JP2012223731A - Formation method for pattern of titanium dioxide photocatalyst layer - Google Patents
Formation method for pattern of titanium dioxide photocatalyst layer Download PDFInfo
- Publication number
- JP2012223731A JP2012223731A JP2011095481A JP2011095481A JP2012223731A JP 2012223731 A JP2012223731 A JP 2012223731A JP 2011095481 A JP2011095481 A JP 2011095481A JP 2011095481 A JP2011095481 A JP 2011095481A JP 2012223731 A JP2012223731 A JP 2012223731A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- titanium dioxide
- forming
- dioxide photocatalyst
- oxide layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 29
- 230000015572 biosynthetic process Effects 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 28
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims abstract description 17
- 239000010936 titanium Substances 0.000 claims abstract description 15
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 15
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 42
- 230000001699 photocatalysis Effects 0.000 claims description 15
- 239000005871 repellent Substances 0.000 claims description 10
- 230000007261 regionalization Effects 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 7
- 230000002940 repellent Effects 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 50
- 230000000737 periodic effect Effects 0.000 description 49
- 238000012360 testing method Methods 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 230000000694 effects Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 210000000988 bone and bone Anatomy 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 210000000963 osteoblast Anatomy 0.000 description 4
- 239000012620 biological material Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000010478 bone regeneration Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000037182 bone density Effects 0.000 description 1
- 229910052800 carbon group element Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 229910021474 group 7 element Inorganic materials 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- -1 silver ions Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
Abstract
Description
本発明は、二酸化チタン光触媒層を所定パターンの配置で形成するパターン形成方法に関する。 The present invention relates to a pattern forming method for forming a titanium dioxide photocatalyst layer in a predetermined pattern arrangement.
二酸化チタンは、紫外線の照射によって、光触媒活性や超親水性等の特性を発揮する。二酸化チタンの超親水性の利用に関しては、例えば、二酸化チタンのコート層に紫外線を選択的に照射することにより、親水領域と疎水領域からなるパターンを形成する技術がある。この種の親水・疎水パターンは、オフセット印刷等の平版印刷への応用(例えば特許文献1)、マイクロ化学における反応・分析システムへの応用等が知られている。この他、親水・疎水パターンを生体材料の表面形状として付与することにより骨芽細胞をパターン形成方向に増殖させる骨配向化技術の開発が期待されている。親水・疎水パターンを得るための二酸化チタンのコート層の形成には、例えば、ゾル塗布法、有機チタネート法、蒸着法等が選択して用いられる(特許文献1)。 Titanium dioxide exhibits characteristics such as photocatalytic activity and superhydrophilicity when irradiated with ultraviolet rays. Regarding the utilization of the super hydrophilic property of titanium dioxide, for example, there is a technique of forming a pattern composed of a hydrophilic region and a hydrophobic region by selectively irradiating a titanium dioxide coating layer with ultraviolet rays. This type of hydrophilic / hydrophobic pattern is known for application to lithographic printing such as offset printing (for example, Patent Document 1), application to a reaction / analysis system in microchemistry, and the like. In addition, it is expected to develop a bone orientation technology that proliferates osteoblasts in the pattern formation direction by imparting a hydrophilic / hydrophobic pattern as the surface shape of the biomaterial. For forming a titanium dioxide coat layer for obtaining a hydrophilic / hydrophobic pattern, for example, a sol coating method, an organic titanate method, a vapor deposition method, or the like is selected and used (Patent Document 1).
また、上記パターンにおける親水領域とのコントラストを高めるために、疎水領域を撥水性の高い撥水領域として形成する技術が提案されている(特許文献2)。これは、基材に設けた酸化チタン等の光触媒含有層上にパターン化された金属層を設け、光触媒含有層及び金属層の上に撥水性薄膜層を形成し、光触媒含有層上の撥水性薄膜層を選択的に除去することにより、親水領域に対してパターン化された撥水領域を形成するものである。 In addition, in order to increase the contrast with the hydrophilic region in the pattern, a technique for forming the hydrophobic region as a highly water-repellent water-repellent region has been proposed (Patent Document 2). This is because a patterned metal layer is provided on a photocatalyst containing layer such as titanium oxide provided on a substrate, a water repellent thin film layer is formed on the photocatalyst containing layer and the metal layer, and the water repellency on the photocatalyst containing layer is formed. By selectively removing the thin film layer, a water-repellent region patterned with respect to the hydrophilic region is formed.
これらの形成工程中、光触媒含有層上にパターン化された金属層(例えば銀の層)を設けるためには、光触媒含有層上に銀イオン含有溶液を配置し、所定パターンを有するネガマスクを介して選択的に紫外線を照射する。これにより、光触媒含有層が触媒活性を発揮して銀イオンを還元し、紫外線を照射した領域に銀が析出する。また、光触媒含有層上の撥水性薄膜層を選択的に除去する工程では、光触媒含有層と金属層との全面に紫外線を照射することにより、光触媒粒子が撥水性薄膜層の構成成分を分解・除去し、光触媒含有層上の撥水性薄膜層が選択的に除去される。 In order to provide a patterned metal layer (for example, a silver layer) on the photocatalyst-containing layer during these forming steps, a silver ion-containing solution is disposed on the photocatalyst-containing layer, and a negative mask having a predetermined pattern is used. Selectively irradiate with ultraviolet rays. Thereby, the photocatalyst-containing layer exhibits catalytic activity to reduce silver ions, and silver is deposited in the region irradiated with ultraviolet rays. In the step of selectively removing the water-repellent thin film layer on the photocatalyst-containing layer, the photocatalyst particles decompose the constituents of the water-repellent thin film layer by irradiating the entire surface of the photocatalyst-containing layer and the metal layer with ultraviolet rays. The water-repellent thin film layer on the photocatalyst-containing layer is selectively removed.
しかしながら、上記各技術において、二酸化チタンコート層の形成をゾル塗布法、有機チタネート法または蒸着法で行う場合は、母材との一体化が十分得られず、剥離を生じやすいという問題がある。 However, in each of the above technologies, when the titanium dioxide coat layer is formed by a sol coating method, an organic titanate method, or a vapor deposition method, there is a problem in that sufficient integration with the base material cannot be obtained and peeling is likely to occur.
また、親水領域と撥水領域とを形成する場合は、上記塗布法等によれば母材との一体化が十分得られない上、遮光用金属層を形成するのに手間と時間とを要し、遮光用ネガマスクがパターン形成の自由度を制限するという問題がある。 Further, when forming the hydrophilic region and the water-repellent region, the above-described coating method cannot be sufficiently integrated with the base material, and it takes time and effort to form the light-shielding metal layer. However, there is a problem that the light-shielding negative mask limits the degree of freedom of pattern formation.
本発明は、これら従来技術の問題を解決し、母材と一体化した酸化層を簡便に形成し得る二酸化チタン光触媒層のパターン形成方法を提供することを目的とする。 An object of the present invention is to solve these problems of the prior art and to provide a pattern formation method for a titanium dioxide photocatalyst layer that can easily form an oxide layer integrated with a base material.
本発明は、前記目的を達成するため、チタンまたはチタン合金からなる基材表面に、レーザを加工閾値近傍の照射強度で照射し、照射領域をオーバーラップさせながら基材表面に対して相対移動させることにより、基材表面に粗面構造を所定パターンの配置で形成した後、酸化性雰囲気中で熱処理を施すことにより、ルチル型二酸化チタンを含有する酸化層を形成することを特徴とする二酸化チタン光触媒層のパターン形成方法を提供するものである。 In order to achieve the above object, the present invention irradiates a substrate surface made of titanium or a titanium alloy with an irradiation intensity near the processing threshold and moves the substrate relative to the substrate surface while overlapping the irradiation regions. And forming an oxide layer containing rutile-type titanium dioxide by forming a rough structure on the surface of the substrate in a predetermined pattern arrangement and then performing heat treatment in an oxidizing atmosphere. A method for forming a pattern of a photocatalyst layer is provided.
本発明に係る二酸化チタン光触媒層のパターン形成方法においては、チタンまたはチタン合金からなる基材表面に、レーザを加工閾値近傍の照射強度で照射し、照射領域をオーバーラップさせながら基材表面に対して相対移動させることにより、基材表面に粗面構造を所定パターンで形成する。そして、粗面構造形成後に、酸化性雰囲気中で熱処理を施すことにより、ルチル型二酸化チタンを含有する酸化層を形成する。この熱処理により、粗面構造の微細凹凸はさらに分断されて、より微細な凹凸を形成する。配向性の高い微細凹凸の場合は、分断後も元の直線に沿った幾何学的異方性が得られる。 In the pattern formation method of the titanium dioxide photocatalyst layer according to the present invention, the substrate surface made of titanium or a titanium alloy is irradiated with a laser at an irradiation intensity near the processing threshold, and the irradiation region is overlapped with respect to the substrate surface. By making the relative movement, a rough surface structure is formed in a predetermined pattern on the substrate surface. Then, after the rough surface structure is formed, an oxide layer containing rutile titanium dioxide is formed by performing heat treatment in an oxidizing atmosphere. By this heat treatment, the fine irregularities of the rough surface structure are further divided to form finer irregularities. In the case of fine irregularities with high orientation, geometric anisotropy along the original straight line can be obtained even after dividing.
このようにして、極めて微細な凹凸を伴った粗面構造が形成されることにより、アナターゼ型二酸化チタンだけでなく、ルチル型二酸化チタンも、高い光触媒性を示すこととなる。したがって、レーザ照射と熱処理という乾式処理によって基材表面に母材と一体化した二酸化チタン層を形成することができる。この粗面構造は、所定パターンで形成されることにより、該パターンで区分けされた二酸化チタン光触媒層が、光触媒活性や超親水性等の特性を発揮する。したがって、パターン形状を適宜決定することにより、二酸化チタン光触媒層の特性に基づく効果をパターン形状に応じた形で奏することができる。例えば、粗面構造を微細溝構造とし、該粗面構造の配置パターンを複数の線状領域からなるものとして、該線状領域の長手方向に沿って微細溝構造を形成することにより、超親水性効果を線状パターンの微細溝構造に沿って発揮させ、これに基づいて、骨芽細胞をパターン形成方向に増殖させる骨配向化技術に有効な手段を提供することができる。 Thus, by forming a rough surface structure with extremely fine irregularities, not only anatase type titanium dioxide but also rutile type titanium dioxide exhibits high photocatalytic properties. Therefore, a titanium dioxide layer integrated with the base material can be formed on the surface of the base material by dry processing such as laser irradiation and heat treatment. When this rough surface structure is formed in a predetermined pattern, the titanium dioxide photocatalyst layer divided by the pattern exhibits characteristics such as photocatalytic activity and super hydrophilicity. Therefore, by appropriately determining the pattern shape, an effect based on the characteristics of the titanium dioxide photocatalyst layer can be exhibited in a form corresponding to the pattern shape. For example, if the rough surface structure is a fine groove structure, and the arrangement pattern of the rough surface structure is composed of a plurality of linear regions, the fine groove structure is formed along the longitudinal direction of the linear regions, thereby forming a superhydrophilic structure. It is possible to provide an effective means for the bone orientation technique that exhibits the sexual effect along the fine groove structure of the linear pattern and grows osteoblasts in the pattern forming direction.
特に、レーザとして、フェムト秒レーザを用いれば、周辺領域への熱影響の少ない高精度な加工が可能となり、入射光と基板表面に沿った散乱光またはプラズマ波の干渉により、周期構造が形成される。 In particular, if a femtosecond laser is used as the laser, high-precision processing with little thermal influence on the surrounding area is possible, and a periodic structure is formed by interference between incident light and scattered light or plasma waves along the substrate surface. The
上記の通り、本発明によれば、母材と一体化した酸化層を簡便に形成し得る二酸化チタン光触媒層のパターン形成方法を提供することができる。 As described above, according to the present invention, it is possible to provide a pattern formation method for a titanium dioxide photocatalyst layer that can easily form an oxide layer integrated with a base material.
以下、本発明の実施形態について説明する。本発明に係る二酸化チタン光触媒層のパターン形成方法においては、チタンまたはチタン合金からなる基材表面に、レーザを加工閾値近傍の照射強度で照射し、照射領域をオーバーラップさせながら基材表面に対して相対移動させることにより、基材表面に粗面構造を形成する。 Hereinafter, embodiments of the present invention will be described. In the pattern formation method of the titanium dioxide photocatalyst layer according to the present invention, the substrate surface made of titanium or a titanium alloy is irradiated with a laser at an irradiation intensity near the processing threshold, and the irradiation region is overlapped with respect to the substrate surface. To make a rough structure on the surface of the substrate.
