JP2012224516A - Method for producing oxide single crystal - Google Patents

Method for producing oxide single crystal Download PDF

Info

Publication number
JP2012224516A
JP2012224516A JP2011094228A JP2011094228A JP2012224516A JP 2012224516 A JP2012224516 A JP 2012224516A JP 2011094228 A JP2011094228 A JP 2011094228A JP 2011094228 A JP2011094228 A JP 2011094228A JP 2012224516 A JP2012224516 A JP 2012224516A
Authority
JP
Japan
Prior art keywords
crystal
growth
interface
melt
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011094228A
Other languages
Japanese (ja)
Other versions
JP5601273B2 (en
Inventor
Tomio Kajigaya
富男 梶ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011094228A priority Critical patent/JP5601273B2/en
Publication of JP2012224516A publication Critical patent/JP2012224516A/en
Application granted granted Critical
Publication of JP5601273B2 publication Critical patent/JP5601273B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an oxide single crystal, with which a long garnet crystal without strain is grown with excellent reproducibility by producing no twist in a shape of the crystal, and suppressing occurrence of a facet on a flat growth interface.SOLUTION: In the method for producing the oxide single crystal, in which a raw material for the single crystal is put in a crucible in a furnace, heated and melted, and subsequently the oxide single crystal is grown by a rotating-pulling method in which a seed crystal is brought into contact with a raw material melt and a growing crystal is pulled up with rotation, pulling up of the growing crystal is started with initial rotation speed (ω) of 20 rpm or less, in succession a crystal diameter of the growing crystal is made to increase, interface inversion of the crystal is confirmed, and subsequently a shoulder part is formed by lowering the rotation speed (ω) so as to be in the range indicated by formula (1), ω×(L/L)>ω>ω×(L/L)(1). In formula, ω is rotation speed of the crystal after interface inversion, ωis initial rotation speed, Lis an initial depth of the melt, and L is a depth of the melt during crystal growing.

Description

本発明は、酸化物単結晶の製造方法に関し、より詳しくは、結晶形状の捩れを発生させること無く、且つフラットな成長界面でファセットの発生を抑制し、歪が無い長尺のガーネット結晶を再現性良く育成できる酸化物単結晶の製造方法に関するものである。   The present invention relates to a method for producing an oxide single crystal, and more specifically, reproduces a long garnet crystal without distortion by suppressing generation of facets at a flat growth interface without causing twisting of the crystal shape. The present invention relates to a method for producing an oxide single crystal that can be grown with good performance.

酸化物単結晶、例えばガーネット単結晶は、光部品に用いられる各種デバイス用の磁性ガーネット膜の製造に際して、液相エピタキシャル成長法用非磁性ガーネット基板として広く用いられている。前記磁性ガーネット膜は、ファラデー回転効果を有し、この効果を利用した光アイソレータ、光サーキュレータ又は光スイッチ等にファラデー回転子として用いられる。
ガーネット単結晶には、イットリウム・アルミニウム・ガーネット(YAG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶等があるが、YAG結晶は固体レーザー用材料として、GGG結晶は光アイソレーター用の希土類−鉄−ガーネット(RIG)膜育成用の基板として用いられている。
Oxide single crystals, such as garnet single crystals, are widely used as non-magnetic garnet substrates for liquid phase epitaxial growth in the production of magnetic garnet films for various devices used in optical components. The magnetic garnet film has a Faraday rotation effect, and is used as a Faraday rotator in an optical isolator, an optical circulator, an optical switch or the like using this effect.
Garnet single crystals include yttrium / aluminum / garnet (YAG) crystal, gadolinium / gallium / garnet (GGG) crystal, etc., but YAG crystal is a solid laser material, GGG crystal is a rare earth-iron- for optical isolator. It is used as a substrate for growing a garnet (RIG) film.

これら光学用途のガーネット結晶は、坩堝内で溶融した原料に種結晶をつけて回転させながら引き上げるというチョクラルスキー法(Cz法:回転引き上げ法)で一般に製造されている。
Cz法育成の原料融液内には、大きく分けて2種類の対流が発生している。一つは、融液内の温度差に起因する自然対流である。自然対流は、坩堝底外周部から坩堝壁に沿って上昇し、融液表面に到達した後に融液表面中心部に向かって流れ、中心部で坩堝底に向かって沈み込む。もう一つは、育成中の結晶の回転に起因し、融液に対し相対的に回転する成長界面がこれに触れる融液に与える遠心力によって生じる強制対流である。強制対流は、坩堝底中心部から育成中の結晶成長界面に向かって流れ、成長界面から坩堝外周部に向かう流れである。つまり、強制対流は、自然対流とは逆方向の流れである。
材料融液の自然対流は、融液の粘性や量、周囲の保温構造などによって変化し、強制対流は結晶の回転数によって変化するため、通常は、直胴部育成中に結晶の回転数を徐々に増加して強制対流を増加させ、自然対流と釣り合わせることで固液界面をフラットにしている。しかし、この操作は熟練した作業者でないと、固液界面がフラットになっていることを確認することができない。
These garnet crystals for optical use are generally produced by the Czochralski method (Cz method: rotational pulling method) in which a seed crystal is attached to a raw material melted in a crucible and pulled while rotating.
Two types of convection are generated in the raw material melt grown by the Cz method. One is natural convection due to the temperature difference in the melt. Natural convection rises along the crucible wall from the outer periphery of the crucible bottom, flows toward the melt surface center after reaching the melt surface, and sinks toward the crucible bottom at the center. The other is forced convection caused by the centrifugal force exerted on the melt in contact with the growth interface rotating relative to the melt due to the rotation of the growing crystal. Forced convection flows from the center of the crucible bottom toward the crystal growth interface being grown and from the growth interface toward the outer periphery of the crucible. That is, forced convection is a flow in the opposite direction to natural convection.
The natural convection of the material melt changes depending on the viscosity and amount of the melt, the surrounding heat retaining structure, etc., and the forced convection changes depending on the rotational speed of the crystal. The solid-liquid interface is made flat by gradually increasing the forced convection and balancing with natural convection. However, unless this operation is performed by a skilled worker, it cannot be confirmed that the solid-liquid interface is flat.

そのため材料融液の温度を測定し、フーリエ変換を行って温度変化を周波数成分ごとに分解し、結晶回転数より小さい周波数成分スペクトルをみつけることが提案され(特許文献1)、これにより、熟練した作業者でなくても、固液界面がフラットになっていることの確認が容易になり、このときの結晶回転数を維持することにより、結晶引き上げ方向に直交する向きの材料特性のばらつきを小さくすることができるとしている。
ガーネット結晶のCz法においては、融液内対流が自然対流優勢の下で育成すると成長界面が融液に対して凸となり、成長界面にファセットと呼ばれる原子オーダーで平滑な面が発達する。ファセット面における成長メカニズムはファセットを形成していない部分(オフファセット部)における成長メカニズムと異なるために、ファセット成長部とオフファセット成長部とでは原子の取り込み方が異なり、極僅かであるが結晶組成に差を生じる。結晶組成が異なると格子定数にも差が生じ、ファセット部とオフファセット部の境界で歪が発生する。この歪が発生した部分は、光学用途として用いることが出来ない。
Therefore, it is proposed to measure the temperature of the material melt, perform Fourier transform to decompose the temperature change for each frequency component, and find a frequency component spectrum smaller than the crystal rotation number (Patent Document 1). Even if it is not an operator, it is easy to confirm that the solid-liquid interface is flat, and by maintaining the crystal rotation speed at this time, variation in material properties in the direction perpendicular to the crystal pulling direction can be reduced. You can do that.
In the Cz method of garnet crystal, when the convection in the melt is grown under natural convection predominance, the growth interface becomes convex with respect to the melt, and a smooth surface in the atomic order called facet develops on the growth interface. The growth mechanism in the facet plane is different from the growth mechanism in the part where the facet is not formed (off-facet part), so the atomic incorporation is different between the facet growth part and the off-facet growth part. Make a difference. If the crystal composition is different, the lattice constant also varies, and distortion occurs at the boundary between the facet portion and the off-facet portion. The portion where this distortion occurs cannot be used for optical applications.

従来の育成方法では、前記のとおり、ファセットの発達を抑制するために、育成結晶がある程度の直径となった後に結晶の回転速度を速くして、結晶回転による強制対流を強くすることで成長界面形状を凸からほぼフラットとする界面反転という操作を行い、ファセットを消滅させていた(特許文献2)。
しかし、成長界面形状がフラットとなると結晶形状は捩れ易くなり、安定して結晶形状を制御するのが困難となる。結晶育成が進行し、坩堝内融液の残量が減少してくると、融液内温度差が減少し自然対流が弱くなるのに対して、結晶回転による強制対流は強くなるために、成長界面はフラットから凹に変化してしまい、益々、結晶形状の制御が困難となる。従って、従来は、結晶形状の捩れが発生する前に育成を終了していたために、投入原料量に対して得られる育成結晶の重量が制限されてしまい長尺結晶を育成するのは困難であった。
In the conventional growth method, as described above, in order to suppress facet development, the growth interface is increased by increasing the rotation speed of the crystal after the growth crystal has reached a certain diameter and strengthening forced convection due to crystal rotation. An operation called interface inversion to change the shape from convex to almost flat has been performed to eliminate facets (Patent Document 2).
However, when the growth interface shape is flat, the crystal shape is easily twisted, and it becomes difficult to stably control the crystal shape. As crystal growth progresses and the remaining amount of melt in the crucible decreases, the temperature difference in the melt decreases and natural convection becomes weaker, whereas forced convection due to crystal rotation becomes stronger. The interface changes from flat to concave, and it becomes increasingly difficult to control the crystal shape. Therefore, conventionally, since the growth was completed before the twist of the crystal shape occurred, it was difficult to grow a long crystal because the weight of the grown crystal was limited with respect to the amount of raw material input. It was.

特開2001−068884号公報JP 2001-068884 A 特開2005−29400号公報JP 2005-29400 A

本発明の目的は、結晶形状の捩れを発生させること無く、且つフラットな成長界面でファセットの発生を抑制し、歪が無い長尺のガーネット結晶を再現性良く育成できる酸化物単結晶の製造方法を提供することにある。   An object of the present invention is to provide a method for producing an oxide single crystal capable of growing a long garnet crystal without distortion with good reproducibility without generating a twist of the crystal shape and suppressing facet generation at a flat growth interface. Is to provide.

本発明者は、上記従来の問題点を解決するために鋭意研究を重ね、ガーネット結晶のような酸化物単結晶をCz法で育成するにあたり、結晶回転による強制対流によって成長界面の界面反転を誘起した後に、結晶成長に伴う融液量の減少速度に合わせて結晶の回転速度を特定条件で低下させることで、成長界面形状を一定に保ち長尺結晶を得ることが可能となることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned conventional problems, the present inventor has conducted extensive research, and when growing an oxide single crystal such as a garnet crystal by the Cz method, the inversion of the growth interface is induced by forced convection by crystal rotation. After that, by reducing the rotation speed of the crystal under specific conditions in accordance with the decrease rate of the melt amount accompanying crystal growth, it has been found that it is possible to obtain a long crystal while keeping the growth interface shape constant, The present invention has been completed.

すなわち、本発明の第1の発明によれば、炉体内のルツボに単結晶用原料を入れて加熱溶融した後、原料融液に種結晶を接触させて成長結晶を回転させながら引き上げる回転引き上げ法により酸化物単結晶を育成する酸化物単結晶の製造方法において、成長結晶の引き上げは、20rpm以下の初期回転速度(ω)で開始し、引き続き、成長結晶の結晶径を増大させ、結晶の界面反転を確認した後、回転速度(ω)を下記式(1)で示される範囲内に低下させて肩部を形成することを特徴とする酸化物単結晶の製造方法が提供される。
ω×(L/L) > ω > ω×(L/L1/4・・・ (1)
(式中、ωは界面反転後の結晶の回転速度、ωは初期回転速度、Lは初期融液深さ、Lは育成中の融液深さである)
That is, according to the first invention of the present invention, the single crystal raw material is put in the crucible in the furnace and heated and melted, and then the seed crystal is brought into contact with the raw material melt to pull the growth crystal while rotating it. In the method for producing an oxide single crystal by growing the oxide single crystal, the pulling of the grown crystal starts at an initial rotation speed (ω 0 ) of 20 rpm or less, and subsequently the crystal diameter of the grown crystal is increased. After confirming the interface reversal, a method for producing an oxide single crystal is provided in which the shoulder is formed by reducing the rotational speed (ω) within the range represented by the following formula (1).
ω 0 × (L / L 0 )>ω> ω 0 × (L / L 0 ) 1/4 (1)
(Where, ω is the rotational speed of the crystal after interface reversal, ω 0 is the initial rotational speed, L 0 is the initial melt depth, and L is the melt depth during growth)

また、本発明の第2の発明によれば、第1の発明において、酸化物単結晶は、イットリウム・アルミニウム・ガーネット(YAG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶、ネオジム・ガリウム・ガーネット(NGG)結晶、ガドリニウム・スカンジウム・ガリウム・ガーネット(GSGG)結晶、又はテルビウム・ガリウム・ガーネット(TGG)結晶から選ばれるガーネット結晶であることを特徴とする酸化物単結晶の製造方法が提供される。
また、本発明の第3の発明によれば、第1の発明において、結晶の界面反転は、成長結晶の結晶径の増大とともに回転速度を大きくすることによって誘起させることを特徴とする酸化物単結晶の製造方法が提供される。
また、本発明の第4の発明によれば、第1の発明において、界面反転時の成長結晶の結晶径は、直胴径の60%以上に増大させることを特徴とする酸化物単結晶の製造方法が提供される。
さらに、本発明の第5の発明によれば、第1の発明において、成長結晶の結晶径は、直胴径が50〜90mmであることを特徴とする酸化物単結晶の製造方法が提供される。
According to the second invention of the present invention, in the first invention, the oxide single crystal is an yttrium aluminum garnet (YAG) crystal, a gadolinium gallium garnet (GGG) crystal, or a neodymium gallium garnet. Provided is a method for producing an oxide single crystal, which is a garnet crystal selected from (NGG) crystal, gadolinium / scandium / gallium / garnet (GSGG) crystal, or terbium / gallium / garnet (TGG) crystal. .
According to the third aspect of the present invention, in the first aspect, the interface inversion of the crystal is induced by increasing the rotational speed as the crystal diameter of the grown crystal is increased. A method for producing a crystal is provided.
According to a fourth aspect of the present invention, there is provided the oxide single crystal according to the first aspect, wherein the crystal diameter of the grown crystal at the time of interface inversion is increased to 60% or more of the straight body diameter. A manufacturing method is provided.
Furthermore, according to the fifth aspect of the present invention, there is provided the method for producing an oxide single crystal according to the first aspect, wherein the crystal diameter of the grown crystal is 50 to 90 mm. The

本発明によれば、従来の育成方法では製造困難であった長尺で歪の無いガーネット結晶を安定して育成することができる。これにより得られた高品質のガーネット結晶は、固体レーザー用材料や光アイソレータ用材料を低コストで提供することが可能となる。   According to the present invention, it is possible to stably grow a long and distortion-free garnet crystal, which is difficult to manufacture by the conventional growing method. The high-quality garnet crystal thus obtained can provide a material for a solid laser or a material for an optical isolator at a low cost.

ガーネット結晶の育成において、結晶回転による成長界面の界面反転後の融液深さと結晶回転速度との関係を示したグラフである。5 is a graph showing the relationship between the melt depth after the inversion of the growth interface due to crystal rotation and the crystal rotation speed in growing garnet crystals.

以下、本発明の酸化物単結晶の製造方法について、図面を用いて詳細に説明する。   Hereafter, the manufacturing method of the oxide single crystal of this invention is demonstrated in detail using drawing.

すなわち、本発明の酸化物単結晶の製造方法では、炉体内のルツボに単結晶用原料を入れて加熱溶融した後、原料融液に種結晶を接触させて成長結晶を回転させながら引き上げる回転引き上げ法により酸化物単結晶を育成する方法において、成長結晶の引き上げは、20rpm以下の初期回転速度(ω)で開始し、引き続き、成長結晶の結晶径を増大させ、結晶の界面反転を確認した後、回転速度(ω)を特定の範囲内に低下させて肩部を形成する。 That is, in the method for producing an oxide single crystal according to the present invention, a single crystal raw material is put in a crucible in a furnace and heated and melted, and then a seed crystal is brought into contact with the raw material melt and the grown crystal is rotated while being rotated. In the method of growing an oxide single crystal by the method, the pulling of the growth crystal started at an initial rotation speed (ω 0 ) of 20 rpm or less, and subsequently the crystal diameter of the growth crystal was increased to confirm the interface inversion of the crystal. After that, the rotational speed (ω) is lowered within a specific range to form the shoulder.

