JP2012224733A - Adhesive composition, production method of the same, cured material of the same, and electronic device using the same - Google Patents

Adhesive composition, production method of the same, cured material of the same, and electronic device using the same Download PDF

Info

Publication number
JP2012224733A
JP2012224733A JP2011093039A JP2011093039A JP2012224733A JP 2012224733 A JP2012224733 A JP 2012224733A JP 2011093039 A JP2011093039 A JP 2011093039A JP 2011093039 A JP2011093039 A JP 2011093039A JP 2012224733 A JP2012224733 A JP 2012224733A
Authority
JP
Japan
Prior art keywords
adhesive composition
epoxy resin
weight
meth
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011093039A
Other languages
Japanese (ja)
Inventor
Yasushi Mizuta
康司 水田
Katsura Nagata
桂 永田
Tatsuji Murata
達司 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2011093039A priority Critical patent/JP2012224733A/en
Publication of JP2012224733A publication Critical patent/JP2012224733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive composition capable of being stably coated even in a small but desired amount, and having high reliability.SOLUTION: The adhesive composition includes: a core-shell powdery polymer which is constituted of 20 to 80 wt.% of a core including (A) an epoxy resin having a melting point of ≤25°C, and a (meth)acrylate-based polymer having a weight-average particle size of 0.1 to 3.0 μm and a glass transition temperature of ≤-30°C, and 80 to 20 wt.% of a shell including a (meth)acrylate-based polymer having a glass transition temperature of ≥70°C, and which has a softening point of ≥70°C; and (C) a latent curing agent for the epoxy resin, wherein the content of the (B) component is in the range of 10 to 100 pts.wt to 100 pts.wt of the (A) component; and the composition has viscosity at 25°C and 2.5 rpm as measured by an E-type viscometer of 0.1 to 500 Pa s; and the composition generates no bubbles of ≥1 mm in diameter after being allowed to stand for 2 min at 25°C in a vacuum of 100 Pa.

Description

本発明は、接着剤組成物、その製造方法、その硬化物、及びこれを用いた電子デバイスに関する。   The present invention relates to an adhesive composition, a production method thereof, a cured product thereof, and an electronic device using the same.

近年、半導体装置の小型化が求められており、半導体素子も小型化している。これに伴い、半導体素子の固定に用いる接着剤組成物には、少量で十分な接着強度を有することが求められている。このような接着剤組成物の塗布は、通常ディスペンサー等により行われ、その塗布量が制御されている。   In recent years, miniaturization of semiconductor devices has been demanded, and semiconductor elements have also been miniaturized. Accordingly, an adhesive composition used for fixing a semiconductor element is required to have a sufficient adhesive strength in a small amount. Application of such an adhesive composition is usually performed by a dispenser or the like, and the application amount is controlled.

ここで、半導体素子の接着に用いられる接着剤組成物は、耐衝撃性の向上や粘度調整を目的として、各種フィラーやゴム等の粉体成分を含み、その製造の際には、各種混練が行われる(例えば特許文献1参照)。   Here, the adhesive composition used for bonding semiconductor elements includes powder components such as various fillers and rubbers for the purpose of improving impact resistance and adjusting the viscosity. (For example, refer to Patent Document 1).

特開平05−65391号公報Japanese Patent Laid-Open No. 05-65391

しかしながら、粉体成分を含む場合、混練の際に接着剤組成物中に空気が取り込まれやすく、混練後の接着剤組成物中に気泡が内包されることとなる。接着剤組成物中に気泡を含む場合、ディスペンス時に接着剤組成物と共に空気が吐出され、接着剤組成物の塗布量を精密に制御できない。これにより、塗布された接着剤組成物の塗布量が不足して所望の接着強度が得られない場合が生じるという問題がある。   However, when the powder component is included, air is easily taken into the adhesive composition during the kneading, and bubbles are included in the adhesive composition after the kneading. When air bubbles are included in the adhesive composition, air is discharged together with the adhesive composition at the time of dispensing, and the application amount of the adhesive composition cannot be precisely controlled. Thereby, there exists a problem that the application quantity of the apply | coated adhesive composition may be insufficient and the desired adhesive strength may not be obtained.

本発明は、上記事情に鑑みなされたものであり、少量でも所望の量を安定に塗布可能な、信頼性の高い接着剤組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly reliable adhesive composition that can stably apply a desired amount even in a small amount.

前述の通り、接着剤を安定した塗布量で供給するためには接着剤中の気泡が少ないことが重要である。
本発明者らは、接着剤組成物の脱泡方法、及び接着剤組成物中に内包される気泡の量について検討し、所定の条件下で気泡が生じない接着剤組成物であれば、ディスペンス後の塗布量が均一となり、信頼性の高い接着剤組成物とできることを見出し、本発明に至った。
As described above, in order to supply the adhesive in a stable coating amount, it is important that there are few bubbles in the adhesive.
The present inventors have studied the defoaming method of the adhesive composition and the amount of bubbles encapsulated in the adhesive composition. If the adhesive composition does not generate bubbles under a predetermined condition, the dispenser The later application amount became uniform, and it was found that an adhesive composition with high reliability could be obtained, and the present invention was achieved.

本発明の第1は接着剤組成物に関する。
[1](A)融点が25℃以下のエポキシ樹脂と、(B)重量平均粒子径が0.1〜3.0μmでありガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から成るコア20〜80重量%、及びガラス転移温度が70℃以上の(メタ)アクリレート系重合体から成るシェル80〜20重量%から構成され、軟化点が70℃以上のコアシェル型粉末状重合体と、(C)エポキシ樹脂用潜在型硬化剤とを含有し、前記(B)成分の含有量が前記(A)成分100重量部当たり10〜100重量部の範囲にあり、E型粘度計で測定される25℃、2.5rpmでの粘度が0.1〜500Pa・sであり、かつ25℃、100Paの真空度下で2分間放置後に直径1mm以上の気泡が発生しない、接着剤組成物。
[2]前記(B)成分が、(メタ)アクリレート系単量体と架橋性単量体とを重合させて得られる、ガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から成るコアと、(メタ)アクリレート系単量体と、架橋性単量体と、必要に応じてこれらと共重合可能な単量体とをグラフト共重合させて得られる、ガラス転移温度が70℃以上の(メタ)アクリレート系共重合体からなり、平均厚さが50Å以上のシェルとからなる[1]に記載の接着剤組成物。
[3]前記(C)成分が、イミダゾール系硬化促進剤、又はアミノウレア系硬化促進剤であることを特徴とする[1]又は[2]に記載の接着剤組成物。
[4]前記イミダゾール系硬化促進剤が、マイクロカプセル型であることを特徴とする[3]に記載の接着剤組成物。
[5]205℃で5秒間加熱硬化した後のせん断接着強度が2×10Pa以上である[1]〜[4]のいずれかに記載の接着剤組成物。
[6]半導体チップの接着に用いられる[1]〜[5]のいずれかに記載の接着剤組成物。
[7][1]〜[6]のいずれかに記載の接着剤組成物の製造方法であって、前記エポキシ樹脂と、前記コアシェル型粉末状重合体と、前記エポキシ樹脂用潜在型硬化剤とを混合した後、自転公転型攪拌機により脱泡処理する接着剤組成物の製造方法。
[8][1]〜[6]のいずれかに記載の接着剤組成物を硬化させた、接着剤組成物の硬化物。
[9][1]〜[6]のいずれかに記載の接着剤組成物により接着された半導体素子を含む電子デバイス。
The first of the present invention relates to an adhesive composition.
[1] From (A) an epoxy resin having a melting point of 25 ° C. or less, and (B) a (meth) acrylate polymer having a weight average particle diameter of 0.1 to 3.0 μm and a glass transition temperature of −30 ° C. or less. A core-shell type powdery polymer having a softening point of 70 ° C. or higher, and a core composed of 20 to 80% by weight of a core and a shell of 80 to 20% by weight of a (meth) acrylate polymer having a glass transition temperature of 70 ° C. or higher. And (C) a latent curing agent for epoxy resin, the content of the component (B) is in the range of 10 to 100 parts by weight per 100 parts by weight of the component (A), and measured with an E-type viscometer The adhesive composition has a viscosity of 0.1 to 500 Pa · s at 25 ° C. and 2.5 rpm, and does not generate bubbles having a diameter of 1 mm or more after being left for 2 minutes under a vacuum degree of 25 ° C. and 100 Pa.
[2] The component (B) is made of a (meth) acrylate polymer having a glass transition temperature of −30 ° C. or lower obtained by polymerizing a (meth) acrylate monomer and a crosslinkable monomer. A glass transition temperature of 70 ° C. or higher obtained by graft copolymerization of a core, a (meth) acrylate monomer, a crosslinkable monomer, and, if necessary, a monomer copolymerizable therewith [1] The adhesive composition according to [1], comprising a (meth) acrylate copolymer and a shell having an average thickness of 50 mm or more.
[3] The adhesive composition according to [1] or [2], wherein the component (C) is an imidazole curing accelerator or an aminourea curing accelerator.
[4] The adhesive composition according to [3], wherein the imidazole curing accelerator is a microcapsule type.
[5] The adhesive composition according to any one of [1] to [4], wherein the shear adhesive strength after heat curing at 205 ° C. for 5 seconds is 2 × 10 6 Pa or more.
[6] The adhesive composition according to any one of [1] to [5], which is used for bonding a semiconductor chip.
[7] A method for producing an adhesive composition according to any one of [1] to [6], wherein the epoxy resin, the core-shell powdered polymer, and the latent curing agent for epoxy resin, And then defoaming with a rotation and revolution type stirrer.
[8] A cured product of the adhesive composition obtained by curing the adhesive composition according to any one of [1] to [6].
[9] An electronic device including a semiconductor element bonded with the adhesive composition according to any one of [1] to [6].

本発明によれば、少量でも所望の量を安定に塗布可能な、信頼性の高い接着剤組成物とすることが可能である。   According to the present invention, it is possible to obtain a highly reliable adhesive composition capable of stably applying a desired amount even in a small amount.

1.接着剤組成物
本発明の接着剤組成物は、(A)エポキシ樹脂と、(B)コアシェル型粉末状重合体と、(C)エポキシ樹脂用潜在型硬化剤とを含有し、必要に応じて、例えばフィラーや熱可塑性ポリマー微粒子、各種添加剤等を含有する。
1. Adhesive Composition The adhesive composition of the present invention contains (A) an epoxy resin, (B) a core-shell type powdered polymer, and (C) a latent curing agent for epoxy resin, as necessary. For example, it contains fillers, thermoplastic polymer fine particles, various additives, and the like.

本発明の接着剤組成物のE型粘度計で測定される25℃、2.5rpmでの粘度は、0.1〜500Pa・s、好ましくは5〜200Pa・sである。下限値未満では、接着剤組成物を塗布した際に流れやすく、接着剤組成物を所望の範囲のみに塗布することが困難となる。一方、上限値を超える場合には、接着剤組成物の脱泡処理時に気泡が抜けにくく、製造効率の面から好ましくない。   The viscosity of the adhesive composition of the present invention at 25 ° C. and 2.5 rpm measured with an E-type viscometer is 0.1 to 500 Pa · s, preferably 5 to 200 Pa · s. If it is less than a lower limit, it will flow easily when apply | coating an adhesive composition, and it will become difficult to apply | coat an adhesive composition only to a desired range. On the other hand, when the upper limit is exceeded, bubbles are difficult to escape during the defoaming treatment of the adhesive composition, which is not preferable from the viewpoint of manufacturing efficiency.

また、本発明の接着剤組成物は、25℃、100Paの真空度下で2分間放置後に直径1mm以上の気泡が発生しない。このような条件下で気泡が発生しない接着剤組成物であれば、接着剤組成物組成物に殆ど気泡が内包されておらず、接着剤組成物を少量ずつ塗布した際にも、その塗布量を安定させることが可能となる。なお、気泡の発生は目視にて観察する。   In addition, the adhesive composition of the present invention does not generate bubbles having a diameter of 1 mm or more after being left for 2 minutes at 25 ° C. under a vacuum of 100 Pa. If the adhesive composition does not generate bubbles under such conditions, the adhesive composition contains almost no bubbles, and even when the adhesive composition is applied little by little, the amount applied Can be stabilized. The generation of bubbles is observed visually.

また、本発明の接着剤組成物は、205℃で5秒間加熱硬化した後のせん断接着強度が2×10Pa以上であることが好ましく、2.5×10Pa以上であることがより好ましい。せん断接着強度を2×10Pa以上とすることにより、本発明の接着剤組成物を、種々の用途に使用可能となる。せん断接着強度はJIS K6850に従い、引張試験機によって測定する。 Further, the adhesive composition of the present invention preferably has a shear bond strength of 2 × 10 6 Pa or more after being heat-cured at 205 ° C. for 5 seconds, more preferably 2.5 × 10 6 Pa or more. preferable. By setting the shear adhesive strength to 2 × 10 6 Pa or more, the adhesive composition of the present invention can be used for various applications. The shear bond strength is measured by a tensile tester according to JIS K6850.

1−1.(A)エポキシ樹脂
本発明の接着剤組成物におけるエポキシ樹脂は、融点が25℃以下、すなわち室温で液状の樹脂であり、加熱によりエポキシ樹脂用潜在型硬化剤と反応して硬化する。
1-1. (A) Epoxy Resin The epoxy resin in the adhesive composition of the present invention is a resin having a melting point of 25 ° C. or lower, that is, a liquid at room temperature, and cures by reacting with the latent curing agent for epoxy resin by heating.

このようなエポキシ樹脂としては、1分子中に1個以上のエポキシ基を有するエポキシ樹脂であれば特に制限はない。例えば、ビスフェノールA、ビスフェノールS、ビスフェノールF、ビスフェノールAD等で代表される芳香族ジオール類およびそれらをエチレングリコール、プロピレングリコール、アルキレングリコール変性したジオール類と、エピクロルヒドリンとの反応で得られた芳香族多価グリシジルエーテル化合物(以下、例えばビスフェノールAを原料としたものは「ビスフェノールA型エポキシ樹脂」のように表記する。);フェノールまたはクレゾールとホルムアルデヒドとから誘導されたノボラック樹脂;ポリアルケニルフェノールやそのコポリマー等で代表されるポリフェノール類と、エピクロルヒドリンとの反応で得られたノボラック型多価グリシジルエーテル化合物;キシリレンフェノール樹脂のグリシジルエーテル化合物類等が含まれる。これらのエポキシ樹脂は単独で使用してもよく、2種類以上を併用してもよい。   Such an epoxy resin is not particularly limited as long as it is an epoxy resin having one or more epoxy groups in one molecule. For example, aromatic diols typified by bisphenol A, bisphenol S, bisphenol F, bisphenol AD, and the like, and diols obtained by modifying ethylene glycol, propylene glycol, and alkylene glycol with diols and epichlorohydrin are obtained. Divalent glycidyl ether compound (hereinafter referred to as “bisphenol A type epoxy resin”, for example, using bisphenol A as a raw material); novolak resin derived from phenol or cresol and formaldehyde; polyalkenylphenol and its copolymer Novolak type polyvalent glycidyl ether compounds obtained by reaction of polyphenols typified by, etc. and epichlorohydrin; glycidyl ether compounds of xylylene phenol resin, etc. Murrell. These epoxy resins may be used alone or in combination of two or more.

これらのうち好ましくは、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールエタン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂が含まれる。
なお、融点が25℃以上のエポキシ樹脂も、配合後の接着剤組成物が液体であり、取り扱いに支障がない程度であれば、各種特性の調整のために併用可能である。
Of these, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenolmethane type epoxy resin, triphenolethane type epoxy resin, trisphenol type epoxy resin, Examples include dicyclopentadiene type epoxy resin, diphenyl ether type epoxy resin, and biphenyl type epoxy resin.
An epoxy resin having a melting point of 25 ° C. or higher can be used in combination for adjusting various properties as long as the adhesive composition after blending is liquid and does not hinder handling.

エポキシ樹脂は、接着剤組成物100重量部当たり、30〜90重量部含有されることが好ましく、より好ましくは40〜80重量部である。エポキシ樹脂が上記範囲含有されることにより、接着剤組成物の接着強度が十分となる。   The epoxy resin is preferably contained in an amount of 30 to 90 parts by weight, more preferably 40 to 80 parts by weight per 100 parts by weight of the adhesive composition. When the epoxy resin is contained in the above range, the adhesive strength of the adhesive composition becomes sufficient.

1−2.(B)コアシェル型粉末状重合体
コアシェル型粉末状重合体は、接着剤組成物の硬化物の耐衝撃性、及び加熱硬化時の形状保持性を向上させること等を目的として添加する。本発明の接着剤組成物は、コアシェル型粉末状重合体を含有することから、接着剤組成物が熱硬化(本硬化)する温度より低い温度で、非粘着状態または粘着状態で固化する性質(疑似硬化性)を示す。
1-2. (B) Core-shell type powdery polymer The core-shell type powdery polymer is added for the purpose of improving the impact resistance of the cured product of the adhesive composition and the shape retention during heat curing. Since the adhesive composition of the present invention contains a core-shell type powdery polymer, it has a property of solidifying in a non-adhesive state or an adhesive state at a temperature lower than the temperature at which the adhesive composition is thermally cured (main curing) ( (Pseudo-curability).

接着剤組成物を塗布する被接着物の種類によっては、接着剤組成物の塗布後、接着剤組成物の本硬化前に、被接着物の折り曲げ、切断、脱脂洗浄、酸処理等、各種加工処理が必要となる。しかしながら、接着剤組成物が未硬化の状態で上記加工処理を行うと、加工処理中に接着剤組成物が脱落、飛散したり、処理液中に接着剤組成物が溶出する等の問題がある。   Depending on the type of adherend to which the adhesive composition is applied, various processing treatments such as bending, cutting, degreasing, acid treatment, etc. of the adherend may be performed after the adhesive composition is applied and before the adhesive composition is fully cured. Necessary. However, when the above processing is performed in a state where the adhesive composition is uncured, there are problems such that the adhesive composition is dropped and scattered during the processing, and the adhesive composition is eluted in the processing liquid. .

一方、本発明の接着剤組成物では、接着剤組成物が疑似硬化性を有するため、接着剤組成物を被接着物に塗布した後、短時間の加熱を行うことによって接着剤組成物を疑似硬化(固化)させることができ、加工処理の際、接着剤組成物の脱落や飛散、溶出等が生じることがない。また接着剤組成物を疑似硬化させることにより、余剰の接着剤組成物の除去も容易となる。   On the other hand, in the adhesive composition of the present invention, since the adhesive composition has pseudo-curability, the adhesive composition is simulated by applying the adhesive composition to the adherend and then heating for a short time. It can be cured (solidified), and the adhesive composition does not fall off, scatter or dissolve during processing. Moreover, removal of an excess adhesive composition also becomes easy by carrying out pseudo-curing of the adhesive composition.

コアシェル型粉末状重合体は、粉末状であり、接着剤組成物中に分散して用いられる。
本発明の接着剤組成物におけるコアシェル型粉末状重合体は、重量平均粒子径が0.1〜3.0μmの範囲でありガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から成るコア20〜80重量%と、ガラス転移温度が70℃以上の(メタ)アクリレート系重合体から成るシェル80〜20重量%とから構成される。
The core-shell type powdery polymer is in the form of powder and is used by being dispersed in the adhesive composition.
The core-shell type powdery polymer in the adhesive composition of the present invention comprises a (meth) acrylate polymer having a weight average particle diameter in the range of 0.1 to 3.0 μm and a glass transition temperature of −30 ° C. or lower. The core is composed of 20 to 80% by weight and a shell made of a (meth) acrylate polymer having a glass transition temperature of 70 ° C. or higher.

コアシェル型粉末状重合体はその軟化点が70℃以上、好ましくは80℃〜150℃である。軟化点が70℃未満であると、接着剤組成物中での保存安定性が不十分であり、接着剤組成物の塗布時にノズルの詰まり等を生じる可能性がある。   The core-shell type powdery polymer has a softening point of 70 ° C or higher, preferably 80 ° C to 150 ° C. When the softening point is less than 70 ° C., the storage stability in the adhesive composition is insufficient, and there is a possibility that nozzle clogging or the like may occur when the adhesive composition is applied.

コアシェル型粉末状重合体のコアは、ガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から構成される。ガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から構成されるコアを有することにより、コアシェル型粉末状重合体が外部からの応力を吸収する働きをし、接着剤組成物の硬化物の耐衝撃強度が大幅に向上する。   The core of the core-shell type powdery polymer is composed of a (meth) acrylate polymer having a glass transition temperature of −30 ° C. or lower. By having a core composed of a (meth) acrylate-based polymer having a glass transition temperature of −30 ° C. or lower, the core-shell type powdery polymer functions to absorb external stress, and the adhesive composition is cured. The impact strength of objects is greatly improved.

コアを構成する(メタ)アクリレート系重合体は、(メタ)アクリレート系単量体と架橋性単量体とを共重合させて得られるものが好ましい。
(メタ)アクリレート系単量体は、アルキル基の炭素数が2〜8の(メタ)アクリレート系単量体であることが好ましく、例えばエチルアクリレート、プロピルアクリレート、n−ブチルアクリレート、シクロヘキシルアクリレート、2−エチルヘキシルアクリレート、エチルメタクリレート、ブチルメタクリレートなどが用いられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The (meth) acrylate polymer constituting the core is preferably obtained by copolymerizing a (meth) acrylate monomer and a crosslinkable monomer.
The (meth) acrylate monomer is preferably a (meth) acrylate monomer having an alkyl group having 2 to 8 carbon atoms, such as ethyl acrylate, propyl acrylate, n-butyl acrylate, cyclohexyl acrylate, 2 -Ethylhexyl acrylate, ethyl methacrylate, butyl methacrylate and the like are used. These may be used alone or in combination of two or more.

また、架橋性単量体としては、2個以上の反応性が実質上等しい二重結合を有する単量体が挙げられる。例として、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ブチレングリコールジアクリレート、ブチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ヘキサンジオールジアクリレート、ヘキサンジオールメタクリレート、オリゴエチレンジアクリレート、オリゴエチレンジメタクリレート、ジビニルベンゼンなどの芳香族ジビニル単量体、トリメリット酸トリアリル、トリアリルイソシアヌレート等が挙げられる。これらの架橋性単量体はそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、その使用量は、コアの形成に用いる単量体全重量に基づき、通常0.01〜5重量%、好ましくは0.1〜2重量%の範囲とする。   In addition, examples of the crosslinkable monomer include monomers having two or more double bonds having substantially the same reactivity. Examples include ethylene glycol diacrylate, ethylene glycol dimethacrylate, butylene glycol diacrylate, butylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, hexanediol Examples thereof include aromatic divinyl monomers such as acrylate, hexanediol methacrylate, oligoethylene diacrylate, oligoethylene dimethacrylate, and divinylbenzene, triallylic acid triallyl, triallyl isocyanurate, and the like. These crosslinkable monomers may be used alone or in combination of two or more. The amount used is usually 0.01 to 5% by weight, preferably 0.1 to 2% by weight, based on the total weight of the monomers used to form the core.

コアを構成する(メタ)アクリレート系重合体には、前記(メタ)アクリレート系単量体及び架橋性単量体とともに、必要に応じ、(メタ)アクリレート系単量体及び架橋性単量体と共重合可能な他の単量体を用いることも可能である。他の単量体の量は、コアに用いる単量体全重量に基づき、通常50重量%以下とする。   In the (meth) acrylate polymer constituting the core, the (meth) acrylate monomer and the crosslinkable monomer, if necessary, together with the (meth) acrylate monomer and the crosslinkable monomer, It is also possible to use other monomers that can be copolymerized. The amount of the other monomer is usually 50% by weight or less based on the total weight of the monomers used in the core.

コアの重量平均粒子径は、0.1〜3.0μmの範囲とされる。コア粒子の粒子径が0.1μm未満の場合、同一重量では表面積が大きくなるために、接着剤組成物中での分散性が低下し、コアシェル型粉末状重合体を含有する粘着剤組成物の保存安定性、及び接着剤組成物の硬化物の機械的強度が顕著に低下する。一方、コア粒子の粒子径が3.0μmを超える場合、接着剤組成物の硬化物のせん断接着強度や、剥離強度が低下する可能性がある。重量平均粒子径は、光散乱測定法により特定する。   The weight average particle diameter of the core is in the range of 0.1 to 3.0 μm. When the particle diameter of the core particles is less than 0.1 μm, the surface area becomes large at the same weight, so that the dispersibility in the adhesive composition is reduced, and the pressure-sensitive adhesive composition containing the core-shell type powdery polymer is reduced. The storage stability and the mechanical strength of the cured product of the adhesive composition are significantly reduced. On the other hand, when the particle diameter of the core particles exceeds 3.0 μm, the shear adhesive strength and peel strength of the cured product of the adhesive composition may be lowered. The weight average particle diameter is specified by a light scattering measurement method.

コアシェル型粉末状重合体のシェルは、ガラス転移温度が70℃以上の(メタ)アクリレート系重合体から成る。シェルのガラス転移温度が70℃未満では接着剤組成物とした際、保存安定性が不十分となる可能性がある。   The shell of the core-shell type powder polymer is made of a (meth) acrylate polymer having a glass transition temperature of 70 ° C. or higher. When the glass transition temperature of the shell is less than 70 ° C., the storage stability may be insufficient when an adhesive composition is obtained.

シェルを構成する(メタ)アクリレート系重合体は、(メタ)アクリレート系単量体と、架橋性単量体と、必要に応じてこれらと共重合可能な単量体とをグラフト共重合させて得られるものが好ましい。(メタ)アクリレート系単量体としては、炭素数が1〜4である(メタ)アクリレート系単量体を1種単独で、もしくは2種以上を組み合わせて用いることができる。アルキル基の炭素数が1〜4の(メタ)アクリレート系単量体としては、例えばエチルアクリレート、n−ブチルアクリレート、メチルメタクリレート、ブチルメタクリレートなどが挙げられ、これらは1種用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で特にメチルメタクリレートが好適である。   The (meth) acrylate polymer constituting the shell is obtained by graft copolymerization of a (meth) acrylate monomer, a crosslinkable monomer, and a monomer copolymerizable therewith if necessary. What is obtained is preferred. As the (meth) acrylate monomer, a (meth) acrylate monomer having 1 to 4 carbon atoms can be used alone or in combination of two or more. Examples of the (meth) acrylate monomer having 1 to 4 carbon atoms in the alkyl group include ethyl acrylate, n-butyl acrylate, methyl methacrylate, butyl methacrylate, and the like. You may use combining more than a seed. Of these, methyl methacrylate is particularly preferred.

また、架橋性単量体、及び必要に応じて用いられる他の単量体としては、上記コアに用いるものと同様とすることができる。
架橋性単量体の使用量は、シェルに含まれる単量体の全重量に基づき、通常0.01〜10重量%、好ましくは0.1〜5重量%の範囲とする。また、他の単量体の使用量は、通常50重量%以下とする。
The crosslinkable monomer and other monomers used as necessary can be the same as those used for the core.
The amount of the crosslinkable monomer used is usually 0.01 to 10% by weight, preferably 0.1 to 5% by weight, based on the total weight of the monomers contained in the shell. Moreover, the usage-amount of another monomer shall normally be 50 weight% or less.

シェルの平均厚みは50Å以上とする。シェルの厚みが50Å未満ではシェルによるコアの被覆性が十分でなく、コアが露出し、接着剤組成物の保存安定性が低下する可能性がある。   The average thickness of the shell is 50 mm or more. If the thickness of the shell is less than 50 mm, the core is not sufficiently covered with the shell, the core is exposed, and the storage stability of the adhesive composition may be lowered.

上記コアシェル型粉末状重合体は、2段階の連続した多段シード乳化重合法により製造することができる。また、1段目で調製したシードラテックスをソルベント凝固などで部分凝集させたのち、その上にグラフト重合させてシェルを形成することも可能である。   The core-shell type powdery polymer can be produced by a two-stage continuous multi-stage seed emulsion polymerization method. It is also possible to form a shell by partially aggregating the seed latex prepared in the first stage by solvent coagulation or the like and then graft-polymerizing the seed latex.

コアシェル型粉末状重合体の含有量は、前記(A)エポキシ樹脂100重量部当たり10〜100重量部の範囲とされ、好ましくは10〜50重量部の範囲とする。コアシェル型粉末状重合体の含有量が下限値未満では、接着剤組成物の硬化物の耐衝撃性が十分とならない可能性がある。一方、上限値を超えると、接着剤組成物の粘度が著しく高くなり、取り扱い性が低下する。   The content of the core-shell type powdery polymer is in the range of 10 to 100 parts by weight, preferably 10 to 50 parts by weight, per 100 parts by weight of the (A) epoxy resin. If the content of the core-shell type powdery polymer is less than the lower limit, the impact resistance of the cured product of the adhesive composition may not be sufficient. On the other hand, when the upper limit is exceeded, the viscosity of the adhesive composition is remarkably increased, and the handleability is lowered.

1−3.(C)エポキシ樹脂用潜在型硬化剤
本発明におけるエポキシ樹脂用潜在型硬化剤とは、(A)エポキシ樹脂に混合されていても、接着剤組成物を通常保存する室温下では(A)エポキシ樹脂のエポキシ基とほとんど反応しないが、熱を与えることによってエポキシ基の反応活性を呈する硬化剤を意味する。
1-3. (C) Latent type curing agent for epoxy resin The latent type curing agent for epoxy resin in the present invention is (A) epoxy at room temperature where the adhesive composition is usually stored even when mixed with (A) epoxy resin. It means a curing agent that hardly reacts with the epoxy group of the resin but exhibits the reaction activity of the epoxy group when heated.

本発明では、エポキシ樹脂用潜在型硬化剤は、70℃以上でエポキシ基の反応活性を呈する硬化剤が好ましく、より好ましくは80〜120℃である。このような温度で反応活性を呈するエポキシ樹脂用潜在型硬化剤を用いることにより、接着剤組成物の保存安定性を良好なものとできる。また接着剤組成物の脱泡処理時に接着剤組成物の温度が上昇した場合であっても、接着剤組成物が固化してしまうことを防ぐことができる。   In the present invention, the latent curing agent for epoxy resin is preferably a curing agent exhibiting an epoxy group reaction activity at 70 ° C. or higher, more preferably 80 to 120 ° C. By using a latent curing agent for epoxy resin that exhibits reaction activity at such a temperature, the storage stability of the adhesive composition can be improved. Moreover, even if it is a case where the temperature of an adhesive composition rises at the time of the defoaming process of an adhesive composition, it can prevent that an adhesive composition solidifies.

(C)エポキシ樹脂用潜在型熱硬化剤は特に限定されないが、イミダゾール型硬化促進剤、又はアミノウレア系硬化促進剤を用いることが好ましい。
イミダゾール型硬化促進剤の例としては、2−フェニルイミダゾール(四国化成製・商品名「キュアゾール2PZ」)、2,4−ジアミノ−6−[2’−エチルイミダゾリル−(1’)]−エチルトリアジン(四国化成製・商品名「キュアゾール2E4MZ−A」)等が挙げられる。
またアミノウレア型硬化促進剤としては、PTIジャパン製・商品名「オミキュアー94」、商品名「オミキュアー52」、富士化成製・商品名「フジキュアFXE−1030」等のアミン、尿素とイソシアネートを反応させて得られるウレア結合を有するアミノウレア系化合物が挙げられる。
(C) Although the latent thermosetting agent for epoxy resins is not particularly limited, it is preferable to use an imidazole type curing accelerator or an aminourea type curing accelerator.
Examples of imidazole-type curing accelerators include 2-phenylimidazole (manufactured by Shikoku Kasei Co., Ltd., trade name “Cureazole 2PZ”), 2,4-diamino-6- [2′-ethylimidazolyl- (1 ′)]-ethyltriazine (Shikoku Kasei Co., Ltd., trade name “CURESOL 2E4MZ-A”) and the like.
As amino urea type curing accelerators, amines such as PTI Japan, trade name “Omicure 94”, trade name “Omicure 52”, Fuji Kasei • trade name “Fujicure FXE-1030”, and urea and isocyanate are reacted. Examples thereof include aminourea compounds having a urea bond.

また(C)エポキシ樹脂用潜在型熱硬化剤として、より好ましくは、マイクロカプセル型の硬化促進剤が挙げられる。マイクロカプセル型の硬化促進剤は、マイクロカプセルの中に、硬化促進剤が封入されており、加熱によりマイクロカプセルが破壊され、硬化促進剤が接着剤組成物中に拡散してエポキシ樹脂(A)の反応活性を呈する。   More preferably, the latent thermosetting agent for (C) epoxy resin includes a microcapsule type curing accelerator. In the microcapsule type curing accelerator, the curing accelerator is encapsulated in the microcapsule, the microcapsule is destroyed by heating, and the curing accelerator diffuses into the adhesive composition to cause the epoxy resin (A). It exhibits the reaction activity of

マイクロカプセルの中に封入される硬化促進剤としては、例えばアミン系硬化剤、酸無水物系硬化剤、フェノール系硬化剤、メルカプタン系硬化剤、ハロゲン化ホウ素塩系硬化剤、四級アンモニウム塩系硬化剤、尿素系硬化剤、ホスフィン系硬化剤等が挙げられる。本発明においては特にアミン系硬化剤が好ましく、中でもイミダゾール系硬化剤が好ましい。   Examples of the curing accelerator encapsulated in the microcapsule include amine-based curing agents, acid anhydride-based curing agents, phenol-based curing agents, mercaptan-based curing agents, boron halide salt-based curing agents, and quaternary ammonium salt systems. Examples thereof include a curing agent, a urea curing agent, and a phosphine curing agent. In the present invention, an amine curing agent is particularly preferable, and an imidazole curing agent is particularly preferable.

封入される硬化促進剤のメジアン径で定義される平均粒径は0.3μm超12μm以下が好ましい。より好ましくは1〜10μm、より好ましくは1.5〜5μmである。粒径が12μmを超えると、個々のマイクロカプセルに封入される硬化促進剤の量が多くなり、接着剤組成物中のエポキシ樹脂を均質に硬化させることが困難となる。一方、粒径が0.3μmより小さいと、カプセル膜の形成が困難となり、接着剤組成物の保存安定性が低下し、またマイクロカプセル型の硬化促進剤の耐溶剤性を損なうことがある。   The average particle size defined by the median diameter of the curing accelerator to be enclosed is preferably more than 0.3 μm and 12 μm or less. More preferably, it is 1-10 micrometers, More preferably, it is 1.5-5 micrometers. When the particle diameter exceeds 12 μm, the amount of the curing accelerator encapsulated in each microcapsule increases, and it becomes difficult to uniformly cure the epoxy resin in the adhesive composition. On the other hand, when the particle size is smaller than 0.3 μm, it is difficult to form a capsule film, the storage stability of the adhesive composition is lowered, and the solvent resistance of the microcapsule type curing accelerator may be impaired.

また、上記硬化促進剤を封入するためのマイクロカプセルとしては、保存時の接着剤組成物中の安定性と、加熱による活性発現のバランスの点から高分子化合物からなるものが好ましい。マイクロカプセルに用いられる高分子化合物としては、例えば、ポリウレタン化合物、ポリウレタンウレア化合物、ポリウレア化合物、ポリビニル化合物やメラミン化合物、エポキシ樹脂、フェノール樹脂から得られる高分子化合物が例示される。   The microcapsules for encapsulating the curing accelerator are preferably those made of a polymer compound from the viewpoint of the balance between stability in the adhesive composition during storage and the expression of activity by heating. Examples of the polymer compound used in the microcapsule include polymer compounds obtained from polyurethane compounds, polyurethane urea compounds, polyurea compounds, polyvinyl compounds, melamine compounds, epoxy resins, and phenol resins.

なお、マイクロカプセル型の硬化促進剤は、通常エポキシ樹脂に分散されたペーストとして提供される。   The microcapsule type curing accelerator is usually provided as a paste dispersed in an epoxy resin.

エポキシ樹脂用潜在型硬化剤は、前記(A)エポキシ樹脂100重量部当たり1〜50重量部の範囲とすることが好ましく、より好ましくは10〜40重量部である。エポキシ樹脂用潜在型硬化剤の量をこのような範囲とすることにより、(A)エポキシ樹脂の硬化を十分に促進させることが可能となり、接着剤組成物の硬化物の強度を十分なものとすることができる。   The latent curing agent for epoxy resin is preferably in the range of 1 to 50 parts by weight, more preferably 10 to 40 parts by weight per 100 parts by weight of the (A) epoxy resin. By setting the amount of the latent curing agent for the epoxy resin in such a range, it becomes possible to sufficiently accelerate the curing of the (A) epoxy resin, and the strength of the cured product of the adhesive composition is sufficient. can do.

1−4.フィラー
本発明の接着剤組成物には、接着剤組成物の粘度制御、接着剤組成物の硬化物の強度向上や線膨張性制御等を目的としてフィラーを配合してもよい。
フィラーの種類は、特に制限はなく、例えば炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸マグネシウム、珪酸アルミニウム、珪酸ジルコニウム、酸化鉄、酸化チタン、酸化アルミニウム(アルミナ)、酸化亜鉛、二酸化ケイ素、チタン酸カリウム、カオリン、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化ケイ素等の無機フィラーを用いることができる。
1-4. Filler The adhesive composition of the present invention may contain a filler for the purpose of controlling the viscosity of the adhesive composition, improving the strength of the cured product of the adhesive composition, controlling the linear expansion, and the like.
There are no particular restrictions on the type of filler, such as calcium carbonate, magnesium carbonate, barium sulfate, magnesium sulfate, aluminum silicate, zirconium silicate, iron oxide, titanium oxide, aluminum oxide (alumina), zinc oxide, silicon dioxide, potassium titanate. Inorganic fillers such as kaolin, talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride can be used.

また、有機フィラーとして、環球法(JACT試験法:RS−2)による軟化点温度が120℃を超えるポリマー粒子を配合してもよい。これらの例には、ポリスチレンおよびこれと共重合可能なモノマー類を共重合した共重合体、ポリエステル微粒子、ポリウレタン微粒子、ゴム微粒子等が含まれる。   Moreover, you may mix | blend the polymer particle in which the softening point temperature by a ring and ball method (JACT test method: RS-2) exceeds 120 degreeC as an organic filler. Examples thereof include copolymers obtained by copolymerizing polystyrene and monomers copolymerizable therewith, polyester fine particles, polyurethane fine particles, rubber fine particles and the like.

上記フィラーの形状は特に限定されず、球状、板状、針状等の定形状あるいは非定形状のいずれであってもよい。フィラーは平均一次粒子径が1.5μm以下であることが好ましい。またその比表面積は、1m/g〜500m/gであることが好ましい。
フィラーの平均一次粒子径は、JIS Z8825−1に記載のレーザー回折法で測定できる。また、比表面積測定は、JIS Z8830に記載のBET法により測定できる。
The shape of the filler is not particularly limited, and may be a regular shape such as a spherical shape, a plate shape, or a needle shape, or an irregular shape. The filler preferably has an average primary particle size of 1.5 μm or less. The specific surface area is preferably 1m 2 / g~500m 2 / g.
The average primary particle diameter of the filler can be measured by a laser diffraction method described in JIS Z8825-1. The specific surface area can be measured by the BET method described in JIS Z8830.

フィラーを配合する場合には、接着剤組成物中に30重量%以下配合することが好ましい。フィラーの含有量が、上限値を超えると、接着剤組成物の製造時に取り込まれる気泡の量が増えるだけでなく、接着剤組成物の粘度が上昇し、接着剤組成物の脱泡処理の効率が低下する。   When a filler is blended, it is preferable to blend 30% by weight or less in the adhesive composition. If the filler content exceeds the upper limit, not only will the amount of air bubbles taken in during the production of the adhesive composition increase, but the viscosity of the adhesive composition will increase, and the defoaming efficiency of the adhesive composition will increase. Decreases.

1−5.熱可塑性ポリマー微粒子
本発明の接着剤組成物中には、必要に応じて、環球法により測定される軟化点温度が50〜120℃、好ましくは70〜100℃の熱可塑性ポリマーを含み、かつ数平均粒子径が0.05〜5μm、好ましくは0.1〜3μmである熱可塑性ポリマー微粒子を配合してもよい。接着剤組成物中に、熱可塑性ポリマー微粒子を含有することにより、接着剤組成物の硬化物の耐衝撃性を向上させることができる。また、数平均粒子径を上限値以下とすることにより、熱可塑性ポリマー微粒子によって、接着剤組成物の粘度が上昇することを防ぐことができる。数平均粒子径の測定方法は、乾式粒度分布計で特定可能である。
1-5. Thermoplastic polymer fine particles The adhesive composition of the present invention contains a thermoplastic polymer having a softening point temperature measured by a ring and ball method of 50 to 120 ° C., preferably 70 to 100 ° C., if necessary. You may mix | blend the thermoplastic polymer microparticles | fine-particles whose average particle diameter is 0.05-5 micrometers, Preferably it is 0.1-3 micrometers. By containing thermoplastic polymer fine particles in the adhesive composition, the impact resistance of the cured product of the adhesive composition can be improved. Moreover, it can prevent that the viscosity of an adhesive composition raises with a thermoplastic polymer microparticle by making a number average particle diameter below an upper limit. The measuring method of the number average particle diameter can be specified by a dry particle size distribution meter.

熱可塑性ポリマー微粒子としては、例えばエポキシ基と二重結合基とを含む樹脂を、ラジカル重合可能なモノマーと懸濁重合して得られる微粒子が挙げられる。エポキシ基と二重結合基とを含む樹脂の例には、ビスフェノールF型エポキシ樹脂とメタアクリル酸を三級アミン存在下で反応させた樹脂が含まれる。ラジカル重合可能なモノマーの例には、ブチルアクリレート、グリシジルメタクリレート、およびジビニルベンゼンが含まれる。   Examples of the thermoplastic polymer fine particles include fine particles obtained by suspension polymerization of a resin containing an epoxy group and a double bond group with a monomer capable of radical polymerization. Examples of the resin containing an epoxy group and a double bond group include a resin obtained by reacting a bisphenol F type epoxy resin and methacrylic acid in the presence of a tertiary amine. Examples of radically polymerizable monomers include butyl acrylate, glycidyl methacrylate, and divinylbenzene.

熱可塑性ポリマー微粒子の配合量は、接着剤組成物100質量部に対して、1〜30重量部が好ましく、5〜20重量部がより好ましい。このような範囲とすることにより、熱可塑性ポリマー微粒子が接着剤組成物の硬化物の耐衝撃性を向上させることができる。   1-30 weight part is preferable with respect to 100 mass parts of adhesive composition, and, as for the compounding quantity of a thermoplastic polymer microparticle, 5-20 weight part is more preferable. By setting it as such a range, a thermoplastic polymer microparticle can improve the impact resistance of the hardened | cured material of adhesive composition.

1−6.その他の添加剤
本発明の接着剤組成物は、必要に応じてさらに、シランカップリング剤等のカップリング剤、イオントラップ剤、イオン交換剤、レベリング剤、顔料、染料、可塑剤、消泡剤等の添加剤を含んでいてもよい。
1-6. Other Additives The adhesive composition of the present invention may further comprise a coupling agent such as a silane coupling agent, an ion trapping agent, an ion exchange agent, a leveling agent, a pigment, a dye, a plasticizer, and an antifoaming agent as necessary. Etc. may be contained.

1−7.接着剤組成物の製造方法
本発明の接着剤組成物は、上記(A)エポキシ樹脂、(B)コアシェル型粉末状重合体、及び(C)エポキシ樹脂用潜在型硬化剤と、必要に応じてフィラーや熱可塑性ポリマー微粒子、各種添加剤等を混合した後、脱泡処理を行うことにより得られる。
1-7. Method for Producing Adhesive Composition The adhesive composition of the present invention comprises (A) an epoxy resin, (B) a core-shell type powdered polymer, and (C) a latent curing agent for epoxy resin, as necessary. After mixing a filler, thermoplastic polymer fine particles, various additives, etc., it is obtained by performing a defoaming treatment.

上記各成分は、全成分を一時に混合してもよく、また数回にわけて混合してもよい。混合方法は特に限定されないが、例えば、双腕式攪拌機、ロール混練機、2軸押出機、ボールミル混練機、遊星式撹拌機等の公知の混練機械を用いて行うことができる。接着剤組成物をゲル化させることなく均一に混練するために、混練温度は25〜35℃に設定されることが好ましい。   All the above components may be mixed all at once, or may be mixed in several times. The mixing method is not particularly limited, and for example, it can be performed using a known kneading machine such as a double-arm stirrer, a roll kneader, a twin screw extruder, a ball mill kneader, or a planetary stirrer. In order to knead the adhesive composition uniformly without gelling, the kneading temperature is preferably set to 25 to 35 ° C.

各成分を均一に混合した後、脱泡処理を行う。従来の接着剤組成物では、真空減圧処理や、振動処理によりを行うことにより、脱泡を行うことも行われているが、これらの方法では、脱泡に時間がかかり、脱泡を確実に行うことができない可能性がある。そこで、本発明の接着剤組成物の脱泡処理は、減圧条件下で自転公転型攪拌機により攪拌することが好ましい。自転公転型攪拌機を用いる場合、機械摩擦熱及び攪拌による蓄熱等により接着剤組成物の温度が上昇し、接着剤組成物の粘度が低下するため、脱泡を行いやすい。ただし、上述の(C)エポキシ樹脂用潜在型硬化剤がエポキシ基の反応活性を呈する温度未満で脱泡処理を行うことが好ましい。具体的には接着剤組成物の温度が50℃未満となるように温度管理しながら脱泡処理を行うことが好ましい。   After each component is uniformly mixed, defoaming treatment is performed. In conventional adhesive compositions, defoaming is also performed by performing vacuum depressurization treatment or vibration treatment, but these methods require time for defoaming and ensure defoaming. It may not be possible. Therefore, it is preferable that the defoaming treatment of the adhesive composition of the present invention is stirred with a rotation / revolution type stirrer under reduced pressure conditions. When using a rotation and revolution type stirrer, the temperature of the adhesive composition rises due to mechanical frictional heat, heat storage by stirring, and the like, and the viscosity of the adhesive composition is lowered, so that defoaming is easy. However, it is preferable to perform the defoaming treatment at a temperature lower than the temperature at which the latent curing agent for epoxy resin (C) exhibits the epoxy group reaction activity. Specifically, it is preferable to perform the defoaming treatment while controlling the temperature so that the temperature of the adhesive composition is less than 50 ° C.

自転公転型攪拌機により脱泡処理する際、減圧度を−0.1MPa以下とすることが好ましい。このような範囲とすることにより、効率よく脱泡処理することができる。   When the defoaming treatment is performed with a rotation and revolution type stirrer, the degree of reduced pressure is preferably −0.1 MPa or less. By setting it as such a range, a defoaming process can be performed efficiently.

自転公転型攪拌機により脱泡処理する際の攪拌スピードは、公転回転数を600〜3000rpmとすることが好ましく、自転回転数200rpm〜1000rpmとすることが好ましい。公転回転数及び自転回転数が下限値未満では、脱泡処理に時間がかかり製造効率の面から好ましくない。一方、上限置を超えると、機械摩擦熱及び攪拌による蓄熱による接着剤組成物の温度上昇が大きくなり、接着剤組成物が硬化してしまう可能性がある。   As for the stirring speed when the defoaming treatment is performed by the rotation / revolution type stirrer, the revolution speed is preferably 600 to 3000 rpm, and the rotation speed is preferably 200 rpm to 1000 rpm. If the revolution speed and the rotational speed are less than the lower limit values, it takes time for the defoaming process, which is not preferable from the viewpoint of production efficiency. On the other hand, when the upper limit is exceeded, the temperature rise of the adhesive composition due to mechanical frictional heat and heat storage by stirring may increase, and the adhesive composition may be cured.

なお、従来の接着剤組成物では、自転公転型攪拌機により脱泡処理を行った場合、攪拌時に生じる機械摩擦熱等により、接着剤組成物温度が上昇し、接着剤組成物が固化するという問題がある。しかしながら、本発明では、(C)エポキシ樹脂用潜在型硬化剤を用いており、特に、マイクロカプセル型のエポキシ樹脂用潜在型硬化剤を用いる場合には、攪拌時に接着剤組成物の温度が上昇したとしても、エポキシ樹脂の硬化が促進されず、十分な脱泡を行うことができる。   In addition, in the conventional adhesive composition, when the defoaming treatment is performed with a rotation and revolution type stirrer, the temperature of the adhesive composition rises due to mechanical frictional heat generated during stirring, and the adhesive composition is solidified. There is. However, in the present invention, (C) the latent curing agent for epoxy resin is used. In particular, when the latent curing agent for epoxy resin of microcapsule type is used, the temperature of the adhesive composition increases during stirring. Even if it does, hardening of an epoxy resin is not accelerated | stimulated and sufficient defoaming can be performed.

1−8.接着剤組成物の用途
本発明の接着剤組成物は、1液型の接着剤組成物として、種々の部材の接着に用いることが可能である。特に本発明の接着剤組成物は、気泡を殆ど内在していないことから、少量塗布して接着が行われる用途に適用可能である。具体的には、10mg以下の接着剤組成物を塗布して接着する用途に特に好適である。このような例としては、例えば半導体装置などの電子デバイスにおける半導体素子の接着等が挙げられる。
電子デバイスとしては、例えばセンサー、コンデンサ、スイッチ、リレー等の電子・電気部品を接着する際に好適である。
1-8. Use of Adhesive Composition The adhesive composition of the present invention can be used for bonding various members as a one-component adhesive composition. In particular, since the adhesive composition of the present invention hardly contains bubbles, it can be applied to applications in which a small amount is applied for adhesion. Specifically, it is particularly suitable for applications in which 10 mg or less of an adhesive composition is applied and adhered. Examples of such include adhesion of semiconductor elements in electronic devices such as semiconductor devices.
The electronic device is suitable for bonding electronic / electrical components such as sensors, capacitors, switches, and relays.

<合成例1>
熱可塑性ポリマー微粒子(アクリルゴム変性エポキシ樹脂)の合成
攪拌機、気体導入管、温度計、冷却管を備えた2000mlの四つ口フラスコ中に、液状エポキシ樹脂であるビスフェノールA型エポキシ樹脂(エポミックR−140P;三井化学(株)製)600g、アクリル酸12g、ジメチルエタノールアミン1g、トルエン50gを加え、空気を導入しながら110℃で5時間反応させ二重結合を導入した。
次にブチルアクリレート350g、グリシジルメタクリレート20g、ジビニルベンゼン1g、アゾビスジメチルバレロニトリル1g、およびアゾビスイソブチロニトリル2gを加え、反応系内に窒素を導入しながら70℃で3時間反応させ、さらに90℃で1時間反応させた。
<Synthesis Example 1>
Synthesis of thermoplastic polymer fine particles (acrylic rubber-modified epoxy resin) In a 2000 ml four-necked flask equipped with a stirrer, gas introduction tube, thermometer, and cooling tube, a liquid epoxy resin, bisphenol A type epoxy resin (Epomic R-) 140P; manufactured by Mitsui Chemicals, Inc.), 12 g of acrylic acid, 1 g of dimethylethanolamine and 50 g of toluene were added and reacted at 110 ° C. for 5 hours while introducing air to introduce double bonds.
Next, 350 g of butyl acrylate, 20 g of glycidyl methacrylate, 1 g of divinylbenzene, 1 g of azobisdimethylvaleronitrile, and 2 g of azobisisobutyronitrile were added and reacted at 70 ° C. for 3 hours while introducing nitrogen into the reaction system. The reaction was carried out at 90 ° C. for 1 hour.

次いで110℃の減圧下で脱トルエンを行い、該組成物を光硬化触媒の存在下に低温で速硬化させ、その硬化物の破断面モルフォロジーを電子顕微鏡で観察して分散ゴム粒子径を測定する方法で得た平均粒子径が0.05μmの微架橋型アクリルゴム微粒子が均一に分散したアクリルゴム変性エポキシ樹脂を得た。   Next, toluene is removed under reduced pressure at 110 ° C., the composition is rapidly cured at low temperature in the presence of a photocuring catalyst, and the fracture surface morphology of the cured product is observed with an electron microscope to measure the dispersed rubber particle size. An acrylic rubber-modified epoxy resin in which finely crosslinked acrylic rubber fine particles having an average particle diameter of 0.05 μm obtained by the method were uniformly dispersed was obtained.

<実施例1>
25℃で液状のエポキシ樹脂A(三菱化学社製:YL−983U)30重量部、25℃で液状のエポキシ樹脂B(三井化学社製:VG−3101L(ジグリシジルエーテル型エポキシ樹脂))20重量部、コアシェル型粉末状重合体(ガンツ化成社製:F351G)10重量部、合成例1で得られたアクリルゴム変性エポキシ樹脂9重量部、及びシランカップリング剤(信越化学社製:KBM−403)1重量部を混合し、三本ロールミルで混練した。更に、エポキシ樹脂用潜在性硬化剤A(旭化成社製:ノバキュアHXA−4922(マイクロカプセル型イミダゾール系硬化促進剤))30重量部を添加して接着剤組成物とした。
<Example 1>
30 parts by weight of liquid epoxy resin A (Mitsubishi Chemical Corporation: YL-983U) at 25 ° C., 20 parts by weight of epoxy resin B (Mitsui Chemicals: VG-3101L (diglycidyl ether type epoxy resin)) at 25 ° C. Parts, 10 parts by weight of a core-shell type powdered polymer (manufactured by Ganz Kasei Co., Ltd .: F351G), 9 parts by weight of the acrylic rubber-modified epoxy resin obtained in Synthesis Example 1, and a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-403) ) 1 part by weight was mixed and kneaded with a three-roll mill. Furthermore, 30 parts by weight of an epoxy resin latent curing agent A (manufactured by Asahi Kasei Co., Ltd .: Novacure HXA-4922 (microcapsule type imidazole curing accelerator)) was added to obtain an adhesive composition.

得られた接着剤組成物を、真空下(100Pa)で自転公転型攪拌機にて攪拌した。所定時間攪拌後に、25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生しなくなるまで脱泡処理した。気泡の発生は目視により確認した。なお、攪拌機による攪拌時、機械摩擦熱及び攪拌による蓄熱により、接着剤組成物の温度が50℃以上に上昇しないよう管理した。   The obtained adhesive composition was stirred with a rotation and revolution type stirrer under vacuum (100 Pa). After stirring for a predetermined time, the mixture was allowed to stand for 2 minutes under a vacuum of 25 ° C. and 100 Pa, and then defoamed until no bubbles with a diameter of 1 mm or more were generated. The generation of bubbles was confirmed visually. In addition, at the time of stirring with a stirrer, it managed so that the temperature of an adhesive composition did not rise to 50 degreeC or more by mechanical friction heat and the heat storage by stirring.

得られた接着剤組成物を、下記の方法により粘度安定性、弾性率、接着強度、及び接着信頼性試験を行った。結果を表1に示す。   The obtained adhesive composition was subjected to viscosity stability, elastic modulus, adhesive strength, and adhesion reliability test by the following methods. The results are shown in Table 1.

(粘度安定性測定方法)
E型粘度計を用い、室温(25℃)、2.5rpmにおける接着剤組成物の初期粘度η1(25℃)を測定した。この接着剤組成物を23℃の恒温槽で24時間保存した後、恒温槽から取り出し、室温(25℃)、1rpmにおける保存後粘度η2(25℃)を測定した。これらの測定値を、下記式(1)に当てはめて粘度上昇率を求めた。式(1)で求められる粘度上昇率が1以上1.2未満を○、1.2超1.5未満を△、1.5以上を×とした。
粘度上昇率=23℃保存後の粘度η2(25℃)/初期粘度η1(25℃)・・(1)
(Viscosity stability measurement method)
Using an E-type viscometer, the initial viscosity η1 (25 ° C.) of the adhesive composition at room temperature (25 ° C.) and 2.5 rpm was measured. The adhesive composition was stored in a thermostat at 23 ° C. for 24 hours, then taken out from the thermostat and measured for viscosity η2 (25 ° C.) after storage at room temperature (25 ° C.) and 1 rpm. These measured values were applied to the following formula (1) to determine the viscosity increase rate. The viscosity increase rate calculated by the formula (1) was 1 or more and less than 1.2, ◯, more than 1.2 and less than 1.5, and 1.5 or more, x.
Viscosity increase rate = viscosity after storage at 23 ° C. η2 (25 ° C.) / Initial viscosity η1 (25 ° C.) (1)

(弾性率の測定方法)
接着剤組成物を専用のアプリケータを使用して離型紙上に100μm厚に塗布した。この接着剤組成物を150℃で1時間加熱し、室温まで冷却後、離型紙から剥がし取り、所定を大きさに切り取り、DMS(Dynamic Mechanical Spectrometer)を使用して、引張りモードで弾性率を測定した。
(Measurement method of elastic modulus)
The adhesive composition was applied to a release paper with a thickness of 100 μm using a special applicator. This adhesive composition is heated at 150 ° C. for 1 hour, cooled to room temperature, peeled off from the release paper, cut to a predetermined size, and measured for elastic modulus in a tensile mode using a DMS (Dynamic Mechanical Spectrometer). did.

(接着強度の測定方法)
JIS K6850に従い、接着強度を測定した。被着体にはSUS304を使用した。被着体に、得られた接着剤組成物を半径10mmの円で塗布した試験片(SUS304)を貼り合わせ、治具で固定した後、150℃で60分加熱し、接着試験片を作製した。この接着試験片を用い、引張試験機(インテスコ社製)にて、せん断接着強度を測定した。接着強度が20MPa以上を○(良好)、10MPa以上20MPa未満の範囲を△(やや劣る)、10MPa未満を×(劣る)とした。
(Measurement method of adhesive strength)
The adhesive strength was measured according to JIS K6850. SUS304 was used for the adherend. A test piece (SUS304) coated with the obtained adhesive composition in a circle with a radius of 10 mm was bonded to the adherend, fixed with a jig, and then heated at 150 ° C. for 60 minutes to prepare an adhesive test piece. . Using this adhesion test piece, the shear bond strength was measured with a tensile tester (manufactured by Intesco). The adhesive strength of 20 MPa or more was evaluated as ◯ (good), the range of 10 MPa or more and less than 20 MPa was evaluated as Δ (somewhat inferior), and less than 10 MPa was evaluated as x (inferior).

(加熱後の形状保持性)
上記接着強度の測定の際、150℃で60分加熱して得た接着試験片における接着剤層の形状保持性を目視で観察した。
加熱前と加熱後の形状で、変化がない場合を○(良好)、接着剤層が広がった場合×(劣る)とした。
(Shape retention after heating)
When measuring the adhesive strength, the shape retention of the adhesive layer in an adhesive test piece obtained by heating at 150 ° C. for 60 minutes was visually observed.
The case where there was no change in the shape before heating and after heating was evaluated as ◯ (good), and the case where the adhesive layer was spread × (inferior).

(接着信頼性試験)
上記の接着強度の測定方法と同様にして作製した接着試験片を85℃、85%Rhで500時間保存し、接着性試験と同様にせん断接着強度を測定した。
また、上記の接着強度の測定方法と同様にして作製した接着試験片をプレッシャークッカーテストし、評価した。具体的には、121℃、2気圧、湿度100%の条件で100時間保存し、接着性試験と同様にせん断接着強度を測定した。
それぞれ、接着強度が20MPa以上を○(良好)、10MPa以上20MPa未満の範囲を△(やや劣る)、10MPa未満を×(劣る)とした。
(Adhesion reliability test)
An adhesion test piece prepared in the same manner as in the above-described method for measuring the adhesive strength was stored at 85 ° C. and 85% Rh for 500 hours, and the shear adhesive strength was measured in the same manner as in the adhesion test.
In addition, a pressure cooker test was performed to evaluate an adhesion test piece prepared in the same manner as the above-described method for measuring adhesive strength. Specifically, it was stored for 100 hours under the conditions of 121 ° C., 2 atm, and humidity 100%, and the shear adhesive strength was measured in the same manner as in the adhesion test.
In each case, the adhesive strength of 20 MPa or more was evaluated as ◯ (good), the range of 10 MPa or more and less than 20 MPa was evaluated as Δ (somewhat inferior), and less than 10 MPa was evaluated as x (inferior).

<実施例2>
25℃で液状のエポキシ樹脂Aの量を40重量部、25℃で液状のエポキシ樹脂Bの量を30重量部とし、エポキシ樹脂用潜在性硬化剤として、エポキシ樹脂用潜在性硬化剤B(味の素ファインテクノ社製、アミキュアPN−40J)10重量部を用いた以外は実施例1と同様に接着剤組成物を得た。
<Example 2>
The amount of the epoxy resin A that is liquid at 25 ° C. is 40 parts by weight, the amount of the epoxy resin B that is liquid at 25 ° C. is 30 parts by weight, and the latent curing agent for epoxy resin B (Ajinomoto) An adhesive composition was obtained in the same manner as in Example 1 except that 10 parts by weight of Fine Techno Co., Amicure PN-40J) was used.

<実施例3>
25℃で液状のエポキシ樹脂Aの量を35重量部、25℃で液状のエポキシ樹脂Bの量を24重量部とし、アクリルゴム変成エポキシ樹脂を用いなかった以外は実施例1と同様に接着剤組成物を得た。
<Example 3>
The adhesive was the same as in Example 1 except that the amount of liquid epoxy resin A at 25 ° C. was 35 parts by weight, the amount of liquid epoxy resin B at 25 ° C. was 24 parts by weight, and no acrylic rubber-modified epoxy resin was used. A composition was obtained.

<実施例4>
25℃で液状のエポキシ樹脂Aの量を50重量部、25℃で液状のエポキシ樹脂Bの量を20重量部とした以外は実施例1と同様に接着剤組成物を得た。
<Example 4>
An adhesive composition was obtained in the same manner as in Example 1 except that the amount of the liquid epoxy resin A at 25 ° C. was 50 parts by weight and the amount of the liquid epoxy resin B at 25 ° C. was 20 parts by weight.

<比較例1>
所定時間攪拌後、25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生する状態で脱泡処理を終えた以外は実施例1と同様に接着剤組成物を得た。
<Comparative Example 1>
After stirring for a predetermined time, the adhesive composition was obtained in the same manner as in Example 1 except that the defoaming treatment was completed in a state where bubbles having a diameter of 1 mm or more were generated after being left for 2 minutes at 25 ° C. under a vacuum of 100 Pa. .

<比較例2>
所定時間攪拌後、25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生する状態で脱泡処理を終えた以外は実施例2と同様に接着剤組成物を得た。
<Comparative example 2>
After stirring for a predetermined time, the adhesive composition was obtained in the same manner as in Example 2 except that after leaving for 2 minutes under a vacuum of 25 ° C. and 100 Pa, the defoaming treatment was completed in a state where bubbles with a diameter of 1 mm or more were generated. .

<比較例3>
所定時間攪拌後、25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生する状態で脱泡処理を終えた以外は実施例3と同様に接着剤組成物を得た。
<Comparative Example 3>
After stirring for a predetermined time, the adhesive composition was obtained in the same manner as in Example 3 except that the defoaming treatment was completed in a state where bubbles having a diameter of 1 mm or more were generated after being allowed to stand at 25 ° C. under a vacuum of 100 Pa for 2 minutes. .

<比較例4>
所定時間攪拌後、25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生する状態で脱泡処理を終えた以外は実施例4と同様に接着剤組成物を得た。
<Comparative example 4>
After stirring for a predetermined time, the adhesive composition was obtained in the same manner as in Example 4 except that the defoaming treatment was completed in a state where bubbles having a diameter of 1 mm or more were generated after being allowed to stand at 25 ° C. under a vacuum of 100 Pa for 2 minutes. .

<比較例5>
25℃で液状のエポキシ樹脂Aの量を35重量部、25℃で液状のエポキシ樹脂Bの量を25重量部とし、コアシェル型粉末状重合体を用いなかった以外は実施例1と同様に接着剤組成物を得た。
<Comparative Example 5>
Adhesion was carried out in the same manner as in Example 1 except that the amount of liquid epoxy resin A at 25 ° C. was 35 parts by weight, the amount of liquid epoxy resin B at 25 ° C. was 25 parts by weight, and the core-shell powdered polymer was not used. An agent composition was obtained.

<比較例6>
25℃で液状のエポキシ樹脂Aの量を40重量部、25℃で液状のエポキシ樹脂Bの量を30重量部とし、エポキシ樹脂用硬化剤として、エポキシ樹脂用硬化剤C(四国化成社製、2E4MZ)10重量部を用いた以外は実施例1と同様に接着剤組成物を得た。
<Comparative Example 6>
The amount of the epoxy resin A that is liquid at 25 ° C. is 40 parts by weight, the amount of the epoxy resin B that is liquid at 25 ° C. is 30 parts by weight, and the curing agent for epoxy resin C (manufactured by Shikoku Kasei Co., Ltd., 2E4MZ) An adhesive composition was obtained in the same manner as in Example 1 except that 10 parts by weight were used.

<比較例7>
接着剤組成物の脱泡方法を、自転公転型攪拌機を使用せず、真空下(100Pa)で1時間静置する方法とした以外は、実施例1と同様に接着剤組成物を得た。
<Comparative Example 7>
An adhesive composition was obtained in the same manner as in Example 1 except that the defoaming method of the adhesive composition was a method in which the rotation and revolution type stirrer was not used and the mixture was allowed to stand for 1 hour under vacuum (100 Pa).

<比較例8>
コアシェル型粉末状重合体に替えて、シリコンゴム(東レダウコーニング社製、E−601)を用いた以外は、実施例1と同様に接着剤組成物を得た。

Figure 2012224733
<Comparative Example 8>
An adhesive composition was obtained in the same manner as in Example 1 except that silicon rubber (E-601, manufactured by Toray Dow Corning Co., Ltd.) was used instead of the core-shell type powdery polymer.
Figure 2012224733

上記結果から、自転公転型攪拌機により、脱泡処理を25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生しない状態まで行った場合には、高温高湿下に500時間放置後、及びPCT100時間後の接着強度が、優れていた(実施例1〜4)。また特に、マイクロカプセル型のエポキシ樹脂用潜在性硬化剤を用いた場合(実施例1、3、4)には、粘度安定性、接着強度、高温高湿下に500時間放置後、及びPCT100時間後の接着強度のいずれもが優れていた。   From the above results, when the defoaming treatment was allowed to stand for 2 minutes at 25 ° C. under a vacuum of 100 Pa with a rotation and revolution type stirrer until no bubbles with a diameter of 1 mm or more were generated, The adhesive strength after standing for time and after 100 hours of PCT was excellent (Examples 1 to 4). In particular, in the case of using a microcapsule type latent curing agent for epoxy resin (Examples 1, 3, and 4), after being left for 500 hours under viscosity stability, adhesive strength, and high temperature and high humidity, and for 100 hours of PCT. All of the subsequent adhesive strengths were excellent.

一方、脱泡処理を上記の状態まで行わなかった場合には、高温高湿下に500時間放置後、及びPCT100時間後の接着強度が低下した(比較例1〜4)。
また、コアシェル型粉末状重合体を用いなかった場合には、脱泡処理を25℃、100Paの真空度下で2分間放置後、直径1mm以上の気泡が発生しない状態まで行っても接着強度が低く、さらに加熱後の形状保持性が低かった(比較例5)。また、コアシェル型粉末状重合体の替わりにシリコンゴムを用いた場合には、加熱後の形状保持性が低かった(比較例8)。
On the other hand, in the case where the defoaming treatment was not performed up to the above state, the adhesive strength decreased after being left for 500 hours under high temperature and high humidity and after 100 hours of PCT (Comparative Examples 1 to 4).
Further, when the core-shell type powdered polymer was not used, the defoaming treatment was allowed to stand for 2 minutes at 25 ° C. under a vacuum degree of 100 Pa. The shape retention after heating was further low (Comparative Example 5). Moreover, when silicon rubber was used instead of the core-shell type powdery polymer, the shape retention after heating was low (Comparative Example 8).

エポキシ樹脂用の硬化剤として潜在型ではないものを用いた場合(比較例6)では、粘度安定性が低く、さらに高温高湿下に500時間放置後、及びPCT100時間後の接着強度が低かった。これは、接着剤組成物の脱泡処理時に発生した熱によって硬化剤がエポキシ樹脂と反応したためと推察される。
また、脱泡処理方法として、真空下で放置したのみでは、高温高湿下に500時間放置後、及びPCT100時間後の接着強度が低かった(比較例7)。これは、真空下での放置のみでは、十分に脱泡処理が行割れなかったためであると推察される。
When a non-latent type curing agent for an epoxy resin was used (Comparative Example 6), the viscosity stability was low, and the adhesive strength after standing for 500 hours under high temperature and high humidity and after 100 hours of PCT was low. . This is presumably because the curing agent reacted with the epoxy resin due to the heat generated during the defoaming treatment of the adhesive composition.
Moreover, as a defoaming treatment method, the adhesive strength after being left under high temperature and high humidity for 500 hours and after PCT 100 hours was low only by leaving under vacuum (Comparative Example 7). This is presumably because the defoaming treatment was not sufficiently broken by leaving it alone under vacuum.

本発明の接着剤組成物は、その組成物中に気泡を殆ど含んでおらず、少量ずつ塗布した場合にも、塗布量が変化することがない。したがって、半導体素子の接着等、種々の用途に使用可能な接着剤組成物である。   The adhesive composition of the present invention contains almost no bubbles in the composition, and the amount applied does not change even when applied in small amounts. Therefore, the adhesive composition can be used for various applications such as bonding of semiconductor elements.

Claims (9)

(A)融点が25℃以下のエポキシ樹脂と、
(B)重量平均粒子径が0.1〜3.0μmでありガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から成るコア20〜80重量%、及びガラス転移温度が70℃以上の(メタ)アクリレート系重合体から成るシェル80〜20重量%から構成され、軟化点が70℃以上のコアシェル型粉末状重合体と、
(C)エポキシ樹脂用潜在型硬化剤とを含有し、
前記(B)成分の含有量が前記(A)成分100重量部当たり10〜100重量部の範囲にあり、
E型粘度計で測定される25℃、2.5rpmでの粘度が0.1〜500Pa・sであり、
かつ25℃、100Paの真空度下で2分間放置後に直径1mm以上の気泡が発生しない、接着剤組成物。
(A) an epoxy resin having a melting point of 25 ° C. or lower;
(B) 20-80% by weight of a core composed of a (meth) acrylate polymer having a weight average particle diameter of 0.1 to 3.0 μm and a glass transition temperature of −30 ° C. or less, and a glass transition temperature of 70 ° C. or more. A core-shell type powdery polymer having a softening point of 70 ° C. or higher, comprising 80 to 20% by weight of a shell made of a (meth) acrylate polymer of
(C) containing a latent curing agent for epoxy resin,
The content of the component (B) is in the range of 10 to 100 parts by weight per 100 parts by weight of the component (A),
The viscosity at 25 ° C. and 2.5 rpm measured with an E-type viscometer is 0.1 to 500 Pa · s,
An adhesive composition in which bubbles having a diameter of 1 mm or more are not generated after being allowed to stand at 25 ° C. under a vacuum of 100 Pa for 2 minutes.
前記(B)成分が、
(メタ)アクリレート系単量体と架橋性単量体とを重合させて得られる、ガラス転移温度が−30℃以下の(メタ)アクリレート系重合体から成るコアと、
(メタ)アクリレート系単量体と、架橋性単量体と、必要に応じてこれらと共重合可能な単量体とをグラフト共重合させて得られる、ガラス転移温度が70℃以上の(メタ)アクリレート系共重合体からなり、平均厚さが50Å以上のシェルとからなる請求項1に記載の接着剤組成物。
The component (B) is
A core made of a (meth) acrylate polymer having a glass transition temperature of −30 ° C. or lower, obtained by polymerizing a (meth) acrylate monomer and a crosslinkable monomer;
A (meth) acrylate monomer, a crosslinkable monomer, and, if necessary, a monomer copolymerizable therewith, is obtained by graft copolymerization. The adhesive composition according to claim 1, comprising an acrylate copolymer and a shell having an average thickness of 50 mm or more.
前記(C)成分が、イミダゾール系硬化促進剤、又はアミノウレア系硬化促進剤であることを特徴とする請求項1又は2に記載の接着剤組成物。   The adhesive composition according to claim 1 or 2, wherein the component (C) is an imidazole curing accelerator or an aminourea curing accelerator. 前記イミダゾール系硬化促進剤が、マイクロカプセル型であることを特徴とする請求項3に記載の接着剤組成物。   The adhesive composition according to claim 3, wherein the imidazole curing accelerator is a microcapsule type. 205℃で5秒間加熱硬化した後のせん断接着強度が2×10Pa以上である請求項1〜4のいずれか一項に記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, wherein the shear adhesive strength after heat curing at 205 ° C for 5 seconds is 2 x 10 6 Pa or more. 半導体チップの接着に用いられる請求項1〜5のいずれか一項に記載の接着剤組成物。   The adhesive composition according to any one of claims 1 to 5, which is used for bonding a semiconductor chip. 請求項1〜6のいずれか一項に記載の接着剤組成物の製造方法であって、
前記エポキシ樹脂と、前記コアシェル型粉末状重合体と、前記エポキシ樹脂用潜在型硬化剤とを混合した後、自転公転型攪拌機により脱泡処理する、接着剤組成物の製造方法。
A method for producing an adhesive composition according to any one of claims 1 to 6,
A method for producing an adhesive composition, wherein the epoxy resin, the core-shell powder polymer, and the latent curing agent for epoxy resin are mixed and then defoamed with a rotation and revolution type stirrer.
請求項1〜6のいずれか一項に記載の接着剤組成物を硬化させた、接着剤組成物の硬化物。   Hardened | cured material of the adhesive composition which hardened the adhesive composition as described in any one of Claims 1-6. 請求項1〜6のいずれか一項に記載の接着剤組成物により接着された半導体素子を含む電子デバイス。
The electronic device containing the semiconductor element adhere | attached with the adhesive composition as described in any one of Claims 1-6.
JP2011093039A 2011-04-19 2011-04-19 Adhesive composition, production method of the same, cured material of the same, and electronic device using the same Pending JP2012224733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011093039A JP2012224733A (en) 2011-04-19 2011-04-19 Adhesive composition, production method of the same, cured material of the same, and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011093039A JP2012224733A (en) 2011-04-19 2011-04-19 Adhesive composition, production method of the same, cured material of the same, and electronic device using the same

Publications (1)

Publication Number Publication Date
JP2012224733A true JP2012224733A (en) 2012-11-15

Family

ID=47275279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011093039A Pending JP2012224733A (en) 2011-04-19 2011-04-19 Adhesive composition, production method of the same, cured material of the same, and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2012224733A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014090A (en) * 2014-07-01 2016-01-28 Dic株式会社 Heat adhesive sheet and article
KR20160113290A (en) 2014-03-14 2016-09-28 오므론 가부시키가이샤 Resin composition and cured product thereof
KR20160113714A (en) 2014-03-14 2016-09-30 오므론 가부시키가이샤 Method for curing resin composition
CN107573469A (en) * 2017-09-15 2018-01-12 江苏景宏新材料科技有限公司 A kind of preparation method of the Acrylate pressure-sensitive adhesive emulsion of block structure
WO2020196119A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Curable adhesive sheet and method for producing curable adhesive sheet
CN113748586A (en) * 2019-05-20 2021-12-03 蒂森克虏伯钢铁欧洲股份公司 Sheet material for producing electromagnetic components, in particular stator cores or rotor cores, and method for producing electromagnetic components
CN115651582A (en) * 2022-12-07 2023-01-31 河北工业大学 Preparation method of heat-conducting toughening insulating epoxy resin structural adhesive

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565391A (en) * 1991-09-04 1993-03-19 Nissan Motor Co Ltd Epoxy resin adhesive composition
JPH05214310A (en) * 1992-01-31 1993-08-24 Nissan Motor Co Ltd Epoxy resin adhesive composition
JPH07102223A (en) * 1993-09-30 1995-04-18 Nippon Zeon Co Ltd Adhesive tape
JPH08176408A (en) * 1994-12-22 1996-07-09 Sumitomo Bakelite Co Ltd Conductive resin paste
JPH1090699A (en) * 1996-09-17 1998-04-10 Three Bond Co Ltd Hardening type resin composition for sealing of liquid crystal and liquid crystal display panel using the same
JPH10168400A (en) * 1996-12-13 1998-06-23 Lintec Corp Sheetlike tacky body and its production
JP2000281759A (en) * 1999-04-01 2000-10-10 Mitsui Chemicals Inc Latent epoxy hardener and one-component epoxy resin composition containing the same
JP2003041226A (en) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc Paste material for connecting circuit
JP2003045235A (en) * 2001-07-27 2003-02-14 Mitsui Chemicals Inc Anisotropy conductive paste
JP2010077317A (en) * 2008-09-26 2010-04-08 Three M Innovative Properties Co Adhesive composition, adhesive film and usage thereof
WO2011003948A2 (en) * 2009-07-08 2011-01-13 Henkel Ag & Co. Kgaa Electrically conductive adhesives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0565391A (en) * 1991-09-04 1993-03-19 Nissan Motor Co Ltd Epoxy resin adhesive composition
JPH05214310A (en) * 1992-01-31 1993-08-24 Nissan Motor Co Ltd Epoxy resin adhesive composition
JPH07102223A (en) * 1993-09-30 1995-04-18 Nippon Zeon Co Ltd Adhesive tape
JPH08176408A (en) * 1994-12-22 1996-07-09 Sumitomo Bakelite Co Ltd Conductive resin paste
JPH1090699A (en) * 1996-09-17 1998-04-10 Three Bond Co Ltd Hardening type resin composition for sealing of liquid crystal and liquid crystal display panel using the same
JPH10168400A (en) * 1996-12-13 1998-06-23 Lintec Corp Sheetlike tacky body and its production
JP2000281759A (en) * 1999-04-01 2000-10-10 Mitsui Chemicals Inc Latent epoxy hardener and one-component epoxy resin composition containing the same
JP2003045235A (en) * 2001-07-27 2003-02-14 Mitsui Chemicals Inc Anisotropy conductive paste
JP2003041226A (en) * 2001-08-01 2003-02-13 Mitsui Chemicals Inc Paste material for connecting circuit
JP2010077317A (en) * 2008-09-26 2010-04-08 Three M Innovative Properties Co Adhesive composition, adhesive film and usage thereof
WO2011003948A2 (en) * 2009-07-08 2011-01-13 Henkel Ag & Co. Kgaa Electrically conductive adhesives

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160113290A (en) 2014-03-14 2016-09-28 오므론 가부시키가이샤 Resin composition and cured product thereof
KR20160113714A (en) 2014-03-14 2016-09-30 오므론 가부시키가이샤 Method for curing resin composition
US10138348B2 (en) 2014-03-14 2018-11-27 Omron Corporation Resin composition and cured product thereof
US10427394B2 (en) 2014-03-14 2019-10-01 Omron Corporation Method for curing resin composition
JP2016014090A (en) * 2014-07-01 2016-01-28 Dic株式会社 Heat adhesive sheet and article
CN107573469A (en) * 2017-09-15 2018-01-12 江苏景宏新材料科技有限公司 A kind of preparation method of the Acrylate pressure-sensitive adhesive emulsion of block structure
WO2020196119A1 (en) * 2019-03-28 2020-10-01 日東電工株式会社 Curable adhesive sheet and method for producing curable adhesive sheet
JP7405832B2 (en) 2019-03-28 2023-12-26 日東電工株式会社 Curable adhesive sheet and method for manufacturing the cured adhesive sheet
CN113748586A (en) * 2019-05-20 2021-12-03 蒂森克虏伯钢铁欧洲股份公司 Sheet material for producing electromagnetic components, in particular stator cores or rotor cores, and method for producing electromagnetic components
CN115651582A (en) * 2022-12-07 2023-01-31 河北工业大学 Preparation method of heat-conducting toughening insulating epoxy resin structural adhesive
CN115651582B (en) * 2022-12-07 2023-09-22 河北工业大学 Preparation method of heat-conducting toughened insulating epoxy resin structural adhesive

Similar Documents

Publication Publication Date Title
JP2012224733A (en) Adhesive composition, production method of the same, cured material of the same, and electronic device using the same
JP5349432B2 (en) Manufacturing method of electronic component device and resin composition sheet for sealing electronic component used therefor
TWI312363B (en)
JP5736776B2 (en) Vinyl polymer powder, curable resin composition, and cured product
CN102120927B (en) Adhesive composition for semiconductor device and die attach film
CN105555848B (en) The manufacturing method of semiconductor chip thermosetting encapsulation resin sheet and semiconductor package body
JPWO2013094759A1 (en) Polymer powder, curable resin composition and cured product thereof
JP5979006B2 (en) Vinyl polymer powder, curable resin composition, and cured product
JP5340558B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2012077129A (en) Resin composition and sealing material using the same
JP6371148B2 (en) Adhesive for camera modules
JP7343977B2 (en) Liquid epoxy resin composition for sealing and electronic component devices
JPWO2012132203A1 (en) Liquid crystal sealant, liquid crystal display panel manufacturing method using the same, and liquid crystal display panel
JP4752131B2 (en) Latent curing agent for epoxy resin and curable epoxy resin composition
JP2017095570A (en) Epoxy resin composition for adhesive film
JP5273745B2 (en) Overcoat material and semiconductor device using the same
JP2013127034A (en) Epoxy resin composition for sealing sheet-like electronic parts and electronic part device using the same
JPH0995600A (en) Thermosetting composition, composition for preparing the same and thermosetting film adhesive
JP2009138048A (en) Adhesive composition and adhesive film
JP6485721B1 (en) Method for manufacturing thermosetting sheet and method for sealing electronic component
JP2017197698A (en) Particle having core-shell structure and method for producing the same
JP6837237B2 (en) Die bonding agent
JP6321422B2 (en) Resin composition for sealing, method for producing the same, and resin-sealed semiconductor device
JP5074982B2 (en) Epoxy resin curing acceleration microcapsule and method for producing epoxy resin curing acceleration microcapsule
JP2005350618A (en) Liquefied epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130903

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028