チタン合金としては、例えば、チタン基合金が挙げられ、5族元素(5A族元素)、6族元素(6A族元素)、7族元素(7A族元素)、鉄族元素、白金族元素、11族元素(1B族元素)、14族元素(4B族元素)、3族元素(3A族元素、ランタノイド、アクチノイド、ミッシュメタルを包含する)よりなる群から選択される元素の少なくとも1種を含有するもの、チタンとの金属間化合物を形成する元素の少なくとも1種を含有するもの、α相とβ相の混合組織からなるチタン基合金などを挙げることができる。 Titanium alloys include, for example, titanium-based alloys, group 5 elements (group 5A elements), group 6 elements (group 6A elements), group 7 elements (group 7A elements), iron group elements, platinum group elements, 11 Contains at least one element selected from the group consisting of group elements (group 1B elements), group 14 elements (group 4B elements), group 3 elements (including group 3A elements, lanthanoids, actinoids, and misch metals) And those containing at least one element forming an intermetallic compound with titanium, and titanium-based alloys composed of a mixed structure of α and β phases.
照射するレーザは、パルス状とされ、加工閾値近傍の照射強度で照射することにより、ショット毎に周期性をもった微細凹凸が形成され、照射領域をオーバーラップさせながら基材表面に対して相対移動させることにより、基材表面が粗面化される。この粗面構造は、直線偏光のレーザを用いた場合は、グレーティング状の凹凸による配向性の高い周期構造として形成される。一方、円偏光のレーザを用いた場合は、照射パルス毎に形成される突起状の周期構造が、照射位置の移動に伴い異方性のないランダムな微細凹凸として形成される。また、楕円偏光のフェムト秒レーザの場合は、楕円の扁平率が高いほど、異方性の高い微細凹凸が形成される。 The irradiating laser is pulsed, and by irradiating with an irradiation intensity near the processing threshold, fine irregularities with periodicity are formed for each shot, and relative to the substrate surface while overlapping the irradiation area By making it move, the base-material surface is roughened. When a linearly polarized laser is used, this rough surface structure is formed as a periodic structure with high orientation due to grating-like irregularities. On the other hand, when a circularly polarized laser is used, a protruding periodic structure formed for each irradiation pulse is formed as random fine irregularities without anisotropy as the irradiation position moves. In the case of an elliptically polarized femtosecond laser, finer irregularities with higher anisotropy are formed as the oblateness of the ellipse is higher.
なお、加工閾値近傍の照射強度とは、材料表面に形状や組織の変化を生じさせ得る限界的なエネルギ密度に近いエネルギ密度(フルエンス)を意味する。また、レーザが直線偏光、円偏光、楕円偏光であるというのは、主な偏光成分がこれらの偏光であることを意味しており、副次的に他の偏光成分を含むものであってもよい。 The irradiation intensity in the vicinity of the processing threshold means an energy density (fluence) close to a limit energy density that can cause a shape or structure change on the material surface. In addition, the fact that the laser is linearly polarized light, circularly polarized light, and elliptically polarized light means that the main polarized light components are those polarized light, and even if it contains other polarized light components as a secondary component. Good.
特に、レーザとして、フェムト秒レーザを用いれば、周辺領域への熱影響の少ない高精度な加工が可能となる。フェムト秒レーザの照射が行われると、材料表面にある欠陥、異物、結晶格子の不連続部位等が起点となって表面散乱光又はプラズマ波が発生し、これと入射光との干渉による周期的エネルギ強度分布に基づいて材料表面に周期構造が形成される。この不連続部位等は、レーザ照射前から材料表面に存在するものであっても、レーザ照射によって材料表面に発生したものでもよい。周期構造には、このようにして形成される初期的な周期構造も、それを元にして引き続いて形成される周期構造をも含む。 In particular, if a femtosecond laser is used as the laser, it is possible to perform high-precision processing with little thermal influence on the peripheral region. When femtosecond laser irradiation is performed, surface scattered light or plasma waves are generated starting from defects on the surface of the material, foreign matter, discontinuous parts of the crystal lattice, etc., and are periodically generated due to interference with incident light. A periodic structure is formed on the material surface based on the energy intensity distribution. The discontinuous portion or the like may be present on the material surface before laser irradiation or may be generated on the material surface by laser irradiation. The periodic structure includes an initial periodic structure formed in this manner and a periodic structure formed subsequently based on the initial periodic structure.
基材表面に粗面構造を形成した後、酸化性雰囲気中で熱処理を施す。酸化性雰囲気は、例えば大気下または同様の雰囲気とすることができる。この熱処理により、基材表面の粗面構造に結晶性の高い酸化層が形成されると共に、凹凸がより微細化して表面積が増大する。こうして、ルチル型二酸化チタンを含有する酸化層が基材表面に形成される。なお、これと共にアナターゼ型二酸化チタンも基材表面に形成されることがあるが、その含有率は低く、本発明において光触媒性を示すのは主としてルチル型二酸化チタンである。また、得られた酸化層は、微細凹凸が反射率を低減させるので、照射する紫外線を有効利用して光触媒性等の特性を効率的に発揮するという効果も得られる。 After the rough surface structure is formed on the substrate surface, heat treatment is performed in an oxidizing atmosphere. The oxidizing atmosphere can be, for example, the air or a similar atmosphere. By this heat treatment, an oxide layer with high crystallinity is formed on the rough surface structure of the substrate surface, and the unevenness is further refined to increase the surface area. Thus, an oxide layer containing rutile-type titanium dioxide is formed on the substrate surface. At the same time, anatase-type titanium dioxide may be formed on the surface of the substrate, but its content is low, and it is mainly rutile-type titanium dioxide that exhibits photocatalytic properties in the present invention. In addition, since the obtained unevenness of the oxide layer reduces the reflectance, it is possible to effectively utilize characteristics such as photocatalytic properties by effectively using the irradiated ultraviolet rays.
上記熱処理の温度は、500℃以上、600℃未満で行うのが望ましい。熱処理温度を500℃以上とすることにより、二酸化チタンの結晶化を促進することができる。一方、熱処理温度を600℃以上とすると、酸化層の凹凸構造が平滑化される傾向を示す。したがって、熱処理温度を500℃以上、600℃未満の範囲とすることにより、酸化層は、粗面構造の表面を増大するように成長し、光触媒性を高めることができる。 The temperature of the heat treatment is desirably 500 ° C. or higher and lower than 600 ° C. By setting the heat treatment temperature to 500 ° C. or higher, crystallization of titanium dioxide can be promoted. On the other hand, when the heat treatment temperature is 600 ° C. or higher, the uneven structure of the oxide layer tends to be smoothed. Therefore, by setting the heat treatment temperature in the range of 500 ° C. or more and less than 600 ° C., the oxide layer can grow to increase the surface of the rough structure, and the photocatalytic property can be enhanced.
形成する酸化層の厚さは、50〜200nmとするのが望ましい。酸化層の厚さを50nm以上とすることにより、光反射率のピークを長波長側にシフトさせ、紫外線の反射率を低減することができ、光触媒性を一段と高めることができる。一方、酸化層の厚さが200nmを越えると、凹凸構造が不明瞭となり十分な反射率低減効果が得られない。 The thickness of the oxide layer to be formed is desirably 50 to 200 nm. By setting the thickness of the oxide layer to 50 nm or more, the peak of light reflectance can be shifted to the longer wavelength side, the reflectance of ultraviolet rays can be reduced, and the photocatalytic property can be further enhanced. On the other hand, if the thickness of the oxide layer exceeds 200 nm, the concavo-convex structure is unclear and a sufficient reflectance reduction effect cannot be obtained.
直線偏光レーザを用いることにより、粗面構造を微細溝構造とし、酸化層に異方性を付与する場合は、微細溝構造の溝間隔を100nm〜10μmとするのが望ましい。微細溝構造の溝間隔を10μm以下とすることにより、粗面構造による表面積増加と光反射率低減の効果を高めることができる。特に、溝間隔を1μm以下とすれば、照射する紫外線の波長と同程度となり、光反射率の低減効果が顕著に高められ、光触媒性が一段と高くなる。一方、溝間隔が、100nm未満の場合は、熱処理により溝構造が酸化層で埋没する傾向を示し十分な異方性が得られない。
[実施例]
When using a linearly polarized laser to change the rough surface structure to a fine groove structure and impart anisotropy to the oxide layer, it is desirable that the groove interval of the fine groove structure be 100 nm to 10 μm. By setting the groove interval of the fine groove structure to 10 μm or less, the effect of increasing the surface area and reducing the light reflectivity due to the rough surface structure can be enhanced. In particular, when the groove interval is 1 μm or less, the wavelength is approximately the same as the wavelength of the ultraviolet rays to be irradiated, the light reflectivity reduction effect is remarkably enhanced, and the photocatalytic property is further increased. On the other hand, when the groove interval is less than 100 nm, the groove structure tends to be buried with the oxide layer by heat treatment, and sufficient anisotropy cannot be obtained.
[Example]
以下に本発明の実施例を説明する。この実施例は、フェムト秒レーザを用いた所定パターンの周期構造の形成と熱処理により、粗面構造の幾何学的異方性と超親水性による濡れ性の異方性とを併せもつチタン表面の創製を目的としたものである。 Examples of the present invention will be described below. In this example, the formation of a periodic structure with a predetermined pattern using a femtosecond laser and the heat treatment, the titanium surface having both the geometric anisotropy of the rough surface structure and the anisotropy of wettability due to the superhydrophilic property is obtained. It is for the purpose of creation.
1.背景
1-1. 骨再生における配向化
生体材料表面の表面形状および化学的性状が細胞反応に影響を及ぼすことが知られている。表面形状としてナノメートルオーダーの溝構造を付与した場合、骨芽細胞を溝方向に配向させることができる。また、化学的性状として超親水性を付与した場合、骨芽細胞の増殖が促進される。一方、骨は配向により高い力学機能を発揮しており、骨再生において骨密度の回復とともに、骨配向化の重要性が指摘されている。そのため、構造異方性に加えて濡れ性の異方性を併せもつインプラント材の開発が期待されている。
1. background
1-1. It is known that the surface shape and chemical properties of the oriented biomaterial surface in bone regeneration influence the cellular reaction. When a nanometer-order groove structure is provided as the surface shape, osteoblasts can be oriented in the groove direction. In addition, when super hydrophilicity is imparted as a chemical property, proliferation of osteoblasts is promoted. On the other hand, bone exhibits a high mechanical function by orientation, and the importance of bone orientation has been pointed out along with recovery of bone density in bone regeneration. Therefore, development of an implant material having both wettability anisotropy in addition to structural anisotropy is expected.
1-2. フェムト秒レーザによる周期構造
加工閾値近傍のエネルギー密度でフェムト秒レーザを照射すると、入射光と基板の表面に沿った散乱光またはプラズマ波の干渉により、グレーティング状の周期構造が自己組織的に形成される。そして、フェムト秒レーザをオーバーラップさせながら走査させることで、配向性の高い周期構造を広範囲に拡張することが可能である。周期構造の間隔は例えば、約700nm、深さは約200nmとすることができる。このようにして周期構造は、例えば5000〜10000本/秒という速い加工速度で形成することができる。
1-2. Periodic structure processing with a femtosecond laser When a femtosecond laser is irradiated at an energy density near the threshold, the grating-like periodic structure is self-organized due to interference between incident light and scattered light or plasma waves along the surface of the substrate. Formed. Then, by scanning the femtosecond laser while overlapping it, it is possible to expand the periodic structure with high orientation over a wide range. For example, the interval of the periodic structure can be about 700 nm and the depth can be about 200 nm. In this way, the periodic structure can be formed at a high processing speed of 5000 to 10,000 lines / second, for example.
1-3. チタン表面の超親水化
チタン表面にフェムト秒レーザにより周期構造を形成し、酸化性雰囲気中で熱処理(例えば、500℃以上、600℃未満)を行うことで光触媒機能が発現する。その結果、紫外線を照射することで表面を超親水化することができる。光触媒機能は周期構造形成または熱処理の単独プロセスでは発現せず、周期構造形成と熱処理の組み合わせが必要である。光触媒機能発現の大きな要因は、両プロセスの組合せによって、(i) 酸化膜表面積の増大、(ii) 紫外線反射率の低減、及び(iii) 結晶性の向上およびアナターゼ相の形成、が行われることである。
1-3. The photocatalytic function is manifested by forming a periodic structure with a femtosecond laser on the superhydrophilic titanium surface of the titanium surface and performing a heat treatment (for example, 500 ° C. or higher and lower than 600 ° C.) in an oxidizing atmosphere. As a result, the surface can be made superhydrophilic by irradiating with ultraviolet rays. The photocatalytic function does not appear in a single process of periodic structure formation or heat treatment, and a combination of periodic structure formation and heat treatment is required. The major factors for the development of the photocatalytic function are (i) increase in oxide film surface area, (ii) decrease in UV reflectance, and (iii) improvement in crystallinity and formation of anatase phase, depending on the combination of both processes. It is.
2. 実験方法
本発明に関して以下の2通りの実験を行った。第1の実験は、粗面構造を形成する二酸化チタン含有層を所定パターンで配置することによる効果を明らかにする実験であり、第2の実験は、上記効果を基礎付けるものであり、粗面構造を形成する二酸化チタン含有層が超親水性を示す効果を明らかにする実験である。
2. Experimental Method The following two experiments were conducted with respect to the present invention. The first experiment is an experiment to clarify the effect of disposing the titanium dioxide-containing layer forming the rough surface structure in a predetermined pattern, and the second experiment is based on the above effect. This is an experiment for clarifying the effect of the superficial hydrophilicity of the titanium dioxide-containing layer forming the structure.
A.第1の実験(配置パターンの効果)
A-1. 試験片
試験片には純チタン(1mm×25mm×25mm,純度99.5%)を用いた。試験片の表面仕上げは(i) バフ研磨(Ra 0.03μm)[比較例]、(ii) 全面パターン(バフ研磨面全面に周期構造形成)[比較例]、(iii) 間欠パターン(ラインアンドスペース1mm/1mmで周期構造形成)[本発明の実施例]の3種類とした。なお,ラインアンドスペースと周期構造の配向方向は同一方向とした。3種類の試験片に対し、エタノールで10分間超音波洗浄後、電気炉を用いて酸化膜形成および結晶化を目的とした熱処理を行った。熱処理方法は、昇温(10℃/min)−設定温度保持(525℃、30min)−炉冷とした。
A. First experiment (effect of arrangement pattern)
A-1. Specimen Pure titanium (1mm x 25mm x 25mm, purity 99.5%) was used for the specimen. The surface finish of the test piece is (i) buffing (Ra 0.03μm) [Comparative Example], (ii) full pattern (periodic structure formed on the whole buffing surface) [Comparative Example], (iii) intermittent pattern (line and space) 1 mm / 1 mm periodic structure formation) [Example of the present invention] The alignment direction of the line and space and the periodic structure was the same direction. Three types of test pieces were ultrasonically cleaned with ethanol for 10 minutes, and then subjected to heat treatment for the purpose of forming an oxide film and crystallization using an electric furnace. The heat treatment method was temperature rise (10 ° C./min)−set temperature hold (525 ° C., 30 min) −furnace cooling.
図1に周期構造試験片(未熱処理)の電子顕微鏡像を示す。この試験片は、チタン表面に、直線偏光のフェムト秒レーザを加工閾値近傍の照射強度でパルス照射し、照射領域をオーバーラップさせながら表面に対して相対移動させることにより、表面に微細溝からなる粗面構造を形成したものである。 FIG. 1 shows an electron microscope image of a periodic structure test piece (unheated). This test piece consists of fine grooves on the surface by irradiating the titanium surface with a linearly polarized femtosecond laser at an irradiation intensity in the vicinity of the processing threshold and moving it relative to the surface while overlapping the irradiation area. A rough surface structure is formed.
A-2. 水滴形状観察
3種類の試験片に対し、紫外線(中心波長360nm,蛍光灯型4W,作動距離25mm)を30分間照射後、純水を1ml(1マイクロリットル)滴下し水滴形状を観察した。
A-2. Water droplet shape observation
Three types of test pieces were irradiated with ultraviolet rays (center wavelength 360 nm, fluorescent lamp type 4 W, working distance 25 mm) for 30 minutes, and then 1 ml (1 microliter) of pure water was dropped to observe the shape of the water droplets.
A-3. 実験結果
30分間紫外線照射したバフ研磨試験片および全面パターン試験片の水滴写真を図4に示す。全面パターン試験片の水滴は光触媒機能による親水化のため、バフ研磨試験片の水滴より大きく広がった。周期構造の幾何学的異方性の影響のため、水滴形状は周期構造の配向方向を長軸方向とする楕円状となった。楕円が円に比べてどの程度扁平かを表す扁平率(1−短半径/長半径)は0.33であった。
A-3. Experimental results FIG. 4 shows a water droplet photograph of the buffing test piece and the entire surface pattern test piece irradiated with ultraviolet rays for 30 minutes. The water droplets on the whole surface pattern test piece spread larger than the water droplets on the buffing test piece due to the hydrophilization by the photocatalytic function. Due to the geometrical anisotropy of the periodic structure, the water droplet shape was elliptical with the orientation direction of the periodic structure as the major axis direction. The flatness ratio (1-short radius / long radius) representing how flat the ellipse is compared to the circle was 0.33.
紫外線未照射および30分間照射後の間欠パターン試験片の水滴写真を図8に示す。試験片の色の暗い部分が周期構造形成部分である。紫外線未照射の試験片[図8(a)]は光触媒機能が発現せず、水滴が大きく広がることはなかったが、周期構造とラインアンドスペースによる2種類の幾何学的異方性が存在する結果、水滴は短い扁平形状となり、その扁平率(1−短半径/長半径)は0.5となった。 FIG. 8 shows a water droplet photograph of the intermittent pattern test piece after irradiation with no ultraviolet light and irradiation for 30 minutes. The dark part of the color of the test piece is the periodic structure forming part. The test piece [FIG. 8 (a)] that was not irradiated with ultraviolet rays did not exhibit a photocatalytic function and water droplets did not spread greatly, but there were two types of geometric anisotropy due to the periodic structure and line and space. As a result, the water droplet had a short flat shape, and the flatness ratio (1-short radius / long radius) was 0.5.
間欠パターン試験片に30分間紫外線を照射したもの[図8(b)]は、周期構造形成部分だけが選択的に親水化するため、ラインアンドスペースの親水パターンが形成される。周期構造上に水滴を滴下すると、水滴は周期構造形成領域に沿って長い扁平形状となって広がり、その扁平率(1−短半径/長半径)は0.9よりやや大きい値となった。 In the case where the intermittent pattern test piece is irradiated with ultraviolet rays for 30 minutes [FIG. 8B], only the periodic structure forming portion is selectively hydrophilized, so that a line-and-space hydrophilic pattern is formed. When a water droplet was dropped on the periodic structure, the water droplet spread in a long flat shape along the periodic structure formation region, and the flatness ratio (1-short radius / long radius) was a value slightly larger than 0.9.
このように、ラインアンドスペースで周期構造を形成し、周期構造形成部を選択的に光触媒化することにより粗面構造の幾何学的異方性と濡れ性の異方性とを有するチタン表面が創製された。 In this way, by forming a periodic structure with line and space and selectively photocatalyzing the periodic structure forming portion, the titanium surface having the geometric anisotropy of the rough surface structure and the anisotropy of the wettability is obtained. It was created.
B.第2の実験(超親水性の実現)
B-1. 試験片
試験片には純チタン(1mm×25mm×25mm,純度99.5%)を用いた。試験片の表面仕上げは
(i) バフ研磨(Ra 0.03μm)[比較例]、(ii) 周期構造(バフ研磨面に周期構造形成)[本発明の超親水性を示す例]の2種類とした。2種類の試験片に対し、エタノールで10分間超音波洗浄後、電気炉を用いて酸化膜形成および結晶化を目的とした熱処理を行った。熱処理方法は、昇温(10℃/min)−設定温度保持(30min)−炉冷とした。
B. Second experiment (realization of super hydrophilicity)
B-1. Specimen Pure titanium (1mm x 25mm x 25mm, purity 99.5%) was used for the specimen. The surface finish of the test piece
(i) Buffing (Ra 0.03 μm) [Comparative example] (ii) Periodic structure (periodic structure formed on buffing surface) [Example showing super hydrophilicity of the present invention] The two types of test pieces were ultrasonically cleaned with ethanol for 10 minutes, and then subjected to heat treatment for the purpose of forming an oxide film and crystallization using an electric furnace. The heat treatment method was temperature rise (10 ° C./min)−set temperature hold (30 min) −furnace cooling.
B-2. 接触角測定
熱処理後、7日間大気暴露させた試験片に対し、紫外線(中心波長360nm,蛍光灯型4W,作動距離25mm)を所定の時間(5, 10, 15, 20, 30分)照射後、純水を1μl(マイクロリットル)滴下し、θ/2法で接触角の測定をした。比較のため、未熱処理試験片に対してエタノールで10分間超音波洗浄後、7日間大気暴露させ、同様の手順で接触角の測定をした。
B-2. After heat treatment for contact angle measurement, ultraviolet rays (center wavelength 360nm, fluorescent lamp type 4W, working distance 25mm) are applied to test pieces exposed to the atmosphere for 7 days for a predetermined time (5, 10, 15, 20, 30). Min) After irradiation, 1 μl (microliter) of pure water was dropped, and the contact angle was measured by the θ / 2 method. For comparison, the unheat-treated test piece was subjected to ultrasonic cleaning with ethanol for 10 minutes and then exposed to the atmosphere for 7 days, and the contact angle was measured in the same procedure.
B-3. 実験結果
水の接触角の測定結果を図2に示す。バフ研磨試験片[図2(a)]は全ての熱処理条件で紫外線照射(10分)による親水化は認められなかった。周期構造試験片[図2(b)]は熱処理温度500℃〜575℃の条件で紫外線照射による超親水化が認められた。なかでも熱処理温度575℃の試験片は紫外線未照射時の接触角が16°と小さく、紫外線照射後も最も低接触角を示した。しかし、未熱処理および熱処理温度600℃では親水化は認められなかった。また、図示していないが、熱処理温度450℃では若干の親水化しか認められなかった。
B-3. Experimental results Fig. 2 shows the measurement results of the water contact angle. The buffing specimen [FIG. 2 (a)] was not recognized to be hydrophilic by ultraviolet irradiation (10 minutes) under all heat treatment conditions. The periodic structure test piece [FIG. 2 (b)] was found to be superhydrophilic by ultraviolet irradiation under conditions of a heat treatment temperature of 500 ° C. to 575 ° C. In particular, the test piece with a heat treatment temperature of 575 ° C had a contact angle as small as 16 ° when not irradiated with ultraviolet rays, and showed the lowest contact angle even after ultraviolet irradiation. However, no hydrophilization was observed in the unheated and heat treated temperatures of 600 ° C. Although not shown, only slight hydrophilicity was observed at a heat treatment temperature of 450 ° C.
熱処理温度525℃の試験片における紫外線照射時の接触角変化を図3に示す。周期構造試験片では紫外線照射時間5分で接触角8.6°、30分で3.3°となった。最も低接触角を示した熱処理温度575℃の周期構造試験片では紫外線照射時間30分で接触角1.6°となった。 FIG. 3 shows the change in contact angle at the time of ultraviolet irradiation in a test piece having a heat treatment temperature of 525 ° C. In the periodic structure test piece, the contact angle was 8.6 ° after 5 minutes of ultraviolet irradiation, and 3.3 ° after 30 minutes. The periodic structure test piece having the lowest contact angle and a heat treatment temperature of 575 ° C. had a contact angle of 1.6 ° after 30 minutes of ultraviolet irradiation.
B-4. 実験結果の評価
周期構造形成と適切な熱処理(500℃〜575℃)の組み合わせで親水化が起こる原因として、(i) 結晶性の向上、(ii) 表面積の増大、(iii) 紫外線反射率の低減が挙げられる。図5にX線回折の結果を示す。熱処理によりルチル型二酸化チタンのピークが認められる。また、熱処理をした周期構造試験片では、わずかなアナターゼ型二酸化チタンのピークも現れる。親水化には結晶化が重要な要因であり、熱処理は必須であるが、周期構造有無による決定的な結晶性の違いは認められない。
B-4. Evaluation of experimental results The combination of periodic structure formation and appropriate heat treatment (500 ° C to 575 ° C) causes hydrophilization: (i) improved crystallinity, (ii) increased surface area, (iii) Reduction of ultraviolet reflectance can be mentioned. FIG. 5 shows the results of X-ray diffraction. The peak of rutile type titanium dioxide is recognized by heat treatment. In addition, a slight anatase-type titanium dioxide peak also appears in the heat-treated periodic structure specimen. Crystallization is an important factor for hydrophilization, and heat treatment is essential, but no definitive crystallinity difference due to the presence or absence of a periodic structure is observed.
図6に熱処理後の周期構造試験片の電子顕微鏡像を示す。熱処理温度575℃の試験片は未熱処理時(図1参照)より表面積が増大する形で酸化膜成長していることがわかる。表面積の増加が親水化に大きな影響を与えるため、熱処理と周期構造形成の組み合わせが親水化に有効であったと考えられる。一方、熱処理温度により酸化膜の成長形態に違いがあり、熱処理温度600℃の試験片は滑らかな凹凸になっていた。そのため、親水化しなかったものと考えられる。 FIG. 6 shows an electron microscope image of the periodic structure test piece after the heat treatment. It can be seen that the test piece having a heat treatment temperature of 575 ° C. grows an oxide film in a form in which the surface area is increased as compared with the case of non-heat treatment (see FIG. 1). Since the increase in the surface area has a great influence on the hydrophilization, it is considered that the combination of the heat treatment and the periodic structure formation was effective for the hydrophilization. On the other hand, the growth pattern of the oxide film was different depending on the heat treatment temperature, and the test piece with the heat treatment temperature of 600 ° C. had smooth unevenness. Therefore, it is thought that it did not hydrophilize.
図7に、熱処理後の周期構造試験片[図7(a)]、バフ研磨試験片[図7(b)]の分光反射率を示す。周期構造試験片は、図7のグラフの縦軸スケールからも分かるように、反射率が顕著に低くなっている。また、周期構造試験片は、熱処理温度が高くなると酸化膜厚さが増加するため、反射率のピークが長波長側にシフトする。熱処理温度575℃の周期構造試験片は紫外線(320nm〜410nm)反射率が低いため光触媒活性が向上し、最も親水化したものと考えられる。 FIG. 7 shows the spectral reflectance of the periodic structure test piece after heat treatment [FIG. 7A] and the buffing test piece [FIG. 7B]. The periodic structure test piece has a remarkably low reflectivity, as can be seen from the vertical scale of the graph of FIG. Further, in the periodic structure test piece, the oxide film thickness increases as the heat treatment temperature increases, so that the reflectance peak shifts to the longer wavelength side. It is considered that the periodic structure test piece having a heat treatment temperature of 575 ° C. has a low ultraviolet (320 nm to 410 nm) reflectivity and thus has improved photocatalytic activity and is most hydrophilic.
3.他の実施形態について
本発明は上記実施例に限定されるものでなく、例えば以下に説明するもの等、種々の形態を含むものである。
3. Other Embodiments The present invention is not limited to the above embodiments, and includes various forms such as those described below.
照射するレーザは、直線偏光レーザに代えて、円偏光レーザまたは楕円偏光レーザとしてもよい。基材表面に形成される二酸化チタン層の異方性は、円偏光レーザを用いた場合には表れず、楕円偏光レーザを用いた場合は低いものとなる。すなわち、円偏光レーザを加工閾値近傍の照射強度でパルス照射し、照射領域をオーバーラップさせながら基材表面に対して相対移動させることにより、基材表面に粗面構造を形成した場合は、照射パルス毎に形成される突起状の周期構造が、照射位置の移動に伴い異方性のないランダムな凹凸の粗面構造として形成される。そして、これに熱処理が加えられることにより凹凸がより微細化し、異方性のない微細凹凸を表面に備えた酸化層が形成される。 The laser to be irradiated may be a circularly polarized laser or an elliptically polarized laser instead of the linearly polarized laser. The anisotropy of the titanium dioxide layer formed on the surface of the substrate does not appear when a circularly polarized laser is used, and is low when an elliptically polarized laser is used. In other words, when a rough surface structure is formed on the surface of the substrate by irradiating the circularly polarized laser with a pulse at an irradiation intensity near the processing threshold and moving it relative to the substrate surface while overlapping the irradiation area, The protruding periodic structure formed for each pulse is formed as a rough surface structure with random irregularities without anisotropy as the irradiation position moves. Then, by applying heat treatment to this, the unevenness becomes finer, and an oxide layer having fine unevenness on the surface is formed.
楕円偏光レーザを用いる場合は、照射領域をオーバーラップさせながら、基材表面に対して相対移動させることにより、基材表面に粗面構造を形成する。こうして形成される粗面構造は、直線偏光レーザと円偏光レーザとの中間的な異方性を有したものとなり、楕円の扁平度が高いほど高い異方性が得られる。その後の熱処理による凹凸の微細化により異方性は低下するが、粗面構造の幾何学的異方性をもった酸化層が形成される。 In the case of using an elliptically polarized laser, a rough structure is formed on the surface of the base material by moving it relative to the surface of the base material while overlapping the irradiation regions. The rough surface structure thus formed has an intermediate anisotropy between the linearly polarized laser and the circularly polarized laser, and a higher anisotropy is obtained as the flatness of the ellipse is higher. Although the anisotropy is reduced by the subsequent miniaturization of the unevenness by the heat treatment, an oxide layer having a geometrical anisotropy of a rough surface structure is formed.
これに対し円偏光及び楕円偏光のいずれの照射の場合も、基材表面に形成される粗面構造からなる領域の配置を所定パターンとすることにより、該パターン形状による濡れ性の異方性が得られる。特に、粗面構造領域の配置パターンを複数の線状領域からなるものとすることにより、該線状領域に沿った濡れ性が発現する。さらに、該線状領域の長手方向に溝長手方向が沿うように前記微細溝構造を形成することにより、粗面構造の幾何学的異方性と濡れ性の異方性とを併せもつ表面形態が得られる。 On the other hand, in both cases of circularly polarized light and elliptically polarized light, the anisotropy of the wettability due to the pattern shape can be achieved by setting the arrangement of the region composed of the rough surface structure formed on the surface of the substrate to a predetermined pattern. can get. In particular, when the arrangement pattern of the rough surface structure region is composed of a plurality of linear regions, wettability along the linear regions is expressed. Further, by forming the fine groove structure so that the longitudinal direction of the linear region is along the longitudinal direction of the linear region, the surface morphology having both the geometric anisotropy of the rough surface structure and the anisotropy of the wettability is formed. Is obtained.
上記実施例では、二酸化チタンが示す特有の性質を超親水性として評価し、生体材料への適用について述べたが、本発明は、濡れ性パターニングを用いた熱伝達性能の向上や微量溶液操作、微粒子整列等の用途にも適用することができる。 In the above examples, the unique properties of titanium dioxide were evaluated as superhydrophilic, and application to biomaterials was described.However, the present invention improves heat transfer performance using wettability patterning and micro-solution operation, It can also be applied to applications such as fine particle alignment.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095481A JP5420584B2 (en) | 2011-04-21 | 2011-04-21 | Pattern formation method for titanium dioxide photocatalyst layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011095481A JP5420584B2 (en) | 2011-04-21 | 2011-04-21 | Pattern formation method for titanium dioxide photocatalyst layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012223731A true JP2012223731A (en) | 2012-11-15 |
JP5420584B2 JP5420584B2 (en) | 2014-02-19 |
Family
ID=47274527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011095481A Active JP5420584B2 (en) | 2011-04-21 | 2011-04-21 | Pattern formation method for titanium dioxide photocatalyst layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5420584B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140764A1 (en) * | 2012-03-22 | 2013-09-26 | アイシン精機株式会社 | Semiconductor device and method for manufacturing same |
WO2015156214A1 (en) * | 2014-04-09 | 2015-10-15 | Jx日鉱日石エネルギー株式会社 | Antifogging member and manufacturing method therefor |
JP2016101629A (en) * | 2014-11-28 | 2016-06-02 | デクセリアルズ株式会社 | Micro channel preparing master disk, transcript and manufacturing method of micro channel preparing master disk |
JP2019143195A (en) * | 2018-02-20 | 2019-08-29 | 日本製鉄株式会社 | Titanium material |
KR20200053369A (en) * | 2018-11-08 | 2020-05-18 | 한국생산기술연구원 | Color implementing method of metal surface using heat treatment and surface color implemented metal panel |
JP2021183707A (en) * | 2020-05-21 | 2021-12-02 | 株式会社高桑製作所 | Method for treating surface of titanium metal member, and titanium metal member obtained by surface treatment method of titanium metal member |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006043560A (en) * | 2004-08-03 | 2006-02-16 | Satoru Takahashi | Method and apparatus for forming figure |
JP2008095130A (en) * | 2006-10-06 | 2008-04-24 | Biito:Kk | Method for decorating titanium or titanium alloy and decorated article |
JP2008224781A (en) * | 2007-03-09 | 2008-09-25 | Dainippon Printing Co Ltd | Photocatalyst lithography method and template used therefor |
JP2010215438A (en) * | 2009-03-15 | 2010-09-30 | Tokyo Institute Of Technology | Titanium oxide film and method for forming the same |
-
2011
- 2011-04-21 JP JP2011095481A patent/JP5420584B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006043560A (en) * | 2004-08-03 | 2006-02-16 | Satoru Takahashi | Method and apparatus for forming figure |
JP2008095130A (en) * | 2006-10-06 | 2008-04-24 | Biito:Kk | Method for decorating titanium or titanium alloy and decorated article |
JP2008224781A (en) * | 2007-03-09 | 2008-09-25 | Dainippon Printing Co Ltd | Photocatalyst lithography method and template used therefor |
JP2010215438A (en) * | 2009-03-15 | 2010-09-30 | Tokyo Institute Of Technology | Titanium oxide film and method for forming the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013140764A1 (en) * | 2012-03-22 | 2013-09-26 | アイシン精機株式会社 | Semiconductor device and method for manufacturing same |
WO2015156214A1 (en) * | 2014-04-09 | 2015-10-15 | Jx日鉱日石エネルギー株式会社 | Antifogging member and manufacturing method therefor |
JPWO2015156214A1 (en) * | 2014-04-09 | 2017-04-13 | Jxエネルギー株式会社 | Anti-fogging member and method for producing the same |
JP2016101629A (en) * | 2014-11-28 | 2016-06-02 | デクセリアルズ株式会社 | Micro channel preparing master disk, transcript and manufacturing method of micro channel preparing master disk |
JP2019143195A (en) * | 2018-02-20 | 2019-08-29 | 日本製鉄株式会社 | Titanium material |
KR20200053369A (en) * | 2018-11-08 | 2020-05-18 | 한국생산기술연구원 | Color implementing method of metal surface using heat treatment and surface color implemented metal panel |
KR102186569B1 (en) * | 2018-11-08 | 2020-12-03 | 한국생산기술연구원 | Color implementing method of metal surface using heat treatment and surface color implemented metal panel |
JP2021183707A (en) * | 2020-05-21 | 2021-12-02 | 株式会社高桑製作所 | Method for treating surface of titanium metal member, and titanium metal member obtained by surface treatment method of titanium metal member |
Also Published As
Publication number | Publication date |
---|---|
JP5420584B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5420584B2 (en) | Pattern formation method for titanium dioxide photocatalyst layer | |
EP2671970B1 (en) | A method for depositing crystalline titania nanoparticles and films | |
LT6112B (en) | Active surface raman scater sensor and production method | |
US20160138155A1 (en) | Process for obtaining metal oxides by low energy laser pulses irradiation of metal films | |
Nedyalkov et al. | Laser-induced periodic structure formation in AlN ceramic | |
Siuzdak et al. | Review on robust laser light interaction with titania–Patterning, crystallisation and ablation processes | |
Artoshina et al. | Structural and physicochemical properties of titanium dioxide thin films obtained by reactive magnetron sputtering, on the surface of track-etched membranes | |
WO2011027872A1 (en) | Inorganic structure, method for producing same, and method for producing inorganic thin film | |
Zhang et al. | Superhydrophilic and highly transparent TiO2 films prepared by dip coating for photocatalytic degradation of methylene blue | |
WO2015022960A1 (en) | Visible light-responsive photocatalyst body and method for producing same | |
JP2010101918A (en) | Spectacles | |
Xu et al. | Light nurtures plants: The picosecond laser-induced lithops-like microstructures on titanium alloy surface with broad-band ultra-low reflectivity | |
Clouser et al. | Visible-light Photodegradation of Higher Molecular Weight Organics on N-doped TiO 2 Nanostructured Thin Films | |
JP5043164B2 (en) | Method for producing titanium dioxide photocatalyst | |
JP2007224370A (en) | MANUFACTURING METHOD OF TiO2 SPUTTER COATING FILM | |
JP2010096359A (en) | Refrigerating showcase | |
JP2002348665A (en) | Method for rapidly forming thin film of crystalline titanium oxide | |
JP7418477B2 (en) | Photocatalytic device and method for manufacturing photocatalytic device | |
Grandcolas et al. | Photocatalytic activity of TiO2 nanodome thin films | |
JP2017210636A (en) | Coating film formation method | |
JP2010101920A (en) | Camera | |
JP6745318B2 (en) | Fine structure, method for producing the same, and composition for producing fine structure | |
KR101595953B1 (en) | Method for iron oxide microwire pattern and iron oxide microwire pattern thereby | |
JP2009069215A (en) | Pattern formed body and method for manufacturing pattern formed body | |
Zheng et al. | Formation of nanostructures by femtosecond laser processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130812 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130812 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5420584 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |