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091079A JP5505655B2 (ja) 2011-04-15 2011-04-15 内燃機関の燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091079A JP5505655B2 (ja) 2011-04-15 2011-04-15 内燃機関の燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2012225183A true JP2012225183A (ja) 2012-11-15
JP5505655B2 JP5505655B2 (ja) 2014-05-28

Family

ID=47275632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091079A Active JP5505655B2 (ja) 2011-04-15 2011-04-15 内燃機関の燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP5505655B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5780391B2 (ja) * 2011-06-23 2015-09-16 三菱自動車工業株式会社 内燃機関の燃料噴射制御装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030460A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 内燃機関の燃料噴射量決定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030460A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 内燃機関の燃料噴射量決定装置

Also Published As

Publication number Publication date
JP5505655B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
US7950369B2 (en) Internal combustion engine controlling apparatus
US20110023454A1 (en) Late post injection of fuel for particulate filter heating
EP1900929B1 (en) Engine control system
JP2012087708A (ja) 筒内噴射式ガソリン機関の制御装置
JP3767426B2 (ja) エンジンのシリンダ吸入空気量算出装置
JP5780391B2 (ja) 内燃機関の燃料噴射制御装置
JP2020026751A (ja) 内燃機関の制御装置
JP2009062863A (ja) 内燃機関の制御装置
JP2011144782A (ja) 可変動弁機構を備える内燃機関の制御装置
US20080147298A1 (en) Control system and control method for internal combustion engine
JP3847052B2 (ja) 内燃機関の燃料噴射制御装置
JP5505655B2 (ja) 内燃機関の燃料噴射制御装置
JP2007187057A (ja) 内燃機関
JP4348705B2 (ja) 内燃機関の燃料噴射制御装置
US20220003181A1 (en) Internal combustion engine control apparatus
JP2009103014A (ja) 内燃機関の制御装置
JP2012219741A (ja) 内燃機関の制御装置
JP2017186965A (ja) 内燃機関の制御装置
JP5402757B2 (ja) 内燃機関の制御装置
JP5303349B2 (ja) 内燃機関のegr制御装置
JP4962309B2 (ja) 内燃機関の制御装置
JP4269124B2 (ja) 内燃機関の燃料噴射制御装置
JP7272251B2 (ja) 内燃機関の駆動制御装置
JP5076983B2 (ja) エンジンの燃料噴射制御装置
JP4956473B2 (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R151 Written notification of patent or utility model registration

Ref document number: 5505655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350