(1)酸化物単結晶
本発明において、酸化物単結晶は、酸化物の種類によって制限されるわけではないが、ガーネット結晶、特に光学製品として用いられるイットリウム・アルミニウム・ガーネット(YAG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶、ネオジム・ガリウム・ガーネット(NGG)結晶、ガドリニウム・スカンジウム・ガリウム・ガーネット(GSGG)結晶、テルビウム・ガリウム・ガーネット(TGG)結晶等のガーネット結晶が挙げられる。このようなガーネット結晶には、ドーパントが添加されないアンドープ結晶だけでなく、Ca、Zr、Mg等のドーパントを添加した結晶も含まれる。
(1) Oxide single crystal In the present invention, the oxide single crystal is not limited by the type of oxide, but garnet crystals, particularly yttrium aluminum garnet (YAG) crystals used as optical products, gadolinium Examples of the garnet crystal include gallium garnet (GGG) crystal, neodymium gallium garnet (NGG) crystal, gadolinium scandium gallium garnet (GSGG) crystal, and terbium gallium garnet (TGG) crystal. Such a garnet crystal includes not only an undoped crystal to which a dopant is not added but also a crystal to which a dopant such as Ca, Zr, or Mg is added.

(2)引き上げ法
本発明のガーネット単結晶の育成方法において、用いる引き上げ法としては、特に限定されるものではなく、例えば高周波加熱方式であるチョクラルスキー法等の公知の方法及び育成炉を用いることが出来る。
(2) Pulling method In the growing method of the garnet single crystal of the present invention, the pulling method to be used is not particularly limited. For example, a known method such as the Czochralski method which is a high-frequency heating method and a growth furnace are used. I can do it.

育成炉としては、イリジウムのような貴金属で形成されたルツボと、ルツボの周囲に保温材としてアルミナなどで形成された炉材と、炉材の外側に加熱装置としての高周波コイルが配置された装置が使用される。装置には、融液表面を観察するための窓と、種結晶及び成長結晶をモニターするためのCCDカメラを設けておくことが望ましい。
例えば、目的の結晶組成により所定割合に調合した酸化物原料をイリジウム製坩堝に入れ、ガーネット単結晶では、1700〜1900℃に加熱して溶融し融液を得る。この融液に種結晶を接蝕させ、所定の結晶回転数で回転させながら、所定の速度で引き上げる。
単結晶の育成は、種結晶を融液に接触させ、上記のようにネック部を形成してから、回転数や引き上げ速度を調整して肩部を形成し、引き続き直胴部を形成する。このとき、放射温度計などを用いて単結晶と原料融液との界面近傍における融液表面の温度を測定することが好ましい。
As a growth furnace, a crucible formed of a noble metal such as iridium, a furnace material formed of alumina or the like as a heat insulating material around the crucible, and a high-frequency coil as a heating device arranged outside the furnace material Is used. The apparatus is desirably provided with a window for observing the melt surface and a CCD camera for monitoring the seed crystal and the grown crystal.
For example, an oxide raw material prepared in a predetermined ratio according to the target crystal composition is put in an iridium crucible, and in a garnet single crystal, heated to 1700 to 1900 ° C. and melted to obtain a melt. The seed crystal is in contact with the melt and pulled up at a predetermined speed while rotating at a predetermined crystal rotation speed.
In the growth of the single crystal, the seed crystal is brought into contact with the melt, the neck portion is formed as described above, the shoulder portion is formed by adjusting the rotation speed and the pulling speed, and the straight body portion is subsequently formed. At this time, it is preferable to measure the temperature of the melt surface in the vicinity of the interface between the single crystal and the raw material melt using a radiation thermometer or the like.

本発明の育成方法で用いる種結晶は、特に限定されものではなく、例えば目的のガーネット単結晶と格子定数の整合性の良いものが用いられるが、この中で、液相エピタキシャル成長法用の非磁性ガーネット基板を得る場合にはGdGa12結晶(格子定数1.238nm)又はNdGa12結晶(格子定数1.2509nm)が好ましい。 The seed crystal used in the growth method of the present invention is not particularly limited. For example, a crystal having good lattice constant matching with the target garnet single crystal is used, and among these, nonmagnetic for liquid phase epitaxial growth is used. When obtaining a garnet substrate, Gd 3 Ga 5 O 12 crystal (lattice constant 1.238 nm) or Nd 3 Ga 5 O 12 crystal (lattice constant 1.2509 nm) is preferable.

(3)融液深さと結晶回転速度との関係
種結晶を融液に接触させ引き上げていくと、原料融液は、結晶成長に伴って減少し、ルツボ内におけるその深さは浅くなり、このような原料融液の深さの変化に応じて、融液対流の発生原因も変わる。例えば、結晶成長初期において、原料融液が深いときは、ルツボやシードの回転等による強制対流が主であるが、原料融液が少なくなり、浅くなると、前記強制対流の影響は弱くなり、ヒータ加熱による自然対流が主となる。
(3) Relationship between melt depth and crystal rotation speed When the seed crystal is brought into contact with the melt and pulled up, the raw material melt decreases as the crystal grows, and its depth in the crucible becomes shallower. The cause of the melt convection changes according to the change in the depth of the raw material melt. For example, in the initial stage of crystal growth, when the raw material melt is deep, forced convection is mainly caused by crucible or seed rotation, but when the raw material melt is reduced and shallow, the influence of the forced convection becomes weaker, and the heater Natural convection by heating is the main.

材料融液の自然対流は、融液の粘性や量、周囲の保温構造などによって変化し、強制対流は結晶の回転数によって変化するため、通常は、直胴部育成中に結晶の回転数を徐々に増加して強制対流を増加させ、自然対流と釣り合わせることで固液界面をフラットにしていた。しかし、前記のとおり、この操作は熟練した作業者でないと、固液界面がフラットになっていることを確認することができなかった。
一般に、引き上げられた単結晶は、種結晶から形成された結晶成長の起点であるネック部、ネック部から結晶直径を増加させながら直胴部に到る肩部、及び所定の結晶直径で成長される直胴部からなるが、肩部においては、種結晶からの結晶成長の距離(以下、成長距離と呼称することがある。)にともない結晶直径が徐々に増加するため、直胴部とは異なる内部応力が発生するためである。これにより、肩部や肩部と直胴部の境界部分に結晶欠陥が導入されたり、肩部形状による内部歪みが原因で成長した結晶にクラックと呼ばれるヒビが入ったり、ときには結晶が割れてしまったりする等の不具合が発生していた。
The natural convection of the material melt changes depending on the viscosity and amount of the melt, the surrounding heat retaining structure, etc., and the forced convection changes depending on the rotational speed of the crystal. The solid-liquid interface was made flat by gradually increasing the forced convection and balancing with natural convection. However, as described above, unless this operation is performed by a skilled worker, it cannot be confirmed that the solid-liquid interface is flat.
In general, a pulled single crystal is grown with a neck portion that is a starting point of crystal growth formed from a seed crystal, a shoulder portion that reaches the straight body portion while increasing the crystal diameter from the neck portion, and a predetermined crystal diameter. In the shoulder, the crystal diameter gradually increases with the distance of crystal growth from the seed crystal (hereinafter sometimes referred to as growth distance). This is because different internal stresses are generated. As a result, crystal defects are introduced at the shoulder or the boundary between the shoulder and the straight body, cracks called cracks enter the crystal grown due to internal distortion due to the shoulder shape, and sometimes the crystal breaks. There was a problem such as falling out.

従来のシリコン単結晶製造においては、単結晶をCZ法で引き上げる際、シリコン融液面の高さが低くなるにつれ、融液と石英ルツボの接触面積が減少し、これに伴い石英ルツボからシリコン融液への酸素の溶け込み量が減少して結晶中の酸素濃度が減少し易く、その結果、シリコン単結晶の軸方向(引き上げ方向)における酸素濃度が不均一になり易いという問題があり、この問題に対処する為、ルツボの回転数を変化させる方法が考えられている。これは容器(ルツボ)の液体(融液)に対する相対的回転数が増大するほど液体への溶け込み量が大となるので、これより引き上げられた結晶中の酸素濃度が増すということを意図したものである。
一般的に、SiやGaAS、GaP等の半導体結晶のCz育成においては、このような坩堝回転が実施されているが、GGGをはじめとするガーネット結晶等の酸化物結晶のCz育成においては、育成に伴って坩堝が変形して行くために坩堝回転を行うことはできない。
In conventional silicon single crystal production, when the single crystal is pulled by the CZ method, the contact area between the melt and the quartz crucible decreases as the height of the silicon melt surface decreases. There is a problem that the amount of oxygen dissolved in the liquid decreases and the oxygen concentration in the crystal tends to decrease, and as a result, the oxygen concentration in the axial direction (pull-up direction) of the silicon single crystal tends to be uneven. In order to cope with this, a method of changing the rotation speed of the crucible is considered. This is intended to increase the concentration of oxygen in the crystal pulled up because the amount of dissolution into the liquid increases as the relative rotational speed of the container (crucible) with respect to the liquid (melt) increases. It is.
In general, such crucible rotation is performed in Cz growth of semiconductor crystals such as Si, GaAS, and GaP. In Cz growth of oxide crystals such as garnet crystals including GGG, growth is performed. As the crucible is deformed along with this, the crucible cannot be rotated.

本発明は、このような結晶形状の捩れを発生させること無く、且つフラットな成長界面でファセットの発生を抑制し、歪が無いガーネット結晶を再現性良く育成できる方法を提案するものである。   The present invention proposes a method capable of growing a garnet crystal free from strain with good reproducibility without generating such twisting of the crystal shape, suppressing the generation of facets at a flat growth interface.

本発明では、従来の手段とは異なり、融液レベルの低下に応じて結晶回転速度を変化させるようにする。
まず、育成開始時は低回転速度で育成を行い、結晶径の増大と供に回転速度も大きくすることによって界面反転を誘起する。回転速度や引き上げ速度は、特に制限されるわけではないが、回転速度は、20rpm(毎分20回転)以下とし、15〜20rpmとすることが好ましい。この界面反転は、肩部育成中、直胴部形成前に誘起させることが望ましい。
In the present invention, unlike the conventional means, the crystal rotation speed is changed according to the decrease in the melt level.
First, at the start of growth, the growth is performed at a low rotation speed, and the interface inversion is induced by increasing the rotation speed as the crystal diameter increases. The rotation speed and the pulling speed are not particularly limited, but the rotation speed is preferably 20 rpm (20 rotations per minute) or less, and preferably 15 to 20 rpm. It is desirable to induce this interface inversion before forming the straight body portion during shoulder growth.

結晶の界面反転は、成長結晶の結晶径の増大とともに回転速度を大きくすることによって誘起させることができる。界面反転は、結晶径、坩堝径、融液中の温度勾配、融液深さ、結晶回転速度に依存する。
このときの成長結晶の結晶径は、育成目標とする直胴径の60%以上に増大させることが好ましい。また、例えばガーネット結晶では、結晶径が50mm〜90mmで、坩堝径が100mm〜200mmの場合は、融液中の温度勾配は2℃/cm以下、初期融液深さは85mm以上の条件とすることが好ましい。
Inversion of the crystal interface can be induced by increasing the rotation speed as the crystal diameter of the grown crystal increases. The interface inversion depends on the crystal diameter, crucible diameter, temperature gradient in the melt, melt depth, and crystal rotation speed.
At this time, the crystal diameter of the grown crystal is preferably increased to 60% or more of the straight body diameter to be grown. For example, in the case of a garnet crystal, when the crystal diameter is 50 mm to 90 mm and the crucible diameter is 100 mm to 200 mm, the temperature gradient in the melt is 2 ° C./cm or less and the initial melt depth is 85 mm or more. It is preferable.

次に、本発明では、肩部育成時の結晶重量増加率の減少によって界面反転を確認した後、結晶回転数を特定の条件下で変化させるようにする。
図1は、GGG単結晶育成における融液深さと結晶回転速度との関係を示したグラフである。これは、育成プログラムにおける入力値であり、融液深さは、坩堝内にチャージした原料重量から育成中に連続的に測定している育成結晶重量の測定値を引いて坩堝内に残っている融液の重量を求め、その残融液量と坩堝内形状の断面積から深さを計算したものである。
本発明では、種々の条件で融液深さと結晶回転速度との関係を検討した結果、図1の■、◆でプロットした要領で結晶回転数を変化させることで、結晶の成長界面はほぼフラットに維持する事ができ、成長界面にファセットが出現することなく高品質結晶を安定して得ることができた。界面反転後は、育成結晶の形状を保つために、融液深さの低減に伴って回転速度を小さくしてゆく。本発明における結晶回転速度は、融液深さとの関係が、次の式(1)で示される範囲となる。これは、GGG単結晶だけでなく、GSGG単結晶をはじめとするガーネット結晶全ての育成に適用することが確認されている。
ω×(L/L) > ω > ω×(L/L1/4・・・ (1)
(式中、ωは界面反転後の結晶の回転速度、ωは初期回転速度、Lは初期融液深さ、Lは育成中の融液深さである)
Next, in the present invention, after confirming interface inversion by decreasing the crystal weight increase rate during shoulder growth, the crystal rotation speed is changed under specific conditions.
FIG. 1 is a graph showing the relationship between melt depth and crystal rotation speed in GGG single crystal growth. This is an input value in the growth program, and the melt depth remains in the crucible by subtracting the measured value of the weight of the grown crystal continuously measured during growth from the weight of the raw material charged in the crucible. The depth of the melt is calculated from the amount of the remaining melt and the cross-sectional area of the shape inside the crucible.
In the present invention, as a result of examining the relationship between the melt depth and the crystal rotation speed under various conditions, the crystal growth interface is substantially flat by changing the crystal rotation speed in the manner plotted by ■ and ◆ in FIG. Therefore, high quality crystals could be stably obtained without facets appearing at the growth interface. After the interface inversion, in order to maintain the shape of the grown crystal, the rotational speed is decreased with the reduction of the melt depth. The relationship between the crystal rotation speed and the melt depth in the present invention is in the range represented by the following formula (1). It has been confirmed that this applies not only to GGG single crystals but also to the growth of all garnet crystals including GSGG single crystals.
ω 0 × (L / L 0 )>ω> ω 0 × (L / L 0 ) 1/4 (1)
(Where, ω is the rotational speed of the crystal after interface reversal, ω 0 is the initial rotational speed, L 0 is the initial melt depth, and L is the melt depth during growth)

これに対して、結晶回転速度が、図1の△のように、式(1)の条件よりも速くなると、成長界面は凹となり、結晶外形がらせん状になってしまい、直胴部有効長が制限されてしまう。そして結晶回転速度が図1の×のように、式(1)の条件よりも遅くなると、成長界面は凸となり界面にファセットが発達し、結晶内に歪が生じてしまう。   On the other hand, when the crystal rotation speed becomes faster than the condition of the formula (1) as shown by Δ in FIG. 1, the growth interface becomes concave and the crystal outer shape becomes spiral, and the effective length of the straight body portion Will be limited. When the crystal rotation speed becomes slower than the condition of formula (1) as indicated by x in FIG. 1, the growth interface becomes convex and facets develop at the interface, and distortion occurs in the crystal.

結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度を調整して行う。また、結晶重量の変化は高周波誘導コイル投入電力にフィードバックして融液温度をコントロールする。   The crystal shape is adjusted by measuring the crystal weight during growth, deriving the diameter, growth rate, and the like by calculation, and adjusting the rotation speed and pulling speed. Also, the change in crystal weight is fed back to the power applied to the high frequency induction coil to control the melt temperature.

(4)得られる育成結晶
本発明によれば、得られる単結晶中には捩れは見られず、クラックもなく、光学的な歪も観察されないような優れた特性を有する育成結晶となる。また、育成された酸化物単結晶は、結晶性や均一性が高いので、ウエハーをスライスし、ポリッシュ研磨すれば、電子部品や光学用部品の材料とすることができる。ガーネット結晶からはファラデー回転効果を有する磁性ガーネット膜が得られ、この効果を利用した光アイソレータ、光サーキュレータ又は光スイッチ等にファラデー回転子として用いることができる。
(4) Obtained crystal to be obtained According to the present invention, a crystal to be grown has excellent characteristics such that no twist is observed, no cracks, and no optical distortion is observed in the obtained single crystal. Since the grown oxide single crystal has high crystallinity and uniformity, it can be used as a material for electronic parts and optical parts by slicing and polishing the wafer. From the garnet crystal, a magnetic garnet film having a Faraday rotation effect is obtained, and can be used as a Faraday rotator in an optical isolator, an optical circulator, an optical switch or the like using this effect.

以下に、実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これら実施例によって限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[実施例1]
サイズφ150mm×150mmHのIr製坩堝を用いて、Cz法で直胴部φ3inのGGG単結晶育成を行った。種結晶はφ7mmのGGG単結晶を用いた。育成炉は高周波誘導加熱式の単結晶育成炉を用いた。
純度4NのGdとGaを秤量、混合した後に、坩堝内にチャージして育成原料とした。原料チャージ後、加熱、昇温し原料を融解させた。原料融液の温度を調節し、種結晶を融液に浸して回転させながら引き上げることで結晶育成を開始した。育成開始時の結晶回転速度は15r.p.m.とした。育成中は、結晶形状の自動制御を行うために引き上げ軸に取り付けた重量センサーで結晶重量をモニターしている。
結晶径がφ70mmに達した時に結晶重量の減少が見られ、成長界面の反転が起こったことを確認できた。その後、結晶径がφ75mmまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ75mmを超えた時点で、図1のように、結晶回転速度を融液深さの変化15×(L/L)(結晶回転速度変化開始時の融液深さ:L、育成中の融液深さ:L)に従って低下させて行き、直胴部直径φ80mm、直胴部長さ100mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
得られた結晶の形状には捩れは見られず、クラックの発生も無かった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後は結晶離し時までフラットな界面で成長していることが判った。
結晶の直胴部からφ3in、厚さ1mmのサンプルを切り出し、サンプルの両端面を鏡面研磨後に偏光観察を行ったところ、光学的な歪は観察されず、光学用結晶として十分な結晶性であることが確認出来た。加えて、同サンプルの中心部1点と外周部4点の格子定数測定を行ったところ、平均値12.4Åに対して、最大値と最小値の差は0.0003Åと非常に均一性の高い結晶が得られたことが判った。この結果を表1に示す。
[Example 1]
Using an Ir crucible having a size φ150 mm × 150 mmH, a GGG single crystal was grown with a straight barrel portion φ3 in by the Cz method. As the seed crystal, a GGG single crystal of φ7 mm was used. A high-frequency induction heating type single crystal growth furnace was used as the growth furnace.
Gd 2 O 3 and Ga 2 O 3 having a purity of 4N were weighed and mixed, and then charged in a crucible to obtain a growth raw material. After charging the raw material, it was heated and heated to melt the raw material. Crystal growth was started by adjusting the temperature of the raw material melt and pulling it up while rotating the seed crystal in the melt. The crystal rotation speed at the start of growth was 15 r. p. m. It was. During the growth, the weight of the crystal is monitored by a weight sensor attached to the pulling shaft to automatically control the crystal shape.
When the crystal diameter reached φ70 mm, the crystal weight decreased and it was confirmed that the growth interface was reversed. Thereafter, the crystal rotation speed is 15 r. p. m. Kept. When the crystal diameter exceeds 75 mm, the crystal rotation speed is changed to the melt depth change 15 × (L / L 0 ) (the melt depth at the start of the crystal rotation speed change: L 0 , A single crystal having a straight body diameter of φ80 mm and a straight body length of 100 mm was grown by decreasing the melt depth during growth. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
No twist was observed in the shape of the obtained crystal, and no crack was generated. When the crystal was immersed in methylene iodide and the shape of the growth interface was observed under polarized light, it grew on the convex interface from the start of growth until the occurrence of interface inversion, and after the occurrence of interface inversion, it grew on the flat interface until the crystal was released I found out.
When a sample having a diameter of 3 mm and a thickness of 1 mm was cut out from the straight body of the crystal and both ends of the sample were subjected to polarization observation after mirror polishing, no optical distortion was observed, and the crystal was sufficient as an optical crystal. I was able to confirm. In addition, when a lattice constant measurement was performed at one point at the center and four points at the outer periphery of the sample, the difference between the maximum value and the minimum value was 0.0003 mm with respect to the average value of 12.4 mm. It was found that high crystals were obtained. The results are shown in Table 1.

[実施例2]
実施例1と同様の原料、種結晶、坩堝、育成装置を用いてφ3inのGGG育成を行った。
結晶径がφ70mmに達した時に結晶重量の減少が見られ、成長界面の反転が起こったことを確認できた。その後、結晶径がφ75mmまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ75mmを超えた時点で、図1のように、結晶回転速度を融液深さの変化15×(L/L1/4に従って低下させて行き、直胴部直径φ80mm、直胴部長さ100mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
得られた結晶の形状には捩れは見られず、クラックの発生も無かった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後は結晶離し時までほぼフラットな界面で成長していることが判った。
結晶の直胴部からφ3in、厚さ1mmのサンプルを切り出し、サンプルの両端面を鏡面研磨後に偏光観察を行ったところ、光学的な歪は観察されず、光学用結晶として十分な結晶性であることが確認出来た。加えて、同サンプルの中心部1点と外周部4点の格子定数測定を行ったところ、平均値12.4Åに対して、最大値と最小値の差は0.0005Åと非常に均一性の高い結晶が得られたことが判った。この結果を表1に示す。
[Example 2]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 1, φ3 inch GGG was grown.
When the crystal diameter reached φ70 mm, the crystal weight decreased and it was confirmed that the growth interface was reversed. Thereafter, the crystal rotation speed is 15 r. p. m. Kept. When the crystal diameter exceeds φ75 mm, as shown in FIG. 1, the crystal rotation speed is decreased according to the change in melt depth 15 × (L / L 0 ) 1/4 , and the straight body diameter φ80 mm, A single crystal having a trunk length of 100 mm was grown. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
No twist was observed in the shape of the obtained crystal, and no crack was generated. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it grew on the convex interface from the start of growth until the occurrence of interface inversion, and after the interface inversion, the interface was almost flat until the separation of the crystal. It turns out that it is growing.
When a sample having a diameter of 3 mm and a thickness of 1 mm was cut out from the straight body of the crystal and both ends of the sample were subjected to polarization observation after mirror polishing, no optical distortion was observed, and the crystal was sufficient as an optical crystal. I was able to confirm. In addition, when a lattice constant measurement was performed at one central part and four outer peripheral parts of the sample, the difference between the maximum value and the minimum value was 0.0005 mm with respect to the average value of 12.4 mm, which was very uniform. It was found that high crystals were obtained. The results are shown in Table 1.

[実施例3]
サイズφ100mm×100mmHのIr製坩堝を用いて、Cz法で直胴部φ2inのGSGG単結晶育成を行った。種結晶はφ7mmのGSGG単結晶を用いた。育成炉は高周波誘導加熱式の単結晶育成炉を用いた。
純度4NのGd、ScとGaを秤量、混合した後に、坩堝内にチャージして育成原料とした。原料チャージ後、加熱、昇温し原料を融解させた。原料融液の温度を調節し、種結晶を融液に浸して回転させながら引き上げることで結晶育成を開始した。育成開始時の結晶回転速度は15r.p.m.とした。育成中は、結晶形状の自動制御を行うために引き上げ軸に取り付けた重量センサーで結晶重量をモニターしている。
結晶径がφ45mmに達した時に結晶重量の減少が見られ、成長界面の反転が起こったことを確認できた。その後、結晶径がφ50mmまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ50mmを超えた時点で、結晶回転速度を融液深さの変化15×(L/L0)(結晶回転速度変化開始時の融液深さ:L0、育成中の融液深さ:L)に従って低下させて行き、直胴部直径φ55mm、直胴部長さ80mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
得られた結晶の形状には捩れは見られず、クラックの発生も無かった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後は結晶離し時までフラットな界面で成長していることが判った。
結晶の直胴部からφ2in、厚さ1mmのサンプルを切り出し、サンプルの両端面を鏡面研磨後に偏光観察を行ったところ、光学的な歪は観察されず、光学用結晶として十分な結晶性であることが確認出来た。加えて、同サンプルの中心部1点と外周部4点の格子定数測定を行ったところ、平均値12.6Åに対して、最大値と最小値の差は0.0002Åと非常に均一性の高い結晶が得られたことが判った。この結果を表1に示す。
[Example 3]
Using an Ir crucible of size φ100 mm × 100 mmH, GSGG single crystal growth of the straight barrel portion φ2 in was performed by the Cz method. A GSGG single crystal having a diameter of 7 mm was used as a seed crystal. A high-frequency induction heating type single crystal growth furnace was used as the growth furnace.
Gd 2 O 3 , Sc 2 O 3 and Ga 2 O 3 having a purity of 4N were weighed and mixed, and then charged in a crucible to obtain a growth raw material. After charging the raw material, it was heated and heated to melt the raw material. Crystal growth was started by adjusting the temperature of the raw material melt and pulling it up while rotating the seed crystal in the melt. The crystal rotation speed at the start of growth was 15 r. p. m. It was. During the growth, the weight of the crystal is monitored by a weight sensor attached to the pulling shaft to automatically control the crystal shape.
When the crystal diameter reached φ45 mm, the crystal weight decreased and it was confirmed that the growth interface was reversed. Thereafter, until the crystal diameter is 50 mm, the rotation speed of the crystal is 15 r. p. m. Kept. When the crystal diameter exceeds 50 mm, the crystal rotation speed is changed to melt depth change 15 × (L / L0) (melt depth at the start of crystal rotation speed change: L0, melt depth during growth: L), a single crystal having a straight barrel diameter of 55 mm and a straight barrel length of 80 mm was grown. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
No twist was observed in the shape of the obtained crystal, and no crack was generated. When the crystal was immersed in methylene iodide and the shape of the growth interface was observed under polarized light, it grew on the convex interface from the start of growth until the occurrence of interface inversion, and after the occurrence of interface inversion, it grew on the flat interface until the separation of the crystal. I found out.
When a sample having a diameter of 2 inches and a thickness of 1 mm was cut out from the straight body of the crystal, and polarized light was observed after mirror polishing of both end faces of the sample, no optical distortion was observed, and the crystal was sufficient as an optical crystal. I was able to confirm. In addition, when a lattice constant measurement was performed at one central portion and four outer peripheral portions of the sample, the difference between the maximum value and the minimum value was 0.0002 mm, which was very uniform with respect to the average value of 12.6 mm. It was found that high crystals were obtained. The results are shown in Table 1.

[実施例4]
実施例3と同様の原料、種結晶、坩堝、育成装置を用いてφ2inのGSGG育成を行った。
結晶径がφ45mmに達した時に結晶重量の減少が見られ、成長界面の反転が起こったことを確認できた。その後、結晶径がφ50mmまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ50mを超えた時点で、結晶回転速度を融液深さの変化15×(L/L0)1/4に従って低下させて行き、直胴部直径φ55mm、直胴部長さ80mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
得られた結晶の形状には捩れは見られず、クラックの発生も無かった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後は結晶離し時までほぼフラットな界面で成長していることが判った。
結晶の直胴部からφ2in、厚さ1mmのサンプルを切り出し、サンプルの両端面を鏡面研磨後に偏光観察を行ったところ、光学的な歪は観察されず、光学用結晶として十分な結晶性であることが確認出来た。加えて、同サンプルの中心部1点と外周部4点の格子定数測定を行ったところ、平均値12.6Åに対して、最大値と最小値の差は0.0003Åと非常に均一性の高い結晶が得られたことが判った。この結果を表1に示す。
[Example 4]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 3, φ2 inch GSGG was grown.
When the crystal diameter reached φ45 mm, the crystal weight decreased and it was confirmed that the growth interface was reversed. Thereafter, until the crystal diameter is 50 mm, the rotation speed of the crystal is 15 r. p. m. Kept. When the crystal diameter exceeds φ50 m, the crystal rotation speed is decreased according to the change in melt depth 15 × (L / L0) 1/4, and a single crystal having a straight barrel diameter of 55 mm and a straight barrel length of 80 mm Nurtured. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
No twist was observed in the shape of the obtained crystal, and no crack was generated. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it grew on the convex interface from the start of growth until the occurrence of interface inversion, and after the interface inversion, the interface was almost flat until the separation of the crystal. It turns out that it is growing.
When a sample having a diameter of 2 inches and a thickness of 1 mm was cut out from the straight body of the crystal, and polarized light was observed after mirror polishing of both end faces of the sample, no optical distortion was observed, and the crystal was sufficient as an optical crystal. I was able to confirm. In addition, when a lattice constant measurement was performed at one central part and four outer peripheral parts of the sample, the difference between the maximum value and the minimum value was 0.0003 mm with respect to the average value of 12.6 mm, which was very uniform. It was found that high crystals were obtained. The results are shown in Table 1.

[比較例1]
実施例1と同様の原料、種結晶、坩堝、育成装置を用いてφ3inのGGG育成を行った。この際、結晶の回転速度は育成開始から終了まで15r.p.m.で一定とした。
結晶径がφ70mmに達した時に結晶重量の減少が見られ、界面反転が発生したことが確認された。その後、図1のように、結晶回転速度を15.p.m.に保ったままで直胴部直径φ80mm、直胴長100mmの結晶育成を行った。結晶を融液から切り離し後、室温まで徐冷し、育成炉から結晶を取り出し評価した。
結晶にクラックは見られなかったが、直胴部を20mm程育成した時点から、結晶形状に螺旋階段状の捩れが見られた。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後はフラットな界面となったことが観察された。しかし、結晶成長が進行するに従って、界面形状は、フラットから凹へ変化して行った。成長界面形状が凹になった付近から結晶形状に捩れが発生していることが判った。
結晶形状が捩れているために、本結晶からφ3in基板を得られる部分は直胴部上部の20mm程度と非常に効率が悪く高コストな育成となった。この結果を表1に示す。
[Comparative Example 1]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 1, φ3 inch GGG was grown. At this time, the rotation speed of the crystal was 15 r. p. m. And constant.
When the crystal diameter reached φ70 mm, a decrease in crystal weight was observed, confirming that interface inversion occurred. Thereafter, as shown in FIG. p. m. The crystal was grown with a straight barrel diameter of φ80 mm and a straight barrel length of 100 mm. After separating the crystal from the melt, it was gradually cooled to room temperature, taken out of the growth furnace and evaluated.
Although no crack was observed in the crystal, a spiral staircase twist was observed in the crystal shape from the time when the straight body portion was grown about 20 mm. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it was observed that it grew on the convex interface from the start of growth until the occurrence of interface inversion, and became a flat interface after the occurrence of interface inversion. It was done. However, as the crystal growth progressed, the interface shape changed from flat to concave. It was found that the crystal shape was twisted from the vicinity where the growth interface shape was concave.
Since the crystal shape is twisted, the portion where the φ3 in substrate can be obtained from this crystal is about 20 mm above the straight body portion, which is very inefficient and costly. The results are shown in Table 1.

[比較例2]
実施例1と同様の原料、種結晶、坩堝、育成装置を用いてφ3inのGGG育成を行った。この際、結晶の回転速度は育成開始時は、15r.p.m.で一定とした。
結晶径がφ70mmに達した時に結晶重量の減少が見られ、界面反転が発生したことが確認された。その後、結晶径がφ75mmまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ75mmを超えた時点で、図1のように、結晶回転速度を融液深さの変化15×(L/Lに従って低下させて行き、直胴部直径φ80mm、直胴部長さ100mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
結晶にクラックは見られなかったが、切離し界面の形状は、融液側に15mm程度凸であった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後はフラットな界面となったことが観察された。しかし、結晶成長が進行するに従って、界面形状は、フラットから凸へ変化して行ったことが判った。加えて、界面形状が融液側に対して5mm以上凸となった付近から、結晶中に歪が発生していることが観察された。
結晶内の歪が残留しているために、本結晶からφ3in基板を得られる部分は直胴部上部の30mm程度と非常に効率が悪く高コストな育成となった。この結果を表1に示す。
[Comparative Example 2]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 1, φ3 inch GGG was grown. At this time, the rotation speed of the crystal was 15 r. p. m. And constant.
When the crystal diameter reached φ70 mm, a decrease in crystal weight was observed, confirming that interface inversion occurred. Thereafter, the crystal rotation speed is 15 r. p. m. Kept. When the crystal diameter exceeds φ75 mm, as shown in FIG. 1, the crystal rotation speed is decreased according to the change in melt depth 15 × (L / L 0 ) 2 , and the straight body diameter φ80 mm, the straight body length A single crystal having a thickness of 100 mm was grown. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
Although no crack was observed in the crystal, the shape of the separation interface was convex about 15 mm toward the melt side. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it was observed that it grew on the convex interface from the start of growth until the occurrence of interface inversion, and became a flat interface after the occurrence of interface inversion. It was done. However, it was found that the interface shape changed from flat to convex as crystal growth progressed. In addition, it was observed that distortion occurred in the crystal from the vicinity where the interface shape was 5 mm or more convex with respect to the melt side.
Since the strain in the crystal remains, the portion where the φ3 in substrate can be obtained from this crystal is about 30 mm in the upper part of the straight body part, which is very inefficient and costly. The results are shown in Table 1.

[比較例3]
実施例3と同様の原料、種結晶、坩堝、育成装置を用いてφ2inのGSGG育成を行った。この際、結晶の回転速度は育成開始から終了まで15r.p.m.で一定とした。
結晶径がφ45mmに達した時に結晶重量の減少が見られ、界面反転が発生したことが確認された。その後、結晶回転速度を15.p.m.に保ったままで直胴部直径φ55mm、直胴長80mmの結晶育成を行った。結晶を融液から切り離し後、室温まで徐冷し、育成炉から結晶を取り出し評価した。
結晶にクラックは見られなかったが、直胴部を20mm程育成した時点から、結晶形状に螺旋階段状の捩れが見られた。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後はフラットな界面となったことが観察された。しかし、結晶成長が進行するに従って、界面形状は、フラットから凹へ変化して行った。成長界面形状が凹になった付近から結晶形状に捩れが発生していることが判った。
結晶形状が捩れているために、本結晶からφ2in基板を得られる部分は直胴部上部の20mm程度と非常に効率が悪く高コストな育成となった。この結果を表1に示す。
[Comparative Example 3]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 3, φ2 inch GSGG was grown. At this time, the rotation speed of the crystal was 15 r. p. m. And constant.
When the crystal diameter reached φ45 mm, the crystal weight decreased, confirming that interface reversal occurred. Thereafter, the crystal rotation speed is changed to 15. p. m. The crystal was grown with a straight barrel diameter of 55 mm and a straight barrel length of 80 mm. After separating the crystal from the melt, it was gradually cooled to room temperature, taken out of the growth furnace and evaluated.
Although no crack was observed in the crystal, a spiral staircase twist was observed in the crystal shape from the time when the straight body portion was grown about 20 mm. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it was observed that it grew on the convex interface from the start of growth until the occurrence of interface inversion, and became a flat interface after the occurrence of interface inversion. It was done. However, as the crystal growth progressed, the interface shape changed from flat to concave. It was found that the crystal shape was twisted from the vicinity where the growth interface shape was concave.
Since the crystal shape is twisted, the portion from which the φ2in substrate can be obtained from this crystal is very inefficient and costly growing, about 20 mm above the straight body. The results are shown in Table 1.

[比較例4]
実施例3と同様の原料、種結晶、坩堝、育成装置を用いてφ2inのGSGG育成を行った。この際、結晶の回転速度は育成開始時には15r.p.m.で一定とした。
結晶径がφ45mmに達した時に結晶重量の減少が見られ、界面反転が発生したことが確認された。その後、結晶径がφ50mまでは、結晶の回転速度を15r.p.m.に保った。結晶径がφ50mmを超えた時点で、結晶回転速度を融液深さの変化15×(L/Lに従って低下させて行き、直胴部直径φ55mm、直胴部長さ80mmの単結晶を育成した。結晶を融液から切り離した後に、室温まで徐冷し、育成炉から結晶を取り出した。
結晶にクラックは見られなかったが、切離し界面の形状は、融液側に12mm程度凸であった。結晶をヨウ化メチレンに浸し、偏光下で成長界面形状の観察を行ったところ、育成開始から界面反転発生時までは凸界面で成長し、界面反転発生後はフラットな界面となったことが観察された。しかし、結晶成長が進行するに従って、界面形状は、フラットから凸へ変化して行ったことが判った。加えて、界面形状が融液側に対して4mm以上凸となった付近から、結晶中に歪が発生していることが観察された。
結晶内の歪が残留しているために、本結晶からφ2in基板を得られる部分は直胴部上部の25mm程度と非常に効率が悪く高コストな育成となった。この結果を表1に示す。
[Comparative Example 4]
Using the same raw material, seed crystal, crucible, and growth apparatus as in Example 3, φ2 inch GSGG was grown. At this time, the rotation speed of the crystal was 15 r. p. m. And constant.
When the crystal diameter reached φ45 mm, the crystal weight decreased, confirming that interface reversal occurred. Thereafter, the rotation speed of the crystal is 15 r. p. m. Kept. When the crystal diameter exceeds 50 mm, the crystal rotation speed is decreased according to the change in melt depth 15 × (L / L 0 ) 2 to obtain a single crystal having a straight body diameter of 55 mm and a straight body length of 80 mm. I grew up. After separating the crystal from the melt, it was gradually cooled to room temperature, and the crystal was taken out from the growth furnace.
Although no cracks were observed in the crystal, the shape of the separation interface was convex about 12 mm toward the melt side. When the crystal was immersed in methylene iodide and the growth interface shape was observed under polarized light, it was observed that it grew on the convex interface from the start of growth until the occurrence of interface inversion, and became a flat interface after the occurrence of interface inversion. It was done. However, it was found that the interface shape changed from flat to convex as crystal growth progressed. In addition, it was observed that distortion occurred in the crystal from the vicinity where the interface shape was 4 mm or more convex with respect to the melt side.
Since the strain in the crystal remains, the portion where the φ2 in substrate can be obtained from this crystal is about 25 mm in the upper part of the straight body portion, and the growth is very inefficient and expensive. The results are shown in Table 1.

Figure 2012224516
Figure 2012224516

「評価」
表1に示した結果から、実施例1〜4では、結晶の界面反転を確認した後、回転速度(ω)を式(1)で示される範囲内に低下させて肩部を形成したので、結晶形状の捩れや割れを発生させること無く、歪が無い十分に大きいガーネット結晶を育成できている。
これに対して、比較例1、3では、結晶の界面反転を確認した後も、回転速度(ω)を変化させずに肩部を形成したので、結晶形状の捩れが発生し、十分に大きいガーネット結晶を育成することができず、比較例2、4では、結晶の界面反転を確認した後、回転速度(ω)を式(1)で示される範囲外に変化させて肩部を形成したので、結晶歪が発生し、十分に大きいガーネット結晶を育成できなかった。
"Evaluation"
From the results shown in Table 1, in Examples 1 to 4, after confirming the interface reversal of the crystal, the rotational speed (ω) was reduced within the range represented by the formula (1) to form the shoulder, A sufficiently large garnet crystal without distortion can be grown without causing twisting or cracking of the crystal shape.
On the other hand, in Comparative Examples 1 and 3, since the shoulder was formed without changing the rotational speed (ω) even after confirming the crystal interface inversion, the crystal shape was twisted and sufficiently large. The garnet crystal could not be grown, and in Comparative Examples 2 and 4, after confirming the inversion of the interface of the crystal, the rotational speed (ω) was changed outside the range indicated by Formula (1) to form the shoulder. Therefore, crystal distortion occurred and a sufficiently large garnet crystal could not be grown.

本発明によれば、長尺で歪の無いガーネット結晶が得られ、この高品質のガーネット結晶は、固体レーザーや光アイソレータの材料として使用することができる。   According to the present invention, a long and distortion-free garnet crystal is obtained, and this high-quality garnet crystal can be used as a material for a solid-state laser or an optical isolator.

Claims (5)

炉体内のルツボに単結晶用原料を入れて加熱溶融した後、原料融液に種結晶を接触させて成長結晶を回転させながら引き上げる回転引き上げ法により酸化物単結晶を育成する酸化物単結晶の製造方法において、
成長結晶の引き上げは、20rpm以下の初期回転速度(ω)で開始し、引き続き、成長結晶の結晶径を増大させ、結晶の界面反転を確認した後、回転速度(ω)を下記式(1)で示される範囲内に低下させて肩部を形成することを特徴とする酸化物単結晶の製造方法。
ω×(L/L) > ω > ω×(L/L1/4・・・ (1)
(式中、ωは界面反転後の結晶の回転速度、ωは初期回転速度、Lは初期融液深さ、Lは育成中の融液深さである)
A single crystal raw material is put in a crucible in a furnace and heated and melted. Then, a seed crystal is brought into contact with the raw material melt, and the grown single crystal is grown by rotating and pulling up while rotating the grown crystal. In the manufacturing method,
The growth crystal is pulled up at an initial rotation speed (ω 0 ) of 20 rpm or less. Subsequently, after the crystal diameter of the growth crystal is increased and the interface inversion of the crystal is confirmed, the rotation speed (ω) is expressed by the following formula (1 The method for producing an oxide single crystal is characterized in that the shoulder portion is formed by lowering it within the range indicated by.
ω 0 × (L / L 0 )>ω> ω 0 × (L / L 0 ) 1/4 (1)
(Where, ω is the rotational speed of the crystal after interface reversal, ω 0 is the initial rotational speed, L 0 is the initial melt depth, and L is the melt depth during growth)
酸化物単結晶は、イットリウム・アルミニウム・ガーネット(YAG)結晶、ガドリニウム・ガリウム・ガーネット(GGG)結晶、ネオジム・ガリウム・ガーネット(NGG)結晶、ガドリニウム・スカンジウム・ガリウム・ガーネット(GSGG)結晶、又はテルビウム・ガリウム・ガーネット(TGG)結晶から選ばれるガーネット結晶であることを特徴とする請求項1に記載の酸化物単結晶の製造方法。   The oxide single crystal is an yttrium aluminum garnet (YAG) crystal, gadolinium gallium garnet (GGG) crystal, neodymium gallium garnet (NGG) crystal, gadolinium scandium gallium garnet (GSGG) crystal, or terbium. The method for producing an oxide single crystal according to claim 1, which is a garnet crystal selected from gallium garnet (TGG) crystals. 結晶の界面反転は、成長結晶の結晶径の増大とともに回転速度を大きくすることによって誘起させることを特徴とする請求項1に記載の酸化物単結晶の製造方法。   2. The method for producing an oxide single crystal according to claim 1, wherein the interface reversal of the crystal is induced by increasing the rotation speed as the crystal diameter of the grown crystal increases. 界面反転時の成長結晶の結晶径は、直胴径の60%以上に増大させることを特徴とする請求項1に記載の酸化物単結晶の製造方法。   The method for producing an oxide single crystal according to claim 1, wherein the crystal diameter of the grown crystal at the time of interface reversal is increased to 60% or more of the straight body diameter. 成長結晶の結晶径は、直胴径が50〜90mmであることを特徴とする請求項1に記載の酸化物単結晶の製造方法。   2. The method for producing an oxide single crystal according to claim 1, wherein the crystal diameter of the grown crystal is 50 to 90 mm.
JP2011094228A 2011-04-20 2011-04-20 Method for producing oxide single crystal Expired - Fee Related JP5601273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011094228A JP5601273B2 (en) 2011-04-20 2011-04-20 Method for producing oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094228A JP5601273B2 (en) 2011-04-20 2011-04-20 Method for producing oxide single crystal

Publications (2)

Publication Number Publication Date
JP2012224516A true JP2012224516A (en) 2012-11-15
JP5601273B2 JP5601273B2 (en) 2014-10-08

Family

ID=47275128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094228A Expired - Fee Related JP5601273B2 (en) 2011-04-20 2011-04-20 Method for producing oxide single crystal

Country Status (1)

Country Link
JP (1) JP5601273B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162673A (en) * 2013-02-25 2014-09-08 Tokuyama Corp Sapphire single crystal core and manufacturing method of the same
JP2015086108A (en) * 2013-10-31 2015-05-07 住友金属鉱山株式会社 Production method of non-magnetic garnet single crystal substrate
CN104746135A (en) * 2013-12-27 2015-07-01 成都晶九科技有限公司 Growth method of induction furnace planar-interface large-sized neodymium-doped yttrium aluminium garnet crystal
JP2015182937A (en) * 2014-03-25 2015-10-22 住友金属鉱山株式会社 Method of manufacturing gsgg monocrystal and method of manufacturing oxide garnet monocrystal film
JP2017145149A (en) * 2016-02-15 2017-08-24 住友金属鉱山株式会社 Nonmagnetic garnet single crystal substrate manufacturing method, and nonmagnetic garnet single crystal substrate
JP2017186189A (en) * 2016-04-04 2017-10-12 住友金属鉱山株式会社 Rearing method of nonmagnetic garnet single crystal
CN109338472A (en) * 2018-12-06 2019-02-15 上海超硅半导体有限公司 A method of eliminating YAG laser crystal tail portion cracking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243707A1 (en) * 2020-06-05 2021-12-09 眉山博雅新材料有限公司 High-uniformity crystal growth method and apparatus without annealing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435899A (en) * 1977-08-26 1979-03-16 Agency Of Ind Science & Technol Production of rare earth element gallium garnet single crystal
JPS54150377A (en) * 1978-05-18 1979-11-26 Sumitomo Electric Ind Ltd Upbringing method for single crystal
JPH08104594A (en) * 1994-09-30 1996-04-23 Hitachi Chem Co Ltd Method for growing single crystal
JP2010024071A (en) * 2008-07-16 2010-02-04 Fukuda Crystal Laboratory Piezoelectric single crystal and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435899A (en) * 1977-08-26 1979-03-16 Agency Of Ind Science & Technol Production of rare earth element gallium garnet single crystal
JPS54150377A (en) * 1978-05-18 1979-11-26 Sumitomo Electric Ind Ltd Upbringing method for single crystal
JPH08104594A (en) * 1994-09-30 1996-04-23 Hitachi Chem Co Ltd Method for growing single crystal
JP2010024071A (en) * 2008-07-16 2010-02-04 Fukuda Crystal Laboratory Piezoelectric single crystal and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014162673A (en) * 2013-02-25 2014-09-08 Tokuyama Corp Sapphire single crystal core and manufacturing method of the same
JP2015086108A (en) * 2013-10-31 2015-05-07 住友金属鉱山株式会社 Production method of non-magnetic garnet single crystal substrate
CN104746135A (en) * 2013-12-27 2015-07-01 成都晶九科技有限公司 Growth method of induction furnace planar-interface large-sized neodymium-doped yttrium aluminium garnet crystal
JP2015182937A (en) * 2014-03-25 2015-10-22 住友金属鉱山株式会社 Method of manufacturing gsgg monocrystal and method of manufacturing oxide garnet monocrystal film
JP2017145149A (en) * 2016-02-15 2017-08-24 住友金属鉱山株式会社 Nonmagnetic garnet single crystal substrate manufacturing method, and nonmagnetic garnet single crystal substrate
JP2017186189A (en) * 2016-04-04 2017-10-12 住友金属鉱山株式会社 Rearing method of nonmagnetic garnet single crystal
CN109338472A (en) * 2018-12-06 2019-02-15 上海超硅半导体有限公司 A method of eliminating YAG laser crystal tail portion cracking

Also Published As

Publication number Publication date
JP5601273B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP5601273B2 (en) Method for producing oxide single crystal
JP3901092B2 (en) Method for producing silicon single crystal
TWI639736B (en) Silicon wafer with homogeneous radial oxygen variation
TWI428481B (en) Silicon wafer and method for producing the same
WO2006117939A1 (en) Method for producing silicon wafer
KR102095597B1 (en) Manufacturing method of silicon single crystal
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP4193610B2 (en) Single crystal manufacturing method
WO2005080646A1 (en) Method for manufacturing single crystal semiconductor
JP6610417B2 (en) Method for growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP6436073B2 (en) Method for growing CaMgZr-substituted gadolinium / gallium / garnet single crystal
JP5299395B2 (en) Oxide single crystal growth method
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
JP2007008759A (en) Bismuth-substituted magnetic garnet film and its production method
JP6439733B2 (en) Nonmagnetic garnet single crystal growth method
JP2019182682A (en) Method for manufacturing nonmagnetic garnet single crystal
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP6922521B2 (en) How to grow non-magnetic garnet single crystal
JP6822109B2 (en) Bismuth-substituted rare earth iron garnet crystal film, its manufacturing method, and optical isolator
JP5944639B2 (en) Seeding method for TGG single crystal growth
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
JP2016056055A (en) METHOD FOR GROWING CaMgZr SUBSTITUTION TYPE GADOLINIUM GALLIUM GARNET (SGGG) SINGLE CRYSTAL
JP6933424B1 (en) How to grow SGGG single crystal and SGGG single crystal
JP6969091B2 (en) Non-magnetic garnet single crystal, non-magnetic garnet single crystal substrate, non-magnetic garnet single crystal manufacturing method, and non-magnetic garnet single crystal substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5601273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees