WO2011027872A1 - Inorganic structure, method for producing same, and method for producing inorganic thin film - Google Patents

Inorganic structure, method for producing same, and method for producing inorganic thin film Download PDF

Info

Publication number
WO2011027872A1
WO2011027872A1 PCT/JP2010/065177 JP2010065177W WO2011027872A1 WO 2011027872 A1 WO2011027872 A1 WO 2011027872A1 JP 2010065177 W JP2010065177 W JP 2010065177W WO 2011027872 A1 WO2011027872 A1 WO 2011027872A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
film
treatment
inorganic
inorganic structure
Prior art date
Application number
PCT/JP2010/065177
Other languages
French (fr)
Japanese (ja)
Inventor
俊也 渡部
直哉 吉田
遼祐 横西
隆晶 今井
利典 大倉
幸信 横田
長川 陳
優子 柴山
章 中島
勤 古田
Original Assignee
国立大学法人東京大学
国立大学法人東京工業大学
財団法人神奈川科学技術アカデミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立大学法人東京工業大学, 財団法人神奈川科学技術アカデミー filed Critical 国立大学法人東京大学
Priority to JP2011529962A priority Critical patent/JPWO2011027872A1/en
Publication of WO2011027872A1 publication Critical patent/WO2011027872A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/35Exuding

Definitions

  • the present invention relates to an inorganic structure, a manufacturing method thereof, and a manufacturing method of an inorganic thin film.
  • the water-repellent surface is a thermodynamically stable surface with little adhesion of liquid or organic matter, it is widely used industrially as a dirt prevention surface or a droplet adhesion prevention surface.
  • a water-repellent polymer water-repellent coating
  • fluorine-based water-repellent coatings are used for the purpose of preventing liquid adhesion.
  • household goods such as frying pans are coated with fluorine for the purpose of preventing food adhesion (see, for example, JP-A-2008-212523).
  • is the contact angle
  • ⁇ SL is the solid (solid) -liquid (liquid) interfacial tension
  • ⁇ LV is the liquid (liquid) -vapor (gas) interfacial tension
  • ⁇ SV is solid (solid). Solid) -vapor (gas) interfacial tension.
  • the present inventors have conducted research and development to increase the water repellency of the inorganic surface as much as possible, but this time, the water-sliding surface on which water drops fall at a slight angle is coated with an oxide such as zirconia, alumina, or hafnia (inorganic thin film). ). Furthermore, the present inventors have been able to produce inorganic solids (glass articles and metal articles) having a water-sliding surface where water drops fall at a slight angle. The technology developed this time can be expected to be used in various applications as a super-durable water repellent coating technology.
  • the present invention has been made based on the above viewpoint. That is, there is a demand to provide an inorganic structure having a surface excellent in water droplet removal property (sliding property) and having excellent durability and a method for producing an inorganic structure capable of producing the inorganic structure. Yes. Moreover, it is required to provide a method for producing an inorganic thin film capable of producing an inorganic thin film having a surface excellent in water droplet removal property (sliding property) and further excellent in durability.
  • m is the mass of the water droplet
  • g is the acceleration of gravity
  • is the falling angle of the water droplet
  • is the width of the water droplet in the direction perpendicular to the direction in which the water droplet falls
  • ⁇ LV is the interfacial tension of liquid-vapor
  • ⁇ a is the advancing contact angle
  • ⁇ r is the receding contact angle.
  • rolling property of water drops This is determined by the contact angle hysteresis. That is, in order to improve dynamic water repellency, it is necessary to reduce the contact angle hysteresis.
  • ⁇ ′, r, ⁇ SV , ⁇ SL , ⁇ LV, and ⁇ are respectively the contact angle on the rough surface and the Wenzel roughness factor (actual surface area increased by the surface roughness). Divided by the apparent surface area), the solid-gas surface tension, the solid-liquid interfacial tension, the liquid-gas surface tension, and the contact angle on a smooth surface.
  • the hydrophilic surface is emphasized more hydrophilicly, and the water-repellent surface is emphasized more water-repellently.
  • the surface roughness should work in the direction of decreasing the contact angle. Therefore, the contact angle is increased by improving the surface smoothness as much as possible.
  • the influence of the surface roughness is remarkable, and the change in the direction indicated by the Wenzel equation can be confirmed.
  • the effect is not uniform over the entire region where the surface roughness changes, and the influence of the surface roughness is particularly large in the nanometer region.
  • the contact angle rapidly increases with the surface roughness (Ra) of 2 nm as a boundary.
  • the Wenzel effect is a correction of Young's formula, assuming that the increase in unevenness is an increase in contact area, and assumes the effect in the micrometer region where thermodynamic uniformity can be expected.
  • the Wenzel effect does not seem to have been predicted to be effective in the nanometer range, where intermolecular interactions are a problem.
  • the area of surface roughness of inorganic substances that has been measured as the Wenzel effect in previous studies is limited to the micrometer range, and the influence on the contact angle was evaluated over a wide range of surface roughness including the nanometer range.
  • Israelachvili points out 1) surface roughness or structural inhomogeneity, 2) chemical inhomogeneity, etc. (JN Israelachvili, translated by Yasuo Kondo / Hiroyuki Oshima, Force and surface force "2nd edition, Asakura Shoten (1996)). These are to reduce the advancing contact angle theta a, it is believed to be a factor to increase the receding contact angle theta r.
  • the present inventor has found that the correlation between the contact angle and the dynamic water repellency appears clearly by smoothing the organic water-repellent surface on the nanometer scale (N. Yoshida et. al, Journal of the American Chemical Society 128 (3), 743-747 (2006)).
  • ⁇ in the Wenzel equation exceeds 90 °, so the contact angle tends to decrease rather when the surface roughness is reduced.
  • the reason why the dynamic water repellency is improved is thought to be that the hysteresis cos ⁇ r -cos ⁇ a is reduced by reducing the surface roughness. Similar effects can be expected with inorganic oxides.
  • the water droplet When the receding surface of a water droplet falling on the alumina thin film is observed with an optical microscope, the water droplet does not recede uniformly, and it looks as if the water droplet is caught at that location (for example, see FIG. 2 described later). . Many points (resistance points) at which such water droplets are prevented from retreating are observed on the surface where the water droplets are not easily dropped. If the water drop receding surface is observed closely, it can be inferred that ⁇ r is reduced by such a resistance point.
  • the cause of the resistance point is considered to be a minute surface protrusion or depression, the presence of a chemical foreign substance, and a change in physical properties.
  • Hysteresis cos ⁇ r -cos ⁇ a can be reduced by eliminating such causes as much as possible and taking a complex means for making the physical and chemical properties of the surface uniform.
  • such a surface having excellent tumbling properties is considered to be in a state where the physical and chemical properties of the surface are extremely uniform and the number of resistance points is less than a certain level.
  • the present invention provides a coating with high surface smoothness by a sol-gel method to develop a high contact angle, and then performs steam treatment as a means for homogenizing the physical and chemical properties of the surface, and an inorganic structure. It is one of these four quadrants by performing steam treatment as a means to make the physical and chemical properties of the surface uniform, etc. “(4) The contact angle is not so high but the drop angle of the water droplet is low. It is clarified that an inorganic structure located in the “state exhibiting water repellency” is obtained. The material corresponding to the four quadrant (4) is a completely new material that has not been obtained in the past.
  • ⁇ 1> a step of preparing an inorganic structure material; A steam treatment step for reducing a water droplet falling angle on the surface of the inorganic structure material by steaming the inorganic structure material; The manufacturing method of the inorganic structure which has this.
  • the steam treatment is performed by exposing the inorganic structure material to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
  • ⁇ 3> The steam treatment according to ⁇ 1> or ⁇ 2>, wherein the steam treatment is performed by exposure to a steam atmosphere having a product of temperature (° C.) and relative humidity (%) of 2000 ° C. ⁇ % or more and 10,000 ° C.
  • a method for producing an inorganic structure ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, further comprising a pretreatment step of performing a pretreatment for removing organic substances on the surface of the inorganic structure material with respect to the inorganic structure material before the water vapor treatment step. 2.
  • ⁇ 6> Any one of ⁇ 1> to ⁇ 5>, including a post-treatment step of performing a heat treatment at a temperature not lower than the steam temperature and not higher than 300 ° C. as a post-treatment on the inorganic structure material after the water vapor treatment step.
  • the manufacturing method of the inorganic structure as described in a term.
  • ⁇ 7> The method for producing an inorganic structure according to any one of ⁇ 1> to ⁇ 6>, wherein the inorganic structure material includes at least one selected from a metal, an alloy, an inorganic oxide, and glass. .
  • the inorganic structure material is selected from the group consisting of an inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or alumina, ceria, titania, hafnia, and silica.
  • a coating film forming step of forming a coating film by coating a coating liquid containing a precursor of an inorganic oxide on a support A heat treatment step of heat-treating the formed coating film at a temperature of 300 ° C. or higher; A steam treatment step for reducing a water droplet falling angle on the surface of the heat-treated coating film by steam-treating the heat-treated coating film; The manufacturing method of the inorganic thin film which has.
  • ⁇ 10> An inorganic structure in which the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
  • ⁇ 11> Using a cantilever made of Si 3 N 4 having a spring constant in the thickness direction of 0.05 N / m and a pressing force of 14 nN, a region where the friction force measured by a friction force microscope is 10 nN or less, and Using a cantilever made of Si 3 N 4 having a spring constant in the thickness direction of 0.05 N / m and at a pressing pressure of 14 nN, at least in a region where the dynamic friction coefficient measured by a friction force microscope is 1.0 or less An inorganic structure containing one surface.
  • ⁇ 12> The inorganic structure according to ⁇ 10> or ⁇ 11> obtained by being treated in a steam atmosphere.
  • the inorganic structure according to any one of ⁇ 10> to ⁇ 12> comprising at least one selected from metals, alloys, inorganic oxides, and glass.
  • ⁇ 15> The inorganic structure according to any one of ⁇ 10> to ⁇ 14>, wherein a contact angle with water is 30 ° or more and a water drop falling angle is 40 ° or less.
  • ⁇ 16> The inorganic structure according to any one of ⁇ 11> to ⁇ 15>, wherein an average value of the frictional force on the surface is lower than that before the steam treatment.
  • ⁇ 17> The inorganic structure according to any one of ⁇ 11> to ⁇ 15>, wherein an average value of the frictional force on the surface is reduced to half or less than before the steam treatment.
  • ⁇ 18> The inorganic structure according to any one of ⁇ 10> to ⁇ 17>, wherein the surface roughness (Ra) is 2 nm or less.
  • a coating solution containing an inorganic oxide precursor is applied to form a film, which is then heat-treated at a temperature of 300 ° C. or higher, and further has a temperature of 30 ° C. or higher and 100 ° C. or lower and an absolute humidity of 15 g / m 3.
  • the inorganic structure according to any one of ⁇ 10> to ⁇ 18> which is an inorganic thin film obtained by steam treatment in the above steam atmosphere.
  • heat treatment is performed at a temperature of 300 ° C.
  • the glass article is further processed in a steam atmosphere at a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m 3 or more.
  • ⁇ 24> A structure having a support and the inorganic structure according to any one of ⁇ 10> to ⁇ 20> covering all or part of the support.
  • the steam treatment is performed by exposing the heat-treated coating film to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
  • the steam treatment is performed by exposing the heat-treated coating film to a steam atmosphere having a product of a temperature (° C.) and a relative humidity (%) of 2000 ° C. ⁇ % or more and 10,000 ° C. ⁇ % or less.
  • ⁇ 25> The method for producing an inorganic structure according to ⁇ 25>.
  • the steam treatment is performed by exposing the heat-treated hafnia film to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
  • the steam treatment is performed by exposing the heat-treated hafnia film to a steam atmosphere having a product of a temperature (° C.) and a relative humidity (%) of 2000 ° C. ⁇ % to 10,000 ° C. ⁇ % ⁇ 27 > Or ⁇ 28> The method for producing an inorganic structure according to ⁇ 28>.
  • a heat treatment step in which a glass material is heat-treated at a temperature of 100 ° C. or more and 500 ° C. or less, and the heat-treated glass material is exposed to a steam atmosphere having a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m 3 or more.
  • a steam treatment step for reducing a water droplet falling angle of the heat-treated glass material The manufacturing method of the glass article which has this.
  • an inorganic structure having a surface excellent in water droplet removal property (slidability) and further excellent in durability and a method for producing an inorganic structure capable of producing the inorganic structure.
  • the manufacturing method of the inorganic thin film which can manufacture the inorganic thin film which has the surface excellent in water-drop removal property (sliding property) and was excellent also in durability can be provided.
  • It is a microscope picture (magnification 3000 times).
  • It is a graph which shows the relationship between surface roughness (Ra) and water contact angle (degree).
  • FIG. 5 it is the graph which expanded and represented the range whose surface roughness (Ra) is 4 nm or less.
  • FIG. 6 is a graph showing a change in water contact angle in a hafnia-titania film (with water vapor treatment). It is a graph which shows the change of the water droplet fall angle in a hafnia-titania film
  • TiHAP titanium hydroxyapatite
  • FIG. 54B is a graph conceptually showing energy when the rear end surface of the water droplet moves from point A to point B in FIG. 54A.
  • FIG. 54B is a graph conceptually showing energy when the rear end surface of the water droplet moves from point A to point B in FIG. 54A.
  • Hafnia film is a graph showing the measurement results of the friction force (HfO 2). It is a graph which shows the measurement result of the frictional force of a quartz glass substrate (QG). It is a graph which shows the measurement result of the frictional force of a stainless steel substrate (SUS). It is a graph which shows the measurement result of the frictional force of the silicon wafer and sapphire glass which are not subjected to water vapor treatment. It is a graph which shows the relationship between the temperature of post-heat processing, a water contact angle (CA), and a water drop falling angle (SA) in soda-lime glass (SLG). In hafnia film (HfO 2), and the temperature of the post heat treatment, the water contact angle (CA) and water droplet sliding angle and (SA), is a graph showing the relationship.
  • 4 shows FT-IR measurement results (wave number range: 400 cm ⁇ 1 to 4000 cm ⁇ 1 ) of a water sliding treatment sample using silica ultrafine particles and silica ultrafine particles before water sliding treatment.
  • 4 shows FT-IR measurement results (wave number range: 1500 cm ⁇ 1 to 1850 cm ⁇ 1 ) of a water sliding treatment sample using silica ultrafine particles and silica ultrafine particles before water sliding treatment. It is a DTA / TG measurement result of the water slide treatment sample using silica ultrafine particles, and the silica ultrafine particles before water slide treatment.
  • the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
  • inorganic materials centered on oxides have essentially higher surface energy than organics and often exhibit hydrophilicity, making it difficult to apply to applications that require water repellency (applications that dislike water). It has been thought that there is.
  • water repellent coating materials such as fluorine compounds have been known as organic substances.
  • the water repellent coating material has a problem that it is difficult for water droplets to fall even when water is repelled, and it is difficult to remove water droplets. Thus, just because the water contact angle is high, the water drop falling angle is not necessarily low.
  • the water-repellent coating material is organic, there is a problem that durability is low.
  • the density of resistance points on the surface of the inorganic structure within the above range (that is, by reducing the number of singular points on the surface of the inorganic structure and improving the uniformity of the surface)
  • the water droplet removability is a property determined by the size of a water droplet falling angle described later. The smaller the water drop falling angle, the better the water drop removability (slidability).
  • the inorganic structure of the present invention is superior in durability, wear resistance, and safety compared to an organic structure such as an organic film.
  • the inorganic structure of the present invention can be a high-resistance inorganic structure, and in this case, the chargeability is also excellent.
  • the inorganic structure of the present invention may be in a thin film form (inorganic thin film form) or in a form other than a thin film form.
  • the form of the inorganic thin film refers to the form of the inorganic thin film formed on a support (which may be organic or inorganic). In this case, the inorganic thin film surface has water slidability.
  • the inorganic structure of the present invention in the form of an inorganic thin film may be referred to as “inorganic thin film of the present invention” or “inorganic thin film”. Specific examples of the inorganic thin film of the present invention will be described later.
  • the forms other than the thin film form are solid forms of any shape such as a plate shape, a cylindrical shape, a film shape, a spherical shape, a cylindrical shape, a polyhedral shape, an indefinite shape, and can exist independently without a support. Refers to the solid form. In this case, the surface of the solid itself has water slidability.
  • the inorganic structure of the present invention having a form other than a thin film may be referred to as “inorganic solid of the present invention” or “inorganic solid”. Specific examples of the inorganic solid of the present invention include glass articles and metal articles having the above shapes.
  • the density of resistance points that inhibit the sliding of water droplets on the surface of the inorganic structure is 10 pieces / 30 mm 2 or less.
  • the number of the resistance points per area of 30 mm 2 needs to be 10 or less.
  • the density of the resistance points that inhibit the sliding of water droplets refers to the value measured as follows. First, a transparent glass stage tilted at an angle of 60 degrees with respect to a horizontal plane using a goniometer was prepared. A glass substrate (sample) with an inorganic thin film was fixed on the transparent glass stage in such a direction that the surface on which the inorganic thin film was not formed and the surface of the transparent glass stage were in contact. Next, water droplets having a mass of 50 mg were deposited on the inorganic thin film, and the state of the water droplets sliding down the surface of the inorganic thin film was observed.
  • Observation was performed using a digital microscope VHX-1000 manufactured by Keyence Corporation at a magnification of 50 times (viewing range 5 mm ⁇ 6 mm) from a direction perpendicular to the surface of the inorganic thin film.
  • a mirror was installed under the glass stage so that the illumination of the digital scope was reflected and the shape of the water drop was made to stand out.
  • the observation result was recorded as a moving image at a shutter speed of 15 fps. By closely observing the recorded moving image, the resistance point density was measured.
  • the density of resistance points on the surface of an inorganic structure (inorganic solid) other than the inorganic thin film can also be measured by observing a 50 mg mass of water droplets sliding down the surface inclined at 60 degrees with respect to the horizontal plane according to the above method.
  • FIG. 1 is a graph showing the relationship between resistance point density and water drop falling angle, measured for each film of zirconia, alumina, ceria, titania, hafnia, and silica.
  • the horizontal axis in FIG. 1 represents the density of resistance points (pieces / 30 mm 2 ), that is, the number of resistance points per area of 30 mm 2 on the logarithmic axis.
  • the vertical axis in FIG. 1 represents the water drop falling angle (°) as a linear axis. As shown in FIG. 1, regardless of the type of film, 10/30 mm 2 by weight, the water droplet falling angle is rapidly increased, if it is 10/30 mm 2 or less water drop falling angle is confirmed to be reduced It was.
  • FIG. 2 is a photograph when an alumina film (a contact angle of 41 °, water droplets spread without wetting) is used as the inorganic thin film.
  • a contact angle 41 °, water droplets spread without wetting
  • FIG. 2 when a water drop fell on the surface of this film, a resistance point was observed on the trailing edge of the water drop (arrow in FIG. 2). Further, the rear end line is not smooth and irregularities can be confirmed. Since the water contact angle is small, interference fringes can be confirmed in the water droplets.
  • FIG. 2 is a photograph when an alumina film (a contact angle of 41 °, water droplets spread without wetting) is used as the inorganic thin film.
  • FIG. 3 is a photograph when a sputtered titania film (contact angle 56 °, water droplets spread without falling) is used as the inorganic thin film. As shown in FIG. 3, when a water drop fell on the surface of this film, a resistance point was observed on the trailing edge of the water drop (arrow in FIG. 3). Further, the rear end line is not smooth and irregularities can be confirmed.
  • FIG. 4 is a photograph when an alumina film (contact angle 95 °, water drop falling angle 26 °) after coating, baking, and steam treatment is used as the inorganic thin film. As shown in FIG. 4, when a water droplet fell on the surface of this film, the trailing edge of the water droplet was smooth and no resistance point was observed. As described above, since the phenomenon described with reference to FIGS. 1 to 4 is a phenomenon related to the surface state, it is presumed that the phenomenon can be observed not only on the surface of the inorganic thin film but also on the surface of the inorganic solid.
  • the inorganic structure includes at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less on the surface, thereby removing water droplets on the surface of the inorganic structure (sliding property). Will improve.
  • the average value of the frictional force on the surface is lower than that before the water vapor treatment (more preferably, it is lower than half before the water vapor treatment). Is preferred.
  • the average value of the frictional force can be obtained, for example, as a mode value (peak value) of the frictional force at 256 measurement points ⁇ 256 measurement points.
  • the inorganic structure of the present invention preferably has a water contact angle on the surface of 30 ° or more.
  • the water contact angle is 30 ° or more, the surface energy of the inorganic structure can be further reduced, and adhesion of a fouling substance to the inorganic structure can be further suppressed.
  • the contact angle with respect to water is measured by using a contact angle measuring device (Drop Master 500, Kyowa Interface Chemical Co., Ltd.) and dropping 3 mg of water (distilled water) on the surface of the inorganic structure. Refers to the value measured between 1 and 10 seconds.
  • the water contact angle is preferably 40 ° or more, more preferably 50 ° or more, and particularly preferably 60 ° or more from the viewpoint of surface energy and visibility.
  • the inorganic structure of the present invention (including the case of an inorganic thin film containing titania described later) has a substantially reduced water contact angle even by light irradiation from the viewpoint of surface energy and visibility. Preferably not.
  • substantially no decrease in water contact angle is observed even by light irradiation means that the water contact angle of the inorganic structure does not substantially decrease even when irradiated with light (however, a decrease of about 10 °). Means allowed).
  • the inorganic structure of the present invention preferably has a water contact angle of 30 ° or more, more preferably 40 ° or more, still more preferably 50 ° or more, both before and after light irradiation.
  • light irradiation refers to irradiation with ultraviolet light (UV light) having a wavelength of 400 nm or less using a black light (FL10BL-B, National) at an intensity of 1 ⁇ W / cm 2 to 5 mW / cm 2. Refers to that.
  • the inorganic structure of the present invention preferably has a water drop falling angle of 40 ° or less. If the water drop falling angle is 40 ° or less, it is easier to remove the water drop by the inclination.
  • the water drop falling angle refers to a value measured using a contact angle measuring device (Drop Master 500, Kyowa Interface Chemical Co., Ltd.) and a falling angle measuring device (SA-11, Kyowa Interface Chemical Co., Ltd.). Specifically, a camera attached to the contact angle measurement device while dropping 30 mg of water droplets on the surface of the inorganic structure and then tilting the surface of the inorganic structure with respect to a horizontal plane using the drop angle measurement device. Observe water drops from.
  • the angle between the surface of the inorganic structure and the horizontal plane at the moment when the water droplet falls is measured, and this angle is taken as the water droplet falling angle.
  • the moment of falling is the moment when both the front end point and the rear end point of the water droplet start to move.
  • the water drop falling angle is a value of 0 ° or more and 90 ° or less. Even when the surface of the inorganic structure is tilted at 90 ° with respect to the horizontal plane, a drop angle of 90 ° is defined as a case where water drops do not fall.
  • the water drop falling angle is preferably 35 ° or less from the viewpoint of water drop removability.
  • a high water contact angle generally does not necessarily mean that the water drop falling angle is low, but the inorganic structure of the present invention has a remarkably low contact angle and forms droplets. If it becomes a water film without being dropped, the drop of water droplets may not be expected. Therefore, it is preferable to increase the water contact angle (for example, the water contact angle is 30 ° or more) to the extent that water droplets are formed.
  • the inorganic structure of the present invention preferably has a surface roughness (Ra) of 2 nm or less.
  • the surface roughness (Ra) refers to the arithmetic average roughness defined in JIS B0601 (1994).
  • the surface roughness (Ra) in the present invention refers to a value measured for a measuring range of 50 ⁇ m square using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation). If the surface roughness (Ra) is 2 nm or less, the water contact angle can be further increased, and the water drop falling angle can be further decreased. From the viewpoint of increasing the water contact angle and decreasing the water drop falling angle, the surface roughness (Ra) is preferably 1.6 nm or less, and more preferably 1.2 nm or less.
  • the inorganic structure of the present invention preferably has a surface roughness (Rz) of 150 nm or less, more preferably 50 nm or less, from the viewpoint of increasing the water contact angle and decreasing the water drop falling angle.
  • the surface roughness (Rz) refers to a ten-point average roughness defined in JIS B0601 (1994).
  • the surface roughness (Rz) in the present invention refers to a value measured for a measuring range of 50 ⁇ m square using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation).
  • FIG. 5 is a graph showing the relationship between the surface roughness (Ra) and the water contact angle (°) measured for each film of zirconia, alumina, ceria, titania, hafnia, and silica.
  • FIG. 6 is a graph showing an enlarged view of the surface roughness (Ra) of 4 nm or less in FIG. As shown in FIGS. 5 and 6, the water contact angle has a small change in the region of surface roughness (Ra) 2 nm to 350 nm, but increases rapidly in the region of 2 nm or less.
  • the thickness of the inorganic thin film is not particularly limited, but is 10 ⁇ m or less from the viewpoint of obtaining the effect of the present invention more effectively. Preferably, it is 10 nm to 1000 nm.
  • the inorganic structure of the present invention may be an inorganic structure including at least one selected from metals, alloys, inorganic oxides, and glass from the viewpoint of more effectively achieving the effects of the present invention.
  • the inorganic structure of the present invention is more preferably a metal thin film, an inorganic oxide thin film, a metal solid, or an inorganic oxide solid, more preferably an inorganic oxide thin film or an inorganic oxide solid, A metal oxide thin film or a metal oxide solid is particularly preferable.
  • metal refers to a metal element in a broad sense.
  • a typical metal element for example, Al
  • a transition metal element for example, Cr, Au, Ti, Ag, Cu, Ni, Fe, etc.
  • Metal elements for example, Si are also included.
  • the alloy containing 2 or more types of the said metal element is mentioned.
  • stainless steel for example, stainless steel defined in JIS G4303-1998, JIS G4304-1999, or JIS G4305-1999
  • examples of the stainless steel include SUS201, SUS202, SUS301, SUS302, SUS303, SUS304, SUS305, SUS316, SUS317, SUS329J1, SUS403, SUS405, SUS420, SUS430, SUS430LX, and SUS630.
  • the inorganic oxide is not particularly limited. Zirconium oxide (also referred to as “zirconia” or “ZrO 2 ” in this specification), aluminum oxide (“alumina” or “Al 2 O 3 ” in this specification) ), Cerium oxide (also referred to herein as “ceria” or “CeO 2 ”), titanium oxide (also referred to herein as “titania” or “TiO 2 ”), hafnium oxide (in this specification) In this specification, “hafnia” and “HfO 2 ”), silicon oxide (also referred to as “silica” and “SiO 2 ” in the present specification), and the like can be given.
  • the inorganic oxide thin film or the inorganic oxide solid may be a film (a simple film) or a solid (a simple solid) containing the inorganic oxide as a single component. It may be a film (a simple film) or a solid (a simple solid) contained above.
  • the inorganic oxide may be a complex oxide or a compound containing water in the structure, such as a clay mineral.
  • An example of the composite oxide is TiHAP (titanium-doped apatite) in which a part of Ca ions of apatite having a composition of Ca 10 (PO 4 ) 6 (OH) 2 is substituted with Ti.
  • examples of the glass include soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, and sapphire glass.
  • the inorganic structure of the present invention is composed of an inorganic substance as a main component, but may contain other components as long as the effects of the present invention are not hindered.
  • the inorganic thin film of the present invention is preferably a film containing at least one selected from the group consisting of zirconia, alumina, ceria, hafnia, and silica from the viewpoint of increasing the contact angle and decreasing the falling angle.
  • a film containing at least one kind from the group consisting of zirconia, alumina, and silica is more preferable.
  • a film containing at least one of hafnia and alumina is preferable.
  • the inorganic thin film of the present invention can also have photocatalytic activity.
  • the present inventors have developed a method of combining with a photocatalyst for the purpose of imparting self-cleaning properties to such an excellent water-sliding surface.
  • a self-cleaning technique using a photocatalyst has been widely used mainly on building outer walls.
  • the principle is that by using the property of a semiconductor photocatalyst that exhibits hydrophilicity by light irradiation (hereinafter also referred to as “superhydrophilization”), the attached oily fouling component can be easily removed by rainfall or water washing. To do.
  • This self-cleaning technique is a technique that enables the oily fouling component attached to be decomposed and removed by utilizing the property (organic substance decomposability) of a semiconductor photocatalyst that decomposes organic substances by light irradiation.
  • the surface is hydrophilic, there are a problem that water is indispensable for removing the fouling component and a problem that fouling substances are inherently high because of high surface energy.
  • the surface is hydrophilic, it is difficult for water droplets to fall down (that is, the water slidability is inferior).
  • a material that combines the above-mentioned surface with excellent water slidability and water droplet removal with a photocatalytic decomposition action that is, a non-hydrophilic, non-hydrophilic photocatalyst has a surface with excellent self-cleaning properties that is difficult to adhere to dirt. It is an ideal surface.
  • the form which gave the photocatalytic activity to the inorganic thin film of this invention has such an ideal surface.
  • the inorganic thin film of the present invention When the inorganic thin film of the present invention has photocatalytic activity, the inorganic thin film of the present invention is constituted as a simple film of titania, or titania and other materials (for example, zirconia, alumina, ceria, hafnia, silica) , Etc.). That is, when the photocatalytic activity is imparted to the inorganic thin film of the present invention, it is a titania simple film, or at least one selected from the group consisting of titania and zirconia, alumina, ceria, hafnia, and silica. It is preferable that it is a composite film containing.
  • the composite film is preferably a titania-hafnia composite film, a titania-zirconia composite film, or a titania-alumina composite film.
  • the titania is preferably crystallized from the viewpoint of organic matter decomposability.
  • crystallization refers to a state in which there is a portion having crystallinity to the extent that it is judged to have crystallinity by X-ray structural analysis (that is, if the portion is amorphous, May be included). Whether or not titania has crystallized can also be confirmed by the presence or absence of organic matter decomposability.
  • the inorganic thin film of the present invention contains crystallized titania
  • in addition to water repellency, water slidability, and durability, photocatalytic activity (particularly, organic matter decomposability) can be provided.
  • photocatalytic activity particularly, organic matter decomposability
  • the crystallized titania include anatase type and rutile type. Among them, anatase type is preferable from the viewpoint of organic matter decomposability.
  • titania often exhibits a phenomenon in which the water contact angle decreases due to light irradiation (superhydrophilic phenomenon; for example, the water contact angle may decrease by 10 ° or more).
  • the inorganic thin film does not show a significant decrease in water contact angle even when irradiated with light.
  • the inorganic thin film of the present invention described above is suitably produced by, for example, steaming after film formation.
  • the film formation is performed, for example, by heat-treating a coating film obtained by coating a coating solution containing an inorganic oxide precursor at a temperature of 300 ° C. or higher (hereinafter, this method is referred to as “sol-gel method”). Or after vacuum film formation such as sputtering or vapor deposition, if necessary, heat treatment is performed at a temperature of 300 ° C. or higher.
  • the water vapor atmosphere preferably has a temperature of 30 ° C. or higher and 100 ° C. or lower.
  • the water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more.
  • the water vapor atmosphere is an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more.
  • the product of temperature (° C.) and relative humidity (%) is preferably 2000 ° C. ⁇ % or more and 10,000 ° C. ⁇ % or less, and preferably 2500 ° C. ⁇ % or more and 8000 ° C. ⁇ % or less. It is more preferable that the temperature is 3000 ° C.% or more and 5000 ° C.% or less.
  • the hafnia film is formed by a vacuum film-forming method, heat-treated at a temperature of 300 ° C. or higher, and further processed in a steam atmosphere. It is also preferable. Details of the method for manufacturing such a hafnia film will be described later.
  • Examples of the inorganic solid of the present invention include glass articles and metal articles.
  • glass articles glass articles of any shape using glass materials (for example, soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, sapphire glass, etc.) And glass articles that require water droplet removal.
  • glass articles as a member for vehicles (automobiles, etc.), window glass of houses, glass containers, white glass for solar cells, various display devices (liquid crystal display devices, organic EL display devices, etc.) Examples include alkali-free glass substrates, chemically tempered glass, and heat-resistant glass such as Pyrex (registered trademark) glass.
  • the glass article preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less).
  • a glass material having a mirror-polished surface or a float method is used. It is preferable to use a glass material.
  • the metal article is a metal article of any shape using a metal material (Cr, Au, Ti, Ag, Cu, Ni, Fe, Al, Si, etc.) or an alloy material (stainless steel, etc.), Examples include metal articles that require removability. Specific examples of such metal articles include various pipes, metal containers, stainless steel plates for kitchens and bathrooms, aluminum outer wall materials for houses, aluminum plate materials for vehicles, and the like.
  • the metal article preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less). For this purpose, it is preferable to use a metal material whose surface is polished into a mirror surface.
  • the inorganic solid (glass article or metal article) of the present invention described above is suitably produced by being treated in a steam atmosphere (that is, steam-treated) as described later.
  • the water vapor atmosphere is preferably an atmosphere having a temperature of 30 ° C. or higher and 100 ° C. or lower.
  • the water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more. More preferably, the water vapor atmosphere is an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more.
  • the product of temperature (° C.) and relative humidity (%) is preferably 2000 ° C. ⁇ % or more and 10,000 ° C. ⁇ % or less, and preferably 2500 ° C. ⁇ % or more and 8000 ° C. ⁇ % or less. It is more preferable that the temperature is 3000 ° C.% or more and 5000 ° C.% or less.
  • the inorganic structure (inorganic solid or inorganic thin film) of the present invention described above is an inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or zirconia, alumina, ceria, titania. , Hafnia, and an inorganic thin film containing at least one selected from the group consisting of silica are preferable.
  • the inorganic structure (inorganic thin film and inorganic solid) of the present invention has remarkably uniform physical and chemical properties on the surface, and the number of resistance points is less than a certain level. Specifically, the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
  • the surface includes at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less.
  • steam treatment treatment in a steam atmosphere
  • the steam treatment can be performed, for example, by exposing an inorganic structure before the steam treatment (hereinafter also referred to as “inorganic structure material”) in a steam atmosphere.
  • the steam treatment can also be performed by spraying steam on the surface of the inorganic structure material.
  • a method of spraying water vapor a method of spraying water vapor of about 50 ° C. to 100 ° C. from a nozzle or the like can be mentioned.
  • the spraying time at this time varies depending on the state of the inorganic structure material to be subjected to the steam treatment and the environment in which the inorganic structure material is placed, but can be, for example, several minutes to 10 hours.
  • the structure of the nozzle is desirably a structure capable of exposing a large area as much as possible to water vapor at a time.
  • the nozzle has a porous filter facing the surface to be treated of the inorganic structure material, and the inorganic filter is made of the inorganic filter.
  • a structure capable of supplying water vapor from the side opposite to the side where the structure material exists is desirable.
  • silica ultrafine particles 10 g of silica ultrafine particles (AEROSIL 200 manufactured by Nippon Aerosil Co., Ltd.) was treated (sliding water treatment) for 4 days (96 hours) in a steam atmosphere at a temperature of 90 ° C. and a relative humidity of 50% to obtain a sliding water sample.
  • AEROSIL 200 manufactured by Nippon Aerosil Co., Ltd.
  • FT-IR measurement The FT-IR measurement was performed on the sliding water treated sample obtained above under the following measurement conditions. As a comparative control, FT-IR measurement was performed in the same manner for the ultrafine silica particles before the above-mentioned water sliding treatment.
  • FT-IR measurement conditions ⁇ ⁇ Device: FTIR-8600PC (manufactured by Shimadzu Corporation) ⁇ Measurement method: Transmission method (KBr pellet) ⁇ Dilution rate: 1% by mass Measurement wave number range: 400 cm ⁇ 1 to 4000 cm ⁇ 1 ⁇ Resolution: 4cm -1 ⁇ Number of integration: 40 times ⁇ Apotize function: Happ-Genzel function
  • FIG. 72 shows the results of FT-IR measurement (wave number range 400 cm ⁇ 1 to 4000 cm ⁇ 1 ) of the slidable sample using silica ultrafine particles and the ultrafine silica particles before the slidable water treatment.
  • FIG. 73 shows FT-IR measurement results (wave number range: 1500 cm ⁇ 1 to 1850 cm ⁇ 1 ) of a water slide treatment sample using silica ultrafine particles and silica ultrafine particles before water slide treatment.
  • FIG. 73, of the FT-IR measurement results of FIG. 72 is a diagram showing an enlarged part in the wave number range 1500cm -1 ⁇ 1850cm -1. 72 and 73, the waveform of “Tre.” Is the FT-IR measurement result of the water slide treatment sample, and the waveform of “Pre.” Is the FT-IR measurement result of the silica ultrafine particles before the water slide treatment. .
  • DTA / TG measurement Differential thermal-thermogravimetric simultaneous measurement
  • the DTA / TG measurement was performed on the sliding water treated sample obtained above under the following measurement conditions.
  • DTA / TG measurement was performed in the same manner for the silica ultrafine particles before the water sliding treatment.
  • FIG. 74 shows the DTA / TG measurement results of the water sliding treatment sample using the silica ultrafine particles and the silica ultrafine particles before the water sliding treatment.
  • the “Tre.” Waveform is the DTA / TG measurement result of the water slide treatment sample, and the “Pre.” Waveform is the DTA / TG measurement result of the silica ultrafine particles before the water slide treatment.
  • silica ultrafine particles (Pre.) Before the water sliding treatment, the mass rapidly decreased in the range of about 100 ° C. or lower, and almost no decrease in mass was observed at about 100 ° C. or higher. As described above, most of the water was lost by about 100 ° C. in the ultrafine silica particles (Pre.) Before the water sliding treatment. Silica ultrafine particles (fumed silica) are produced in a high-temperature flame and are considered to have few OH groups, so this result is acceptable to some extent. On the other hand, in the water slide sample (Tre.), The amount of mass decrease was small in the range of about 100 ° C. or less, and the sample decreased gradually even in the range of 200 ° C. or more.
  • the water slidability in the present invention is caused by the formation of water clusters having a special structure on the surface by the steam treatment. It is inferred that Although this cluster contains water molecules, it forms a surface that is relatively thermally stable and difficult to wet liquid water. It is not clear whether this water cluster itself has a small wettability to liquid water or whether it exerts water repellency by affecting the properties of organic substances adsorbed on this cluster. In addition, this cluster is relatively stable thermally and has a stable structure.
  • the rear end surface of the water droplet peels off from the point A and moves to a point B lower than the point A.
  • water drops before falling are indicated by solid lines
  • water drops after falling are indicated by broken lines.
  • the barrier of the activation energy EA needs to be exceeded.
  • the point A is a chemically and physically non-uniform point
  • the activation energy EA increases.
  • FIG. 55 is a schematic cross-sectional view conceptually showing the state of the surface of the inorganic structure under normal atmospheric environment conditions
  • FIG. 56 is a conceptual view of the state after the steam treatment is performed on the surface of the inorganic structure. It is a schematic sectional drawing shown.
  • —OH groups exist on the surface of the inorganic structure, water molecules (H 2 O) are adsorbed thereon, and organic matter R is adsorbed thereon. Yes.
  • the surface of the inorganic structure is slightly hydrophobic due to the presence of the organic substance R.
  • the adsorbed state is non-uniform and there is a resistance point, it is considered that the activation energy described above increases and the dynamic water repellency decreases.
  • the water clusters formed after the steam treatment are thermally relatively stable, they are strongly bonded, so they are bonded to the inorganic structure together with the organic substance R adsorbed thereon. Can be estimated.
  • the surface thus produced does not deteriorate in dynamic water repellency even when subjected to a mechanical durability test such as friction. Further, in the case of slight deterioration such as peeling of the organic substance R on the surface, the organic substance R is immediately re-adsorbed and the dynamic water repellency is restored.
  • Samples A, B-1, and B-2 are all alumina films formed on a glass substrate. Specifically, an alumina coating solution (0.1 M) described later is applied to a glass substrate (Corning “Corning 1737”) with a spin coater at 1500 rpm for 10 seconds and dried at 120 ° C. for 30 minutes. Subsequently, it is an alumina film obtained by baking at 500 ° C. for 30 minutes (other detailed conditions are the same as those in Experimental Example 1 described later). Sample A is a sample obtained by leaving the above-obtained alumina film for 3120 hours (130 days) in a steam atmosphere at a temperature of 40 ° C. and a relative humidity of 95% (that is, subjected to steam treatment).
  • Sample B-1 is a sample obtained by leaving the alumina film obtained above for 1440 hours (60 days) in a sealed case.
  • Sample B-2 is a sample obtained by leaving the alumina film obtained above for 2880 hours (120 days) in an atmospheric environment (temperature 25 ° C., relative humidity 55%).
  • XRD measurement all of the above samples have been confirmed to be amorphous. Moreover, it has confirmed that the surface roughness of all the above samples is controlled to several nanometers or less.
  • the column of carbon content in Table 1 is the result of measuring the carbon content of each of the samples A, B-1, and B-2 using X-ray photoelectron spectroscopy (XPS).
  • the columns of water contact angle and water drop falling angle are the results of measuring the water contact angle and water drop falling angle of each of Samples A, B-1, and B-2 by the method described above.
  • the water vapor atmosphere in the water vapor treatment is preferably at a temperature of 30 ° C. or higher and 100 ° C. or lower from the viewpoint of more effectively obtaining lubricity (reducing the water drop falling angle). Furthermore, the temperature is more preferably 40 ° C. or higher and 100 ° C. or lower, further preferably 50 ° C. or higher and 100 ° C. or lower, and particularly preferably 80 ° C. or higher and 100 ° C. or lower.
  • the water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more from the viewpoint of imparting lubricity. Furthermore, an atmosphere with an absolute humidity of 15 g / m 3 or more and 300 g / m 3 or less is preferable, an atmosphere with an absolute humidity of 15 g / m 3 or more and 200 g / m 3 or less is more preferable, and an absolute humidity of 15 g / m 3 or more and 130 g / m 3 or less. And an atmosphere with an absolute humidity of 50 g / m 3 or more and 130 g / m 3 or less is particularly preferable.
  • a particularly preferable water vapor atmosphere is an atmosphere satisfying both the temperature range and the absolute humidity range (for example, an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more).
  • the water vapor atmosphere has a product of temperature (° C.) and relative humidity (%) of 2000 ° C. ⁇ % or more and 10000 ° C. from the viewpoint of more effectively obtaining the effect of improving the water slidability (reducing the water drop falling angle). It is preferably% or less, more preferably 2500 ° C. ⁇ % or more and 8000 ° C. ⁇ % or less, and particularly preferably 3000 ° C. ⁇ % or more and 5000 ° C. ⁇ % or less.
  • the product of the temperature (° C.) and the relative humidity (%) in the water vapor atmosphere is 2500 ° C. ⁇ % or more and 8000 ° C. ⁇ % or less, the effect of improving the lubricity can be obtained more effectively.
  • the long-term stability is also improved.
  • the inorganic structure when it is a metal article, it is also preferably a water vapor atmosphere that satisfies at least one of the following (Condition 1) and (Condition 2).
  • (Condition 1) Temperature is 30 ° C. or higher and 120 ° C. or lower, and absolute humidity is 15 g / m 3 or higher.
  • (Condition 2) The product of temperature (° C.) and relative humidity (%) is 2000 ° C. ⁇ % or more and 12000 ° C. ⁇ % or less.
  • steam processing changes also with the kind of inorganic structure, 1 hour or more is preferable, 3 hours or more are more preferable, 1 day (24 hours) or more are more preferable, and 3 days (72 hours) or more are preferable. More preferred is 10 days (240 hours) or longer.
  • the steam treatment can be performed using a known constant temperature and humidity chamber.
  • a constant temperature and humidity chamber examples include HUMIDIC CHAMBER IG420, HUMIDIC CHAMBER IW222, HUMIDIC CHAMBER IH400 (manufactured by Yamato Scientific Co., Ltd.), and the like.
  • ⁇ Pretreatment> As a specific method for obtaining the inorganic structure (inorganic thin film and inorganic solid) of the present invention, an organic substance attached to the surface of the inorganic structure material (inorganic structure before being subjected to the water vapor treatment) is more efficient. From the viewpoint of removal, it is also effective to perform a pretreatment for removing the organic matter on the surface of the inorganic structure material before the steam treatment.
  • the pretreatment is not particularly limited as long as it is a treatment that removes at least part of the organic substances present on the surface of the inorganic structure material. For example, heat treatment, washing treatment (ultrasonic washing treatment, pure water washing treatment) , Cleaning treatment using a cleaning liquid, and the like), and ultraviolet irradiation treatment.
  • the pretreatment is preferably at least one of heat treatment, ultrasonic cleaning treatment, and ultraviolet irradiation treatment.
  • the temperature of the heat treatment is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, from the viewpoint of organic substance removability. Furthermore, when the inorganic structure of the present invention is in the form of an inorganic thin film by a sol-gel method, the temperature of the heat treatment is more preferably 300 ° C. or higher from the viewpoint of firing the coating film. In addition, when the inorganic structure of the present invention is in the form of an inorganic thin film formed by a vacuum film forming method, the temperature of the heat treatment is more preferably 300 ° C. or higher from the viewpoint of crystallization.
  • the upper limit of the heat treatment temperature is not particularly limited as long as the temperature is lower than the softening point of the heat treatment target.
  • the “softening point of the object to be heat-treated” refers to the lower one of the softening point of the inorganic thin film and the softening point of the support.
  • the inorganic structure of the present invention is in the form of an inorganic solid, it indicates the softening point of the inorganic solid.
  • the upper limit of the heat treatment temperature varies depending on the object of heat treatment, but may be 1200 ° C., for example.
  • the heat treatment time varies depending on the temperature, but is preferably 0.5 to 3 hours, more preferably 0.5 to 1 hour.
  • the heat treatment can be performed in a known furnace such as a muffle furnace. If necessary, the inorganic structure after the heat treatment is cooled to 30 ° C. or more and 100 ° C. or less, and then subjected to the steam treatment described above.
  • the cooling can be performed, for example, by cooling (furnace cooling) for 3 to 6 hours in the furnace used for the heat treatment.
  • the atmosphere in which the heat treatment is performed is not particularly limited, but for example, from the viewpoint of more effectively suppressing an increase in surface roughness due to surface oxidation, it is preferably performed in a poor oxygen atmosphere (for example, in a nitrogen atmosphere). .
  • Ultrasonic cleaning process A known method can be used as the method of the ultrasonic cleaning treatment.
  • the ultrasonic cleaning treatment can be performed using, for example, a known ultrasonic cleaning apparatus.
  • the condition of the ultrasonic cleaning treatment is not particularly limited as long as at least a part of the organic substance existing on the surface of the inorganic structure material can be removed, but preferable conditions include, for example, 10 minutes or more in pure water. The conditions which carry out an ultrasonic cleaning process can be mentioned.
  • the ultraviolet irradiation treatment As the ultraviolet irradiation treatment, a known method can be used.
  • the ultraviolet ray to be irradiated is not particularly limited as long as it is an ultraviolet ray that can remove at least a part of the organic substance existing on the surface of the inorganic structure material.
  • excimer light for example, excimer light generated from ArF, XrF, XrCl, XeCl, Ar 2 , Xr 2 , etc.
  • the intensity of the irradiated ultraviolet light is preferably 10 mW / cm 2 to 40 mW / cm 2 .
  • the irradiation time is preferably 300 seconds to 720 seconds, and more preferably 600 seconds to 720 seconds.
  • a method of ultraviolet irradiation treatment a method of directly irradiating an ultraviolet lamp such as an excimer lamp or a known ultraviolet irradiation treatment apparatus (UV treatment apparatus, UV surface modification apparatus, UV cleaning apparatus, etc.) is used. The method to perform is mentioned.
  • the temperature of the heat treatment is preferably a steam treatment temperature (temperature of the steam atmosphere) or more and 300 ° C. or less, and more preferably 100 ° C. or more and 300 ° C. or less.
  • the preferable conditions and preferable methods in the heat treatment as the post-treatment are the same as the preferable conditions and methods in the heat treatment as the pretreatment.
  • the structure of the present invention is constituted by being entirely or partially covered with the inorganic thin film of the present invention.
  • the support coated with the inorganic thin film is not particularly limited, and may be organic or inorganic.
  • the support specifically, glass (for example, soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, sapphire glass, etc.), metal, plastic, resin, Various materials such as ceramics, semiconductors, crystals, paper, and wood can be used without particular limitation, but glass and ceramics are preferable, and glass is particularly preferable from the viewpoint of obtaining the effects of the present invention more effectively.
  • the support may be used as it is, or a support on which a silica (SiO 2 ) film or the like is formed may be used.
  • the structure of the present invention is covered with an inorganic thin film having water drop removal property and durability, it is suitable for, for example, applications where water adhesion and intrusion are hated.
  • the inorganic thin film is excellent in various performances such as safety, chargeability, durability, and abrasion resistance, it is also suitable as an alternative material for the fluorine-based organic water repellent material.
  • Specific examples of such applications include front windows of automobiles, residential glass with anti-condensation functions, water-circulating members and building materials such as kitchens and bathrooms, tanks and reactors used in manufacturing processes such as chemical solutions and food solutions, Examples include piping inner surfaces, stirring tanks and stirrers, cooking utensils such as frying pans with excellent durability, measuring instrument inner surfaces, coating rolls, and the like.
  • the inorganic thin film is a film containing titania, it can be used as a self-cleaning member that is excellent in water droplet removal and that oxidatively decomposes remaining contaminants by photocatalysis.
  • the method for producing an inorganic structure of the present invention includes a step of preparing an inorganic structure material (hereinafter, “inorganic structure material preparation step”) and a steam treatment step of steam-treating the inorganic structure material.
  • inorganic structure material preparation step a step of preparing an inorganic structure material
  • steam treatment step of steam-treating the inorganic structure material.
  • an inorganic structure including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is manufactured on the surface. Easy to do.
  • the manufacturing method of the inorganic structure of this invention may have another process as needed.
  • the inorganic structure material preparation step is a step of preparing an inorganic structure material to be subjected to steam treatment.
  • the “inorganic structure material” refers to an inorganic structure before being subjected to the water vapor treatment in the water vapor treatment step. Therefore, the “inorganic structure material” may be the same as the manufactured inorganic structure (inorganic structure after being subjected to the treatment of the water vapor treatment step) in appearance.
  • the inorganic structure material to be prepared is not particularly limited, but from the viewpoint of more effectively obtaining the effect of improving the water slidability by the water vapor treatment, an inorganic structure material having a small amount of organic matter attached to the surface is preferable.
  • inorganic structure materials that have a small amount of organic matter on the surface include inorganic structure materials (glass materials, metal materials, etc.) that have not passed much time since manufacture, and inorganic materials that have a short storage time in the atmosphere since manufacture. Examples include structural materials (glass materials, metal materials, etc.).
  • inorganic structure material to be prepared it is also preferable to prepare an inorganic structure material that has been subjected to pretreatment for removing organic substances on the surface in advance.
  • an inorganic structure material to be prepared an inorganic structure having a smooth surface (for example, having a surface roughness (Ra) of 2 nm or less) from the viewpoint of more effectively obtaining the effect of improving water slidability by water vapor treatment.
  • a material is preferred.
  • an inorganic structure material that has been subjected to a polishing process in which the surface is polished in advance (for example, the surface roughness (Ra) is 2 nm or less) is also preferable.
  • the water vapor treatment step is a step of reducing the water droplet falling angle on the surface of the inorganic structure material by subjecting the inorganic structure material to water vapor treatment.
  • the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
  • the preferable range of the water vapor treatment in the water vapor treatment step is as described in the section ⁇ Steam treatment> and ⁇ Preferred conditions for water vapor treatment> in the ⁇ inorganic structure >>.
  • the manufacturing method of the inorganic structure of this invention has the pre-processing process which performs the pre-processing which removes the organic substance on the surface of this inorganic structure raw material with respect to the said inorganic structural raw material before the said water vapor treatment process. It is preferable. By having this pretreatment process, the effect of water sliding by steam treatment can be obtained more effectively.
  • the preferable range of the pretreatment in the pretreatment step is as described in the section ⁇ Pretreatment> in the ⁇ inorganic structure >>.
  • the manufacturing method of the inorganic structure of this invention has the post-processing process which performs the heat processing more than the temperature of the said water vapor
  • the properties of the water-slidable surface obtained by the steam treatment can be further stabilized.
  • the preferable range of the post-treatment in the post-treatment step is as described in the section of ⁇ Post-treatment> in the ⁇ inorganic structure >>.
  • a coating solution containing an inorganic oxide precursor is coated on a support to form a smooth coating film (for example, having a surface roughness (Ra) of 2 nm or less).
  • a film forming step, a heat treatment step of heat-treating the formed coating film at a temperature of 300 ° C. or higher, and a steam treatment step of steam-treating the heat-treated coating film is possible to produce an inorganic thin film having a surface excellent in water droplet removability and further excellent in durability.
  • the manufacturing method of the said inorganic thin film of this invention it is easy to adjust the density of the said resistance point in the inorganic structure surface manufactured to 10 pieces / 30mm ⁇ 2 > or less.
  • an inorganic thin film including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is produced on the surface. easy.
  • the method for producing an inorganic thin film of the present invention is a form of a method for producing an inorganic thin film using a sol-gel method.
  • the method for producing an inorganic thin film of the present invention may further include other steps as necessary.
  • the coating film forming step is a step of forming a coating film by applying a coating liquid containing an inorganic oxide precursor onto a support (and drying it as necessary).
  • the support is not particularly limited, and for example, the same support as that described in the section of “Structure” can be used.
  • the coating liquid containing the inorganic oxide precursor (hereinafter also referred to as “coating liquid”) may be prepared or may be prepared in advance, such as a commercial product.
  • the precursor of an inorganic oxide refers to a substance that becomes an inorganic oxide by heating, and examples thereof include metal salts and metal alkoxides.
  • the inorganic oxide include metal oxides (zirconia, alumina, ceria, titania, hafnia, silica, etc.).
  • the coating liquid containing the inorganic oxide precursor is preferably a coating liquid containing a solvent and a metal salt (or a hydrate of the metal salt) or a metal alkoxide.
  • the coating solution may further contain a chelating agent as necessary.
  • the metal salt for example, nitrate, acetate, hydrochloride, sulfate and the like are suitable.
  • inorganic oxide precursors are given below, but the present invention is not limited to the following specific examples.
  • zirconia precursors include zirconium halides (eg, zirconium chloride oxide octahydrate, zirconium tetrachloride, zirconium tetrafluoride, zirconium tetrabromide, zirconium tetraiodide, zirconium tribromide, three Zirconium fluoride monochloride, zirconium tribromide monoiodide, zirconium triiodide monofluoride, zirconium dibromide, zirconium difluoride dichloride, zirconium dibromide diiodide, zirconium diiodide dichloride ), Zirconium inorganic acid salts (for example, zirconium oxychloride / octahydrate, zirconium oxynitrate / dihydrate, zirconium nitrate / tetrahydrate, etc.), zirconium organic acid salts
  • alumina precursor examples include aluminum inorganic acid salt (for example, aluminum nitrate nonahydrate).
  • ceria precursor examples include cerium inorganic acid salts (for example, cerium nitrate hexahydrate).
  • titania precursors include, for example, organic titanium compounds, titanium alkoxides (eg, tetraethoxy titanium, tetraisopropoxy titanium, tetra n-propoxy titanium, tetrabutoxy titanium, tetramethoxy titanium, etc.), titanium chelates, titanium Examples thereof include acetate, and examples of the inorganic titanium compound include TiCl 4 and Ti (SO 4 ) 2 . Of these, titanium alkoxide is preferable, and titanium tetraisopropoxide is more preferable. Examples of commercially available titania precursors include NDH-510C (manufactured by Nippon Soda Co., Ltd.).
  • Hafnia precursors include, for example, hafnium halides (eg, hafnium tetrachloride, hafnium tetrafluoride, hafnium tetrabromide, hafnium tetraiodide, hafnium tribromide trichloride, hafnium trifluoride tribromide, triodor Hafnium monochloride, hafnium triiodide monochloride, hafnium dibromide dichloride, hafnium dibromide dibromide, hafnium dibromide diiodide, hafnium diiodide diiodide, etc.), hafnium inorganic acid salt (For example, hafnium nitrate, etc.), hafnium alkoxide (for example, hafnium tetramethoxide, hafnium tetraisopropoxide, etc.), and a hafn
  • hafnium alkoxide is preferable, and hafnium tetraisopropoxide is more preferable.
  • hafnia for example, Hf-05 (High Purity Chemical Laboratory Co., Ltd.) can be mentioned.
  • silica precursor may be used as long as it forms silica by a reaction such as polycondensation in a raw material liquid.
  • examples of such a silica precursor include inorganic compounds such as sodium silicate and hydrolyzable groups having silicon atoms.
  • silane compounds bonded to silane such as alkoxysilane and chlorosilane.
  • alkoxysilane and chlorosilane such as alkoxysilane and chlorosilane.
  • tetraalkoxysilanes are preferable, and examples of such substances include tetramethoxysilane and tetraethoxysilane. These include ease of handling and safety, and stability and reactivity. This is preferable in terms of points, and more preferable.
  • the concentration of the inorganic oxide precursor in the coating solution is preferably 0.01 to 3.0 mol / L, more preferably 0.05 to 3.0 mol / L, and 0.05 to 2.0 mol / L. Is more preferable, and 0.05 to 1.0 mol / L is particularly preferable.
  • the solvent contained in the coating solution examples include water, alcohol (methanol, ethanol, propanol, etc.), polyvinyl alcohol (PVA) aqueous solution, ethylene glycol, and the like.
  • the coating liquid preferably further contains a chelating agent.
  • the chelating agent include monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediaminetetraacetic acid (EDTA), citric acid, and the like.
  • the content of the chelating agent is preferably 0.5 to 5 equivalents, more preferably 1 to 2 equivalents, relative to the number of moles of the metal element contained in the coating solution.
  • the coating solution may contain various additives (such as various acids and various bases).
  • the content (total) of the additives is preferably 0.001 to 20% by mass and more preferably 0.01 to 10% by mass with respect to the total amount of the coating solution.
  • the coating method for the coating solution is not particularly limited, and known coating methods such as spin coating, dip coating, and spray coating can be used.
  • drying preliminary heat treatment
  • the drying temperature is preferably 50 to 200 ° C, more preferably 100 to 140 ° C.
  • the drying time varies depending on the temperature, but is preferably 1 minute to 60 minutes, more preferably 1 minute to 20 minutes.
  • the drying can be performed on a known hot plate or dryer.
  • the heat treatment step is a step of heat-treating the coating film formed in the coating step at a temperature of 300 ° C. or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, and may be any temperature that is lower than the lower one of the softening point of the support and the softening point of the hafnia film.
  • the temperature of the heat treatment is preferably from 300 ° C. to 1200 ° C., preferably from 300 ° C. to 900 ° C., and more preferably from 400 ° C. to 600 ° C. from the viewpoint of firing the precursor.
  • the heat treatment time varies depending on the temperature, but is preferably 0.5 to 3 hours, more preferably 0.5 to 1 hour.
  • preferable conditions for the heat treatment are the same as the conditions described in the section ⁇ Pretreatment> in ⁇ Inorganic structure >>.
  • the steam treatment step is a step of reducing the water droplet falling angle on the surface of the heat-treated coating film by steam-treating the heat-treated coating film.
  • the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
  • Preferable conditions for the steam treatment are the same as those described in the section ⁇ Steam treatment> and ⁇ Preferred conditions for steam treatment> in ⁇ Inorganic structure>.
  • the manufacturing method of the inorganic thin film of this invention may have another process as needed.
  • Examples of other processes include the pretreatment process described above and the posttreatment process described above.
  • a film forming step for forming an inorganic thin film on a support by a vacuum film forming method, and a heat treatment for heat-treating the formed inorganic thin film at a temperature of 300 ° C. or more A manufacturing method (hereinafter also referred to as “a manufacturing method of an inorganic thin film using a vacuum film-forming method”) having a process and a steam treatment process in which a heat-treated inorganic thin film is steam-treated in a steam atmosphere is also suitable.
  • an inorganic thin film having a surface excellent in water droplet removal property and excellent in durability can be produced.
  • the density of the resistance points on the surface of the manufactured inorganic structure can be easily adjusted to 10 pieces / 30 mm 2 or less.
  • at least one of the region where the frictional force is 10 nN or less and the region where the dynamic friction coefficient is 1.0 or less is provided on the surface. It is easy to manufacture the inorganic thin film containing.
  • the “method for producing an inorganic thin film using a vacuum film-forming method” may include other steps as necessary. Specifically, the “method for producing an inorganic thin film using a vacuum film-forming method” is suitable as a method for producing a hafnia film.
  • the vacuum film forming method a known method such as sputtering, CVD (Chemical Vapor Deposition), ion plating, vacuum deposition or the like can be used, but from the viewpoint of obtaining the effect of the present invention more effectively It is preferable that Note that the sputtering power is not particularly limited as long as a desired surface roughness (Ra) and an appropriate film formation rate can be achieved.
  • the support is not particularly limited as long as it is a material that can withstand the heat treatment temperature as a post-treatment, and for example, the same support as described in the section “Structure” can be used.
  • the support may be used as it is, or a support having a silica (SiO 2 ) film or the like formed on the surface.
  • Preferable conditions for the heat treatment step are the same as those described in the section ⁇ Pretreatment> in ⁇ Inorganic structure >>.
  • the upper limit of the film formation temperature is not particularly limited, and may be any temperature lower than the lower one of the softening point of the support and the softening point of the inorganic thin film (for example, hafnia film) to be formed.
  • the temperature of the heat treatment is preferably 300 ° C. or higher and 1200 ° C. or lower from the viewpoint of crystallization.
  • the water vapor treatment step is a step of reducing the water droplet falling angle on the surface of the heat-treated inorganic thin film by subjecting the heat-treated coating film to water vapor treatment.
  • the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
  • Preferable conditions for the steam treatment are the same as those described in the section ⁇ Steam treatment> and ⁇ Preferred conditions for steam treatment> in ⁇ Inorganic structure>.
  • the manufacturing method of the inorganic thin film using the said vacuum film-forming method may have another process as needed. Examples of other processes include the pretreatment process described above and the posttreatment process described above.
  • the method for producing a glass article of the present invention includes a heat treatment step of heat treating a glass material at a temperature of 100 ° C. or more and 500 ° C. or less, and a heat treated glass material at a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m.
  • the glass material here refers to a glass article before being subjected to heat treatment and water vapor treatment (that is, water slicking treatment), and is apparently manufactured glass article (glass article subjected to heat treatment and water vapor treatment). ).
  • the glass material preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less).
  • a glass material having a mirror-polished surface or a float method is used. It is preferable to use a glass material.
  • Specific examples of the glass article are as described in the section of ⁇ Inorganic solid> in the ⁇ Inorganic structure >>.
  • the method for producing a glass article of the present invention it is possible to produce a glass article having a surface excellent in water droplet removal property and further excellent in durability. Moreover, according to the manufacturing method of the said glass article of this invention, it is easy to adjust the density of the said resistance point in the glass article surface manufactured to 10 pieces / 30mm ⁇ 2 > or less. In addition, according to the method for producing a glass article of the present invention, a glass article including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is produced on the surface. easy.
  • Preferable conditions for the heat treatment step are the same as those described in the section ⁇ Pretreatment> in ⁇ Inorganic structure >>.
  • the steam treatment step is a step of reducing a water droplet falling angle on the surface of the heat-treated glass material by steam-treating the heat-treated glass material.
  • the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
  • Preferable conditions for the steam treatment are the same as those described in the section ⁇ Steam treatment> and ⁇ Preferred conditions for steam treatment> in ⁇ Inorganic structure>.
  • the surface of the inorganic structure having a reduced water slidability (for example, the falling angle exceeds 50 °) is applied to a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g /
  • Preferable conditions for the steam treatment in the method for recovering water slidability of the inorganic structure are the same as those described in the section ⁇ Steam treatment> and ⁇ Preferred conditions for steam treatment> in ⁇ Inorganic structure>.
  • the condition of the steam treatment in the above method may be a condition in which steam of about 50 to 100 ° C. is sprayed from a nozzle or the like.
  • the preferable conditions for spraying water vapor are also the same as the conditions described in the section ⁇ Water vapor treatment> in ⁇ Inorganic structure >>.
  • the inorganic structure, the structure, the manufacturing method of the inorganic structure, the manufacturing method of the inorganic thin film, the manufacturing method of the glass article, and the method of recovering the water slidability of the inorganic structure are: Since it is excellent in durability, it can be applied to various industrial fields such as vehicle-related, housing-related, optical equipment-related, industrial equipment-related, medical-related, electronic component-related, and electrical product-related.
  • Various coating liquids were prepared as coating liquids as follows.
  • PVA polyvinyl alcohol
  • the alumina coating solution (0.5M) was prepared by adding aluminum nitrate nonahydrate to a solution of monoethanolamine dissolved in methanol to make 0.5 mol / L, and using an ultrasonic cleaner (Bransonic 2510J-DTH). Yamato) and stirred for 1 hour to prepare a 0.5 mol / L aluminum nitrate nonahydrate solution.
  • PVA polyvinyl alcohol
  • the hafnia coating solution (0.01 M) was prepared as a 0.01 mol / L hafnium chloride solution in the same manner as the hafnia coating solution (0.1 M) except that the content of hafnium chloride was changed.
  • the zirconia coating solution was prepared by adding zirconium oxychloride octahydrate to a solution in which diethanolamine was dissolved in methanol to 0.5 mol / L, stirring for 1 hour using an ultrasonic cleaner, 0.5 mol / L Prepared as a zirconium oxychloride octahydrate solution.
  • the ceria coat solution (0.1M) was prepared by dissolving cerium nitrate hexahydrate in a solution of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water to 0.05% by mass to obtain 0.1 mol / Prepared as a solution of L in cerium nitrate hexahydrate.
  • the ceria coat solution (0.01M) was prepared by dissolving cerium nitrate hexahydrate in a solution of 0.1% by mass of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water. Prepared as a 01 mol / L cerium nitrate hexahydrate solution.
  • ⁇ Titania coating solution> As the titania coating solution, a photocatalytic titania coating solution NDH-510C manufactured by Nippon Soda Co., Ltd. was used.
  • TiHAP coating solution A titanium apatite (TiHAP) coating solution was prepared by the following procedure. To a mixed solution of ethanol (50 mL) and 2-ethoxyethanol (50 mL), calcium nitrate tetrahydrate (4.246 g, 0.018 mol) was added and dissolved with stirring, and then phosphorous pentoxide (0.905 g, 0.006 mol) was added and stirred for 2 hours. Titanium tetraisopropoxide (0.568 g, 0.002 mol) was added to the resulting solution and stirred for half a day, followed by filtration. The resulting filtrate was used as a titanium apatite (TiHAP) coating solution.
  • the glass substrate on which the coating film has been formed is allowed to stand for 10 minutes in a dryer adjusted to an atmospheric temperature of 120 ° C., and further, using a muffle furnace (KDF-P90G, Denken Co., Ltd.), in an air atmosphere, an atmospheric temperature of 500 ° C. For 0.5 hour, and further cooled in the muffle furnace for 5 hours to form a zirconia film on the glass substrate.
  • the film surface temperature of the zirconia film after cooling for 5 hours was room temperature.
  • the zirconia film after cooling for 5 hours was subjected to steam treatment for 1 hour in an atmosphere of a temperature of 40 ° C. and a relative humidity of 90% (absolute humidity 46 g / m 3 ).
  • a constant temperature and humidity chamber (HUMIDIC CHAMBER IG420, Yamato Scientific Co., Ltd.) was used as the steam treatment apparatus.
  • the zirconia film produced as described above was colorless and transparent with no interference color, it was considered to be uniform and have a film thickness of several tens to several hundreds of nanometers. Further, the surface roughness (Ra) of the zirconia film produced as described above was 9.8 nm.
  • the surface roughness (Ra) was measured according to JIS B0601 (1994) using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation) under a measurement range of 50 ⁇ m square. Performed in compliance.
  • the measurement method of the surface roughness (Ra) in the following experimental examples is the same as the measurement method in this experimental example, unless otherwise specified.
  • FIG. 7A is a graph showing a change in water contact angle in a zirconia membrane.
  • the “elapsed days” on the horizontal axis is the storage time (unit: day) in the indoor environment when there is no steam treatment, and the steam treatment time (unit: day) when there is steam treatment (hereinafter “day”). The same applies to the graph).
  • the upstream side (the opposite side to the arrowhead side) of the white arrow is a plot group without steam treatment
  • the downstream side (arrowhead side) of the white arrow is a plot group with steam treatment. Yes (same for subsequent graphs).
  • the contact angle was unstable when the steam treatment was not performed.
  • the contact angle is significantly increased, and in particular, the contact angle is increased to 90 ° or more by the treatment for 3 days or more.
  • FIG. 7B is a graph showing changes in the sliding angle in the zirconia film.
  • the falling angle was unstable when the steam treatment was not performed. Specifically, it was in the vicinity of 70 ° to 90 °. On the other hand, it was confirmed that the falling angle is lowered when the steam treatment is performed. In particular, it was found that by performing the steam treatment for 7 days or more, the falling angle becomes 40 ° or less.
  • FIG. 8 is an XRD measurement result of the zirconia film after the water vapor treatment. As shown in FIG. 8, clear diffraction points were confirmed in the zirconia film, and the order indicating the crystal structure was confirmed.
  • FIG. 9A is a graph showing a change in water contact angle in an alumina film.
  • the contact angle was unstable when the steam treatment was not performed. Specifically, the elapsed time was less than 40 ° within one day, and it tended to increase gradually from 50 ° to about 80 ° after three days elapsed. On the other hand, it was confirmed that the contact angle is significantly increased by using the steam treatment, and in particular, the contact angle is increased to 80 ° or more by the treatment for 1 day or more.
  • FIG. 9B is a graph showing a change in the water drop falling angle in the alumina film.
  • the falling angle was unstable. Specifically, the range was 40 ° to 90 °.
  • the falling angle is lowered by the steam treatment. In particular, it has been found that the falling angle is 45 ° or less by performing the steam treatment for 7 days or more.
  • FIG. 10 is an XRD measurement result of the alumina film after the steam treatment. As shown in FIG. 10, a clear diffraction point was not confirmed in the alumina film, and it was confirmed that the alumina film was amorphous.
  • FIG. 11A is a graph showing a change in the water contact angle in the ceria film without the water vapor treatment
  • FIG. 11B is a graph showing a change in the water contact angle in the ceria film with the water vapor treatment.
  • the contact angle was unstable when no steam treatment was performed. Specifically, in the ceria film (0.1M), the contact angle that was less than 18 ° was increased to about 50 ° after storage for 15 days. In the ceria film (0.01M), the contact angle, which was about 16 °, increased to about 30 ° after storage for 15 days.
  • FIG. 11B it was confirmed that the contact angle was significantly increased by the presence of the steam treatment. Specifically, it was confirmed that the contact angle rose to 80 ° or more for the ceria film (0.1M) and 70 ° or more for the ceria film (0.01M) by the treatment for 3 days or more.
  • FIG. 12A is a graph showing a change in the water drop falling angle in the ceria film without the water vapor treatment
  • FIG. 12B is a graph showing a change in the water drop falling angle in the ceria film with the water vapor treatment.
  • the falling angle is always 90 ° or more from the beginning of the film formation until 30 days have elapsed, and the water droplet removability is extremely poor. It was.
  • FIG. 12B it was confirmed that the falling angle is lowered by the presence of the steam treatment. Specifically, it was found that the treatment angle for 7 days or more lowered the sliding angle to 50 ° or less for the ceria film (0.1M) and to 40 ° or less for the ceria film (0.01M).
  • FIG. 13 is an XRD measurement result of the ceria film (0.1 M) after the water vapor treatment. As shown in FIG. 13, clear diffraction points were confirmed in the ceria film, and the order indicating the crystal structure was confirmed.
  • the titania film was prepared and evaluated in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to a titania coating liquid.
  • the thickness of the produced titania film was measured using a spectroscopic ellipsometry or a scanning electron microscope (SEM), it was about 100 nm.
  • FIG. 14A is a graph showing a change in water contact angle in a titania film.
  • the contact angle was unstable when no steam treatment was performed. Specifically, the contact angle tended to be about 10 ° within an elapsed time of 1 day, and then gradually increased to reach about 25 ° after an elapsed time of 31 days. On the other hand, it was confirmed that the contact angle is significantly increased by using the steam treatment, and in particular, the contact angle is increased to about 60 ° or more by the treatment for 7 days or more.
  • FIG. 14B is a graph showing the change of the water drop falling angle in the titania film.
  • the tumbling angle was always 90 ° or more from the beginning of the film formation until 30 days had elapsed, and the water droplet removal property was extremely poor.
  • the falling angle is lowered by the steam treatment. In particular, it was confirmed that the falling angle becomes 60 ° or less by performing the steam treatment for 7 days or more.
  • hafnia was performed in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to a hafnia coating liquid (0.5 M), (0.1 M), or (0.01 M).
  • a film (0.5M), a hafnia film (0.1M), and a hafnia film (0.01M) were produced and evaluated.
  • the produced hafnia film (0.5M), hafnia film (0.1M), and hafnia film (0.01M) were colorless and transparent with no interference color. It seems to be several hundred nm.
  • the surface roughness (Ra) of the produced hafnia film (0.1 M) was 6.9 nm.
  • FIG. 15A is a graph showing a change in the water contact angle in the hafnia film without the water vapor treatment
  • FIG. 15B is a graph showing a change in the water contact angle in the hafnia film with the water vapor treatment.
  • the contact angle was unstable when no steam treatment was performed.
  • the contact angle which was less than 10 °, rose to about 60 ° after storage for 15 days.
  • FIG. 15B it was confirmed that the contact angle was significantly increased by the presence of the steam treatment. Specifically, it was confirmed that the contact angle rose to 80 ° or more by treatment for 1 day or more.
  • FIG. 16A is a graph showing a change in the water drop falling angle in the hafnia film without the water vapor treatment
  • FIG. 16B is a graph showing a change in the water drop falling angle in the hafnia film with the water vapor treatment.
  • the tumbling angle is always 90 ° or more from the beginning of the film formation until the lapse of 7 days, and the water droplet removability is extremely poor. It was. After the 15th day, the falling angle had decreased to 50-70 °.
  • FIG. 16B it was confirmed that the falling angle is reduced by the presence of the steam treatment. Specifically, it has been found that the rolling angle decreases to 50 ° or less for the hafnia film (0.1M) and 45 ° or less for the hafnia film (0.01M) by the treatment for one day or longer.
  • FIG. 17A is an XRD measurement result of a hafnia film (0.5M).
  • FIG. 17B is an XRD measurement result of the hafnia film (0.01M).
  • a clear diffraction point was confirmed in the hafnia film (0.5M), and an order indicating a crystal structure was confirmed.
  • a clear diffraction point was not confirmed in the hafnia film (0.01M), and it was confirmed that the hafnia film (0.01M) was amorphous.
  • FIG. 18A is a graph showing a change in the water contact angle in the blank when there is a steam treatment
  • FIG. 18B is a graph showing a change in the water drop falling angle in the blank when there is a steam treatment.
  • the contact angle increased as the processing time increased.
  • the contact exceeded 55 ° after 3 days of treatment.
  • the condition of the absolute humidity of 46 g / m 3 had a greater effect of increasing the contact angle than the condition of the absolute humidity of 10 g / m 3 .
  • the falling angle was maintained at 30 ° or less.
  • the condition of the absolute humidity of 46 g / m 3 had a greater effect of lowering the sliding angle than the condition of the absolute humidity of 10 g / m 3 .
  • An alumina-titania film (10: 1) was prepared, and changes in contact angle and sliding angle with respect to the steam treatment time were measured.
  • the surface roughness Ra of the alumina-titania film (100: 1) was 1.4 nm.
  • the surface roughness Ra of the alumina-titania film (10: 1) was 1.5 nm.
  • the surface roughness Ra of the alumina-titania film (1: 1) was 1.6 nm.
  • a simple alumina film was produced as a control by the same method as in Experimental Example 1, and changes in contact angle and falling angle with respect to the steam treatment time were measured.
  • FIGS. 19A and 19B The above measurement results are shown in FIGS. 19A and 19B.
  • Al-MEA indicates a simple film of alumina. As shown in FIG.
  • the intensity of the ultraviolet light applied to the alumina-titania film was set to 1 mW / cm 2 by adjusting the distance between the light and the substrate.
  • the gas in the sealed container was sampled every UV irradiation time, and the concentration of the remaining IPA gas (raw material) and the concentration of acetone (product) were measured by gas chromatography.
  • FIG. 20 shows the evaluation result of photocatalytic activity for “Al—Ti 100: 1 40 ° C. 90%”
  • FIG. 21 shows the evaluation result of photocatalytic activity for “Al—Ti 10: 1 40 ° C. 90%”.
  • the evaluation results of the photocatalytic activity for “Al—Ti 1: 1 40 ° C. 90%” are shown in FIG. 20, 21, and 22, the horizontal axis (BL irradiation time / h) represents the black light irradiation time (unit: hours), and the left vertical axis (IPA / ppm) represents the remaining IPA gas.
  • BL irradiation time / h represents the black light irradiation time (unit: hours)
  • IPA / ppm represents the remaining IPA gas.
  • the surface roughness Ra of the zirconia-titania film (100: 1) was 1.5 nm.
  • the surface roughness Ra of the zirconia-titania film (10: 1) was 1.1 nm.
  • the surface roughness Ra of the zirconia-titania film (1: 1) was 1.5 nm.
  • a simple zirconia film was prepared as a control, and changes in the contact angle and the falling angle with respect to the steam treatment time were measured.
  • FIGS. 23A and 23B The above measurement results are shown in FIGS. 23A and 23B.
  • “Zr-DEA” represents a simple film of zirconia. As shown in FIG.
  • a simple hafnia film was prepared as a control by the same method as in Experimental Example 1, and changes in contact angle and sliding angle with respect to the steam treatment time were measured.
  • FIGS. 24A and 24B The above measurement results are shown in FIGS. 24A and 24B.
  • TiHAP titanium apatite film
  • FIGS. 25A and 25B The measurement results are shown in FIGS. 25A and 25B.
  • the plot of “TiHAP_1” is a plot when the steam treatment is performed at the indicated temperature and relative humidity when the plot is “40 ° C. and 95%” when stored in a room temperature environment.
  • the contact angle was remarkably increased by the treatments of “90 ° C. 25%” and “90 ° C. 50%”.
  • the rolling angle was remarkably reduced by the treatment of “90 ° C. 50%”.
  • Example 3 ⁇ Evaluation of resistance point density and water repellency ⁇
  • various inorganic thin films (Sample 1 to Sample 27) including the simple metal oxide film and the composite metal oxide film produced above, the resistance point density and water repellency (contact angle and falling angle) The correlation of was evaluated.
  • the method of measuring the resistance point density, contact angle, and sliding angle is as described above.
  • the evaluation results are shown in Table 2.
  • the preparation conditions for each sample are as follows.
  • Example 1 The alumina film prepared in Example 1 (alumina film after cooling for 5 hours at the muffle furnace), the temperature 40 ° C., in an atmosphere of 95% relative humidity (absolute humidity 48 g / m 3), and stored for 2 months (In other words, steam treatment was performed).
  • Example 2 The alumina film prepared in Experimental Example 1 (the alumina film after being cooled in the muffle furnace for 5 hours) was immersed in pure water at 70 ° C. for 1 hour and subjected to hot water treatment. The alumina film after the hot water treatment was stored for 2 months in an atmosphere of a temperature of 40 ° C.
  • Example 3 It is the alumina film (alumina film after cooling for 5 hours in the muffle furnace) produced in Experimental Example 1 (resistance point density and water repellency were evaluated without storage).
  • Sample 4 The alumina film prepared in Experimental Example 1 (the alumina film after being cooled in the muffle furnace for 5 hours) was immersed in pure water at 70 ° C. for 1 hour and subjected to hot water treatment. The alumina membrane after the hot water treatment was stored for 1 day in the same indoor environment as in Experimental Example 1.
  • Example 5 The alumina film produced in Experimental Example 1 (the alumina film after cooling in the muffle furnace for 5 hours) was stored for 4 days in the same indoor environment as in Experimental Example 1.
  • Example 6 to Sample 10 Each of the Al film, Au film, Cr film, Si film, and Ti film formed under the following conditions was stored for 2 months in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ). (In other words, steam treatment was performed).
  • a substrate for forming each film the same glass substrate as in Experimental Example 1 was used.
  • the cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6).
  • An aluminum wire (diameter: 1 mm, 99.999%, manufactured by Sigma-Aldrich) was set in the W port (distance between the deposition port and the substrate was 15 cm), and evacuated to 2 ⁇ 10 ⁇ 6 Torr with a rotary pump and a diffusion pump. Thereafter, the heating current was gradually increased to perform preheating and degassing, and then vapor deposition was performed at a film forming rate of 2 nm / sec for 3 minutes (film thickness 371 nm). Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
  • the cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6).
  • EH-6 resistance heating vacuum deposition apparatus
  • Cr was deposited as a base film by about 5 nm by the method described later.
  • a gold wire (diameter 0.5 mm, 99.99%, manufactured by Sigma-Aldrich) was set in the W port (distance between the deposition port and the substrate was 15 cm), and 2 ⁇ 10 ⁇ 6 Torr with a rotary pump and a diffusion pump.
  • the heating current was gradually increased to preheat and degas, and then vapor deposition was performed at a film forming rate of 0.5 nm / sec for 200 seconds (film thickness of about 100 nm). Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
  • the cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6).
  • a chromium chip (99.995%, manufactured by Sigma-Aldrich) was set in the Ta port, and the distance between the vapor deposition port and the substrate was 15 cm.
  • the heating current was gradually increased to preheat and degas, and then deposition was performed at a film forming rate of 0.6 nm / sec for 170 seconds ( (Film thickness of about 100 nm).
  • Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
  • Si sputtering conditions-Equipment Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.)
  • Power source REACTIVE PLASMA GENERATOR (PRG-50 manufactured by ENI Technology, Inc.), input power: 250 W (pulse)
  • Target Si (4N, 40 mm ⁇ 200 mm ⁇ 5 mmt, 0,01 ⁇ ⁇ cm or less, made by Mitsui Metals)
  • Substrate heating None
  • Back pressure 2.0 ⁇ 10 ⁇ 4 Pa
  • Total pressure during sputtering Ar (100%) was introduced at a gas flow rate of 30 sccm, and the main valve was adjusted to a total pressure of 0.3 Pa.
  • Example 13 to Sample 14 Using a zirconia coating solution prepared under the following conditions, a zirconia film (zirconia film after cooling in the muffle furnace for 5 hours) prepared in the same manner as in Experimental Example 1 was measured in the same indoor environment as in Experimental Example 1. Stored for months.
  • a zirconia coating solution (2% by mass) is obtained by dissolving zirconium oxyacetate in a solution of 0.1% by mass of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water. Prepared as a solution.
  • PVA polyvinyl alcohol
  • Example 18 to Sample 20 The treatment shown in Table 2 was performed for the period shown in Table 2 on the titania film prepared in Experimental Example 1 (the titania film after being cooled in the muffle furnace for 5 hours).
  • Example 21 to Sample 24 A titania film was formed on the glass substrate used in Experimental Example 1 by sputtering under the following conditions.
  • the manufactured substrate with a titania film was subjected to heat treatment (firing) at an atmospheric temperature of 500 ° C. for the time shown in the “treatment” column of Table 2 using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
  • the substrate with the titania film after firing was stored for the period shown in Table 2 in the same indoor environment as in Experimental Example 1.
  • TiO 2 sputtering conditions- -Equipment Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.) ⁇ Power supply: MAGNETRON DRIVE (manufactured by Advanced Energy), input power: DC1200W ⁇ Target: Ti ⁇ Substrate heating: None ⁇ Back pressure: 2.0 ⁇ 10 ⁇ 4 Pa, Total pressure during sputtering: Oxygen was introduced at a gas flow rate of 6 sccm and Ar was introduced at a gas flow rate of 24 sccm, and the main valve was adjusted to a total pressure of 0.3 Pa. At this time, the oxygen partial pressure is 20%. Under the above sputtering conditions, a TiO 2 thin film was formed to a thickness of 100 nm after pre-sputtering.
  • Samples 22 to 24 were prepared in the same manner as Samples 22 to 24 except that a silica film (underlying film) was formed on a glass substrate and a titania film was formed on the formed silica film. Samples 25 to 27 were prepared. Here, the silica film (underlying film) was formed by sputtering under the following conditions.
  • the resistance point density is Compared with the sample exceeding 10 pieces / 30 mm 2 , the contact angle was high and the sliding angle was low. In addition, it was confirmed that it is effective to perform the steam treatment in order to set the density of the resistance points to 10 pieces / 30 mm 2 or less.
  • “Temperature 20 ° C, relative humidity 95%” A treatment in an atmosphere of a temperature of 20 ° C. and a relative humidity of 95% (absolute humidity of 16 g / m 3 ) is shown.
  • “Temperature 80 ° C, relative humidity 95%” A treatment in an atmosphere of a temperature of 80 ° C. and a relative humidity of 95% (absolute humidity of 277 g / m 3 ) is shown.
  • “Temperature 80 °C, dry” ... temperature 80 ° C, treatment in a dry atmosphere in a dryer (ANS-111S, natural convection thermostat, Isuzu Seisakusho).
  • “Indoor environment” This is the result when stored in an atmosphere of a temperature of 25 ° C.
  • “Temperature 150 ° C (autoclave)” A treatment in an atmosphere at a temperature of 150 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
  • “Temperature 180 ° C (autoclave)” The treatment in an atmosphere at a temperature of 180 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
  • “Temperature 90 ° C, relative humidity 30%” A treatment in an atmosphere of a temperature of 90 ° C.
  • the contact angle arrival level and temporal changes depending on the conditions of the steam treatment there are differences in the contact angle arrival level and temporal changes depending on the conditions of the steam treatment, and there are optimum treatment conditions for increasing the contact angle.
  • the contact angle does not reach 90 ° under the condition where the absolute humidity value is lower than 15 g / m 3 .
  • the absolute humidity is too high, as in autoclave treatment at multiple temperature points (treatment with saturated steam), the contact angle increases once and then decreases or contacts at the first day of treatment. A time change below the initial value of the corner occurs.
  • “Temperature 120 ° C (autoclave)” The treatment in an atmosphere at a temperature of 120 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
  • “Temperature 95 ° C, relative humidity 25%” A treatment in an atmosphere having a temperature of 95 ° C. and a relative humidity of 25% (absolute humidity 126 g / m 3 ) is shown.
  • the internal flow of the water droplets falling on the surface of the alumina film showed a different behavior from the internal behavior of the water droplets falling on the surface of the organic thin film.
  • the internal flow of water droplets falling on the surface of the organic thin film slides down in a rotation mode in which the entire droplet rotates in a caterpillar shape, whereas the internal flow of water droplets falling on the surface of the alumina film is
  • the front part of the droplet was in a caterpillar rotation mode
  • the rear part had a complicated internal flow different from the simple rotation mode.
  • FIG. 28A is a graph showing a change in water contact angle with respect to the steam treatment time
  • FIG. 28B is a graph showing a change in water drop falling angle with respect to the steam treatment time.
  • Example 9 ⁇ Material that does not lubricate by steam treatment ⁇
  • the organic film was subjected to water vapor treatment (treatment conditions: 40 ° C., 46 g / m 3 ), the treatment time was changed, and the water contact angle change was measured.
  • the organic films used in the experiment are polypropylene and polyethylene terephthalate, polyvinyl chloride, polyoxymethylene, polycarbonate, ABS, nylon, polyethylene, polystyrene, and acrylic resin. Among them, for polyvinyl chloride, nylon, and acrylic resin, the water contact angle increased by 10 ° or more by the steam treatment. For other organic films, even when the water contact angle decreased or increased, it was kept below 10 °. Table 3 shows the treatment time and changes in the water contact angle.
  • PP Organic film, polypropylene.
  • PET Organic film, polyethylene terephthalate.
  • PVC Organic film, polyvinyl chloride.
  • POM Organic film, polyoxymethylene.
  • PC Organic film and polycarbonate.
  • ABS Organic film, ABS (acrylonitrile-butadiene-styrene copolymer).
  • PA Organic membrane, nylon.
  • PE Organic film, polyethylene.
  • PS Organic film, polystyrene.
  • MA Organic film and acrylic resin.
  • Example 11 ⁇ Dependence on droplet composition ⁇ Using an alumina membrane (0.1 M, water vapor treatment conditions 40 ° C., 46 g / m 3 , treatment days 30 days) and an organic thin film (FAS-17 and ODS), the composition of the water droplets can be variously changed to achieve a droplet composition. Dependency was examined. The measuring method is the same as the measuring method of the falling angle except that the water droplet is changed from pure water to various solutions.
  • the falling angle of a 5% by mass sucrose aqueous solution is 46 °
  • the falling angle of a 25% by mass diethylene glycol methyl ether aqueous solution is 8 °
  • the falling angle of a 25% by mass isopropyl alcohol aqueous solution is 10 °
  • a NaCl solution 10
  • the falling angle of (mass% aqueous solution) was 30 °. That is, in the case of the alumina film, good water slidability was exhibited in any of the above compositions, but it was confirmed that the composition of the droplet composition depended on the drop angle depending on the droplet composition. On the other hand, in the case of the organic thin film, the drop composition dependency of the falling angle was not confirmed. As described above, it was confirmed that there are various differences in the falling behavior between the inorganic thin film and the organic thin film.
  • Example 12 ⁇ Resliding smoothness ⁇ Loaded to 0.1 kg / cm 2 (JIS L 3102-1978 cotton canvas 1206) on the surface of an alumina thin film (0.1 M) subjected to water slicking treatment (treatment conditions: 40 ° C., 46 g / m 3 , 140 days) Speed: 30 The contact angle deteriorated from 93 ° to 80 ° and the sliding angle deteriorated from 21 ° to 67 ° when the traverse test was carried out 20 times in the reciprocation / minute condition. The slipperiness was recovered by performing 40 ° C. and 46 g / m 3 for 3 days, and the contact angle was restored to 93 ° and the falling angle was 33 °.
  • FIG. 29 is a graph showing a change in water contact angle (°) with respect to the steam treatment time (elapsed time (days) in a steam atmosphere). As shown in FIG. 29, when the temperature of the heat treatment was 150 ° C., 300 ° C., 400 ° C., and 500 ° C., the effect of improving the water contact angle by the steam treatment was remarkably obtained.
  • FIG. 30 is a graph showing a change in the water drop falling angle (°) with respect to the steam treatment time (elapsed time (days) in a steam atmosphere). As shown in FIG. 30, when the temperature of the heat treatment is 150 ° C., 300 ° C., 400 ° C., and 500 ° C., the effect of lowering the water drop falling angle by the steam treatment was remarkably obtained.
  • FIG. 31 is a graph showing a change in water contact angle (°) with respect to storage time (elapsed time (days) in a dry atmosphere). As shown in FIG. 31, even when heat treatment at any temperature was performed, the water contact angle was about 50 ° or less.
  • FIG. 32 is a graph showing changes in the water drop falling angle (°) with respect to storage time (elapsed time (days) in a dry atmosphere). As shown in FIG. 32, the water drop falling angle did not decrease or was unstable.
  • FIG. 33 is a graph showing the relationship between the number of sliding times, the contact angle, and the falling angle. As shown in FIG. 33, the contact angle was maintained at about 70 ° or more until the number of sliding times of 500, and the sliding angle was maintained at 40 ° or less until the number of sliding times of 500. Thus, the surface excellent in static water repellency and dynamic water repellency obtained by heat treatment and steam treatment was also excellent in durability (friction resistance).
  • FIG. 34 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in an Ag polishing plate. As shown in FIG. 34, when heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of elapsed time 0 days), but by performing steam treatment The water contact angle recovered to 80 ° or more.
  • FIG. 35 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ag polishing plate.
  • the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the steam treatment should be performed.
  • the water droplet contact angle decreased to about 50 °.
  • FIG. 36 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in a Cu polishing plate. As shown in FIG. 36, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time of 0 days). The water contact angle recovered to 80 ° or more.
  • FIG. 37 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Cu polishing plate. As shown in FIG. 37, when the heat treatment was performed (“with heat treatment”), the water droplets did not fall.
  • FIG. 38 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in an Al polishing plate. As shown in FIG. 38, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time 0 days), but by performing the steam treatment The water contact angle recovered to 80 ° or more.
  • FIG. 39 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Al polishing plate.
  • the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the water vapor treatment should be performed.
  • the water droplet contact angle decreased to about 40 ° or less.
  • Ni polishing plate> As the Ni polishing plate, Nilaco Ni (product number NI-313324, size 0.1 mm ⁇ 100 mm ⁇ 500 mm, purity 99 +%) was used.
  • FIG. 40 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ni polishing plate. As shown in FIG. 40, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of elapsed time 0 days), but by performing the steam treatment The water contact angle recovered to 80 ° or more.
  • FIG. 41 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ni polishing plate. As shown in FIG. 41, when the heat treatment was not performed (“no heat treatment”), the water droplet falling angle could be reduced to 50 ° or less by the steam treatment, but when the heat treatment was performed (“with heat treatment”). ) Did not fall.
  • FIG. 42 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Fe polishing plate. As shown in FIG. 42, when the heat treatment was performed (“with heat treatment”), the water contact angle did not increase even when the steam treatment was performed.
  • FIG. 43 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Fe polishing plate. As shown in FIG. 43, when the heat treatment was not performed (“no heat treatment”), the water droplet falling angle could be reduced to 50 ° or less by the steam treatment, but when the heat treatment was performed (“with heat treatment”). ) Did not fall.
  • FIG. 44 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in a Ti polishing plate. As shown in FIG. 44, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time 0 days). The water contact angle recovered to 70 ° or more.
  • FIG. 45 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ti polishing plate. As shown in FIG. 45, in both cases of heat treatment (“with heat treatment”) and no heat treatment (“no heat treatment”), the water droplet falling angle is reduced to 50 ° or less by steam treatment. I was able to.
  • FIG. 46 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Si wafer. As shown in FIG. 46, the water contact angle is increased to 80 ° or more by steam treatment in both cases where heat treatment was performed (“with heat treatment”) and when heat treatment was not performed (“no heat treatment”). I was able to.
  • FIG. 47 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Si wafer.
  • the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the steam treatment should be performed.
  • the water droplet contact angle decreased to 20 ° or less.
  • the behavior of the water contact angle and water drop falling angle in these metal substrates is such that the surface organic substances are once removed by heat treatment to become a hydrophilic state, and then the surface of the H 2 O having a special structure is formed by steam treatment. It is presumed that the cluster and the organic matter are stacked with good uniformity in a state where the resistance point is small (see, for example, FIG. 56), and as a result, the water droplet contact angle is reduced.
  • the sputtering power is not limited to the above power as long as a desired surface roughness (Ra) and an appropriate deposition rate can be achieved.
  • the support is not particularly limited as long as it is a material that can withstand the heat treatment temperature as a post-treatment.
  • the support may be used as it is, or a support having a silica (SiO 2 ) film or the like formed on the surface.
  • the film forming method by the sputtering method has been described, but a known method such as sputtering, CVD, ion plating, vacuum deposition, or the like can be used as the film forming method.
  • the hafnia film (asdepo) after film formation was subjected to heat treatment (annealing) at 1000 ° C. for 90 minutes.
  • the heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
  • KDF-P90G manufactured by Denken Co., Ltd.
  • the heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.). As described above, a sample of a hafnia film (500 ° C.) was produced.
  • KDF-P90G manufactured by Denken Co., Ltd.
  • FIG. 48 shows the XRD measurement result of the hafnia film (500 ° C.) and the hafnia film (asdepo) after the film formation and before the heat treatment
  • FIG. 49 shows the heat treatment after the hafnia film (1000 ° C.) and the film formation. It is a XRD measurement result of the previous hafnia film
  • FIGS. 48 and 49 in both the hafnia film (500 ° C.) and the hafnia film (1000 ° C.), the diffraction lines indicating the crystal structure are increased after the heat treatment as compared with asdepo. It was confirmed that crystallization was progressing. In particular, it was confirmed that the crystallization of the hafnia film (1000 ° C.) is more advanced than the hafnia film (500 ° C.).
  • each of the hafnia film (500 ° C.) and the hafnia film (1000 ° C.) is left in a water vapor atmosphere (that is, subjected to a water vapor treatment), and changes in water contact angle and water droplet falling angle with respect to the standing time (treatment time).
  • treatment time changes in water contact angle and water droplet falling angle with respect to the standing time
  • Dry dry atmosphere
  • FIG. 50 is a graph showing a change in water contact angle in a hafnia film (500 ° C.). As shown in FIG. 50, when the water vapor treatment is performed (“40 ° C., 95%”, “90 ° C., 50%”), the time is shorter than when left in a dry atmosphere (Dry). It was possible to raise the contact angle. The effect of increasing the contact angle was particularly remarkable under the condition of “90 ° C., 50%”.
  • FIG. 51 is a graph showing changes in the water drop falling angle in a hafnia film (500 ° C.). As shown in FIG. 51, when left in a dry atmosphere (Dry), the water droplets did not fall. On the other hand, by performing steam treatment (“40 ° C., 95%”, “90 ° C., 50%”), the water droplet falling angle could be reduced. The effect of reducing the water drop falling angle is remarkable at “90 ° C., 50%”. Under these conditions, the water drop falling angle could be reduced by treatment for 24 hours.
  • FIG. 52 is a graph showing a change in water contact angle in a hafnia film (1000 ° C.). As shown in FIG. 52, the effect of increasing the contact angle was particularly remarkable under the condition of “90 ° C., 50%”.
  • FIG. 53 is a graph showing changes in the water drop falling angle in the hafnia film (1000 ° C.). As shown in FIG. 53, when left in a dry atmosphere (Dry), the water drop falling angle showed an unstable behavior. On the other hand, when steam treatment (“40 ° C., 95%”, “90 ° C., 50%”) is performed, the water droplet falling angle can be reduced, and after the standing time of 24 hours, the water droplet falling angle is It was stable.
  • ⁇ Surface roughness Ra> In order to investigate the correlation between the water drop falling angle and the surface roughness, a sample in which the hafnia film (1000 ° C.) was allowed to stand for 340 hours under the “Dry” condition (a sample with a high water drop falling angle) and a hafnia film (1000 ° C.) were set to “90”. The surface roughness Ra was measured for a sample that was left for 340 hours under the condition of “° C., 50%” (a sample having a low waterdrop angle). The surface roughness Ra was measured under two conditions of a measurement range of 25 ⁇ m square and a measurement range of 0.5 ⁇ m square at each of three locations (measurement points 1 to 3) in each sample.
  • Hafnia film (HfO 2 ) A hafnia film similar to the hafnia film (0.1M) (sol-gel method) produced in Experimental Example 1 was used.
  • Quartz glass substrate (Quartz Glass; Q.G.) A quartz glass substrate having a surface roughness Ra of 0.3 nm ⁇ 0.1 nm (within 25 ⁇ m square) on both sides was used.
  • -Stainless steel substrate (Stainless steel (SUS)) ...
  • the surface roughness Ra of one side (surface subjected to water vapor treatment) produced by single-side mirror polishing of a SUS304 substrate is 1.
  • a SUS304 substrate (hereinafter also referred to as “SUS304 mirror polishing plate”) having a thickness of 6 nm ⁇ 0.1 nm (within 25 ⁇ m square) was used.
  • ⁇ Measurement method> A friction force microscope (manufactured by JEOL Ltd., product name: JSPM-5200) was attached with the following cantilever, and the surface of the measurement sample was scanned with the probe of the cantilever to measure the friction force and the dynamic friction coefficient.
  • the scanning speed was calculated by dividing the scanning distance (2 ⁇ m or 1.5 ⁇ m) by the time (clock 333.33 ⁇ sec ⁇ 256 points) required to scan one line (256 points) at the measurement location.
  • Friction force F (ka (V ⁇ V 0 ) / 2d) ⁇ 10 9 [nN]
  • k, a, V, V 0 , and d represent the following values, respectively.
  • FIG. 57 is a graph showing the measurement results of the frictional force of the alumina film (Al 2 O 3 ).
  • FIG. 58 is a graph showing the measurement results of the frictional force of the hafnia film (HfO 2 ).
  • 59 is a graph showing the measurement results of the frictional force of the quartz glass substrate (QG).
  • FIG. 60 is a graph showing the measurement results of the frictional force of the stainless steel substrate (SUS).
  • the horizontal axis represents the friction force F (Friction Force (nN)), and the vertical axis represents the frequency.
  • F Fretion Force
  • tre Represents the friction force after the steam treatment.
  • one waveform shows the result of one measurement (256 points ⁇ 256 points).
  • FIG. 57 shows the result of performing the frictional force measurement before the water vapor treatment twice and the frictional force measurement after the water vapor treatment three times for the alumina film. Therefore, FIG. 57 shows two “pre.” Waveforms and three “tre.” Waveforms.
  • the surface frictional force was reduced by the water vapor treatment.
  • the mode of friction force after the steam treatment (referred to as a peak value; the same applies hereinafter) was less than half of the mode of friction force before the steam treatment.
  • the surface of the alumina film after the water vapor treatment included a region where the frictional force was 10 nN or less.
  • the contact angle before the water vapor treatment, the contact angle after the water vapor treatment, the water droplet falling angle before the water vapor treatment, and the water droplet falling angle after the water vapor treatment were measured for this alumina film, respectively. 8 °, 83.0 ° ⁇ 2.1 °, 90 °, and 14 ⁇ 1 °.
  • the surface frictional force of the hafnia film was reduced by the water vapor treatment. Specifically, the mode value of the frictional force after the steam treatment was less than half compared to the mode value of the frictional force before the steam treatment. In addition, the surface of the hafnia film after the water vapor treatment included a region where the frictional force was 10 nN or less. Further, with respect to the hafnia film, the contact angle before the steam treatment, the contact angle after the steam treatment, the water drop falling angle before the steam treatment, and the water drop falling angle after the steam treatment were measured. 0.5 °, 86.7 ° ⁇ 0.3 °, 90 °, and 16.7 ° ⁇ 1.2 °.
  • the surface frictional force was reduced by the water vapor treatment. Specifically, the mode value of the frictional force after the steam treatment was less than half compared to the mode value of the frictional force before the steam treatment. Further, the surface of the quartz glass substrate after the water vapor treatment included a region where the frictional force was 10 nN or less. Further, the quartz glass substrate was measured for a contact angle before the water vapor treatment, a contact angle after the water vapor treatment, a water droplet falling angle before the water vapor treatment, and a water droplet falling angle after the water vapor treatment. They were 1.1 °, 77.4 ° ⁇ 1.1 °, 90 °, and 21 ° ⁇ 1 °.
  • the surface frictional force was reduced by the steam treatment. Further, the surface of the stainless steel substrate after the steam treatment included a region where the frictional force was 10 nN or less. Further, when the contact angle before the steam treatment, the contact angle after the steam treatment, the water drop falling angle before the steam treatment, and the water drop falling angle after the steam treatment were measured for this stainless steel substrate, 10.1 ° ⁇ 1 7 °, 80.3 ° ⁇ 0.9 °, 90 °, and 32 ° ⁇ 1.4 °.
  • the dynamic friction coefficient ⁇ of the surface was lowered by the steam treatment in any measurement sample.
  • the dynamic friction coefficient ⁇ (average value) was lowered to 1.0 or less.
  • FIG. 61 is a graph showing the measurement results of the frictional force of a silicon wafer and sapphire glass that have not been subjected to water vapor treatment. As shown in FIG. 61, the silicon wafer and the sapphire glass not subjected to the water vapor treatment both had high frictional force and did not include a region where the frictional force was 10 nN or less.
  • the dynamic friction coefficient ⁇ of the silicon wafer not subjected to the water vapor treatment is 1.6
  • the dynamic friction coefficient ⁇ of the sapphire glass not subjected to the water vapor treatment is 1.3, both of which exceed 1.0. It was.
  • Example 17 ⁇ Study of steam treatment conditions 2 ⁇ Excimer lamp irradiation treatment or ultrasonic cleaning treatment is performed as a pretreatment on the surface of each measurement sample below (pretreatment conditions are shown below), and then water vapor treatment under various conditions (water vapor treatment conditions are as follows) For 4 days, and the contact angle and water drop falling angle after the steam treatment were measured. The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
  • Stainless steel substrate The same SUS304 mirror polishing plate as the SUS304 mirror polishing plate used in Experimental Example 16 was used.
  • -Soda lime glass substrate The same soda lime glass substrate as the soda lime glass substrate used in Experimental Example 13 was used.
  • Quartz glass substrate The same quartz glass substrate as that used in Experimental Example 16 was used.
  • Hafnia film (HfO 2 ) A hafnia film similar to the hafnia film used in Experimental Example 16 was used.
  • Excimer lamp irradiation treatment As a pretreatment, an excimer lamp (UEP20B manufactured by Ushio Electric Co., Ltd., wavelength 172 nm) is applied to the surface of each measurement sample on the side subjected to water vapor treatment at an intensity of 10 mW / cm 2 . Irradiated for 166 hours.
  • -Ultrasonic cleaning treatment For the surface of each measurement sample on the side subjected to the steam treatment, an ultrasonic cleaning device (5510J-MT 42 kHz, manufactured by BRANSON, USA) is used as a pretreatment, in a pure soft detergent 1: 4 pure aqueous solution. And ultrasonic cleaning treatment for 0.33 hours under the condition of 135 W.
  • Table 8 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for the stainless steel substrate.
  • the temperature x relative humidity is 3800 (° C.%), 4500 (° C.%), or 12000 (° C.%) (particularly, the temperature x relative humidity is 3800 (° C.% ) Or 4500 (degrees C.%) water vapor treated stainless steel showed excellent sliding properties (low sliding angle).
  • a particularly preferable condition from the viewpoint of further suppressing the surface oxidation is a temperature ⁇ relative humidity of 3800 (° C.%) or 4500 (° C.%).
  • Table 9 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for a soda lime glass substrate.
  • the soda-lime glass substrate subjected to the steam treatment under the conditions of temperature ⁇ relative humidity of 3800 (° C./%) or 4500 (° C./%) has an excellent sliding property (low falling angle). Indicated.
  • Table 10 shows the pretreatment conditions, the steam treatment conditions, the contact angle after the steam treatment, and the water drop falling angle regarding the alumina film (Al 2 O 3 ).
  • the quartz glass subjected to the steam treatment under the conditions of temperature ⁇ relative humidity of 3800 (° C./%) or 4500 (° C./%) showed excellent sliding property (low sliding angle). .
  • Table 11 shows the pretreatment conditions, the steam treatment conditions, the contact angle after the steam treatment, and the water drop falling angle for the alumina film.
  • Table 11 shows the alumina film subjected to the steam treatment under the conditions of temperature ⁇ relative humidity of 3800 (° C./%) or 4500 (° C./%) showed excellent sliding property (low sliding angle). .
  • Table 12 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for the hafnia film.
  • Table 12 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for the hafnia film.
  • Table 13 shows the water drop falling angle immediately after the steam treatment (within 1 hour after the steam treatment) and after one year from the steam treatment.
  • Table 14 shows the water contact angle immediately after the steam treatment (within 1 hour after the steam treatment) and after one year from the steam treatment.
  • the sample treated under the water vapor treatment condition at a temperature of 40 ° C. or higher is the water drop falling angle even after 1 year from the treatment.
  • the increase in water was suppressed, and the sliding property was maintained for a long time.
  • the sample to which a certain amount of heat load is applied is also excellent in the long-term stability of the water slidability. From this result, it was suggested that the long-term stability of the water slidability can be further improved by performing a heat treatment (for example, a heat treatment at a temperature equal to or higher than the steam treatment temperature) as a post-treatment after the steam treatment.
  • a heat treatment for example, a heat treatment at a temperature equal to or higher than the steam treatment temperature
  • the water vapor treatment conditions were such that the measurement sample was stored for 4 days (96 hours) in a water vapor atmosphere at a temperature of 90 ° C. and a relative humidity of 50%. Further, the post-heat treatment was performed using the same muffle furnace as in Experimental Example 1. The temperature of the post heat treatment was 200 ° C., 300 ° C., 400 ° C., and 500 ° C., and the heat treatment time was 1 hour for each temperature. The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
  • FIG. 62 is a graph showing the relationship between post-heat treatment temperature, water contact angle (CA), and water drop falling angle (SA) in soda lime glass (SLG).
  • FIG. 63 is a graph showing the relationship between the post-heat treatment temperature, the water contact angle (CA), and the water drop falling angle (SA) in the hafnia film (HfO 2 ).
  • ⁇ Measurement method> The friction force microscope and cantilever used in Experimental Example 16 were used to measure the adhesion force in water. First, the surface of the measurement sample was preliminarily subjected to a static elimination treatment using an air ionizer (WINSTAT BF-2Z; Sisid Electrostatic Co., Ltd.) for 15 seconds, and the measurement sample after the static elimination treatment was submerged in water. Next, move the probe of the cantilever closer to the surface of the measurement sample in water, and further press it against the surface (hereinafter also referred to as “approach operation”). The force acting between the probe and the sample surface was measured.
  • WINSTAT BF-2Z Sisid Electrostatic Co., Ltd.
  • the cantilever probe is moved away from the measurement sample surface (hereinafter also referred to as “retraction operation”).
  • the force acting between the probe and the sample surface during the retraction operation was measured.
  • details of the method for measuring the adhesion force in water are described in Journal of Physical Chemistry, B, 105, 10579-10587 (2001) and Journal of Colloid and Interface Science, 307, 418-424 (2007). In the present experimental example, the same method as described in these documents was used.
  • 64 to 71 show the measurement results of the adhesion force in water.
  • 64 to 71 the horizontal axis represents the distance between the probe and the sample surface (Separation distance [nm]), and the vertical axis represents the force acting between the probe and the sample surface (Force [nN]). ).
  • a state where the force (Force [nN]) indicated on the vertical axis is a positive value represents a state in which forces pressing each other act between the probe and the sample surface.
  • a state in which the force (Force [nN]) shown on the vertical axis is a negative value is a state in which a pulling force is generated between the probe and the sample surface, that is, between the probe and the sample surface. This represents a state in which an adhesion force is generated between them (a state in which the probe and the sample surface stick to each other).
  • FIG. 64 is a graph showing the force acting between the probe and the surface of the alumina film during the approach operation performed on the surface of the alumina film before the steam treatment (in FIG. 64, “Al 2 O 3 , pre., Approach ").
  • FIG. 65 is a graph showing the force acting between the probe and the alumina film surface during the approach operation on the alumina film surface after the steam treatment (in FIG. 65, “Al 2 O 3 , Tre., Approach ").
  • FIG. 66 is a graph showing the force acting between the probe and the alumina film surface in the process of performing the retraction operation on the alumina film surface before the steam treatment (in FIG. 66, “Al 2 O 3 , pre., Retraction ”).
  • FIG. 67 is a graph showing the force acting between the probe and the alumina film surface during the retraction operation on the alumina film surface after the steam treatment (in FIG. 67, “Al 2 O 3 , tre., Retraction ”).
  • FIG. 68 is a graph showing the force acting between the probe and the sample surface during the approach operation on the hafnia film surface before the steam treatment (in FIG. 68, “HfO 2 , pre. , "Approach”).
  • FIG. 69 is a graph showing the force acting between the probe and the sample surface during the approach operation on the surface of the hafnia film after the water vapor treatment (in FIG. 69, “HfO 2 , tre. , "Approach”).
  • FIG. 70 is a graph showing changes in the force acting between the probe and the sample surface during the retraction operation on the surface of the hafnia film before the steam treatment (in FIG. 70, “HfO 2 , pre., retraction ”).
  • FIG. 71 is a graph showing a change in force acting between the probe surface and the sample surface during the retraction operation on the surface of the hafnia film after the steam treatment (in FIG. 71, “HfO 2 , tre., retraction ”).
  • the surface of the hafnia film is made water-slidable by the water vapor treatment, so that it is difficult for water to exist between the probe and the surface of the hafnia film, and the probe and the surface of the hafnia film are strongly adhered to each other. Therefore, it is guessed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Disclosed is a method for producing an inorganic structure, which comprises a step of preparing a material for an inorganic structure, and a water vapor treatment step in which the water droplet falling angle of the surface of the material for an inorganic structure is decreased by subjecting the material for an inorganic structure to a water vapor treatment.

Description

無機構造物及びその製造方法、並びに無機薄膜の製造方法INORGANIC STRUCTURE AND METHOD FOR PRODUCING THE SAME
 本発明は、無機構造物及びその製造方法、並びに無機薄膜の製造方法に関する。 The present invention relates to an inorganic structure, a manufacturing method thereof, and a manufacturing method of an inorganic thin film.
 撥水性表面は、液体や有機物の付着が少なく熱力学的に安定な表面であることから、汚れ防止表面や液滴の付着防止表面などとして工業的に広く利用されている。
 たとえば自動車フロントガラスでは、撥水性ポリマーを塗布したり焼き付けたりすること(撥水性コーティング)で、雨天時に付着する雨滴を容易に滑落させることで視界を確保することが行われている(例えば、特開平6-340451号公報参照)。
 また、食品や化学品製造ラインでの様々な工程で、液体の付着防止を目的としてフッ素系の撥水性コーティングなどが利用されている。さらに家庭用品でもフライパンなどでは、食品の付着防止の目的でフッ素コーティングが施されている(例えば、特開2008-212523号公報参照)。
Since the water-repellent surface is a thermodynamically stable surface with little adhesion of liquid or organic matter, it is widely used industrially as a dirt prevention surface or a droplet adhesion prevention surface.
For example, in automobile windshields, the field of view is ensured by applying or baking a water-repellent polymer (water-repellent coating) to easily slide down raindrops that adhere in rainy weather (for example, special features (See Kaihei 6-340451).
In various processes in food and chemical production lines, fluorine-based water-repellent coatings are used for the purpose of preventing liquid adhesion. Further, even household goods such as frying pans are coated with fluorine for the purpose of preventing food adhesion (see, for example, JP-A-2008-212523).
 しかし、これらの撥水性コーティングは、有機物であるがゆえに基本的に耐摩耗性や耐久性が十分でない問題があった。
 たとえば自動車フロントガラスの視認性低下を防ぐために用いられているのは、フッ素系またはシリコン系の有機化合物による有機化合物系の撥水性コーティングである。これらの有機化合物系の撥水性コーティングでは、ガラス表面に比較すれば機械的耐久性に劣るため、その寿命は数カ月から長くても数年と限られている。このため、いずれはディーラーなどでの追加のコーティング処理が必要になる、といった問題がある。このような問題は液体の付着防止などの用途すべてに見られることであり、根本的な改善が望まれていた。
However, since these water-repellent coatings are organic substances, there is a problem that the wear resistance and durability are basically insufficient.
For example, an organic compound-based water-repellent coating made of a fluorine-based or silicon-based organic compound is used to prevent a reduction in visibility of an automobile windshield. These organic compound water-repellent coatings are inferior in mechanical durability as compared to glass surfaces, and therefore their lifetime is limited to several months to at most several years. For this reason, there is a problem that an additional coating process at a dealer or the like becomes necessary. Such a problem is found in all uses such as prevention of liquid adhesion, and a fundamental improvement has been desired.
 耐摩耗性や耐久性の問題に対する解決方法としては、ガラスと同等以上の耐久性を有する無機物の表面を何らかの方法で撥水性にすることが考えられる。
 しかし、撥水性は、水との界面に比べてより熱力学的に安定な表面を形成することによって向上することから、無機物(金属やその酸化物等、以下同じ)に比べて有機化合物のほうが有利であるのは明らかであり、無機物は従来用いられてはこなかった。
As a solution to the problems of wear resistance and durability, it is conceivable to make the surface of an inorganic material having durability equal to or higher than that of glass by some method.
However, since water repellency is improved by forming a more thermodynamically stable surface compared to the interface with water, organic compounds are better than inorganic compounds (metals and oxides, etc.). Obviously it is advantageous, and inorganic materials have not been used in the past.
 しかし発明者らは、濡れ性に関する理論的検討を鋭意重ねた結果、無機物においても、表面の物理的性質や化学的性質の制御によって水を弾く表面を得ることができる可能性が理論的にも示唆されるものと考えた。
 以下のその考え方を述べる。
 固体の濡れ性を、界面の表面張力の釣り合いで表すYoungの式を下記式(1)に示す。
However, as a result of earnestly conducting theoretical studies on wettability, the inventors theoretically have the possibility of obtaining a surface that repels water by controlling the physical and chemical properties of the surface. I thought it was suggested.
The following idea is described.
The Young's formula expressing the wettability of the solid by the balance of the surface tension of the interface is shown in the following formula (1).
 γSV= γSL+ γLV cos θ    ・・・ 式(1) γ SV = γ SL + γ LV cos θ Equation (1)
 式(1)において、θは接触角であり、γSLはsolid(固体)-liquid(液体)の界面張力、γLVはliquid(液体)-vapor(気体)の界面張力、γSVはsolid(固体)-vapor(気体)の界面張力である。
 この式(1)に従う限り、γSVが大きいとθは必然的に小さくなる。
 従ってγSVが大きな材料、例えば無機酸化物は撥水用途には適さない。
 しかし、実際の用途に必要な撥水性は、必ずしも熱力学的に撥水性である必要はない。
 即ち、水滴などが除去され易ければよい場合も多く、この場合必要なのは接触角で代表される静的な撥水性ではなく、動的な撥水性(滑水性)である。この動的撥水性に関しては、基礎的な理論が必ずしも確立していないが、極めて微細な表面の不均一性がその性状に影響することが知られている。
In equation (1), θ is the contact angle, γ SL is the solid (solid) -liquid (liquid) interfacial tension, γ LV is the liquid (liquid) -vapor (gas) interfacial tension, and γ SV is solid (solid). Solid) -vapor (gas) interfacial tension.
As long as this equation (1) is followed, θ is inevitably small when γ SV is large.
Large material thus gamma SV is, for example, inorganic oxides are not suitable for water-repellent applications.
However, the water repellency required for actual applications does not necessarily need to be thermodynamically water repellant.
That is, in many cases, it is sufficient that water droplets and the like are easily removed. In this case, what is required is not a static water repellency represented by a contact angle but a dynamic water repellency (sliding property). Regarding this dynamic water repellency, a basic theory is not necessarily established, but it is known that extremely fine surface non-uniformity affects its properties.
 本発明者らは無機表面の撥水性を極力高める研究開発を行ってきたが、今回、わずかな角度で水滴が転落する滑水性表面を、ジルコニア、アルミナ、ハフニアなどの酸化物によるコーティング(無機薄膜)を用いて作製することができた。
 更に、本発明者等は、わずかな角度で水滴が転落する滑水性表面を有する無機固体(ガラス物品や金属物品)を作製することができた。
 今回開発された技術は、今後、超耐久性の撥水コーティング技術として様々な用途に利用されることが期待できる。
The present inventors have conducted research and development to increase the water repellency of the inorganic surface as much as possible, but this time, the water-sliding surface on which water drops fall at a slight angle is coated with an oxide such as zirconia, alumina, or hafnia (inorganic thin film). ).
Furthermore, the present inventors have been able to produce inorganic solids (glass articles and metal articles) having a water-sliding surface where water drops fall at a slight angle.
The technology developed this time can be expected to be used in various applications as a super-durable water repellent coating technology.
 本発明は上記の観点に基づいてなされたものである。
 即ち、水滴除去性(滑水性)に優れた表面を有し、更に耐久性にも優れた無機構造物及び該無機構造物を製造し得る無機構造物の製造方法を提供することが求められている。
 また、水滴除去性(滑水性)に優れた表面を有し、更に耐久性にも優れた無機薄膜を製造し得る無機薄膜の製造方法を提供することが求められている。
The present invention has been made based on the above viewpoint.
That is, there is a demand to provide an inorganic structure having a surface excellent in water droplet removal property (sliding property) and having excellent durability and a method for producing an inorganic structure capable of producing the inorganic structure. Yes.
Moreover, it is required to provide a method for producing an inorganic thin film capable of producing an inorganic thin film having a surface excellent in water droplet removal property (sliding property) and further excellent in durability.
 この技術の理論的背景から課題の解決方法にいたる考え方を述べる。
 本発明者らは、有機系の撥水材料(FAS;1H,1H,2H,2H-perfluorodecyltrimethoxysおよびODS;octadecyltrimethoxysilane)について、様々作製条件を変えたものの接触角と転落角を検討した。
 その結果、接触角で表される静的撥水性と、転落角で表される動的撥水性と、の間には、明確な相関関係が見出されないことを発見した(N.Yoshida et.al、Journal of the American Chemical Society 128(3), 743-747(2006))。
 更に、転落角が20°~30°のものであっても、接触角が70°近辺のものがあるなど、静的撥水性が必ずしも高くなくても動的撥水性に優れるものがあることも分かった。
 動的撥水性を示す式としては、Furmidgeの式(2)が知られている。
This paper describes the concept of how to solve the problem from the theoretical background of this technology.
The present inventors examined the contact angle and the falling angle of organic water-repellent materials (FAS; 1H, 1H, 2H, 2H-perfluorodecyltrimethoxys and ODS; octadecyltrimethoxysilane) with various production conditions changed.
As a result, it was found that there is no clear correlation between the static water repellency expressed by the contact angle and the dynamic water repellency expressed by the falling angle (N. Yoshida et. al, Journal of the American Chemical Society 128 (3), 743-747 (2006)).
Furthermore, even if the sliding angle is 20 ° to 30 °, there are some that have excellent dynamic water repellency even if the static water repellency is not necessarily high, such as those with a contact angle of around 70 °. I understood.
As an expression showing dynamic water repellency, Furmidge's expression (2) is known.
 mg sinα = ωγLV(cosθr-cosθa) ・・・ 式(2) mg sinα = ωγ LV (cosθ r −cosθ a ) Equation (2)
 式(2)中、mは水滴の質量であり、gは重力加速度であり、αは水滴の転落角であり、ωは水滴が転落する方向と直交する方向についての該水滴の幅であり、γLVはliquid(液体)-vapor(気体)の界面張力であり、θは前進接触角であり、θは後退接触角である。
 ここで、前進接触角θと後退接触角θの差(cosθr-cosθa)は、接触角ヒステリシスと称されるが、この式(2)で明らかなように、水滴の転落性はこの接触角ヒステリシスによって決まってくる。
 つまり動的撥水性を向上させるためには接触角ヒステリシスを小さくすることが必要である。
In equation (2), m is the mass of the water droplet, g is the acceleration of gravity, α is the falling angle of the water droplet, ω is the width of the water droplet in the direction perpendicular to the direction in which the water droplet falls, γ LV is the interfacial tension of liquid-vapor, θ a is the advancing contact angle, and θ r is the receding contact angle.
Here, the difference between the advancing contact angle theta a and receding contact angle θ r (cosθ r -cosθ a), it referred to as the contact angle hysteresis, as is clear by the formula (2), rolling property of water drops This is determined by the contact angle hysteresis.
That is, in order to improve dynamic water repellency, it is necessary to reduce the contact angle hysteresis.
 このような接触角ヒステリシスに関する研究は古く1960年代から取り組まれている。
 しかし、このような動的撥水性の原因となるヒステリシスがなぜ生じるかについて明らかになっているわけではない。少なくとも前進接触角をより小さく、後退接触角をより大きくする必要があることは間違いないが、これらは独立して制御できるものではない。親水性が極めて高ければ前進接触角は小さくなるが、後退面で水滴が表面から剥離することは難しくなるので滑水性は望めない。滑水性を向上させるためには、まずは丸みを帯びた水滴が形成される必要があり、そのためには、接触角がある程度は高い値である必要がある。そのため、まず接触角θを大きくする手段を提供する方策を考える必要がある。
Research on such contact angle hysteresis has been addressed since the 1960s.
However, it is not clear why such hysteresis that causes dynamic water repellency occurs. There is no doubt that at least the advancing contact angle must be smaller and the receding contact angle larger, but these cannot be controlled independently. If the hydrophilicity is extremely high, the advancing contact angle becomes small, but it becomes difficult for water droplets to peel from the surface on the receding surface, so that it is not possible to expect lubricity. In order to improve the water slidability, it is first necessary to form a rounded water droplet, and for that purpose, the contact angle needs to have a high value to some extent. Therefore, it is necessary to first consider a method for providing a means for increasing the contact angle θ.
 同一材料の静的接触角を向上する方策としては、表面粗さを極力小さくすることが考えられる。表面粗さのファクターrを入れたWenzelの式は、下記式(3)で示される。 方 One way to improve the static contact angle of the same material is to reduce the surface roughness as much as possible. The Wenzel equation including the surface roughness factor r is expressed by the following equation (3).
 cosθ' = r(γSV-γSL)/γLV= rcosθ   ・・・式(3)  cosθ ′ = r (γ SV −γ SL ) / γ LV = rcosθ (3)
 上記式(3)において、θ'、r、γSV 、γSL、γLV、及びθは、それぞれ、粗面での接触角、Wenzelのラフネスファクター(表面の粗さにより大きくなった実際の表面積を、見かけの表面積で割ったもの)、固体-気体の表面張力、固体-液体の界面張力、液体-気体の表面張力、平滑面での接触角である。 In the above formula (3), θ ′, r, γ SV , γ SL , γ LV, and θ are respectively the contact angle on the rough surface and the Wenzel roughness factor (actual surface area increased by the surface roughness). Divided by the apparent surface area), the solid-gas surface tension, the solid-liquid interfacial tension, the liquid-gas surface tension, and the contact angle on a smooth surface.
 上記式(3)によれば、表面粗さが増すことにより、親水的な表面はより親水的に、撥水的な表面はより撥水的に強調されることになる。無機酸化物の場合、通常θは90°以下であるから、表面粗さは接触角を低下させる方向に働いているはずである。従って表面の平滑性を極力向上することで接触角は大きくなる。
 様々な無機酸化物や金属表面の平均表面粗さと接触角を測定して、その関係を評価すると、表面粗さの影響は顕著で、Wenzel式の示す方向の変化が確認できる。
 しかしその効果は、表面粗さの変化する領域全般に渡って一様ではなく、特にナノメートル領域における表面粗さの影響が顕著に大きい。具体的には、図5及び図6に示すように、ナノメートル領域において表面粗さが小さくなると、表面粗さ(Ra)2nmを境に接触角が急激に大きくなる。Wenzel効果はもともと凹凸の増加を接触面積の増加と考えてYoungの式の補正を行ったものであり、熱力学的な均一性が期待できるマイクロメートル領域における効果を想定したものである。Wenzel効果では、分子間相互作用が問題になるナノメートル領域での効果が予測されているとは思われない。
 実際、既往の研究でWenzel効果として測定されてきた無機物の表面粗さの領域は、マイクロメートル領域に限られ、ナノメートル領域を含む広範な表面粗さの範囲で接触角への影響を評価したものは見当たらない。
 そのため、このナノメートル領域での接触角の変化が、所謂Wenzel効果と同じものなのかどうかについてはさらなる検証を有するが、事実としてこのような大きな効果が得られることが明らかである。このことを利用して無機物の接触角を増大させることができる。
According to the above formula (3), as the surface roughness increases, the hydrophilic surface is emphasized more hydrophilicly, and the water-repellent surface is emphasized more water-repellently. In the case of inorganic oxides, since θ is usually 90 ° or less, the surface roughness should work in the direction of decreasing the contact angle. Therefore, the contact angle is increased by improving the surface smoothness as much as possible.
When the average surface roughness and contact angle of various inorganic oxides and metal surfaces are measured and the relationship is evaluated, the influence of the surface roughness is remarkable, and the change in the direction indicated by the Wenzel equation can be confirmed.
However, the effect is not uniform over the entire region where the surface roughness changes, and the influence of the surface roughness is particularly large in the nanometer region. Specifically, as shown in FIGS. 5 and 6, when the surface roughness is reduced in the nanometer region, the contact angle rapidly increases with the surface roughness (Ra) of 2 nm as a boundary. The Wenzel effect is a correction of Young's formula, assuming that the increase in unevenness is an increase in contact area, and assumes the effect in the micrometer region where thermodynamic uniformity can be expected. The Wenzel effect does not seem to have been predicted to be effective in the nanometer range, where intermolecular interactions are a problem.
In fact, the area of surface roughness of inorganic substances that has been measured as the Wenzel effect in previous studies is limited to the micrometer range, and the influence on the contact angle was evaluated over a wide range of surface roughness including the nanometer range. I can't find anything.
Therefore, there is further verification as to whether the change in the contact angle in the nanometer region is the same as the so-called Wenzel effect, but it is clear that such a large effect can be obtained in fact. By utilizing this fact, the contact angle of the inorganic substance can be increased.
 次に、動的撥水性を高めるために、ヒステリシスcosθr-cosθaを小さくする方策を述べる。
 ヒステリシスの起源として、Israelachviliは、1)表面粗さつまり構造的な不均一性、2)化学的不均一性、などを指摘している(J. N. Israelachvili 著、近藤保/大島広行 訳、“分子間力と表面力”第2版、朝倉書店(1996))。これらは前進接触角θaを小さくして、後退接触角θrを大きくする因子であると考えられる。
 本発明者は、有機系撥水表面について、ナノメートルスケールで平滑にすることで接触角と動的撥水性との相関関係が明確に現れるようになることを見出している(N.Yoshida et.al、Journal of the American Chemical Society 128(3), 743-747(2006))。
 有機系撥水表面では、Wenzel式のθは90°を超えているので、表面粗さを小さくすると接触角はむしろ小さくなる方向である。それでも動的撥水性が向上する理由としては、表面粗さを小さくすることで、ヒステリシスcosθr-cosθaが小さくなっているからであると考えられる。無機酸化物でも同様の効果は期待できる。
Next, in order to increase the dynamic water repellency, a method for reducing the hysteresis cosθ r -cosθ a will be described.
As the origin of hysteresis, Israelachvili points out 1) surface roughness or structural inhomogeneity, 2) chemical inhomogeneity, etc. (JN Israelachvili, translated by Yasuo Kondo / Hiroyuki Oshima, Force and surface force "2nd edition, Asakura Shoten (1996)). These are to reduce the advancing contact angle theta a, it is believed to be a factor to increase the receding contact angle theta r.
The present inventor has found that the correlation between the contact angle and the dynamic water repellency appears clearly by smoothing the organic water-repellent surface on the nanometer scale (N. Yoshida et. al, Journal of the American Chemical Society 128 (3), 743-747 (2006)).
On the organic water-repellent surface, θ in the Wenzel equation exceeds 90 °, so the contact angle tends to decrease rather when the surface roughness is reduced. Even so, the reason why the dynamic water repellency is improved is thought to be that the hysteresis cosθ r -cosθ a is reduced by reducing the surface roughness. Similar effects can be expected with inorganic oxides.
 光学顕微鏡で、アルミナ薄膜上を転落する水滴の後退面を光学顕微鏡で観察すると、水滴が一様に後退せず、まるで水滴がその場所で引っかかったように見える(例えば、後述する図2参照)。
 水滴の転落性の悪い表面では、このような水滴の後退が妨げられるポイント(抵抗点)が数多く観察される。
 水滴後退面を細かく観察すると、このような抵抗点によって、θrが小さくなっていることが推察できる。この抵抗点の原因は、微小な表面の突起や陥没、化学的な異物の存在、さらには物理的性質の変化などであると考えられる。前進面の観察は難しいが、同じような無数の抵抗点が水滴の前進を妨げる状況は同様であろう。このような原因を極力除去し、表面の物理的、化学的性質を均一化する複合的な手段を講じることで、ヒステリシスcosθr-cosθaを小さくすることができる。逆にこのような転落性の優れた表面というものは、表面の物理的・化学的性質が著しく均一で、抵抗点の数が一定以上に少ない状態であると考えられる。
 このような表面を得るための具体的方法として、本明細書で開示する適切な条件による水蒸気処理が有効であることは後述する。
 動的撥水性と静的撥水性を2つの軸にした4象限をつくると、(1)超親水性の状態、つまり接触角が小さく基板を傾けても水滴は付着して動かない状態、(2)超撥水の状態、つまり水滴は簡単に転落していく状態、(3)フッ素系撥水コーティングなどでみられる「接触角が高いのに転落しない」状態、そして、(4)接触角はそれほど高くないが水滴の転落角は低く動的撥水性を示す状態が存在すると思慮される。
When the receding surface of a water droplet falling on the alumina thin film is observed with an optical microscope, the water droplet does not recede uniformly, and it looks as if the water droplet is caught at that location (for example, see FIG. 2 described later). .
Many points (resistance points) at which such water droplets are prevented from retreating are observed on the surface where the water droplets are not easily dropped.
If the water drop receding surface is observed closely, it can be inferred that θ r is reduced by such a resistance point. The cause of the resistance point is considered to be a minute surface protrusion or depression, the presence of a chemical foreign substance, and a change in physical properties. Although it is difficult to observe the advancing surface, the situation will be similar where a myriad of similar resistance points prevent the water droplet from advancing. Hysteresis cosθ r -cosθ a can be reduced by eliminating such causes as much as possible and taking a complex means for making the physical and chemical properties of the surface uniform. On the other hand, such a surface having excellent tumbling properties is considered to be in a state where the physical and chemical properties of the surface are extremely uniform and the number of resistance points is less than a certain level.
As a specific method for obtaining such a surface, it will be described later that steam treatment under appropriate conditions disclosed in this specification is effective.
4 quadrants with two axes of dynamic water repellency and static water repellency: (1) Super hydrophilic state, that is, a state where the contact angle is small and the substrate is tilted, the water droplets adhere and do not move. 2) State of super water repellency, that is, a state where water drops easily fall down, (3) State of "contact angle is high but does not fall down" as seen in fluorine-based water repellent coatings, and (4) Contact angle Is not so high, but the drop angle of water droplets is low, and it is considered that there is a state showing dynamic water repellency.
 本発明はゾルゲル法によって表面平滑性の高いコーティングを作製することによって高い接触角を発現させ、かつその後表面の物理的、化学的性質を均一化する手段として水蒸気処理を行うことや、無機構造物表面の物理的、化学的性質を均一化する手段として水蒸気処理を行うこと、等により、この4つの象限の一つである「(4)接触角はそれほど高くないが水滴の転落角は低く動的撥水性を示す状態」に位置する無機構造物を得ることを明らかにしたものである。この4象限の(4)に相当する材料は、従来得られていなかった全く新しい材料である。 The present invention provides a coating with high surface smoothness by a sol-gel method to develop a high contact angle, and then performs steam treatment as a means for homogenizing the physical and chemical properties of the surface, and an inorganic structure. It is one of these four quadrants by performing steam treatment as a means to make the physical and chemical properties of the surface uniform, etc. “(4) The contact angle is not so high but the drop angle of the water droplet is low. It is clarified that an inorganic structure located in the “state exhibiting water repellency” is obtained. The material corresponding to the four quadrant (4) is a completely new material that has not been obtained in the past.
 以上で示した観点に基づき、本来は親水的である無機物の滑水性を向上させるために、考え得る膨大な実験を繰り返した結果、水蒸気処理を中心とする下記に示す比較的簡便な工程が、極めて有効であることを発見した。水蒸気で処理することで水をはじくようになるという現象は一見理解しがたい現象のように思われるが、水蒸気処理は、後述するように無機物に対する顕著な効果が認められる処理である。前記課題を解決するための、このような具体的手段は以下のとおりである。 Based on the viewpoint shown above, in order to improve the water slidability of the inorganic material that is originally hydrophilic, as a result of repeating an enormous experiment that can be considered, the following relatively simple process centered on steam treatment, I found it extremely effective. Although the phenomenon that water is repelled by treatment with water vapor seems to be a phenomenon that is difficult to understand at first glance, the water vapor treatment is a treatment in which a remarkable effect on inorganic substances is recognized as described later. Such specific means for solving the above-mentioned problems are as follows.
 <1> 無機構造物素材を準備する工程と、
 前記無機構造物素材を水蒸気処理することにより、前記無機構造物素材の表面の水滴転落角を低下させる水蒸気処理工程と、
を有する無機構造物の製造方法。
 <2> 前記水蒸気処理は、前記無機構造物素材を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことにより行う<1>に記載の無機構造物の製造方法。
 <3> 前記水蒸気処理は、温度(℃)と相対湿度(%)との積が2000℃・%以上10000℃・%以下の水蒸気雰囲気に曝すことにより行う<1>又は<2>に記載の無機構造物の製造方法。
 <4> 前記水蒸気処理工程の前に、前記無機構造物素材に対し、該無機構造物素材の表面の有機物を除去する前処理を施す前処理工程を有する<1>~<3>のいずれか1項に記載の無機構造物の製造方法。
 <5> 前記前処理は、100℃以上の熱処理、超音波洗浄処理、及び紫外線照射処理の少なくとも1種である<4>に記載の無機構造物の製造方法。
 <6> 前記水蒸気処理工程の後に、前記無機構造物素材に対し、後処理として、前記水蒸気の温度以上300℃以下の熱処理を施す後処理工程を有する<1>~<5>のいずれか1項に記載の無機構造物の製造方法。
 <7> 前記無機構造物素材が、金属、合金、無機酸化物、及びガラスから選択される少なくとも1種を含む<1>~<6>のいずれか1項に記載の無機構造物の製造方法。
 <8> 前記無機構造物素材が、ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜である<1>~<7>のいずれか1項に記載の無機構造物の製造方法。
<1> a step of preparing an inorganic structure material;
A steam treatment step for reducing a water droplet falling angle on the surface of the inorganic structure material by steaming the inorganic structure material;
The manufacturing method of the inorganic structure which has this.
<2> The steam treatment is performed by exposing the inorganic structure material to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
<3> The steam treatment according to <1> or <2>, wherein the steam treatment is performed by exposure to a steam atmosphere having a product of temperature (° C.) and relative humidity (%) of 2000 ° C. ·% or more and 10,000 ° C. ·% or less. A method for producing an inorganic structure.
<4> The method according to any one of <1> to <3>, further comprising a pretreatment step of performing a pretreatment for removing organic substances on the surface of the inorganic structure material with respect to the inorganic structure material before the water vapor treatment step. 2. A method for producing an inorganic structure according to item 1.
<5> The method for producing an inorganic structure according to <4>, wherein the pretreatment is at least one of heat treatment at 100 ° C. or higher, ultrasonic cleaning treatment, and ultraviolet irradiation treatment.
<6> Any one of <1> to <5>, including a post-treatment step of performing a heat treatment at a temperature not lower than the steam temperature and not higher than 300 ° C. as a post-treatment on the inorganic structure material after the water vapor treatment step. The manufacturing method of the inorganic structure as described in a term.
<7> The method for producing an inorganic structure according to any one of <1> to <6>, wherein the inorganic structure material includes at least one selected from a metal, an alloy, an inorganic oxide, and glass. .
<8> The inorganic structure material is selected from the group consisting of an inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or alumina, ceria, titania, hafnia, and silica. The method for producing an inorganic structure according to any one of <1> to <7>, which is an inorganic thin film containing at least one kind.
 <9> 無機酸化物の前駆体を含む塗布液を支持体上に塗布して塗布膜を形成する塗布膜形成工程と、
 形成された塗布膜を300℃以上の温度で熱処理する熱処理工程と、
 熱処理された塗布膜を水蒸気処理することにより、前記熱処理された塗布膜の表面の水滴転落角を低下させる水蒸気処理工程と、
を有する無機薄膜の製造方法。
<9> A coating film forming step of forming a coating film by coating a coating liquid containing a precursor of an inorganic oxide on a support;
A heat treatment step of heat-treating the formed coating film at a temperature of 300 ° C. or higher;
A steam treatment step for reducing a water droplet falling angle on the surface of the heat-treated coating film by steam-treating the heat-treated coating film;
The manufacturing method of the inorganic thin film which has.
 <10> 表面における水滴の滑落を阻害する抵抗点の密度が、10個/30mm以下である無機構造物。
 <11> 厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された摩擦力が10nN以下である領域、及び、厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された動摩擦係数が1.0以下である領域の少なくとも一方を表面に含む無機構造物。
 <12> 水蒸気雰囲気で処理されて得られた<10>又は<11>に記載の無機構造物。
 <13> 金属、合金、無機酸化物、及びガラスから選択される少なくとも1種を含む<10>~<12>のいずれか1項に記載の無機構造物。
 <14> ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜である<10>~<13>のいずれか1項に記載の無機構造物。
 <15> 水に対する接触角が30°以上であり、水滴転落角が40°以下である<10>~<14>のいずれか1項に記載の無機構造物。
 <16> 表面における前記摩擦力の平均値が、前記水蒸気処理の前よりも低下している<11>~<15>のいずれか1項に記載の無機構造物。
 <17> 表面における前記摩擦力の平均値が、前記水蒸気処理の前よりも半分以下に低下している<11>~<15>のいずれか1項に記載の無機構造物。
<10> An inorganic structure in which the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
<11> Using a cantilever made of Si 3 N 4 having a spring constant in the thickness direction of 0.05 N / m and a pressing force of 14 nN, a region where the friction force measured by a friction force microscope is 10 nN or less, and Using a cantilever made of Si 3 N 4 having a spring constant in the thickness direction of 0.05 N / m and at a pressing pressure of 14 nN, at least in a region where the dynamic friction coefficient measured by a friction force microscope is 1.0 or less An inorganic structure containing one surface.
<12> The inorganic structure according to <10> or <11> obtained by being treated in a steam atmosphere.
<13> The inorganic structure according to any one of <10> to <12>, comprising at least one selected from metals, alloys, inorganic oxides, and glass.
<14> Inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or at least one selected from the group consisting of zirconia, alumina, ceria, titania, hafnia, and silica The inorganic structure according to any one of <10> to <13>, which is an inorganic thin film.
<15> The inorganic structure according to any one of <10> to <14>, wherein a contact angle with water is 30 ° or more and a water drop falling angle is 40 ° or less.
<16> The inorganic structure according to any one of <11> to <15>, wherein an average value of the frictional force on the surface is lower than that before the steam treatment.
<17> The inorganic structure according to any one of <11> to <15>, wherein an average value of the frictional force on the surface is reduced to half or less than before the steam treatment.
 <18> 表面粗さ(Ra)が2nm以下である<10>~<17>のいずれか1項に記載の無機構造物。
 <19> 無機酸化物の前駆体を含む塗布液を塗布して成膜された後、300℃以上の温度で熱処理され、更に、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気で水蒸気処理されて得られた無機薄膜である<10>~<18>のいずれか1項に記載の無機構造物。
 <20> 真空成膜法により成膜された後、300℃以上の温度で熱処理され、更に、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気で処理されて得られたハフニア膜である<10>~<18>のいずれか1項に記載の無機構造物。
 <21> ガラス物品である<10>~<18>のいずれか1項に記載の無機構造物。
 <22> 金属物品である<10>~<18>のいずれか1項に記載の無機構造物。
 <23> 前記ガラス物品が、100℃以上500℃以下の温度で熱処理された後、更に、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気で処理されて得られたガラス物品である<21>に記載の無機構造物。
<18> The inorganic structure according to any one of <10> to <17>, wherein the surface roughness (Ra) is 2 nm or less.
<19> A coating solution containing an inorganic oxide precursor is applied to form a film, which is then heat-treated at a temperature of 300 ° C. or higher, and further has a temperature of 30 ° C. or higher and 100 ° C. or lower and an absolute humidity of 15 g / m 3. The inorganic structure according to any one of <10> to <18>, which is an inorganic thin film obtained by steam treatment in the above steam atmosphere.
<20> After film formation by a vacuum film formation method, heat treatment is performed at a temperature of 300 ° C. or higher, and further, treatment is performed in a steam atmosphere at a temperature of 30 ° C. or higher and 100 ° C. or lower and an absolute humidity of 15 g / m 3 or higher. The inorganic structure according to any one of <10> to <18>, which is a hafnia film obtained.
<21> The inorganic structure according to any one of <10> to <18>, which is a glass article.
<22> The inorganic structure according to any one of <10> to <18>, which is a metal article.
<23> After the glass article is heat-treated at a temperature of 100 ° C. or more and 500 ° C. or less, the glass article is further processed in a steam atmosphere at a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m 3 or more. <21> which is a glass article.
 <24> 支持体と、該支持体上の全部又は一部を被覆する<10>~<20>のいずれか1項に記載の無機構造物と、を有する構造体。 <24> A structure having a support and the inorganic structure according to any one of <10> to <20> covering all or part of the support.
 <25> 前記水蒸気処理は、前記熱処理された塗布膜を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことにより行う<9>に記載の無機薄膜の製造方法。
 <26> 前記水蒸気処理は、前記熱処理された塗布膜を、温度(℃)と相対湿度(%)との積が2000℃・%以上10000℃・%以下の水蒸気雰囲気に曝すことにより行う<9>又は<25>に記載の無機構造物の製造方法。
<25> The steam treatment is performed by exposing the heat-treated coating film to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
<26> The steam treatment is performed by exposing the heat-treated coating film to a steam atmosphere having a product of a temperature (° C.) and a relative humidity (%) of 2000 ° C. ·% or more and 10,000 ° C. ·% or less. > Or <25> The method for producing an inorganic structure according to <25>.
 <27> 真空成膜法により支持体上にハフニア膜を成膜する成膜工程と、成膜されたハフニア膜を300℃以上の温度で熱処理する熱処理工程と、熱処理されたハフニア膜を水蒸気処理することにより、前記熱処理されたハフニア膜の水滴転落角を低下させる水蒸気処理工程と、を有する無機薄膜の製造方法。
 <28> 前記水蒸気処理は、前記熱処理されたハフニア膜を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことにより行う<27>に記載の無機薄膜の製造方法。
 <29> 前記水蒸気処理は、前記熱処理されたハフニア膜を、温度(℃)と相対湿度(%)との積が2000℃・%以上10000℃・%以下の水蒸気雰囲気に曝すことにより行う<27>又は<28>に記載の無機構造物の製造方法。
<27> A film-forming process for forming a hafnia film on a support by a vacuum film-forming method, a heat-treating process for heat-treating the formed hafnia film at a temperature of 300 ° C. or higher, and steam-treating the heat-treated hafnia film And a water vapor treatment step for reducing a water drop falling angle of the heat-treated hafnia film.
<28> The steam treatment is performed by exposing the heat-treated hafnia film to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more. Production method.
<29> The steam treatment is performed by exposing the heat-treated hafnia film to a steam atmosphere having a product of a temperature (° C.) and a relative humidity (%) of 2000 ° C. ·% to 10,000 ° C. ·% <27 > Or <28> The method for producing an inorganic structure according to <28>.
 <30> ガラス素材を100℃以上500℃以下の温度で熱処理する熱処理工程と、熱処理されたガラス素材を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことによって水蒸気処理することにより、前記熱処理されたガラス素材の水滴転落角を低下させる水蒸気処理工程と、
を有するガラス物品の製造方法。
<30> A heat treatment step in which a glass material is heat-treated at a temperature of 100 ° C. or more and 500 ° C. or less, and the heat-treated glass material is exposed to a steam atmosphere having a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m 3 or more. A steam treatment step for reducing a water droplet falling angle of the heat-treated glass material,
The manufacturing method of the glass article which has this.
 <31> 滑水性が低下した無機構造物表面を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことによって水蒸気処理することにより、前記無機構造物の滑水性を回復させる無機構造物の滑水性回復方法。 <31> By subjecting the surface of the inorganic structure having reduced water slidability to a steam atmosphere having a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m 3 or more, steam treatment is performed. A method for recovering water slidability of an inorganic structure that recovers water.
 本発明によれば、水滴除去性(滑水性)に優れた表面を有し、更に耐久性にも優れた無機構造物及び該無機構造物を製造し得る無機構造物の製造方法を提供することができる。
 また、本発明によれば、水滴除去性(滑水性)に優れた表面を有し、更に耐久性にも優れた無機薄膜を製造し得る無機薄膜の製造方法を提供することができる。
According to the present invention, there are provided an inorganic structure having a surface excellent in water droplet removal property (slidability) and further excellent in durability, and a method for producing an inorganic structure capable of producing the inorganic structure. Can do.
Moreover, according to this invention, the manufacturing method of the inorganic thin film which can manufacture the inorganic thin film which has the surface excellent in water-drop removal property (sliding property) and was excellent also in durability can be provided.
抵抗点の密度と水滴転落角との関係を示すグラフである。It is a graph which shows the relationship between the density of a resistance point, and a water drop fall angle. アルミナ膜(水接触角41°、水滴は転落せずに濡れ広がる)表面を水滴が転落する際の、水滴の後端線(水滴が滑落する方向に対し下流側)付近の様子を示す光学顕微鏡写真(倍率3000倍)である。An optical microscope showing the state of the vicinity of the rear end line of the water droplet (downstream with respect to the direction in which the water droplet slides) when the water droplet falls on the surface of the alumina film (water contact angle 41 °, the water droplet does not fall and spread) It is a photograph (magnification 3000 times). スパッタチタニア膜(水接触角56°、水滴は転落せずに濡れ広がる)表面を水滴が転落する際の、水滴の後端線(水滴が滑落する方向に対し下流側)付近の様子を示す光学顕微鏡写真(倍率3000倍)である。Sputter titania film (water contact angle 56 °, water droplet spreads without falling) Optical surface showing the state near the trailing edge of the water droplet (downstream with respect to the sliding direction) when the water droplet falls on the surface It is a microscope picture (magnification 3000 times). 水蒸気処理後のアルミナ膜(水接触角95°、水滴転落角26°)表面を水滴が転落する際の、水滴の後端線(水滴が滑落する方向に対し下流側)付近の様子を示す光学顕微鏡写真(倍率3000倍)である。Optical showing the state of the vicinity of the trailing edge of the water droplet (downstream with respect to the direction in which the water droplet slides) when the water droplet falls on the surface of the alumina film (water contact angle 95 °, water droplet falling angle 26 °) after the steam treatment. It is a microscope picture (magnification 3000 times). 表面粗さ(Ra)と水接触角(°)との関係を示すグラフである。It is a graph which shows the relationship between surface roughness (Ra) and water contact angle (degree). 図5において、表面粗さ(Ra)が4nm以下の範囲を拡大して表したグラフである。In FIG. 5, it is the graph which expanded and represented the range whose surface roughness (Ra) is 4 nm or less. ジルコニア膜における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a zirconia film | membrane. ジルコニア膜における転落角の変化を示すグラフである。It is a graph which shows the change of the fall angle in a zirconia film. ジルコニア膜のXRD測定結果である。It is a XRD measurement result of a zirconia film | membrane. アルミナ膜における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in an alumina membrane. アルミナ膜における転落角の変化を示すグラフである。It is a graph which shows the change of the fall angle in an alumina film. アルミナ膜のXRD測定結果である。It is an XRD measurement result of an alumina film | membrane.
セリア膜における接触角の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the contact angle in a ceria film. セリア膜における水蒸気処理時間と接触角との関係を示すグラフである。It is a graph which shows the relationship between the water vapor processing time in a ceria film, and a contact angle. セリア膜における転落角の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the fall angle in a ceria film. セリア膜における水蒸気処理時間と転落角との関係を示すグラフである。It is a graph which shows the relationship between the water vapor processing time in a ceria film, and a fall angle. セリア膜のXRD測定結果である。It is a XRD measurement result of a ceria film. チタニア膜における接触角の変化を示すグラフである。It is a graph which shows the change of the contact angle in a titania film | membrane. チタニア膜における転落角の変化を示すグラフである。It is a graph which shows the change of the fall angle in a titania film. ハフニア膜における接触角の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the contact angle in a hafnia film | membrane. ハフニア膜における水蒸気処理時間と接触角との関係を示すグラフである。It is a graph which shows the relationship between the water vapor processing time in a hafnia film | membrane, and a contact angle. ハフニア膜における転落角の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the fall angle in a hafnia film | membrane. ハフニア膜における水蒸気処理時間と転落角との関係を示すグラフである。It is a graph which shows the relationship between the water vapor processing time in a hafnia film | membrane, and a fall angle. 0.5Mのコート液を用いて製膜したハフニア膜のXRD測定結果である。It is a XRD measurement result of the hafnia film | membrane formed into a film using 0.5M coating liquid. 0.01Mのコート液を用いて製膜したハフニア膜のXRD測定結果である。It is an XRD measurement result of the hafnia film | membrane formed into a film using 0.01M coating liquid. ブランク(水蒸気処理有り)における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a blank (with water vapor treatment). ブランク(水蒸気処理有り)における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle in a blank (with water vapor treatment). アルミナ-チタニア膜(水蒸気処理有り)における水接触角の変化を示すグラフである。6 is a graph showing a change in water contact angle in an alumina-titania film (with water vapor treatment). アルミナ-チタニア膜(水蒸気処理有り)における水滴転落角の変化を示すグラフである。6 is a graph showing a change in a water drop falling angle in an alumina-titania film (with water vapor treatment).
「Al-Ti 100:1 40℃ 90%」について光触媒活性の評価結果を示すグラフである。It is a graph which shows the evaluation result of photocatalytic activity about "Al-Ti 100: 1 40 degreeC 90%". 「Al-Ti 10:1 40℃ 90%」についての光触媒活性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the photocatalytic activity about "Al-Ti 10: 1 40 degreeC 90%". 「Al-Ti 1:1 40℃ 90%」についての光触媒活性の評価結果を示すグラフである。It is a graph which shows the evaluation result of the photocatalytic activity about "Al-Ti 1: 1 40 degreeC 90%". ジルコニア-チタニア膜(水蒸気処理有り)における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a zirconia-titania film (with water vapor treatment). ジルコニア-チタニア膜(水蒸気処理有り)における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle in a zirconia-titania film (with water vapor treatment). ハフニア-チタニア膜(水蒸気処理有り)における水接触角の変化を示すグラフである。6 is a graph showing a change in water contact angle in a hafnia-titania film (with water vapor treatment). ハフニア-チタニア膜(水蒸気処理有り)における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle in a hafnia-titania film | membrane (with water vapor | steam processing). チタンハイドロキシアパタイト(TiHAP)膜における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a titanium hydroxyapatite (TiHAP) film | membrane. チタンハイドロキシアパタイト(TiHAP)膜における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle in a titanium hydroxyapatite (TiHAP) film | membrane. アルミナ膜について、各水蒸気処理の条件における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in the conditions of each water vapor | steam process about an alumina film | membrane. ハフニア膜について、各水蒸気処理の条件における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in the conditions of each water vapor | steam process about a hafnia film | membrane. 室温環境保管後に水蒸気処理を施したときの水蒸気処理時間に対する水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle with respect to the water vapor processing time when performing water vapor processing after room temperature environment storage. 室温環境保管後に水蒸気処理を施したときの水蒸気処理時間に対する水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle with respect to the water vapor treatment time when performing water vapor treatment after room temperature environment storage.
ガラス基板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor treatment time (elapsed time (day) in a water vapor atmosphere) in a glass substrate. ガラス基板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a glass substrate. ガラス基板の乾燥雰囲気における経過時間(日)に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the elapsed time (days) in the dry atmosphere of a glass substrate. ガラス基板の乾燥雰囲気における経過時間(日)に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water drop fall angle (degree) with respect to the elapsed time (days) in the dry atmosphere of a glass substrate. 水蒸気処理を行ったガラス基板における、トラバース試験の結果を示すグラフである。It is a graph which shows the result of a traverse test in a glass substrate which performed steam treatment.
Ag研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (Elapsed time (day) in a water vapor atmosphere) in an Ag polishing plate. Ag研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle (degree) with respect to the water vapor processing time (Elapsed time (day) in a water vapor atmosphere) in an Ag polishing plate. Cu研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Cu polishing board. Cu研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Cu polishing board. Al研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (Elapsed time (day) in a water vapor atmosphere) in an Al polishing plate. Al研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (Elapsed time (day) in a water vapor atmosphere) in an Al polishing plate. Ni研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Ni polishing plate. Ni研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Ni polishing plate. Fe研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in an Fe polishing plate. Fe研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in an Fe polishing plate. Ti研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Ti polishing plate. Ti研磨板における水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in a Ti polishing plate. Siウェハにおける水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。It is a graph which shows the change of the water contact angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in Si wafer. Siウェハにおける水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。It is a graph which shows the change of the water droplet fall angle (degree) with respect to the water vapor processing time (elapsed time (day) in a water vapor atmosphere) in Si wafer.
ハフニア膜(500℃)及び熱処理前のハフニア膜(asdepo)のXRD測定結果であるIt is an XRD measurement result of a hafnia film (500 ° C.) and a hafnia film (asdepo) before heat treatment. ハフニア膜(1000℃)及び熱処理前のハフニア膜(asdepo)のXRD測定結果である。It is a XRD measurement result of a hafnia film | membrane (1000 degreeC) and the hafnia film | membrane (asdepo) before heat processing. ハフニア膜(500℃)における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a hafnia film | membrane (500 degreeC). ハフニア膜(500℃)における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle in a hafnia film | membrane (500 degreeC). ハフニア膜(1000℃)における水接触角の変化を示すグラフである。It is a graph which shows the change of the water contact angle in a hafnia film | membrane (1000 degreeC). ハフニア膜(1000℃)における水滴転落角の変化を示すグラフである。It is a graph which shows the change of the water drop falling angle in a hafnia film | membrane (1000 degreeC). 水平面に対し傾斜した無機構造物表面において水滴が転落する様子を概念的に示す概略断面図である。It is a schematic sectional drawing which shows notionally a mode that a water drop falls in the inorganic structure surface inclined with respect to the horizontal surface. 図54Aにおいて水滴の後端面が点Aから点Bに移動する際のエネルギーを概念的に示すグラフである。FIG. 54B is a graph conceptually showing energy when the rear end surface of the water droplet moves from point A to point B in FIG. 54A. 通常の大気環境条件における無機構造物表面の様子を概念的に示す概略断面図である。It is a schematic sectional drawing which shows notionally the mode of the surface of an inorganic structure in normal atmospheric environment conditions. 無機構造物表面に対し、水蒸気処理を施した後の様子を概念的に示す概略断面図である。It is a schematic sectional drawing which shows notionally the mode after performing a water vapor process with respect to the inorganic structure surface.
アルミナ膜(Al)の摩擦力の測定結果を示すグラフである。It is a graph showing the measurement results of the friction force of the alumina film (Al 2 O 3). ハフニア膜(HfO)の摩擦力の測定結果を示すグラフである。Hafnia film is a graph showing the measurement results of the friction force (HfO 2). 石英ガラス基板(Q.G.)の摩擦力の測定結果を示すグラフである。It is a graph which shows the measurement result of the frictional force of a quartz glass substrate (QG). ステンレス基板(SUS)の摩擦力の測定結果を示すグラフである。It is a graph which shows the measurement result of the frictional force of a stainless steel substrate (SUS). 水蒸気処理が施されていない、シリコンウェハ及びサファイアガラスの摩擦力の測定結果を示すグラフである。It is a graph which shows the measurement result of the frictional force of the silicon wafer and sapphire glass which are not subjected to water vapor treatment. ソーダライムガラス(SLG)における、後熱処理の温度と、水接触角(CA)及び水滴転落角(SA)と、の関係を示すグラフである。It is a graph which shows the relationship between the temperature of post-heat processing, a water contact angle (CA), and a water drop falling angle (SA) in soda-lime glass (SLG). ハフニア膜(HfO)における、後熱処理の温度と、水接触角(CA)及び水滴転落角(SA)と、の関係を示すグラフである。In hafnia film (HfO 2), and the temperature of the post heat treatment, the water contact angle (CA) and water droplet sliding angle and (SA), is a graph showing the relationship.
水蒸気処理前のアルミナ膜表面に対し、アプローチ操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between a probe and the alumina membrane surface in the process which performed approach operation with respect to the alumina membrane surface before water vapor | steam processing. 水蒸気処理後のアルミナ膜表面について、アプローチ操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between the probe and the alumina film surface in the process which performed the approach operation about the alumina film surface after water vapor treatment. 水蒸気処理前のアルミナ膜表面に対し、リトラクション操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between a probe and the alumina membrane surface in the process of performing retraction operation | movement with respect to the alumina membrane surface before water vapor | steam processing. 水蒸気処理後のアルミナ膜表面について、リトラクション操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between a probe and the alumina film surface in the process which performed the retraction operation | movement about the alumina film surface after a water vapor process. 水蒸気処理前のハフニア膜表面について、アプローチ操作を行った過程中における、探針と試料表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between a probe and a sample surface in the process in which approach operation was performed about the hafnia film | membrane surface before water vapor | steam processing. 水蒸気処理後のハフニア膜表面について、アプローチ操作を行った過程中における、探針と試料表面との間に働く力を示すグラフである。It is a graph which shows the force which acts between a probe and a sample surface in the process which performed the approach operation about the hafnia film | membrane surface after a water vapor process. 水蒸気処理前のハフニア膜表面について、リトラクション操作を行った過程中における、探針と試料表面との間に働く力の変化をグラフである。It is a graph which shows the change of the force which acts between a probe and a sample surface in the process which performed retraction operation about the hafnia film surface before water vapor treatment. 水蒸気処理後のハフニア膜表面について、リトラクション操作を行った過程中における、探針と試料表面との間に働く力の変化をグラフである。It is a graph about the change of the force which acts between a probe and a sample surface in the process of performing retraction operation about the hafnia film surface after water vapor treatment.
シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のFT-IR測定結果(波数範囲400cm-1~4000cm-1)である。4 shows FT-IR measurement results (wave number range: 400 cm −1 to 4000 cm −1 ) of a water sliding treatment sample using silica ultrafine particles and silica ultrafine particles before water sliding treatment. シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のFT-IR測定結果(波数範囲1500cm-1~1850cm-1)である。4 shows FT-IR measurement results (wave number range: 1500 cm −1 to 1850 cm −1 ) of a water sliding treatment sample using silica ultrafine particles and silica ultrafine particles before water sliding treatment. シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のDTA/TG測定結果である。It is a DTA / TG measurement result of the water slide treatment sample using silica ultrafine particles, and the silica ultrafine particles before water slide treatment.
≪無機構造物≫
 本発明の無機構造物は、表面における水滴の滑落を阻害する抵抗点の密度が、10個/30mm以下である。
 従来、酸化物を中心とする無機物質は本質的に表面エネルギーが有機物よりも高く、親水性を呈することが多いため、撥水性を要求される用途(水を嫌う用途)への適用は困難であると考えられてきた。
 一方、有機物としてフッ素化合物等の撥水性コーティング材料が知られていたが、該撥水性コーティング材料は、水をはじいても水滴が転落しづらく、水滴を除去しづらい問題があった。このように、水接触角が高いからといって必ずしも水滴転落角が低いとは限らない。また、撥水性コーティング材料は有機物であるため耐久性が低いという問題があった。
 本発明は、無機構造物表面の抵抗点の密度を前記の範囲とすること(即ち、無機構造物表面における特異点の数を少なくし、該表面の均一性を向上させること)により、表面における水滴除去性(滑水性)を向上できる、との新規な知見に基づき完成されたものである。
 ここで、水滴除去性(滑水性)は、後述する水滴転落角の大小により判断される性質である。水滴転落角が小さい程、水滴除去性(滑水性)に優れている。
 また、本発明の無機構造物は、有機膜等の有機構造物に比べ、耐久性、耐摩耗性、安全性に優れる。また、本発明の無機構造物は、高抵抗の無機構造物とすることもでき、この場合には帯電性にも優れる。
≪Inorganic structure≫
In the inorganic structure of the present invention, the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
Conventionally, inorganic materials centered on oxides have essentially higher surface energy than organics and often exhibit hydrophilicity, making it difficult to apply to applications that require water repellency (applications that dislike water). It has been thought that there is.
On the other hand, water repellent coating materials such as fluorine compounds have been known as organic substances. However, the water repellent coating material has a problem that it is difficult for water droplets to fall even when water is repelled, and it is difficult to remove water droplets. Thus, just because the water contact angle is high, the water drop falling angle is not necessarily low. Further, since the water-repellent coating material is organic, there is a problem that durability is low.
In the present invention, by setting the density of resistance points on the surface of the inorganic structure within the above range (that is, by reducing the number of singular points on the surface of the inorganic structure and improving the uniformity of the surface), It was completed on the basis of the novel finding that water droplet removal (slidability) can be improved.
Here, the water droplet removability (slidability) is a property determined by the size of a water droplet falling angle described later. The smaller the water drop falling angle, the better the water drop removability (slidability).
In addition, the inorganic structure of the present invention is superior in durability, wear resistance, and safety compared to an organic structure such as an organic film. In addition, the inorganic structure of the present invention can be a high-resistance inorganic structure, and in this case, the chargeability is also excellent.
 本発明の無機構造物は、薄膜状の形態(無機薄膜の形態)であってもよいし、薄膜状以外の形態であってもよい。
 ここで、無機薄膜の形態とは、支持体(有機物であっても無機物であってもよい)上に形成された無機薄膜の形態を指す。この場合、無機薄膜表面が滑水性を有する。
 以下、無機薄膜の形態である本発明の無機構造物を、「本発明の無機薄膜」や「無機薄膜」ということがある。本発明の無機薄膜の具体例については後述する。
The inorganic structure of the present invention may be in a thin film form (inorganic thin film form) or in a form other than a thin film form.
Here, the form of the inorganic thin film refers to the form of the inorganic thin film formed on a support (which may be organic or inorganic). In this case, the inorganic thin film surface has water slidability.
Hereinafter, the inorganic structure of the present invention in the form of an inorganic thin film may be referred to as “inorganic thin film of the present invention” or “inorganic thin film”. Specific examples of the inorganic thin film of the present invention will be described later.
 また、薄膜状以外の形態とは、板状、筒状、フィルム状、球状、円柱状、多面体状、不定形状、等のあらゆる形状の固体の形態であって、支持体無しでも独立に存在できる固体の形態を指す。この場合、固体自体の表面が滑水性を有する。
 以下、薄膜状以外の形態である本発明の無機構造物を、「本発明の無機固体」や「無機固体」ということがある。本発明の無機固体として、具体的には、上記形状のガラス物品や金属物品が挙げられる。
Further, the forms other than the thin film form are solid forms of any shape such as a plate shape, a cylindrical shape, a film shape, a spherical shape, a cylindrical shape, a polyhedral shape, an indefinite shape, and can exist independently without a support. Refers to the solid form. In this case, the surface of the solid itself has water slidability.
Hereinafter, the inorganic structure of the present invention having a form other than a thin film may be referred to as “inorganic solid of the present invention” or “inorganic solid”. Specific examples of the inorganic solid of the present invention include glass articles and metal articles having the above shapes.
<抵抗点>
 本発明では、無機構造物表面における水滴の滑落を阻害する抵抗点の密度が10個/30mm以下であることが必要である。即ち、面積30mm当りの前記抵抗点の個数が、10個以下であることが必要である。
 抵抗点の密度が10個/30mmを超えると水滴転落角が大きくなり、水滴除去性が悪化する。
<Resistance point>
In the present invention, it is necessary that the density of resistance points that inhibit the sliding of water droplets on the surface of the inorganic structure is 10 pieces / 30 mm 2 or less. In other words, the number of the resistance points per area of 30 mm 2 needs to be 10 or less.
When the density of the resistance points exceeds 10/30 mm 2 , the water drop falling angle increases, and the water drop removability deteriorates.
 ここで「水滴の滑落を阻害する抵抗点の密度」は、以下のようにして測定された値を指す。
 まず、ゴニオメーターを用い、水平面に対して60度の角度で傾けた透明ガラスステージを準備した。
 この透明ガラスステージ上に無機薄膜付きガラス基板(サンプル)を、無機薄膜が形成されていない側の面と、該透明ガラスステージ表面と、が接する向きで固定した。
 次に、無機薄膜上に質量50mgの水滴を付着させ、該水滴が無機薄膜表面を滑落する様子を観察した。観察は、キーエンス社製デジタルマイクロスコープVHX-1000を用い、無機薄膜表面に対して垂直な方向から拡大倍率50倍(視野範囲5mm×6mm)にて行った。この際、ガラスステージの下には鏡を設置してデジタルスコープの照明が反射して水滴の形状を際立たせるように工夫した。
 観察結果はシャッタースピード15fpsで動画として記録した。この記録した動画を詳細に観察することにより、抵抗点の密度を測定した。
 無機薄膜以外の無機構造物(無機固体)表面における抵抗点の密度も、水平面に対して60度に傾斜した表面を滑落する質量50mgの水滴を、上記方法に準じて観察することにより測定できる。
Here, “the density of the resistance points that inhibit the sliding of water droplets” refers to the value measured as follows.
First, a transparent glass stage tilted at an angle of 60 degrees with respect to a horizontal plane using a goniometer was prepared.
A glass substrate (sample) with an inorganic thin film was fixed on the transparent glass stage in such a direction that the surface on which the inorganic thin film was not formed and the surface of the transparent glass stage were in contact.
Next, water droplets having a mass of 50 mg were deposited on the inorganic thin film, and the state of the water droplets sliding down the surface of the inorganic thin film was observed. Observation was performed using a digital microscope VHX-1000 manufactured by Keyence Corporation at a magnification of 50 times (viewing range 5 mm × 6 mm) from a direction perpendicular to the surface of the inorganic thin film. At this time, a mirror was installed under the glass stage so that the illumination of the digital scope was reflected and the shape of the water drop was made to stand out.
The observation result was recorded as a moving image at a shutter speed of 15 fps. By closely observing the recorded moving image, the resistance point density was measured.
The density of resistance points on the surface of an inorganic structure (inorganic solid) other than the inorganic thin film can also be measured by observing a 50 mg mass of water droplets sliding down the surface inclined at 60 degrees with respect to the horizontal plane according to the above method.
 図1は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカの各膜について実測された、抵抗点の密度と、水滴転落角との関係を示すグラフである。
 図1中の横軸は、抵抗点の密度(個/30mm)、即ち、面積30mm当りの抵抗点の個数を対数軸で表したものである。
 図1中の縦軸は、水滴転落角(°)を、線形軸で表したものである。
 図1に示すように、膜の種類によらず、10個/30mmを超えると水滴転落角が急激に上昇し、10個/30mm以下であると水滴転落角が低下することが確認された。
FIG. 1 is a graph showing the relationship between resistance point density and water drop falling angle, measured for each film of zirconia, alumina, ceria, titania, hafnia, and silica.
The horizontal axis in FIG. 1 represents the density of resistance points (pieces / 30 mm 2 ), that is, the number of resistance points per area of 30 mm 2 on the logarithmic axis.
The vertical axis in FIG. 1 represents the water drop falling angle (°) as a linear axis.
As shown in FIG. 1, regardless of the type of film, 10/30 mm 2 by weight, the water droplet falling angle is rapidly increased, if it is 10/30 mm 2 or less water drop falling angle is confirmed to be reduced It was.
 図2、図3、及び図4は、無機薄膜表面を水滴が転落する際の、水滴の後端(水滴が滑落する方向についての下流側)付近の様子を示す光学顕微鏡写真(倍率3000倍)である。
 図2は、無機薄膜としてアルミナ膜(接触角41°、水滴は転落せずに濡れ広がる)を用いたときの写真である。
 図2に示すように、この膜の表面を水滴が転落する際には、水滴の後端線には抵抗点が観察された(図2中矢印)。また、後端線は滑らかではなく、凹凸が確認できる。なお、水接触角が小さいため、水滴中には干渉縞が確認できる。
 図3は、無機薄膜としてスパッタチタニア膜(接触角56°、水滴は転落せずに濡れ広がる)を用いたときの写真である。
 図3に示すように、この膜の表面を水滴が転落する際にも、水滴の後端線には抵抗点が観察された(図3中矢印)。また、後端線は滑らかではなく、凹凸が確認できる。
 図4は、無機薄膜として、塗布による成膜、焼成、及び水蒸気処理後のアルミナ膜(接触角95°、水滴転落角26°)を用いたときの写真である。
 図4に示すように、この膜の表面を水滴が転落する際には、水滴の後端線は滑らかであり、抵抗点が観察されなかった。
 以上、図1~図4を用いて説明した現象は、表面状態に関する現象であるため、無機薄膜表面に限らず、無機固体表面においても同様に観察できる現象と推測される。
2, 3, and 4 are optical microscope photographs (magnification 3000 times) showing a state near the rear end of the water droplet (downstream side in the direction in which the water droplet slides) when the water droplet falls on the surface of the inorganic thin film. It is.
FIG. 2 is a photograph when an alumina film (a contact angle of 41 °, water droplets spread without wetting) is used as the inorganic thin film.
As shown in FIG. 2, when a water drop fell on the surface of this film, a resistance point was observed on the trailing edge of the water drop (arrow in FIG. 2). Further, the rear end line is not smooth and irregularities can be confirmed. Since the water contact angle is small, interference fringes can be confirmed in the water droplets.
FIG. 3 is a photograph when a sputtered titania film (contact angle 56 °, water droplets spread without falling) is used as the inorganic thin film.
As shown in FIG. 3, when a water drop fell on the surface of this film, a resistance point was observed on the trailing edge of the water drop (arrow in FIG. 3). Further, the rear end line is not smooth and irregularities can be confirmed.
FIG. 4 is a photograph when an alumina film (contact angle 95 °, water drop falling angle 26 °) after coating, baking, and steam treatment is used as the inorganic thin film.
As shown in FIG. 4, when a water droplet fell on the surface of this film, the trailing edge of the water droplet was smooth and no resistance point was observed.
As described above, since the phenomenon described with reference to FIGS. 1 to 4 is a phenomenon related to the surface state, it is presumed that the phenomenon can be observed not only on the surface of the inorganic thin film but also on the surface of the inorganic solid.
<摩擦力及び動摩擦係数>
 抵抗点の密度が10個/30mm以下である本発明の無機構造物を、前記抵抗点の密度とは別の観点からみると、厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された摩擦力が10nN以下である領域、及び、厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された動摩擦係数が1.0以下である領域の少なくとも一方を表面に含んでいる。
 無機構造物が、前記摩擦力が10nN以下である領域、及び、前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含むことにより、無機構造物表面における水滴除去性(滑水性)が向上する。
<Friction force and dynamic friction coefficient>
When the inorganic structure of the present invention having a resistance point density of 10 pieces / 30 mm 2 or less is viewed from a viewpoint different from the resistance point density, Si 3 having a thickness direction spring constant of 0.05 N / m. using N 4 made of the cantilever, at the conditions of pressing pressure 14NN, region frictional force measured by the friction force microscope is equal to or less than 10 nN, and, Si 3 N 4 thickness direction of the spring constant is 0.05 N / m Using a cantilever made of steel, the surface includes at least one of regions having a dynamic friction coefficient measured by a friction force microscope of 1.0 or less under a pressing pressure of 14 nN.
The inorganic structure includes at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less on the surface, thereby removing water droplets on the surface of the inorganic structure (sliding property). Will improve.
 本発明の無機構造物は、表面における前記摩擦力の平均値が、前記水蒸気処理の前よりも低下していること(より好ましくは前記水蒸気処理の前よりも半分以下に低下していること)が好ましい。
 ここで、前記摩擦力の平均値は、例えば、256点×256点の測定点における摩擦力の最頻値(ピーク値)として求めることができる。
In the inorganic structure of the present invention, the average value of the frictional force on the surface is lower than that before the water vapor treatment (more preferably, it is lower than half before the water vapor treatment). Is preferred.
Here, the average value of the frictional force can be obtained, for example, as a mode value (peak value) of the frictional force at 256 measurement points × 256 measurement points.
<水接触角>
 本発明の無機構造物は、表面における水接触角が30°以上であることが好ましい。
 水接触角が30°以上であると、無機構造物の表面エネルギーをより低くすることができ、無機構造物への汚損物質の付着をより抑制できる。また、水接触角が30°以上であると、無機構造物を、ガラス、レンズ、鏡等の被覆の用途に用いた場合に、水が付着したときの視認性がより良好となる。
 本発明において、水に対する接触角(水接触角)は、接触角測定装置(Drop Master500,協和界面化学株式会社)を用い、3mgの水滴(蒸留水)を無機構造物表面に滴下し、滴下後1秒~10秒の間に測定された値を指す。
 前記水接触角は、表面エネルギーの観点や視認性の観点より、好ましくは40°以上であり、より好ましくは50°以上であり、特に好ましくは60°以上である。
<Water contact angle>
The inorganic structure of the present invention preferably has a water contact angle on the surface of 30 ° or more.
When the water contact angle is 30 ° or more, the surface energy of the inorganic structure can be further reduced, and adhesion of a fouling substance to the inorganic structure can be further suppressed. Further, when the water contact angle is 30 ° or more, when the inorganic structure is used for coating of glass, lenses, mirrors, etc., the visibility when water adheres becomes better.
In the present invention, the contact angle with respect to water (water contact angle) is measured by using a contact angle measuring device (Drop Master 500, Kyowa Interface Chemical Co., Ltd.) and dropping 3 mg of water (distilled water) on the surface of the inorganic structure. Refers to the value measured between 1 and 10 seconds.
The water contact angle is preferably 40 ° or more, more preferably 50 ° or more, and particularly preferably 60 ° or more from the viewpoint of surface energy and visibility.
 また、本発明の無機構造物(後述するチタニアを含む無機薄膜である場合を含む)は、表面エネルギーの観点や視認性の観点より、光照射によっても水接触角の低下が実質的に認められないことが好ましい。
 本発明において「光照射によっても水接触角の低下が実質的に認められない」とは、光照射されても無機構造物の水接触角が実質的に低下しない(但し、10°程度の低下は許容される)ことを意味する。
 また、本発明の無機構造物は、光照射前及び光照射後のいずれにおいても、水接触角が30°以上であることが好ましく、40°以上がより好ましく、50°以上が更に好ましく、60°以上が特に好ましい。
 本発明において、「光照射」とは、ブラックライト(FL10BL-B,National)を用いて波長400nm以下の紫外光(UV光)を、1μW/cm~5mW/cmの強さで照射することを指す。
Further, the inorganic structure of the present invention (including the case of an inorganic thin film containing titania described later) has a substantially reduced water contact angle even by light irradiation from the viewpoint of surface energy and visibility. Preferably not.
In the present invention, “substantially no decrease in water contact angle is observed even by light irradiation” means that the water contact angle of the inorganic structure does not substantially decrease even when irradiated with light (however, a decrease of about 10 °). Means allowed).
In addition, the inorganic structure of the present invention preferably has a water contact angle of 30 ° or more, more preferably 40 ° or more, still more preferably 50 ° or more, both before and after light irradiation. It is particularly preferable that the angle is at least.
In the present invention, “light irradiation” refers to irradiation with ultraviolet light (UV light) having a wavelength of 400 nm or less using a black light (FL10BL-B, National) at an intensity of 1 μW / cm 2 to 5 mW / cm 2. Refers to that.
<水滴転落角>
 本発明の無機構造物は、水滴転落角が40°以下であることが好ましい。
 水滴転落角が40°以下であれば、傾斜により水滴を除去することがより容易である。
 ここで、水滴転落角は、接触角測定装置(Drop Master500,協和界面化学株式会社)および転落角測定装置(SA-11,協和界面化学株式会社)を用いて測定された値を指す。具体的には、無機構造物表面に30mgの水滴を滴下した後、前記転落角測定装置を用いて前記無機構造物表面を水平面に対して傾けながら、前記接触角測定装置に付属しているカメラから水滴を観察する。水滴が転落する瞬間の、無機構造物表面と水平面との角度を測定し、この角度を水滴転落角とする。なお、転落する瞬間とは、水滴の前端点および後端点の両方が移動し始める瞬間である。
 本明細書中では、水滴転落角は0°以上90°以下の値とする。無機構造物表面を水平面に対し90°に傾けても水滴が転落しない場合を転落角90°とする。
 前記水滴転落角は、水滴除去性の観点より、好ましくは35°以下である。
 なお、前述の通り、一般的には水接触角が高いからといって必ずしも水滴転落角が低いとはかぎらないが、本発明の無機構造物に関しては、接触角が著しく低く、液滴が形成されないで水膜になってしまうと水滴の転落は期待できない場合がある。そのため、水滴が形成される程度までには水接触角を大きくすること(例えば、水接触角を30°以上とすること)が好ましい。
<Water drop falling angle>
The inorganic structure of the present invention preferably has a water drop falling angle of 40 ° or less.
If the water drop falling angle is 40 ° or less, it is easier to remove the water drop by the inclination.
Here, the water drop falling angle refers to a value measured using a contact angle measuring device (Drop Master 500, Kyowa Interface Chemical Co., Ltd.) and a falling angle measuring device (SA-11, Kyowa Interface Chemical Co., Ltd.). Specifically, a camera attached to the contact angle measurement device while dropping 30 mg of water droplets on the surface of the inorganic structure and then tilting the surface of the inorganic structure with respect to a horizontal plane using the drop angle measurement device. Observe water drops from. The angle between the surface of the inorganic structure and the horizontal plane at the moment when the water droplet falls is measured, and this angle is taken as the water droplet falling angle. The moment of falling is the moment when both the front end point and the rear end point of the water droplet start to move.
In this specification, the water drop falling angle is a value of 0 ° or more and 90 ° or less. Even when the surface of the inorganic structure is tilted at 90 ° with respect to the horizontal plane, a drop angle of 90 ° is defined as a case where water drops do not fall.
The water drop falling angle is preferably 35 ° or less from the viewpoint of water drop removability.
As described above, a high water contact angle generally does not necessarily mean that the water drop falling angle is low, but the inorganic structure of the present invention has a remarkably low contact angle and forms droplets. If it becomes a water film without being dropped, the drop of water droplets may not be expected. Therefore, it is preferable to increase the water contact angle (for example, the water contact angle is 30 ° or more) to the extent that water droplets are formed.
<表面粗さ>
 本発明の無機構造物は、表面粗さ(Ra)が2nm以下であることが好ましい。
 ここで、表面粗さ(Ra)は、JIS B0601(1994)に規定されている算術平均粗さを指す。
 本発明における表面粗さ(Ra)は、AFM(原子間力顕微鏡;VN-8000、株式会社キーエンス製)を用い、測定範囲50μm四方について測定された値を指す。
 表面粗さ(Ra)が2nm以下であれば、水接触角をより大きくすることができ、水滴転落角をより小さくすることができる。
 水接触角を大きくし水滴転落角を小さくする観点より、前記表面粗さ(Ra)は1.6nm以下であることが好ましく、1.2nm以下であることがより好ましい。
<Surface roughness>
The inorganic structure of the present invention preferably has a surface roughness (Ra) of 2 nm or less.
Here, the surface roughness (Ra) refers to the arithmetic average roughness defined in JIS B0601 (1994).
The surface roughness (Ra) in the present invention refers to a value measured for a measuring range of 50 μm square using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation).
If the surface roughness (Ra) is 2 nm or less, the water contact angle can be further increased, and the water drop falling angle can be further decreased.
From the viewpoint of increasing the water contact angle and decreasing the water drop falling angle, the surface roughness (Ra) is preferably 1.6 nm or less, and more preferably 1.2 nm or less.
 また、本発明の無機構造物は、水接触角を大きくし水滴転落角を小さくする観点より、表面粗さ(Rz)が150nm以下であることが好ましく、50nm以下であることがより好ましい。ここで、表面粗さ(Rz)は、JIS B0601(1994)に規定されている十点平均粗さを指す。
 本発明における表面粗さ(Rz)は、AFM(原子間力顕微鏡;VN-8000、株式会社キーエンス製)を用い、測定範囲50μm四方について測定された値を指す。
Moreover, the inorganic structure of the present invention preferably has a surface roughness (Rz) of 150 nm or less, more preferably 50 nm or less, from the viewpoint of increasing the water contact angle and decreasing the water drop falling angle. Here, the surface roughness (Rz) refers to a ten-point average roughness defined in JIS B0601 (1994).
The surface roughness (Rz) in the present invention refers to a value measured for a measuring range of 50 μm square using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation).
 図5は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカの各膜について実測された、表面粗さ(Ra)と、水接触角(°)と、の関係を示すグラフである。
 図6は、図5において、表面粗さ(Ra)が4nm以下の範囲を拡大して表したグラフである。
 図5及び図6に示すように、水接触角は、表面粗さ(Ra)2nmから350nmまでの領域では変化が小さいが、2nm以下の領域で急激に上昇する。
FIG. 5 is a graph showing the relationship between the surface roughness (Ra) and the water contact angle (°) measured for each film of zirconia, alumina, ceria, titania, hafnia, and silica.
FIG. 6 is a graph showing an enlarged view of the surface roughness (Ra) of 4 nm or less in FIG.
As shown in FIGS. 5 and 6, the water contact angle has a small change in the region of surface roughness (Ra) 2 nm to 350 nm, but increases rapidly in the region of 2 nm or less.
 また、本発明の無機構造物が無機薄膜の形態である場合、該無機薄膜の膜厚には特に限定はないが、本発明の効果をより効果的に得る観点より、10μm以下であることが好ましく、10nm~1000nmであることがより好ましい。 In addition, when the inorganic structure of the present invention is in the form of an inorganic thin film, the thickness of the inorganic thin film is not particularly limited, but is 10 μm or less from the viewpoint of obtaining the effect of the present invention more effectively. Preferably, it is 10 nm to 1000 nm.
<材質>
 本発明の無機構造物としては特に限定は無いが、本発明の効果をより効果的に奏する観点より、金属を含む無機構造物であることが好ましい。
 また、本発明の無機構造物としては、本発明の効果をより効果的に奏する観点より、金属、合金、無機酸化物、及びガラスから選択される少なくとも1種を含む無機構造物であることも好ましい。
 また、本発明の無機構造物としては、金属薄膜、無機酸化物薄膜、金属固体、又は無機酸化物固体であることがより好ましく、無機酸化物薄膜又は無機酸化物固体であることが更に好ましく、金属酸化物薄膜又は金属酸化物固体であることが特に好ましい。
<Material>
Although there is no limitation in particular as an inorganic structure of this invention, It is preferable that it is an inorganic structure containing a metal from a viewpoint which show | plays the effect of this invention more effectively.
In addition, the inorganic structure of the present invention may be an inorganic structure including at least one selected from metals, alloys, inorganic oxides, and glass from the viewpoint of more effectively achieving the effects of the present invention. preferable.
The inorganic structure of the present invention is more preferably a metal thin film, an inorganic oxide thin film, a metal solid, or an inorganic oxide solid, more preferably an inorganic oxide thin film or an inorganic oxide solid, A metal oxide thin film or a metal oxide solid is particularly preferable.
 ここで、「金属」とは広義の金属元素を指し、典型金属元素(例えば、Al等)、遷移金属元素(例えば、Cr、Au、Ti、Ag、Cu、Ni、Fe等)のほか、半金属元素(例えば、Si等)も含まれるものとする。 Here, the term “metal” refers to a metal element in a broad sense. In addition to a typical metal element (for example, Al), a transition metal element (for example, Cr, Au, Ti, Ag, Cu, Ni, Fe, etc.), Metal elements (for example, Si) are also included.
 また、前記合金としては、上記金属元素を2種以上含む合金が挙げられる。
 前記合金としては、ステンレス(例えば、JIS G4303-1998、JIS G4304-1999、又はJIS G4305-1999に規定されているステンレス)が好適である。
 前記ステンレスとして、より具体的には、SUS201、SUS202、SUS301、SUS302、SUS303、SUS304、SUS305、SUS316、SUS317、SUS329J1、SUS403、SUS405、SUS420、SUS430、SUS430LX、SUS630等を挙げることができる。
Moreover, as said alloy, the alloy containing 2 or more types of the said metal element is mentioned.
As the alloy, stainless steel (for example, stainless steel defined in JIS G4303-1998, JIS G4304-1999, or JIS G4305-1999) is preferable.
More specifically, examples of the stainless steel include SUS201, SUS202, SUS301, SUS302, SUS303, SUS304, SUS305, SUS316, SUS317, SUS329J1, SUS403, SUS405, SUS420, SUS430, SUS430LX, and SUS630.
 前記無機酸化物としては特に限定はなく、酸化ジルコニウム(本明細書中において「ジルコニア」や「ZrO」ともいう)、酸化アルミニウム(本明細書中において「アルミナ」や「Al」ともいう)、酸化セリウム(本明細書中において「セリア」や「CeO」ともいう)、酸化チタン(本明細書中において「チタニア」や「TiO」ともいう)、酸化ハフニウム(本明細書中において「ハフニア」や「HfO」ともいう)、酸化ケイ素(本明細書中において「シリカ」や「SiO」ともいう)、などが挙げられる。
 ここで、前記無機酸化物薄膜又は前記無機酸化物固体は、前述の無機酸化物が単一成分として含まれる膜(単味の膜)又は固体(単味の固体)であっても、2種以上含まれる膜(単味の膜)又は固体(単味の固体)であってもよい。
The inorganic oxide is not particularly limited. Zirconium oxide (also referred to as “zirconia” or “ZrO 2 ” in this specification), aluminum oxide (“alumina” or “Al 2 O 3 ” in this specification) ), Cerium oxide (also referred to herein as “ceria” or “CeO 2 ”), titanium oxide (also referred to herein as “titania” or “TiO 2 ”), hafnium oxide (in this specification) In this specification, “hafnia” and “HfO 2 ”), silicon oxide (also referred to as “silica” and “SiO 2 ” in the present specification), and the like can be given.
Here, the inorganic oxide thin film or the inorganic oxide solid may be a film (a simple film) or a solid (a simple solid) containing the inorganic oxide as a single component. It may be a film (a simple film) or a solid (a simple solid) contained above.
 また、前記無機酸化物は複合酸化物でもよく、また粘土鉱物のように構造中に水を含む化合物でもよい。
 前記複合酸化物の例として、Ca10(PO(OH)の組成を有するアパタイトのCaイオンの一部をTiで置換したTiHAP(チタンドープアパタイト)が挙げられる。
The inorganic oxide may be a complex oxide or a compound containing water in the structure, such as a clay mineral.
An example of the composite oxide is TiHAP (titanium-doped apatite) in which a part of Ca ions of apatite having a composition of Ca 10 (PO 4 ) 6 (OH) 2 is substituted with Ti.
 また、前記ガラスとしては、ソーダライムガラス、パイレックス(登録商標)ガラス、石英ガラス、白板ガラス、青板ガラス、無アルカリガラス、サファイアガラス等が挙げられる。 Also, examples of the glass include soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, and sapphire glass.
 また、本発明の無機構造物は、無機物を主成分として構成されるものであるが、本発明の効果を妨げない限り、その他の成分を含んでいてもよい。 The inorganic structure of the present invention is composed of an inorganic substance as a main component, but may contain other components as long as the effects of the present invention are not hindered.
<無機薄膜>
 本発明の無機薄膜は、接触角をより大きくし、転落角をより小さくする観点からは、ジルコニア、アルミナ、セリア、ハフニア、及びシリカからなる群から少なくとも1種を含む膜であることが好ましく、ジルコニア、アルミナ、及びシリカからなる群から少なくとも1種を含む膜であることがより好ましい。
 また、耐久性の観点からは、ハフニア及びアルミナの少なくとも一方を含む膜であることが好ましい。
<Inorganic thin film>
The inorganic thin film of the present invention is preferably a film containing at least one selected from the group consisting of zirconia, alumina, ceria, hafnia, and silica from the viewpoint of increasing the contact angle and decreasing the falling angle. A film containing at least one kind from the group consisting of zirconia, alumina, and silica is more preferable.
Further, from the viewpoint of durability, a film containing at least one of hafnia and alumina is preferable.
 また、本発明の無機薄膜には光触媒活性を持たせることもできる。
 本発明者らはこのような優れた滑水性表面にセルフクリーニング性を付与する目的で、光触媒と組み合わせする方法を開発した。
 光触媒によるセルフクリーニング技術は、従来は建築外壁を中心に広く用いられてきた。その原理としては、光照射により親水性を呈する(以下、「超親水化」ともいう)半導体光触媒の性質を利用して、付着した油性の汚損成分を降雨や水洗等によって容易に除去できるようにするものである。また、このセルフクリーニング技術は、光照射により有機物を分解する半導体光触媒の性質(有機物分解性)を利用して、付着した油性の汚損成分を分解し除去できるようにする技術である。
 しかしながら、上記従来のセルフクリーニング技術では表面が親水性であるため、汚損成分の除去に水が不可欠である問題や、本質的に表面エネルギーが高く汚損物質が付着しやすい問題がある。また、表面が親水性であるため、水滴が転落しづらい(即ち、滑水性に劣る)ため、水滴除去性に劣る問題がある。
The inorganic thin film of the present invention can also have photocatalytic activity.
The present inventors have developed a method of combining with a photocatalyst for the purpose of imparting self-cleaning properties to such an excellent water-sliding surface.
Conventionally, a self-cleaning technique using a photocatalyst has been widely used mainly on building outer walls. The principle is that by using the property of a semiconductor photocatalyst that exhibits hydrophilicity by light irradiation (hereinafter also referred to as “superhydrophilization”), the attached oily fouling component can be easily removed by rainfall or water washing. To do. This self-cleaning technique is a technique that enables the oily fouling component attached to be decomposed and removed by utilizing the property (organic substance decomposability) of a semiconductor photocatalyst that decomposes organic substances by light irradiation.
However, in the conventional self-cleaning technique, since the surface is hydrophilic, there are a problem that water is indispensable for removing the fouling component and a problem that fouling substances are inherently high because of high surface energy. In addition, since the surface is hydrophilic, it is difficult for water droplets to fall down (that is, the water slidability is inferior).
 この点、前述の滑水性で水滴除去性に優れた表面に光触媒の分解作用を組み合わせた材料、つまりは親水性でなく滑水性の光触媒は、汚れが付着しづらくセルフクリーニング性に優れた表面を提供するものであり、理想的な表面であるといえる。
 本発明の無機薄膜に光触媒活性を持たせた形態は、このような理想的な表面を有するものである。
In this regard, a material that combines the above-mentioned surface with excellent water slidability and water droplet removal with a photocatalytic decomposition action, that is, a non-hydrophilic, non-hydrophilic photocatalyst has a surface with excellent self-cleaning properties that is difficult to adhere to dirt. It is an ideal surface.
The form which gave the photocatalytic activity to the inorganic thin film of this invention has such an ideal surface.
 本発明の無機薄膜に光触媒活性を持たせる場合には、本発明の無機薄膜を、チタニアの単味膜として構成するか、またはチタニアとその他の材質(例えば、ジルコニア、アルミナ、セリア、ハフニア、シリカ、等)とを含む複合膜として構成することができる。
 即ち、本発明の無機薄膜に光触媒活性を持たせる場合には、チタニア単味膜であるか、又は、チタニアと、ジルコニア、アルミナ、セリア、ハフニア、及びシリカからなる群から少なくとも1種と、を含む複合膜であることが好ましい。
 前記複合膜としては、チタニア-ハフニアの複合膜、チタニア-ジルコニアの複合膜、チタニア-アルミナの複合膜が好適である。
 また、前記チタニアは、有機物分解性の観点からは、結晶化されていることが好ましい。本発明にいう「結晶化」とは、X線構造解析で結晶性を有すると判断される程度に結晶性を有する部分が存在している状態(即ち、部分的であれば非晶質部分が含まれていてもよい)を指す。また、チタニアが結晶化したか否かは、有機物分解性の有無によっても確認できる。
 特に、本発明の無機薄膜が結晶化されたチタニアを含む場合には、撥水性、滑水性、耐久性に加え、光触媒活性(特に、有機物分解性)をも備えることができる。このため、自動車のフロントガラス等の用途により好適となる。
 結晶化されたチタニアとしては、アナターゼ型、ルチル型が挙げられるが、中でも、有機物分解性の観点からは、アナターゼ型であることが好ましい。
When the inorganic thin film of the present invention has photocatalytic activity, the inorganic thin film of the present invention is constituted as a simple film of titania, or titania and other materials (for example, zirconia, alumina, ceria, hafnia, silica) , Etc.).
That is, when the photocatalytic activity is imparted to the inorganic thin film of the present invention, it is a titania simple film, or at least one selected from the group consisting of titania and zirconia, alumina, ceria, hafnia, and silica. It is preferable that it is a composite film containing.
The composite film is preferably a titania-hafnia composite film, a titania-zirconia composite film, or a titania-alumina composite film.
The titania is preferably crystallized from the viewpoint of organic matter decomposability. The term “crystallization” as used in the present invention refers to a state in which there is a portion having crystallinity to the extent that it is judged to have crystallinity by X-ray structural analysis (that is, if the portion is amorphous, May be included). Whether or not titania has crystallized can also be confirmed by the presence or absence of organic matter decomposability.
In particular, when the inorganic thin film of the present invention contains crystallized titania, in addition to water repellency, water slidability, and durability, photocatalytic activity (particularly, organic matter decomposability) can be provided. For this reason, it becomes more suitable for uses such as a windshield of an automobile.
Examples of the crystallized titania include anatase type and rutile type. Among them, anatase type is preferable from the viewpoint of organic matter decomposability.
 また、一般にチタニアは、光照射により水接触角が低下する現象(超親水化現象;例えば、水接触角が10°以上低下することがある)を示すことが多いが、本発明の無機薄膜にチタニアが含まれる場合には、前述の通り、該無機薄膜は光照射によっても水接触角の顕著な低下が認められないことが好ましい。 In general, titania often exhibits a phenomenon in which the water contact angle decreases due to light irradiation (superhydrophilic phenomenon; for example, the water contact angle may decrease by 10 ° or more). When titania is contained, as described above, it is preferable that the inorganic thin film does not show a significant decrease in water contact angle even when irradiated with light.
 以上で説明した、本発明の無機薄膜は、例えば、成膜後、水蒸気処理されて好適に作製される。
 前記成膜は、例えば、無機酸化物の前駆体を含む塗布液を塗布することにより得られた塗布膜を300℃以上の温度で熱処理することにより行われるか(以下、この方法を「ゾルゲル法」ともいう)、またはスパッタや蒸着等の真空成膜後、必要に応じ300℃以上の温度で熱処理することにより行われる。
 前記水蒸気雰囲気は、温度30℃以上100℃以下であることが好ましい。
 また、前記水蒸気雰囲気は、絶対湿度15g/m以上の雰囲気であることが好ましい。
 より好ましくは、前記水蒸気雰囲気が、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の雰囲気である。
 また、前記水蒸気雰囲気は、温度(℃)と相対湿度(%)との積が、2000℃・%以上10000℃・%以下であることが好ましく、2500℃・%以上8000℃・%以下であることがより好ましく、3000℃・%以上5000℃・%以下であることが特に好ましい。
The inorganic thin film of the present invention described above is suitably produced by, for example, steaming after film formation.
The film formation is performed, for example, by heat-treating a coating film obtained by coating a coating solution containing an inorganic oxide precursor at a temperature of 300 ° C. or higher (hereinafter, this method is referred to as “sol-gel method”). Or after vacuum film formation such as sputtering or vapor deposition, if necessary, heat treatment is performed at a temperature of 300 ° C. or higher.
The water vapor atmosphere preferably has a temperature of 30 ° C. or higher and 100 ° C. or lower.
The water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more.
More preferably, the water vapor atmosphere is an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more.
In the water vapor atmosphere, the product of temperature (° C.) and relative humidity (%) is preferably 2000 ° C. ·% or more and 10,000 ° C. ·% or less, and preferably 2500 ° C. ·% or more and 8000 ° C. ·% or less. It is more preferable that the temperature is 3000 ° C.% or more and 5000 ° C.% or less.
 水蒸気処理を用いた無機薄膜の製造方法の詳細については後述する。 Details of the method for producing an inorganic thin film using steam treatment will be described later.
 特に、本発明の無機薄膜がハフニア膜の場合、当該ハフニア膜は、真空成膜法により成膜された後、300℃以上の温度で熱処理され、更に、水蒸気雰囲気で処理されて得られたものであることも好ましい。
 このようなハフニア膜の製造方法の詳細については後述する。
In particular, when the inorganic thin film of the present invention is a hafnia film, the hafnia film is formed by a vacuum film-forming method, heat-treated at a temperature of 300 ° C. or higher, and further processed in a steam atmosphere. It is also preferable.
Details of the method for manufacturing such a hafnia film will be described later.
<無機固体>
 本発明の無機固体としては、ガラス物品や金属物品が挙げられる。
 ガラス物品としては、ガラス素材(例えば、ソーダライムガラス、パイレックス(登録商標)ガラス、石英ガラス、白板ガラス、青板ガラス、無アルカリガラス、サファイアガラス、等)を用いたあらゆる形状のガラス物品であって、水滴除去性が求められるガラス物品が挙げられる。
 このようなガラス物品の具体例としては、車両(自動車等)や住宅の窓ガラス、ガラス容器、太陽電池用の白板ガラス、各種表示装置(液晶表示装置や有機EL表示装置等)用の部材として用いられる無アルカリガラス基板、化学強化ガラス、パイレックス(登録商標)ガラスなどの耐熱ガラス、等が挙げられる。
 ガラス物品としては、表面の平坦性が高い(例えば、表面粗さRaが2nm以下)ことが好ましく、このためには、表面が鏡面状に研磨されたガラス素材を用いたり、フロート法により作製されたガラス素材を用いることが好適である。
<Inorganic solid>
Examples of the inorganic solid of the present invention include glass articles and metal articles.
As glass articles, glass articles of any shape using glass materials (for example, soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, sapphire glass, etc.) And glass articles that require water droplet removal.
As a specific example of such a glass article, as a member for vehicles (automobiles, etc.), window glass of houses, glass containers, white glass for solar cells, various display devices (liquid crystal display devices, organic EL display devices, etc.) Examples include alkali-free glass substrates, chemically tempered glass, and heat-resistant glass such as Pyrex (registered trademark) glass.
The glass article preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less). For this purpose, a glass material having a mirror-polished surface or a float method is used. It is preferable to use a glass material.
 金属物品としては、金属素材(Cr、Au、Ti、Ag、Cu、Ni、Fe、Al、Si、等)又は合金素材(前記ステンレス、等)を用いたあらゆる形状の金属物品であって、水滴除去性が求められる金属物品が挙げられる。
 このような金属物品の具体例としては、各種配管、金属容器、キッチンや浴室用のステンレス鋼板、住宅用のアルミ外壁材、車両用などのアルミ板材、等が挙げられる。
 金属物品としては、表面の平坦性が高い(例えば、表面粗さRaが2nm以下)ことが好ましく、このためには、表面が鏡面状に研磨された金属素材を用いることが好適である。
The metal article is a metal article of any shape using a metal material (Cr, Au, Ti, Ag, Cu, Ni, Fe, Al, Si, etc.) or an alloy material (stainless steel, etc.), Examples include metal articles that require removability.
Specific examples of such metal articles include various pipes, metal containers, stainless steel plates for kitchens and bathrooms, aluminum outer wall materials for houses, aluminum plate materials for vehicles, and the like.
The metal article preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less). For this purpose, it is preferable to use a metal material whose surface is polished into a mirror surface.
 以上で説明した本発明の無機固体(ガラス物品又は金属物品)は、後述するように水蒸気雰囲気で処理されて(即ち、水蒸気処理されて)好適に作製される。
 前記水蒸気雰囲気は、温度30℃以上100℃以下の雰囲気であることが好ましい。
 また、前記水蒸気雰囲気は、絶対湿度15g/m以上の雰囲気であることが好ましい。
 より好ましくは、前記水蒸気雰囲気が、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の雰囲気である。
 また、前記水蒸気雰囲気は、温度(℃)と相対湿度(%)との積が、2000℃・%以上10000℃・%以下であることが好ましく、2500℃・%以上8000℃・%以下であることがより好ましく、3000℃・%以上5000℃・%以下であることが特に好ましい。
The inorganic solid (glass article or metal article) of the present invention described above is suitably produced by being treated in a steam atmosphere (that is, steam-treated) as described later.
The water vapor atmosphere is preferably an atmosphere having a temperature of 30 ° C. or higher and 100 ° C. or lower.
The water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more.
More preferably, the water vapor atmosphere is an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more.
In the water vapor atmosphere, the product of temperature (° C.) and relative humidity (%) is preferably 2000 ° C. ·% or more and 10,000 ° C. ·% or less, and preferably 2500 ° C. ·% or more and 8000 ° C. ·% or less. It is more preferable that the temperature is 3000 ° C.% or more and 5000 ° C.% or less.
 但し、金属物品については、下記(条件1)及び(条件2)の少なくとも一方を満たす水蒸気雰囲気で処理することも好ましい。
(条件1)温度30℃以上120℃以下、かつ、絶対湿度15g/m以上。
(条件2)温度(℃)と相対湿度(%)との積が2000℃・%以上12000℃・%以下。
However, it is also preferable to treat the metal article in a steam atmosphere that satisfies at least one of the following (Condition 1) and (Condition 2).
(Condition 1) Temperature is 30 ° C. or higher and 120 ° C. or lower, and absolute humidity is 15 g / m 3 or higher.
(Condition 2) The product of temperature (° C.) and relative humidity (%) is 2000 ° C. ·% or more and 12000 ° C. ·% or less.
 また、ガラス物品においては、水滴除去性をより向上させるためには、前記水蒸気処理前に、100℃以上500℃以下の熱処理を行うことがより好ましい。 Moreover, in order to further improve the water droplet removal property, it is more preferable to perform a heat treatment at 100 ° C. or more and 500 ° C. or less before the steam treatment.
 以上で説明した本発明の無機構造物(無機固体又は無機薄膜)としては、ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜であることが好ましい。 The inorganic structure (inorganic solid or inorganic thin film) of the present invention described above is an inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or zirconia, alumina, ceria, titania. , Hafnia, and an inorganic thin film containing at least one selected from the group consisting of silica are preferable.
<水蒸気処理>
 本発明の無機構造物(無機薄膜及び無機固体)は、前述のとおり、表面の物理的・化学的性質が著しく均一で、抵抗点の数が一定以上に少ない。具体的には、表面における水滴の滑落を阻害する抵抗点の密度が、10個/30mm以下である。
 また、本発明の無機構造物を別の観点からみると、前記摩擦力が10nN以下である領域及び前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含んでいる。
<Steam treatment>
As described above, the inorganic structure (inorganic thin film and inorganic solid) of the present invention has remarkably uniform physical and chemical properties on the surface, and the number of resistance points is less than a certain level. Specifically, the density of resistance points that inhibit the sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
When the inorganic structure of the present invention is viewed from another viewpoint, the surface includes at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less.
 本発明の無機構造物を得るための具体的方法として、水蒸気雰囲気による処理(水蒸気処理)が有効である。
 前記水蒸気処理は、例えば、該水蒸気処理前の無機構造物(以下、「無機構造物素材」ともいう)を水蒸気雰囲気中に曝すことにより行うことができる。
As a specific method for obtaining the inorganic structure of the present invention, treatment in a steam atmosphere (steam treatment) is effective.
The steam treatment can be performed, for example, by exposing an inorganic structure before the steam treatment (hereinafter also referred to as “inorganic structure material”) in a steam atmosphere.
 また、前記水蒸気処理は、前記無機構造物素材の表面に対し、水蒸気を吹きつけることによっても行うことができる。
 ここで、水蒸気を吹きつける方法としては、ノズルなどから50℃から100℃程度の水蒸気を吹き付ける方法が挙げられる。
 この際の吹き付け時間は、水蒸気処理の対象となる無機構造物素材の状態や、該無機構造物素材が置かれた環境によって異なるが、例えば、数分以上10時間以下とすることができる。
 前記ノズルの構造は、できるだけ大面積を一度に水蒸気暴露できる構造が望ましく、例えば、無機構造物素材の被処理面に対向させる多孔体フィルター等を有し、該多孔体フィルター等に対し、前記無機構造物素材が存在する側の反対側から、水蒸気を送気できる構造が望ましい。
The steam treatment can also be performed by spraying steam on the surface of the inorganic structure material.
Here, as a method of spraying water vapor, a method of spraying water vapor of about 50 ° C. to 100 ° C. from a nozzle or the like can be mentioned.
The spraying time at this time varies depending on the state of the inorganic structure material to be subjected to the steam treatment and the environment in which the inorganic structure material is placed, but can be, for example, several minutes to 10 hours.
The structure of the nozzle is desirably a structure capable of exposing a large area as much as possible to water vapor at a time. For example, the nozzle has a porous filter facing the surface to be treated of the inorganic structure material, and the inorganic filter is made of the inorganic filter. A structure capable of supplying water vapor from the side opposite to the side where the structure material exists is desirable.
 以下、水蒸気処理により抵抗点の密度が現象する理由(メカニズム)を説明する。但し、本発明は以下の理由(メカニズム)によって限定されることはない。 Hereinafter, the reason (mechanism) that the density of the resistance points is caused by the steam treatment will be described. However, the present invention is not limited by the following reason (mechanism).
 従来は、無機構造物(無機薄膜及び無機固体)に水滴除去性を付与するためには、成膜条件や熱処理条件の最適化が効果的であると考えられていたが、本発明者の検討により、水蒸気処理が効果的であることが明らかとなった。
 従来より、水蒸気処理は、酸化物表面の水酸基の量を増すことで、表面と水との親和性を高める(即ち、接触角を小さくし、転落角を大きくする)と思われてきた。
 しかし、実際に検討した結果、寧ろ、水蒸気処理により接触角が大きくなり、転落角が小さくなり、ひいては水滴除去性が向上することが明らかとなった。この知見は従来全く知られていない発見であり、無機構造物に高度な滑水性を付与するためには、極めて重要な知見である。
 このことの詳細なメカニズムは今後の研究の課題であるが、冒頭に述べた水滴の後退接触角に影響すると思われる物理的・化学的均一性が、水蒸気処理によって向上するためと考えられる。このメカニズムの詳細を調べるために、シリカ超微粒子に滑水性が発現する条件での水蒸気処理を行って、FT-IR測定およびTG/DTA測定を行った。
Conventionally, optimization of film forming conditions and heat treatment conditions has been considered effective for imparting water droplet removal properties to inorganic structures (inorganic thin films and inorganic solids). Thus, it was revealed that the steam treatment is effective.
Conventionally, steam treatment has been thought to increase the affinity between the surface and water (ie, reduce the contact angle and increase the falling angle) by increasing the amount of hydroxyl groups on the oxide surface.
However, as a result of actual examination, it has become clear that the contact angle is increased by the steam treatment, the falling angle is decreased, and the water drop removability is improved. This finding is a discovery that has never been known so far, and is extremely important for imparting a high level of water slidability to an inorganic structure.
The detailed mechanism of this is the subject of future research, but it is thought that the physical and chemical uniformity, which seems to affect the receding contact angle of the water droplets described at the beginning, is improved by the steam treatment. In order to investigate the details of this mechanism, the FT-IR measurement and the TG / DTA measurement were performed by subjecting the ultrafine silica particles to water vapor treatment under the condition that the water slidability was developed.
<FT-TR測定及びDTA/TG測定>
 下記のシリカ超微粒子を用いた滑水処理試料(粉体)を作製し、この滑水処理試料(粉体)についてFT-TR測定及びDTA/TG測定を行った。
 なお、本実験例(滑水処理試料(粉体)についてのFT-TR測定及びDTA/TG測定)中に記載の無い条件は、後述の実験例1における条件と同様である。
<FT-TR measurement and DTA / TG measurement>
A sliding water sample (powder) using the following ultrafine silica particles was prepared, and FT-TR measurement and DTA / TG measurement were performed on the sliding water sample (powder).
Note that the conditions not described in this experimental example (FT-TR measurement and DTA / TG measurement for the water slide sample (powder)) are the same as those in Experimental Example 1 described later.
(シリカ超微粒子を用いた滑水処理試料の作製)
 シリカ超微粒子(日本エアロジル社製 AEROSIL 200)10gを、温度90℃相対湿度50%の水蒸気雰囲気で4日間(96時間)処理(滑水処理)することにより、滑水処理試料を得た。
(Preparation of water-sliding samples using silica ultrafine particles)
10 g of silica ultrafine particles (AEROSIL 200 manufactured by Nippon Aerosil Co., Ltd.) was treated (sliding water treatment) for 4 days (96 hours) in a steam atmosphere at a temperature of 90 ° C. and a relative humidity of 50% to obtain a sliding water sample.
(FT-IR測定)
 上記で得られた滑水処理試料について、下記測定条件でFT-IR測定を行った。
 また、比較対照として、上記滑水処理前のシリカ超微粒子についても同様にしてFT-IR測定を行った。
(FT-IR measurement)
The FT-IR measurement was performed on the sliding water treated sample obtained above under the following measurement conditions.
As a comparative control, FT-IR measurement was performed in the same manner for the ultrafine silica particles before the above-mentioned water sliding treatment.
~FT-IR測定条件~
・装置: FTIR-8600PC((株)島津製作所製)
・測定法: 透過法(KBrペレット)
・希釈率: 1質量%
・測定波数範囲: 400cm-1~4000cm-1
・分解能: 4cm-1
・積算回数: 40回
・アポタイズ関数: Happ-Genzel関数
~ FT-IR measurement conditions ~
・ Device: FTIR-8600PC (manufactured by Shimadzu Corporation)
・ Measurement method: Transmission method (KBr pellet)
・ Dilution rate: 1% by mass
Measurement wave number range: 400 cm −1 to 4000 cm −1
・ Resolution: 4cm -1
・ Number of integration: 40 times ・ Apotize function: Happ-Genzel function
 図72は、シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のFT-IR測定結果(波数範囲400cm-1~4000cm-1)である。
 図73は、シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のFT-IR測定結果(波数範囲1500cm-1~1850cm-1)である。詳しくは、図73は、図72のFT-IR測定結果のうち、波数範囲1500cm-1~1850cm-1を拡大して表した図である。
 図72及び図73において、「Tre.」の波形は滑水処理試料のFT-IR測定結果であり、「Pre.」の波形は滑水処理前のシリカ超微粒子のFT-IR測定結果である。
FIG. 72 shows the results of FT-IR measurement (wave number range 400 cm −1 to 4000 cm −1 ) of the slidable sample using silica ultrafine particles and the ultrafine silica particles before the slidable water treatment.
FIG. 73 shows FT-IR measurement results (wave number range: 1500 cm −1 to 1850 cm −1 ) of a water slide treatment sample using silica ultrafine particles and silica ultrafine particles before water slide treatment. Specifically, FIG. 73, of the FT-IR measurement results of FIG. 72 is a diagram showing an enlarged part in the wave number range 1500cm -1 ~ 1850cm -1.
72 and 73, the waveform of “Tre.” Is the FT-IR measurement result of the water slide treatment sample, and the waveform of “Pre.” Is the FT-IR measurement result of the silica ultrafine particles before the water slide treatment. .
 図72及び図73に示すように、滑水処理試料(Tre.)では、1700cm-1に、滑水処理前のシリカ超微粒子(Pre.)には存在しなかった新たなピークが出現した。
 滑水処理試料(Tre.)と滑水処理前のシリカ超微粒子(Pre.)とで、他に目立った差は見られなかった。両者に共通する1630cm-1のピークは、液体の水分子の変角振動である。また、両者に共通する3400cm-1付近のピークは、液体の水分子のOH伸縮振動である。
 一方、滑水処理試料(Tre.)に見られた1700cm-1のピークは、液体の水では存在せず、氷のクラスターに存在することが確認されている(The Journal of Physical Chemistry, March 1993, Vol97, Issue 11, pp.2485-2487)。
 以上の結果は、滑水処理により、シリカ表面の水の状態が大きく変化して、特殊な構造有する水のクラスターが形成されていることを示唆している。
As shown in FIG. 72 and FIG. 73, a new peak that did not exist in the ultrafine silica particles (Pre.) Before the water slide treatment appeared at 1700 cm −1 in the water slide sample (Tre.).
There was no other noticeable difference between the water slide sample (Tre.) And the ultrafine silica particles (Pre.) Before the water slide treatment. The peak at 1630 cm −1 common to both is the bending vibration of liquid water molecules. Further, the peak in the vicinity of 3400 cm −1 common to both is the OH stretching vibration of liquid water molecules.
On the other hand, it was confirmed that the peak at 1700 cm −1 seen in the water-sliding sample (Tre.) Was not present in liquid water but was present in ice clusters (The Journal of Physical Chemistry, March 1993). , Vol97, Issue 11, pp.2485-2487).
The above results suggest that the water condition on the silica surface is greatly changed by the water sliding treatment, and water clusters having a special structure are formed.
(DTA/TG測定)
 上記で得られた滑水処理試料について、下記測定条件でDTA/TG測定(示差熱-熱重量同時測定)を行った。
 また、比較対照として、上記滑水処理前のシリカ超微粒子についても同様にしてDTA/TG測定を行った。
(DTA / TG measurement)
The DTA / TG measurement (differential thermal-thermogravimetric simultaneous measurement) was performed on the sliding water treated sample obtained above under the following measurement conditions.
As a comparative control, DTA / TG measurement was performed in the same manner for the silica ultrafine particles before the water sliding treatment.
~DTA/TG測定条件~
・装置: TG-8120((株)リガク製)
・測定範囲: 室温~1000℃
・雰囲気: Air(50mL/min.)
・サンプル量: 7mg~8mg
・参照試料: α-Al
・サンプルパン: Pt
~ DTA / TG measurement conditions ~
・ Device: TG-8120 (manufactured by Rigaku Corporation)
・ Measurement range: Room temperature to 1000 ℃
・ Atmosphere: Air (50mL / min.)
・ Sample amount: 7-8mg
Reference sample: α-Al 2 O 3
・ Sample pan: Pt
 図74は、シリカ超微粒子を用いた滑水処理試料及び滑水処理前のシリカ超微粒子のDTA/TG測定結果である。
 図74において、「Tre.」の波形は滑水処理試料のDTA/TG測定結果であり、「Pre.」の波形は滑水処理前のシリカ超微粒子のDTA/TG測定結果である。
FIG. 74 shows the DTA / TG measurement results of the water sliding treatment sample using the silica ultrafine particles and the silica ultrafine particles before the water sliding treatment.
In FIG. 74, the “Tre.” Waveform is the DTA / TG measurement result of the water slide treatment sample, and the “Pre.” Waveform is the DTA / TG measurement result of the silica ultrafine particles before the water slide treatment.
 図74に示すように、滑水処理前のシリカ超微粒子(Pre.)では、100℃程度以下の範囲で質量が急激に減少し、100℃程度以上では質量の減少はほとんど見られなかった。このように、滑水処理前のシリカ超微粒子(Pre.)では、100℃程度までにほとんどの水分が消失していた。シリカ超微粒子(ヒュームドシリカ)は、高温の火炎中で作製されたものであり、OH基をあまり持たないと考えられるので、この結果はある程度納得できる結果である。
 一方、滑水処理試料(Tre.)では、100℃程度以下の範囲では質量の減少量は少なく、200℃以上の範囲でもじわじわと試料の減少が続いていた。
 しかしながら、滑水処理前のシリカ超微粒子(Pre.)と滑水処理試料(Tre.)とでは、1000℃まで上昇させたときの質量減少量には大きな違いは見られなかった。
 また、滑水処理試料(Tre.)では、有機物の燃焼によるものと思われる質量減少や発熱ピークは見られなかった。
 以上の結果は、滑水処理により、シリカ表面の水の状態が大きく変化していることを示唆している。
As shown in FIG. 74, in the silica ultrafine particles (Pre.) Before the water sliding treatment, the mass rapidly decreased in the range of about 100 ° C. or lower, and almost no decrease in mass was observed at about 100 ° C. or higher. As described above, most of the water was lost by about 100 ° C. in the ultrafine silica particles (Pre.) Before the water sliding treatment. Silica ultrafine particles (fumed silica) are produced in a high-temperature flame and are considered to have few OH groups, so this result is acceptable to some extent.
On the other hand, in the water slide sample (Tre.), The amount of mass decrease was small in the range of about 100 ° C. or less, and the sample decreased gradually even in the range of 200 ° C. or more.
However, the silica ultrafine particles (Pre.) Before the water sliding treatment and the water sliding treatment sample (Tre.) Did not show a large difference in the amount of mass reduction when the temperature was raised to 1000 ° C.
Further, in the slidable water treatment sample (Tre.), No mass reduction or exothermic peak that was thought to be due to the combustion of organic substances was observed.
The above results suggest that the water state on the silica surface is greatly changed by the water sliding treatment.
 上記FT-IR測定及び上記DTA/TG測定の結果を合わせて考えると、本発明における滑水性は、水蒸気処理によって、表面に特殊な構造を有する水のクラスターが形成されていることが原因となっていることが推察される。このクラスターは水分子を含むものでありながら、熱的にも比較的安定であり、かつ、液体の水が濡れにくい表面を形成している。この水のクラスター自身が液体の水に対して小さな濡れ性を有するのか、あるいはこのクラスターの上に吸着する有機物の性質に影響を与えて撥水性を発現するのかは明らかでない。また、このクラスターは熱的にも比較的安定であり安定な構造を有している。この特殊な構造を有する水のクラスターが無機構造物(無機薄膜や無機物品)の表面を覆うことで、水滴の後端面のはく離に際して必要な活性化エネルギーを上昇させる原因となる物理的不均一性、即ち、動的濡れ性を低下させる原因となる物理的不均一性を排除する性質があるものと考えられる。 Considering the results of the FT-IR measurement and the DTA / TG measurement together, the water slidability in the present invention is caused by the formation of water clusters having a special structure on the surface by the steam treatment. It is inferred that Although this cluster contains water molecules, it forms a surface that is relatively thermally stable and difficult to wet liquid water. It is not clear whether this water cluster itself has a small wettability to liquid water or whether it exerts water repellency by affecting the properties of organic substances adsorbed on this cluster. In addition, this cluster is relatively stable thermally and has a stable structure. Physical non-uniformity that causes the activation energy required to peel off the rear end face of water droplets by covering the surface of inorganic structures (inorganic thin films and inorganic articles) with water clusters having this special structure That is, it is considered that there is a property of eliminating physical non-uniformity that causes a decrease in dynamic wettability.
 例えば、図54Aに示すように、水平面に対し傾斜した無機構造物表面において水滴が転落する場合、水滴の後端面が点Aから剥離し、点Aよりも低い点Bに移動する。図54Aでは、転落前の水滴を実線で表し、転落後の水滴を破線で表している。
 この際、図54Bに示すように、活性化エネルギーEAの障壁を越える必要がある。点Aが化学的・物理的に不均一な点である場合、活性化エネルギーEAが上昇する。
For example, as shown in FIG. 54A, when the water droplet falls on the surface of the inorganic structure inclined with respect to the horizontal plane, the rear end surface of the water droplet peels off from the point A and moves to a point B lower than the point A. In FIG. 54A, water drops before falling are indicated by solid lines, and water drops after falling are indicated by broken lines.
At this time, as shown in FIG. 54B, the barrier of the activation energy EA needs to be exceeded. When the point A is a chemically and physically non-uniform point, the activation energy EA increases.
 図55は、通常の大気環境条件における無機構造物表面の様子を概念的に示す概略断面図であり、図56は、無機構造物表面に対し、水蒸気処理を施した後の様子を概念的に示す概略断面図である。
 図55に示すように、通常の大気環境条件では、無機構造物表面に-OH基が存在し、その上に水分子(HO)が吸着し、更にその上に有機物Rが吸着している。無機構造物表面は、有機物Rの存在により、やや疎水的になっている。ここで、吸着状態に不均一性があり、抵抗点が存在すると、前述の活性化エネルギーが上昇し、動的撥水性が低下する原因となると考えられる。
 このような表面に対し、水蒸気処理を施すと、図56に示すように、表面の有機物が一旦除去され、一様に均一なOH基が生成され、その上に特殊な構造を有するHOのクラスターが形成される。この際、表面の有機物除去性をより向上させるためには、水蒸気処理の前に熱処理(例えば100℃以上の熱処理)を施すことがより好ましい。
 次に、特殊な構造を有するHOのクラスターの上に均一性よく有機物Rが吸着し、有機物Rが均一性よく付着した表面が構成されることにより(図56)、動的撥水性が高く、かつ接触角も比較的高い表面が構成される。
 水蒸気処理後に形成される水のクラスターは熱的に比較的安定であることからも、強固に結合しているため、その上に吸着した有機物Rとともに、無機構造物に対して比較的強固に結合していることが推定できる。このようにして生成した表面は、摩擦などの機械的耐久試験を行っても動的撥水性の劣化は生じない。また、表面の有機物Rのはく離など軽微な劣化では、すぐに有機物Rの再吸着が生じ、動的撥水性が回復する。
FIG. 55 is a schematic cross-sectional view conceptually showing the state of the surface of the inorganic structure under normal atmospheric environment conditions, and FIG. 56 is a conceptual view of the state after the steam treatment is performed on the surface of the inorganic structure. It is a schematic sectional drawing shown.
As shown in FIG. 55, under normal atmospheric environment conditions, —OH groups exist on the surface of the inorganic structure, water molecules (H 2 O) are adsorbed thereon, and organic matter R is adsorbed thereon. Yes. The surface of the inorganic structure is slightly hydrophobic due to the presence of the organic substance R. Here, if the adsorbed state is non-uniform and there is a resistance point, it is considered that the activation energy described above increases and the dynamic water repellency decreases.
When such a surface is subjected to water vapor treatment, as shown in FIG. 56, organic substances on the surface are once removed, and uniform and uniform OH groups are generated, on which H 2 O having a special structure is formed. Clusters are formed. At this time, in order to further improve the organic matter removability on the surface, it is more preferable to perform heat treatment (for example, heat treatment at 100 ° C. or higher) before the steam treatment.
Next, the organic substance R is adsorbed with good uniformity on the H 2 O cluster having a special structure, and the surface on which the organic substance R adheres with good uniformity is constructed (FIG. 56), so that dynamic water repellency A surface with a high and relatively high contact angle is constructed.
Since the water clusters formed after the steam treatment are thermally relatively stable, they are strongly bonded, so they are bonded to the inorganic structure together with the organic substance R adsorbed thereon. Can be estimated. The surface thus produced does not deteriorate in dynamic water repellency even when subjected to a mechanical durability test such as friction. Further, in the case of slight deterioration such as peeling of the organic substance R on the surface, the organic substance R is immediately re-adsorbed and the dynamic water repellency is restored.
 以上で説明したとおり、大気環境下に放置した場合と、水蒸気処理を施した場合と、では、いずれも表面に有機物が存在している。
 従って、有機物の量と動的撥水性(水滴転落角)との間には必ずしも相関は見られず、表面における有機物が多いからといって必ずしも動的撥水性が高いとは限らない。
 以下、上記内容に関して本発明者等が行った、有機物の量(炭素量)、水接触角、及び水滴転落角の相関に関する実験について説明する。
 下記表1は、有機物の量(炭素量)、接触角、及び水滴転落角の相関を調査した結果である。
As described above, organic matter is present on the surface both when left in an atmospheric environment and when subjected to steam treatment.
Therefore, there is not always a correlation between the amount of organic matter and dynamic water repellency (water drop falling angle), and just because there is a lot of organic matter on the surface does not necessarily mean that the dynamic water repellency is high.
Hereinafter, an experiment regarding the correlation between the amount of organic matter (carbon amount), the water contact angle, and the water drop falling angle performed by the present inventors regarding the above contents will be described.
Table 1 below shows the results of investigating the correlation between the amount of organic matter (carbon content), the contact angle, and the water drop falling angle.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記試料A、B-1、B-2は、いずれも、ガラス基板上に形成されたアルミナ膜である。具体的には、ガラス基板(コーニング社製「コーニング1737」)に、後述するアルミナコート液(0.1M)をスピンコーターにて1500rpm、10秒間の条件で塗布し、120℃で30分間乾燥させ、引き続き500℃で30分間焼成して得られたアルミナ膜である(その他、詳細な条件は後述する実験例1と同様である)。
 試料Aは、上記で得られたアルミナ膜を、温度40℃、相対湿度95%の水蒸気雰囲気に3120時間(130日間)放置(即ち、水蒸気処理を施した)して得られた試料である。
 試料B-1は、上記で得られたアルミナ膜を、密閉されたケース内で1440時間(60日間)放置して得られた試料である。
 試料B-2は、上記で得られたアルミナ膜を、大気環境(温度25℃、相対湿度55%)下で、2880時間(120日間)放置して得られた試料である。
 以上の試料はいずれも、XRD測定の結果、非晶質(アモルファス)であることを確認している。また、以上の試料はいずれも、表面粗さが数nm以下に制御されていることを確認している。
Samples A, B-1, and B-2 are all alumina films formed on a glass substrate. Specifically, an alumina coating solution (0.1 M) described later is applied to a glass substrate (Corning “Corning 1737”) with a spin coater at 1500 rpm for 10 seconds and dried at 120 ° C. for 30 minutes. Subsequently, it is an alumina film obtained by baking at 500 ° C. for 30 minutes (other detailed conditions are the same as those in Experimental Example 1 described later).
Sample A is a sample obtained by leaving the above-obtained alumina film for 3120 hours (130 days) in a steam atmosphere at a temperature of 40 ° C. and a relative humidity of 95% (that is, subjected to steam treatment).
Sample B-1 is a sample obtained by leaving the alumina film obtained above for 1440 hours (60 days) in a sealed case.
Sample B-2 is a sample obtained by leaving the alumina film obtained above for 2880 hours (120 days) in an atmospheric environment (temperature 25 ° C., relative humidity 55%).
As a result of XRD measurement, all of the above samples have been confirmed to be amorphous. Moreover, it has confirmed that the surface roughness of all the above samples is controlled to several nanometers or less.
 表1における炭素量の欄は、X線光電子分光法(XPS)を用いて上記試料A、B-1、B-2のそれぞれの炭素量を測定した結果である。また、水接触角及び水滴転落角の欄は、前述の方法により上記試料A、B-1、B-2のそれぞれの水接触角及び水滴転落角を測定した結果である。 The column of carbon content in Table 1 is the result of measuring the carbon content of each of the samples A, B-1, and B-2 using X-ray photoelectron spectroscopy (XPS). The columns of water contact angle and water drop falling angle are the results of measuring the water contact angle and water drop falling angle of each of Samples A, B-1, and B-2 by the method described above.
 表1に示すように、試料A及び試料B-2では、表面に有機物が付着したことにより炭素量が増大しており、水接触角が高くなっている。
 しかしながら、単に大気環境下に放置した試料B-2では水滴が転落しなかったのに対し、水蒸気処理を施した試料Aでは水滴転落角が非常に低かった。
 以上のように、有機物の量と動的撥水性(水滴転落角)との間には必ずしも相関は見られない。
 従って、動的撥水性発現(水滴転落角低下)のためには、水蒸気処理等により、表面の抵抗点の密度を一定以下とすることが重要であることが確認された。
As shown in Table 1, in Sample A and Sample B-2, the amount of carbon is increased due to adhesion of organic substances on the surface, and the water contact angle is increased.
However, in Sample B-2 which was simply left in the atmospheric environment, water droplets did not fall, whereas in Sample A subjected to the steam treatment, the water droplet fall angle was very low.
As described above, there is not always a correlation between the amount of organic matter and dynamic water repellency (water drop falling angle).
Therefore, it has been confirmed that it is important to keep the density of the resistance points on the surface below a certain level by water vapor treatment or the like for dynamic water repellency expression (reduction of the water drop falling angle).
<水蒸気処理の好ましい条件>
 次に、動的撥水性発現(水滴転落角低下)の効果をより効果的に得るための水蒸気処理の好ましい条件について説明する。
 前記水蒸気処理における水蒸気雰囲気は、滑水性付与(水滴転落角の低下)の効果をより効果的に得る観点より、温度30℃以上100℃以下であることが好ましい。
 更には、温度40℃以上100℃以下であることがより好ましく、温度50℃以上100℃以下であることが更に好ましく、温度80℃以上100℃以下であることが特に好ましい。
 また、前記水蒸気雰囲気は、滑水性付与の観点より、絶対湿度15g/m以上の雰囲気であることが好ましい。更には、絶対湿度15g/m以上300g/m以下の雰囲気が好ましく、絶対湿度15g/m以上200g/m以下の雰囲気がより好ましく、絶対湿度15g/m以上130g/m以下の雰囲気が更に好ましく、絶対湿度50g/m以上130g/m以下の雰囲気であることが特に好ましい。
 特に好ましい水蒸気雰囲気は、前記温度範囲と前記絶対湿度の範囲との双方を満たす雰囲気(例えば、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の雰囲気)である。
<Preferable conditions for steam treatment>
Next, preferable conditions for the water vapor treatment for more effectively obtaining the effect of dynamic water repellency expression (reduction of water drop falling angle) will be described.
The water vapor atmosphere in the water vapor treatment is preferably at a temperature of 30 ° C. or higher and 100 ° C. or lower from the viewpoint of more effectively obtaining lubricity (reducing the water drop falling angle).
Furthermore, the temperature is more preferably 40 ° C. or higher and 100 ° C. or lower, further preferably 50 ° C. or higher and 100 ° C. or lower, and particularly preferably 80 ° C. or higher and 100 ° C. or lower.
Further, the water vapor atmosphere is preferably an atmosphere having an absolute humidity of 15 g / m 3 or more from the viewpoint of imparting lubricity. Furthermore, an atmosphere with an absolute humidity of 15 g / m 3 or more and 300 g / m 3 or less is preferable, an atmosphere with an absolute humidity of 15 g / m 3 or more and 200 g / m 3 or less is more preferable, and an absolute humidity of 15 g / m 3 or more and 130 g / m 3 or less. And an atmosphere with an absolute humidity of 50 g / m 3 or more and 130 g / m 3 or less is particularly preferable.
A particularly preferable water vapor atmosphere is an atmosphere satisfying both the temperature range and the absolute humidity range (for example, an atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more).
 また、前記水蒸気雰囲気は、滑水性向上(水滴転落角の低下)の効果をより効果的に得る観点より、温度(℃)と相対湿度(%)との積が、2000℃・%以上10000℃・%以下であることが好ましく、2500℃・%以上8000℃・%以下であることがより好ましく、3000℃・%以上5000℃・%以下であることが特に好ましい。
 前記水蒸気雰囲気における温度(℃)と相対湿度(%)との積が2500℃・%以上8000℃・%以下であると、滑水性向上の効果がより効果的に得られることに加え、滑水性の長期安定性も向上する。
Further, the water vapor atmosphere has a product of temperature (° C.) and relative humidity (%) of 2000 ° C. ·% or more and 10000 ° C. from the viewpoint of more effectively obtaining the effect of improving the water slidability (reducing the water drop falling angle). It is preferably% or less, more preferably 2500 ° C. ·% or more and 8000 ° C. ·% or less, and particularly preferably 3000 ° C. ·% or more and 5000 ° C. ·% or less.
When the product of the temperature (° C.) and the relative humidity (%) in the water vapor atmosphere is 2500 ° C. ·% or more and 8000 ° C. ·% or less, the effect of improving the lubricity can be obtained more effectively. The long-term stability is also improved.
 なお、無機構造物が金属物品である場合には、下記(条件1)及び(条件2)の少なくとも一方を満たす水蒸気雰囲気であることも好ましい。
(条件1)温度30℃以上120℃以下、かつ、絶対湿度15g/m以上。
(条件2)温度(℃)と相対湿度(%)との積が2000℃・%以上12000℃・%以下。
In addition, when the inorganic structure is a metal article, it is also preferably a water vapor atmosphere that satisfies at least one of the following (Condition 1) and (Condition 2).
(Condition 1) Temperature is 30 ° C. or higher and 120 ° C. or lower, and absolute humidity is 15 g / m 3 or higher.
(Condition 2) The product of temperature (° C.) and relative humidity (%) is 2000 ° C. ·% or more and 12000 ° C. ·% or less.
 また、水蒸気処理の時間は、無機構造体の種類によっても異なるが、1時間以上が好ましく、3時間以上がより好ましく、1日(24時間)以上が更に好ましく、3日(72時間)以上が更に好ましく、10日(240時間)以上が特に好ましい。 Moreover, although the time of water vapor | steam processing changes also with the kind of inorganic structure, 1 hour or more is preferable, 3 hours or more are more preferable, 1 day (24 hours) or more are more preferable, and 3 days (72 hours) or more are preferable. More preferred is 10 days (240 hours) or longer.
 前記水蒸気処理は、公知の恒温恒湿槽を用いて行うことができる。
 このような恒温恒湿槽としては、例えば、HUMIDIC CHAMBER IG420、HUMIDIC CHAMBER IW222、HUMIDIC CHAMBER IH400(以上、ヤマト科学株式会社製)等が挙げられる。
The steam treatment can be performed using a known constant temperature and humidity chamber.
Examples of such a constant temperature and humidity chamber include HUMIDIC CHAMBER IG420, HUMIDIC CHAMBER IW222, HUMIDIC CHAMBER IH400 (manufactured by Yamato Scientific Co., Ltd.), and the like.
<前処理>
 本発明の無機構造物(無機薄膜及び無機固体)を得るための具体的方法としては、無機構造物素材(水蒸気処理が施される前の無機構造物)の表面に付着した有機物をより効率的に除去する観点から、前記水蒸気処理の前に、該無機構造物素材に対し、該無機構造物素材の表面の有機物を除去する前処理を施すことも有効である。
 前記前処理としては、該無機構造物素材の表面に存在する有機物の少なくとも一部を除去する処理であれば特に限定はないが、例えば、熱処理、洗浄処理(超音波洗浄処理、純水洗浄処理、洗浄液を用いた洗浄処理、等)、及び紫外線照射処理の少なくとも1種が挙げられる。
 中でも、前記前処理としては、熱処理、超音波洗浄処理、及び紫外線照射処理の少なくとも1種が好ましい。
<Pretreatment>
As a specific method for obtaining the inorganic structure (inorganic thin film and inorganic solid) of the present invention, an organic substance attached to the surface of the inorganic structure material (inorganic structure before being subjected to the water vapor treatment) is more efficient. From the viewpoint of removal, it is also effective to perform a pretreatment for removing the organic matter on the surface of the inorganic structure material before the steam treatment.
The pretreatment is not particularly limited as long as it is a treatment that removes at least part of the organic substances present on the surface of the inorganic structure material. For example, heat treatment, washing treatment (ultrasonic washing treatment, pure water washing treatment) , Cleaning treatment using a cleaning liquid, and the like), and ultraviolet irradiation treatment.
Among these, the pretreatment is preferably at least one of heat treatment, ultrasonic cleaning treatment, and ultraviolet irradiation treatment.
(熱処理)
 前記熱処理の温度としては、有機物除去性の観点からは、100℃以上であることが好ましく、110℃以上であることがより好ましい。
 更に、前記熱処理の温度は、本発明の無機構造物がゾルゲル法による無機薄膜の形態である場合には、塗布膜の焼成の観点から、300℃以上であることがより好ましい。
 また、前記熱処理の温度は、本発明の無機構造物が真空成膜法による無機薄膜の形態である場合には、結晶化の観点から、300℃以上であることがより好ましい。
(Heat treatment)
The temperature of the heat treatment is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, from the viewpoint of organic substance removability.
Furthermore, when the inorganic structure of the present invention is in the form of an inorganic thin film by a sol-gel method, the temperature of the heat treatment is more preferably 300 ° C. or higher from the viewpoint of firing the coating film.
In addition, when the inorganic structure of the present invention is in the form of an inorganic thin film formed by a vacuum film forming method, the temperature of the heat treatment is more preferably 300 ° C. or higher from the viewpoint of crystallization.
 熱処理温度の上限については、熱処理の対象物の軟化点よりも低い温度であれば特に限定はない。ここで「熱処理の対象物の軟化点」とは、本発明の無機構造物が無機薄膜の形態である場合には、無機薄膜の軟化点及び支持体の軟化点のうち低い方の温度を指し、本発明の無機構造物が無機固体の形態である場合には、無機固体の軟化点を指す。
 熱処理温度の上限としては、熱処理の対象物によって異なるが、例えば1200℃が挙げられる。
The upper limit of the heat treatment temperature is not particularly limited as long as the temperature is lower than the softening point of the heat treatment target. Here, when the inorganic structure of the present invention is in the form of an inorganic thin film, the “softening point of the object to be heat-treated” refers to the lower one of the softening point of the inorganic thin film and the softening point of the support. When the inorganic structure of the present invention is in the form of an inorganic solid, it indicates the softening point of the inorganic solid.
The upper limit of the heat treatment temperature varies depending on the object of heat treatment, but may be 1200 ° C., for example.
 熱処理の時間としては温度によっても異なるが、0.5~3時間が好ましく、0.5~1時間がより好ましい。
 前記熱処理は、マッフル炉等の公知の炉において行うことができる。
 熱処理後の無機構造物は、必要に応じ、例えば、30℃以上100℃以下まで冷却した後、前述の水蒸気処理を施す。該冷却は、例えば、熱処理に用いた炉内で3~6時間冷却(炉冷)することにより行うことができる。
The heat treatment time varies depending on the temperature, but is preferably 0.5 to 3 hours, more preferably 0.5 to 1 hour.
The heat treatment can be performed in a known furnace such as a muffle furnace.
If necessary, the inorganic structure after the heat treatment is cooled to 30 ° C. or more and 100 ° C. or less, and then subjected to the steam treatment described above. The cooling can be performed, for example, by cooling (furnace cooling) for 3 to 6 hours in the furnace used for the heat treatment.
 また、熱処理を行う雰囲気には特に限定はないが、例えば、表面酸化による表面粗さ増大をより効果的に抑制する観点からは、貧酸素雰囲気下(例えば、窒素雰囲気下)で行うことが好ましい。 The atmosphere in which the heat treatment is performed is not particularly limited, but for example, from the viewpoint of more effectively suppressing an increase in surface roughness due to surface oxidation, it is preferably performed in a poor oxygen atmosphere (for example, in a nitrogen atmosphere). .
(超音波洗浄処理)
 前記超音波洗浄処理の方法としては公知の方法を用いることができる。
 前記超音波洗浄処理は、例えば、公知の超音波洗浄装置を用いて行うことができる。
 前記超音波洗浄処理の条件は、該無機構造物素材の表面に存在する有機物の少なくとも一部を除去できる条件であれば特に限定はないが、好ましい条件として、例えば、純水中で10分以上超音波洗浄処理する条件を挙げることができる。
(Ultrasonic cleaning process)
A known method can be used as the method of the ultrasonic cleaning treatment.
The ultrasonic cleaning treatment can be performed using, for example, a known ultrasonic cleaning apparatus.
The condition of the ultrasonic cleaning treatment is not particularly limited as long as at least a part of the organic substance existing on the surface of the inorganic structure material can be removed, but preferable conditions include, for example, 10 minutes or more in pure water. The conditions which carry out an ultrasonic cleaning process can be mentioned.
(紫外線照射処理)
 前記紫外線照射処理としては公知の方法を用いることができる。
 前記紫外線照射処理において、照射する紫外線としては、該無機構造物素材の表面に存在する有機物の少なくとも一部を除去できる紫外線であれば特に限定はない。例えば、エキシマー光(例えば、ArF、XrF、XrCl、XeCl、Ar、Xr、等から生じるエキシマー光)等を用いることができる。
 照射する紫外線の強度としては、10mW/cm~40mW/cmが好ましい。
 照射時間としては、300秒~720秒が好ましく、600秒~720秒がより好ましい。
 前記紫外線照射処理の方法としては、エキシマーランプ等の紫外線ランプを直接照射することにより行う方法や、公知の紫外線照射処理装置(UV処理装置、UV表面改質装置、UV洗浄装置、等)を用いて行う方法が挙げられる。
(UV irradiation treatment)
As the ultraviolet irradiation treatment, a known method can be used.
In the ultraviolet irradiation treatment, the ultraviolet ray to be irradiated is not particularly limited as long as it is an ultraviolet ray that can remove at least a part of the organic substance existing on the surface of the inorganic structure material. For example, excimer light (for example, excimer light generated from ArF, XrF, XrCl, XeCl, Ar 2 , Xr 2 , etc.) can be used.
The intensity of the irradiated ultraviolet light is preferably 10 mW / cm 2 to 40 mW / cm 2 .
The irradiation time is preferably 300 seconds to 720 seconds, and more preferably 600 seconds to 720 seconds.
As the method of ultraviolet irradiation treatment, a method of directly irradiating an ultraviolet lamp such as an excimer lamp or a known ultraviolet irradiation treatment apparatus (UV treatment apparatus, UV surface modification apparatus, UV cleaning apparatus, etc.) is used. The method to perform is mentioned.
<後処理>
 本発明の無機構造物(無機薄膜及び無機固体)を得るための具体的方法としては、前記水蒸気処理により得られた滑水性表面の性状を安定化させる観点等から、前記水蒸気処理工程の後に、前記無機構造物素材に対し、後処理として熱処理を施すことが好ましい。
 熱処理の温度としては、水蒸気処理の温度(水蒸気雰囲気の温度)以上300℃以下が好ましく、100℃以上300℃以下がより好ましい。
 後処理としての熱処理における好ましい条件や好ましい方法については、前記前処理としての熱処理における好ましい条件や方法と同様である。
<Post-processing>
As a specific method for obtaining the inorganic structure (inorganic thin film and inorganic solid) of the present invention, from the viewpoint of stabilizing the properties of the water-slidable surface obtained by the steam treatment, after the steam treatment step, It is preferable to heat-treat the inorganic structure material as a post-treatment.
The temperature of the heat treatment is preferably a steam treatment temperature (temperature of the steam atmosphere) or more and 300 ° C. or less, and more preferably 100 ° C. or more and 300 ° C. or less.
The preferable conditions and preferable methods in the heat treatment as the post-treatment are the same as the preferable conditions and methods in the heat treatment as the pretreatment.
≪構造体≫
 本発明の構造体は、本発明の無機薄膜により全部又は一部を被覆されて構成される。
 本発明の構造体において、無機薄膜によって被覆される支持体としては特に限定はなく、有機物であっても無機物であってもよい。
 前記支持体として、具体的には、ガラス(例えば、ソーダライムガラス、パイレックス(登録商標)ガラス、石英ガラス、白板ガラス、青板ガラス、無アルカリガラス、サファイアガラス、等)、金属、プラスチック、樹脂、セラミックス、半導体、結晶、紙、木材等、種々の材料を特に制限なく用いることができるが、本発明の効果をより効果的に得る観点からは、ガラス、セラミックスが好ましく、ガラスが特に好ましい。支持体は、そのまま用いてもよいし、表面にシリカ(SiO)膜等が形成されたものを用いてもよい。
≪Structure≫
The structure of the present invention is constituted by being entirely or partially covered with the inorganic thin film of the present invention.
In the structure of the present invention, the support coated with the inorganic thin film is not particularly limited, and may be organic or inorganic.
As the support, specifically, glass (for example, soda lime glass, Pyrex (registered trademark) glass, quartz glass, white plate glass, blue plate glass, non-alkali glass, sapphire glass, etc.), metal, plastic, resin, Various materials such as ceramics, semiconductors, crystals, paper, and wood can be used without particular limitation, but glass and ceramics are preferable, and glass is particularly preferable from the viewpoint of obtaining the effects of the present invention more effectively. The support may be used as it is, or a support on which a silica (SiO 2 ) film or the like is formed may be used.
 本発明の構造体は、水滴除去性及び耐久性を備えた無機薄膜により被覆されているため、例えば、水の付着や浸入を嫌う用途に好適である。
 また、無機薄膜は、安全性、帯電性、耐久性、耐摩耗性の諸性能に優れるため、フッ素系の有機撥水材料の代替材料としても好適である。
 このような用途の具体例としては、自動車のフロントウインドウ、結露防止機能を有する住宅ガラス、キッチンや浴室などの水回り部材や建材、化学溶液や食品溶液などの製造プロセスに用いられるタンクやリアクター、配管内面、攪拌タンクや攪拌機、耐久性に優れたフライパンなどの調理器具、計量器内面、塗布ロール、等が挙げられる。
 特に、無機薄膜がチタニアを含む膜である場合には、水滴除去性に優れ、かつ、残存する汚染物が光触媒作用で酸化分解されるセルフクリーニング部材として用いることができる。
Since the structure of the present invention is covered with an inorganic thin film having water drop removal property and durability, it is suitable for, for example, applications where water adhesion and intrusion are hated.
In addition, since the inorganic thin film is excellent in various performances such as safety, chargeability, durability, and abrasion resistance, it is also suitable as an alternative material for the fluorine-based organic water repellent material.
Specific examples of such applications include front windows of automobiles, residential glass with anti-condensation functions, water-circulating members and building materials such as kitchens and bathrooms, tanks and reactors used in manufacturing processes such as chemical solutions and food solutions, Examples include piping inner surfaces, stirring tanks and stirrers, cooking utensils such as frying pans with excellent durability, measuring instrument inner surfaces, coating rolls, and the like.
In particular, when the inorganic thin film is a film containing titania, it can be used as a self-cleaning member that is excellent in water droplet removal and that oxidatively decomposes remaining contaminants by photocatalysis.
≪無機構造物の製造方法≫
 本発明の無機構造物の製造方法は、無機構造物素材を準備する工程(以下、「無機構造物素材準備工程」)と、前記無機構造物素材を水蒸気処理する水蒸気処理工程と、を有する。
 本発明の無機構造物の製造方法によれば、水滴除去性に優れた表面を有し、更に耐久性にも優れた無機構造物を製造することができる。
 また、本発明の無機構造物の製造方法によれば、製造される無機構造物表面における前記抵抗点の密度を、10個/30mm以下に調整し易い。
 また、本発明の無機構造物の製造方法によれば、前記摩擦力が10nN以下である領域、及び、前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含む無機構造物を製造し易い。
 本発明の無機構造物の製造方法は、必要に応じ、その他の工程を有していてもよい。
≪Method for producing inorganic structure≫
The method for producing an inorganic structure of the present invention includes a step of preparing an inorganic structure material (hereinafter, “inorganic structure material preparation step”) and a steam treatment step of steam-treating the inorganic structure material.
According to the method for producing an inorganic structure of the present invention, it is possible to produce an inorganic structure having a surface excellent in water droplet removal property and further excellent in durability.
Moreover, according to the manufacturing method of the inorganic structure of this invention, it is easy to adjust the density of the said resistance point in the inorganic structure surface manufactured to 10 piece / 30mm < 2 > or less.
In addition, according to the method for manufacturing an inorganic structure of the present invention, an inorganic structure including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is manufactured on the surface. Easy to do.
The manufacturing method of the inorganic structure of this invention may have another process as needed.
<無機構造物素材準備工程>
 無機構造物素材準備工程は、水蒸気処理の対象となる無機構造物素材を準備する工程である。
 ここで「無機構造物素材」とは、前記水蒸気処理工程における水蒸気処理が施される前の無機構造物を指す。従って、「無機構造物素材」は、外見上は製造される無機構造物(前記水蒸気処理工程の処理が施された後の無機構造物)と同様のものであってもよい。
 準備する無機構造物素材には特に限定はないが、水蒸気処理による滑水性向上の効果をより効果的に得る観点からは、表面における有機物の付着量が少ない無機構造物素材が好ましい。
 表面における有機物の付着量が少ない無機構造物素材としては、例えば、製造からあまり時間が経過していない無機構造物素材(ガラス素材、金属素材等)、製造からの大気中における保管時間が短い無機構造物素材(ガラス素材、金属素材等)、等が挙げられる。
 また、準備する無機構造物素材としては、予め、表面における有機物を除去する前処理を施しておいた無機構造物素材を準備することも好ましい。
<Inorganic structure material preparation process>
The inorganic structure material preparation step is a step of preparing an inorganic structure material to be subjected to steam treatment.
Here, the “inorganic structure material” refers to an inorganic structure before being subjected to the water vapor treatment in the water vapor treatment step. Therefore, the “inorganic structure material” may be the same as the manufactured inorganic structure (inorganic structure after being subjected to the treatment of the water vapor treatment step) in appearance.
The inorganic structure material to be prepared is not particularly limited, but from the viewpoint of more effectively obtaining the effect of improving the water slidability by the water vapor treatment, an inorganic structure material having a small amount of organic matter attached to the surface is preferable.
Examples of inorganic structure materials that have a small amount of organic matter on the surface include inorganic structure materials (glass materials, metal materials, etc.) that have not passed much time since manufacture, and inorganic materials that have a short storage time in the atmosphere since manufacture. Examples include structural materials (glass materials, metal materials, etc.).
In addition, as the inorganic structure material to be prepared, it is also preferable to prepare an inorganic structure material that has been subjected to pretreatment for removing organic substances on the surface in advance.
 また、準備する無機構造物素材としては、水蒸気処理による滑水性向上の効果をより効果的に得る観点から、平滑な(例えば、表面粗さ(Ra)が2nm以下の)表面を有する無機構造物素材が好ましい。
 また、準備する無機構造物素材としては、予め、表面を平滑に(例えば、表面粗さ(Ra)が2nm以下に)研磨する研磨処理を施しておいた無機構造物素材も好ましい。
Moreover, as an inorganic structure material to be prepared, an inorganic structure having a smooth surface (for example, having a surface roughness (Ra) of 2 nm or less) from the viewpoint of more effectively obtaining the effect of improving water slidability by water vapor treatment. A material is preferred.
In addition, as the inorganic structure material to be prepared, an inorganic structure material that has been subjected to a polishing process in which the surface is polished in advance (for example, the surface roughness (Ra) is 2 nm or less) is also preferable.
<水蒸気処理工程>
 前記水蒸気処理工程は、前記無機構造物素材を水蒸気処理することにより、前記無機構造物素材の表面の水滴転落角を低下させる工程である。
 前記水蒸気処理工程は、前記無機構造物素材の表面の水滴転落角を、10°以上低下させることが好ましく、20℃以上低下させることがより好ましく、30°以上低下させることが特に好ましい。
 前記水蒸気処理工程における水蒸気処理の好ましい範囲については、前記≪無機構造物≫中、<水蒸気処理>の項および<水蒸気処理の好ましい条件>の項で説明したとおりである。
<Steam treatment process>
The water vapor treatment step is a step of reducing the water droplet falling angle on the surface of the inorganic structure material by subjecting the inorganic structure material to water vapor treatment.
In the steam treatment step, the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
The preferable range of the water vapor treatment in the water vapor treatment step is as described in the section <Steam treatment> and <Preferred conditions for water vapor treatment> in the << inorganic structure >>.
<前処理工程>
 また、本発明の無機構造物の製造方法は、前記水蒸気処理工程の前に、前記無機構造物素材に対し、該無機構造物素材の表面の有機物を除去する前処理を施す前処理工程を有することが好ましい。
 該前処理工程を有することにより、水蒸気処理による滑水化の効果がより効果的に得られる。
 該前処理工程における前処理の好ましい範囲については、前記≪無機構造物≫中の<前処理>の項で説明したとおりである。
<Pretreatment process>
Moreover, the manufacturing method of the inorganic structure of this invention has the pre-processing process which performs the pre-processing which removes the organic substance on the surface of this inorganic structure raw material with respect to the said inorganic structural raw material before the said water vapor treatment process. It is preferable.
By having this pretreatment process, the effect of water sliding by steam treatment can be obtained more effectively.
The preferable range of the pretreatment in the pretreatment step is as described in the section <Pretreatment> in the << inorganic structure >>.
<後処理工程>
 また、本発明の無機構造物の製造方法は、前記水蒸気処理工程の後に、前記無機構造物素材に対し、後処理として、前記水蒸気の温度以上300℃以下の熱処理を施す後処理工程を有することが好ましい。
 該後処理工程を有することにより、水蒸気処理により得られた滑水性表面の性状をより安定化させることができる。
 該後処理工程における後処理の好ましい範囲については、前記≪無機構造物≫中の<後処理>の項で説明したとおりである。
<Post-processing process>
Moreover, the manufacturing method of the inorganic structure of this invention has the post-processing process which performs the heat processing more than the temperature of the said water vapor | steam 300 degreeC or less as a post-process with respect to the said inorganic structure raw material after the said water vapor treatment process. Is preferred.
By having this post-treatment step, the properties of the water-slidable surface obtained by the steam treatment can be further stabilized.
The preferable range of the post-treatment in the post-treatment step is as described in the section of <Post-treatment> in the << inorganic structure >>.
 次に、無機構造物の製造方法のより具体的な形態として、無機薄膜の製造方法、ガラス物品の製造方法、無機構造物の滑水性回復方法について説明する。 Next, as a more specific form of the method for manufacturing an inorganic structure, a method for manufacturing an inorganic thin film, a method for manufacturing a glass article, and a method for recovering the water slidability of the inorganic structure will be described.
≪無機薄膜の製造方法≫
 本発明の無機薄膜の製造方法は、無機酸化物の前駆体を含む塗布液を支持体上に塗布して平滑な(例えば、表面粗さ(Ra)が2nm以下の)塗布膜を形成する塗布膜形成工程と、形成された塗布膜を300℃以上の温度で熱処理する熱処理工程と、熱処理された塗布膜を水蒸気処理する水蒸気処理工程と、を有する。
 上記本発明の無機薄膜の製造方法によれば、水滴除去性に優れた表面を有し、更に耐久性にも優れた無機薄膜を製造することができる。
 また、上記本発明の無機薄膜の製造方法によれば、製造される無機構造物表面における前記抵抗点の密度を、10個/30mm以下に調整し易い。
 また、上記本発明の無機薄膜の製造方法によれば、前記摩擦力が10nN以下である領域、及び、前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含む無機薄膜を製造し易い。
 上記本発明の無機薄膜の製造方法は、ゾルゲル法を用いた無機薄膜の製造方法の形態である。
 上記本発明の無機薄膜の製造方法は、更に、必要に応じ、その他の工程を有していてもよい。
≪Inorganic thin film manufacturing method≫
In the method for producing an inorganic thin film of the present invention, a coating solution containing an inorganic oxide precursor is coated on a support to form a smooth coating film (for example, having a surface roughness (Ra) of 2 nm or less). A film forming step, a heat treatment step of heat-treating the formed coating film at a temperature of 300 ° C. or higher, and a steam treatment step of steam-treating the heat-treated coating film.
According to the method for producing an inorganic thin film of the present invention, it is possible to produce an inorganic thin film having a surface excellent in water droplet removability and further excellent in durability.
Moreover, according to the manufacturing method of the said inorganic thin film of this invention, it is easy to adjust the density of the said resistance point in the inorganic structure surface manufactured to 10 pieces / 30mm < 2 > or less.
In addition, according to the method for producing an inorganic thin film of the present invention, an inorganic thin film including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is produced on the surface. easy.
The method for producing an inorganic thin film of the present invention is a form of a method for producing an inorganic thin film using a sol-gel method.
The method for producing an inorganic thin film of the present invention may further include other steps as necessary.
<塗布膜形成工程>
 前記塗布膜形成工程は、無機酸化物の前駆体を含む塗布液を支持体上に塗布して(更に、必要に応じ乾燥させて)塗布膜を形成する工程である。
<Coating film formation process>
The coating film forming step is a step of forming a coating film by applying a coating liquid containing an inorganic oxide precursor onto a support (and drying it as necessary).
(支持体)
 前記支持体としては特に限定はなく、例えば、前記≪構造体≫の項で説明した支持体と同様のものを用いることができる。
(Support)
The support is not particularly limited, and for example, the same support as that described in the section of “Structure” can be used.
(無機酸化物の前駆体を含む塗布液)
 無機酸化物の前駆体を含む塗布液(以下、「コート液」ともいう)は、調製されたものであっても、市販品など予め準備されたものであってもよい。
 ここで、無機酸化物の前駆体とは、加熱により無機酸化物となる物質を指し、例えば、金属塩または金属アルコキシドが挙げられる。
 また、前記無機酸化物としては、金属酸化物(ジルコニア、アルミナ、セリア、チタニア、ハフニア、シリカ、等)が挙げられる。
(Coating liquid containing inorganic oxide precursor)
The coating liquid containing the inorganic oxide precursor (hereinafter also referred to as “coating liquid”) may be prepared or may be prepared in advance, such as a commercial product.
Here, the precursor of an inorganic oxide refers to a substance that becomes an inorganic oxide by heating, and examples thereof include metal salts and metal alkoxides.
Examples of the inorganic oxide include metal oxides (zirconia, alumina, ceria, titania, hafnia, silica, etc.).
 前記無機酸化物の前駆体を含む塗布液としては、溶媒と、金属塩(若しくは該金属塩の水和物)または金属アルコキシドと、を含む塗布液が好適である。
 前記塗布液は、更に、必要に応じ、キレート剤を含んでもよい。
 前記金属塩としては、例えば、硝酸塩、酢酸塩、塩酸塩、硫酸塩、等が好適である。
The coating liquid containing the inorganic oxide precursor is preferably a coating liquid containing a solvent and a metal salt (or a hydrate of the metal salt) or a metal alkoxide.
The coating solution may further contain a chelating agent as necessary.
As the metal salt, for example, nitrate, acetate, hydrochloride, sulfate and the like are suitable.
 以下に、無機酸化物の前駆体の具体例を挙げるが本発明は以下の具体例には限定されない。 Specific examples of inorganic oxide precursors are given below, but the present invention is not limited to the following specific examples.
 ジルコニアの前駆体として、例えば、ジルコニウムハロゲン化物(例えば、塩化酸化ジルコニウム・八水和物、四塩化ジルコニウム、四フッ化ジルコニウム、四臭化ジルコニウム、四ヨウ化ジルコニウム、三塩化一臭化ジルコニウム、三フッ化一塩化ジルコニウム、三臭化一ヨウ化ジルコニウム、三ヨウ化一フッ化ジルコニウム、二塩化二臭化ジルコニウム、二フッ化二塩化ジルコニウム、二臭化二ヨウ化ジルコニウム、二ヨウ化二塩化ジルコニウム、等)、ジルコニウム無機酸塩(例えば、オキシ塩化ジルコニウム・八水和物、オキシ硝酸ジルコニウム・二水和物、硝酸ジルコニウム・四水和物、等)、ジルコニウム有機酸塩(例えば、酢酸ジルコニウム、等)、ジルコニウムアルコキシド(例えば、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、ジルコニウムテトラペントキシド、等;好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシド)、ジルコニウム錯体(例えば、ジルコニウムアセチルアセトナート、等)、等が挙げられる。
 中でも、ジルコニウムアルコキシドが好ましく、ジルコニウムテトライソプロポキシドなどがより好ましい。
 ジルコニアの前駆体の市販品としては、例えば、Zr-05-P((株)高純度化学研究所)が挙げられる。
Examples of zirconia precursors include zirconium halides (eg, zirconium chloride oxide octahydrate, zirconium tetrachloride, zirconium tetrafluoride, zirconium tetrabromide, zirconium tetraiodide, zirconium tribromide, three Zirconium fluoride monochloride, zirconium tribromide monoiodide, zirconium triiodide monofluoride, zirconium dibromide, zirconium difluoride dichloride, zirconium dibromide diiodide, zirconium diiodide dichloride ), Zirconium inorganic acid salts (for example, zirconium oxychloride / octahydrate, zirconium oxynitrate / dihydrate, zirconium nitrate / tetrahydrate, etc.), zirconium organic acid salts (for example, zirconium acetate, Etc.), zirconium alkoxide (eg, zirconium tetramethoxide, zirconium) Nium tetraethoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetrapentoxide, etc .; preferably an alkoxide having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms), a zirconium complex (for example, zirconium Acetylacetonate, etc.).
Among these, zirconium alkoxide is preferable, and zirconium tetraisopropoxide is more preferable.
Examples of commercially available zirconia precursors include Zr-05-P (High Purity Chemical Research Laboratory).
 アルミナの前駆体として、例えば、アルミニウム無機酸塩(例えば、硝酸アルミニウム九水和物)、等が挙げられる。 Examples of the alumina precursor include aluminum inorganic acid salt (for example, aluminum nitrate nonahydrate).
 セリアの前駆体として、例えば、セリウム無機酸塩(例えば、硝酸セリウム6水和物)、等が挙げられる。 Examples of the ceria precursor include cerium inorganic acid salts (for example, cerium nitrate hexahydrate).
 チタニアの前駆体として、例えば、有機チタン化合物として、チタンのアルコキシド(例えば、テトラエトキシチタン、テトライソプロポキシチタン、テトラn-プロポキシチタン、テトラブトキシチタン、テトラメトキシチタン等)、チタンのキレート、チタンのアセテート等が挙げられ、無機チタン化合物として、TiCl、Ti(SO等が挙げられる。
 中でも、チタンアルコキシドが好ましく、チタンテトライソプロポキシドなどがより好ましい。
 チタニアの前駆体の市販品としては、例えば、NDH-510C(日本曹達(株)製)が挙げられる。
Examples of titania precursors include, for example, organic titanium compounds, titanium alkoxides (eg, tetraethoxy titanium, tetraisopropoxy titanium, tetra n-propoxy titanium, tetrabutoxy titanium, tetramethoxy titanium, etc.), titanium chelates, titanium Examples thereof include acetate, and examples of the inorganic titanium compound include TiCl 4 and Ti (SO 4 ) 2 .
Of these, titanium alkoxide is preferable, and titanium tetraisopropoxide is more preferable.
Examples of commercially available titania precursors include NDH-510C (manufactured by Nippon Soda Co., Ltd.).
 ハフニアの前駆体として、例えば、ハフニウムハロゲン化物(例えば、四塩化ハフニウム、四フッ化ハフニウム、四臭化ハフニウム、四ヨウ化ハフニウム、三塩化一臭化ハフニウム、三フッ化一臭化ハフニウム、三臭化一塩化ハフニウム、三ヨウ化一塩化ハフニウム、二塩化二臭化ハフニウム、二フッ化二臭化ハフニウム、二臭化二ヨウ化ハフニウム、二ヨウ化二フッ化ハフニウム、等)、ハフニウム無機酸塩(例えば、硝酸ハフニウム、等)、ハフニウムアルコキシド(例えば、ハフニウムテトラメトキシド、ハフニウムテトライソプロポキシド、等)、ハフニウム錯体(例えば、ハフニウムアセチルアセトナート、等)が挙げられる。
 中でも、ハフニウムアルコキシドが好ましく、ハフニウムテトライソプロポキシドなどがより好ましい。
 ハフニアの前駆体の市販品としては、例えば、Hf-05((株)高純度化学研究所)が挙げられる。
Hafnia precursors include, for example, hafnium halides (eg, hafnium tetrachloride, hafnium tetrafluoride, hafnium tetrabromide, hafnium tetraiodide, hafnium tribromide trichloride, hafnium trifluoride tribromide, triodor Hafnium monochloride, hafnium triiodide monochloride, hafnium dibromide dichloride, hafnium dibromide dibromide, hafnium dibromide diiodide, hafnium diiodide diiodide, etc.), hafnium inorganic acid salt (For example, hafnium nitrate, etc.), hafnium alkoxide (for example, hafnium tetramethoxide, hafnium tetraisopropoxide, etc.), and a hafnium complex (for example, hafnium acetylacetonate, etc.).
Among these, hafnium alkoxide is preferable, and hafnium tetraisopropoxide is more preferable.
As a commercial product of the precursor of hafnia, for example, Hf-05 (High Purity Chemical Laboratory Co., Ltd.) can be mentioned.
 シリカの前駆体として、原料液中で重縮合などの反応によりシリカを形成するものであればよく、このようなものとしては、ケイ酸ナトリウムなどの無機化合物をはじめ、加水分解性基がケイ素原子に結合したシラン化合物、例えばアルコキシシランやクロルシランなどがあげられる。このなかでも、テトラアルコキシシラン類が好ましく、このような物質を例示すれば、テトラメトキシシラン、テトラエトキシシランなどがあり、これらは、その取扱いの容易さや安全性、およびその安定性や反応性の点で好ましいものであり、さらに好ましい。 Any silica precursor may be used as long as it forms silica by a reaction such as polycondensation in a raw material liquid. Examples of such a silica precursor include inorganic compounds such as sodium silicate and hydrolyzable groups having silicon atoms. And silane compounds bonded to silane, such as alkoxysilane and chlorosilane. Among these, tetraalkoxysilanes are preferable, and examples of such substances include tetramethoxysilane and tetraethoxysilane. These include ease of handling and safety, and stability and reactivity. This is preferable in terms of points, and more preferable.
 前記塗布液中における無機酸化物の前駆体の濃度としては、0.01~3.0mol/Lが好ましく、0.05~3.0mol/Lがより好ましく、0.05~2.0mol/Lが更に好ましく、0.05~1.0mol/Lが特に好ましい。 The concentration of the inorganic oxide precursor in the coating solution is preferably 0.01 to 3.0 mol / L, more preferably 0.05 to 3.0 mol / L, and 0.05 to 2.0 mol / L. Is more preferable, and 0.05 to 1.0 mol / L is particularly preferable.
 前記塗布液に含まれる溶媒としては、水、アルコール(メタノール、エタノール、プロパノール、等)、ポリビニルアルコール(PVA)水溶液、エチレングリコール、等が挙げられる。 Examples of the solvent contained in the coating solution include water, alcohol (methanol, ethanol, propanol, etc.), polyvinyl alcohol (PVA) aqueous solution, ethylene glycol, and the like.
 前記塗布液は、更に、キレート剤を含むことが好ましい。
 キレート剤としては、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、エチレンジアミン四酢酸(EDTA)、クエン酸、等が挙げられる。
 キレート剤の含有量は、塗布液中に含まれる金属元素のモル数に対し、0.5~5当量が好ましく、1~2当量がより好ましい。
The coating liquid preferably further contains a chelating agent.
Examples of the chelating agent include monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), ethylenediaminetetraacetic acid (EDTA), citric acid, and the like.
The content of the chelating agent is preferably 0.5 to 5 equivalents, more preferably 1 to 2 equivalents, relative to the number of moles of the metal element contained in the coating solution.
 前記塗布液には、各種添加剤(各種酸、各種塩基、等)が含まれていてもよい。
 添加剤の含有量(合計)は、塗布液の全量に対し、0.001~20質量%が好ましく、0.01~10質量%がより好ましい。
The coating solution may contain various additives (such as various acids and various bases).
The content (total) of the additives is preferably 0.001 to 20% by mass and more preferably 0.01 to 10% by mass with respect to the total amount of the coating solution.
 前記塗布液の塗布方法としては特に制限はなく、スピン塗布、ディップ塗布、スプレー塗布など公知の塗布方法を用いることができる。 The coating method for the coating solution is not particularly limited, and known coating methods such as spin coating, dip coating, and spray coating can be used.
 また、塗布膜形成工程では、塗布後に乾燥(予備熱処理)を行ってもよい。
 乾燥の温度は、50~200℃が好ましく、100~140℃がより好ましい。
 乾燥の時間としては温度によっても異なるが、1分間~60分間が好ましく、1分間~20分間がより好ましい。
 上記乾燥は、公知のホットプレートや乾燥機等において行うことができる。
In the coating film forming step, drying (preliminary heat treatment) may be performed after coating.
The drying temperature is preferably 50 to 200 ° C, more preferably 100 to 140 ° C.
The drying time varies depending on the temperature, but is preferably 1 minute to 60 minutes, more preferably 1 minute to 20 minutes.
The drying can be performed on a known hot plate or dryer.
<熱処理工程>
 前記熱処理工程は塗布工程で形成された塗布膜を300℃以上の温度で熱処理する工程である。
 熱処理温度の上限には特に限定はなく、支持体の軟化点及びハフニア膜の軟化点のうち低い方の温度よりも更に低い温度であればよい。
 熱処理の温度は、前駆体の焼成の観点より、300℃以上1200℃以下が好ましく、300℃以上900℃以下が好ましく、400℃以上600℃以下がより好ましい。
 熱処理の時間としては温度によっても異なるが、0.5~3時間が好ましく、0.5~1時間がより好ましい。
 その他、熱処理の好ましい条件は、前記≪無機構造物≫中の<前処理>の項で説明した条件と同様である。
<Heat treatment process>
The heat treatment step is a step of heat-treating the coating film formed in the coating step at a temperature of 300 ° C. or higher.
The upper limit of the heat treatment temperature is not particularly limited, and may be any temperature that is lower than the lower one of the softening point of the support and the softening point of the hafnia film.
The temperature of the heat treatment is preferably from 300 ° C. to 1200 ° C., preferably from 300 ° C. to 900 ° C., and more preferably from 400 ° C. to 600 ° C. from the viewpoint of firing the precursor.
The heat treatment time varies depending on the temperature, but is preferably 0.5 to 3 hours, more preferably 0.5 to 1 hour.
In addition, preferable conditions for the heat treatment are the same as the conditions described in the section <Pretreatment> in << Inorganic structure >>.
<水蒸気処理工程>
 水蒸気処理工程は、熱処理された塗布膜を水蒸気処理することにより、前記熱処理された塗布膜の表面の水滴転落角を低下させる工程である。
 前記水蒸気処理工程は、前記無機構造物素材の表面の水滴転落角を、10°以上低下させることが好ましく、20℃以上低下させることがより好ましく、30°以上低下させることが特に好ましい。
 水蒸気処理の好ましい条件は、前記≪無機構造物≫中、<水蒸気処理>の項および<水蒸気処理の好ましい条件>の項で説明した条件と同様である。
<Steam treatment process>
The steam treatment step is a step of reducing the water droplet falling angle on the surface of the heat-treated coating film by steam-treating the heat-treated coating film.
In the steam treatment step, the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
Preferable conditions for the steam treatment are the same as those described in the section <Steam treatment> and <Preferred conditions for steam treatment> in <Inorganic structure>.
<その他の工程>
 本発明の無機薄膜の製造方法は、必要に応じ、その他の工程を有していてもよい。
 その他の工程としては、前述の前処理工程や前述の後処理工程等が挙げられる。
<Other processes>
The manufacturing method of the inorganic thin film of this invention may have another process as needed.
Examples of other processes include the pretreatment process described above and the posttreatment process described above.
≪真空成膜法を用いた無機薄膜の製造方法≫
 本発明の無機薄膜の製造方法の別の形態として、真空成膜法により支持体上に無機薄膜を成膜する成膜工程と、成膜された無機薄膜を300℃以上の温度で熱処理する熱処理工程と、熱処理された無機薄膜を水蒸気雰囲気で水蒸気処理する水蒸気処理工程と、を有する製造方法(以下、「真空成膜法を用いた無機薄膜の製造方法」ともいう)も好適である。
 前記「真空成膜法を用いた無機薄膜の製造方法」によれば、水滴除去性に優れた表面を有し、更に耐久性にも優れた無機薄膜を製造することができる。
 また、前記「真空成膜法を用いた無機薄膜の製造方法」によれば、製造される無機構造物表面における前記抵抗点の密度を、10個/30mm以下に調整し易い。
 また、前記「真空成膜法を用いた無機薄膜の製造方法」によれば、前記摩擦力が10nN以下である領域、及び、前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含む無機薄膜を製造し易い。
 前記「真空成膜法を用いた無機薄膜の製造方法」は、必要に応じ、その他の工程を有していてもよい。
 前記「真空成膜法を用いた無機薄膜の製造方法」は、具体的には、ハフニア膜の製造方法として好適である。
≪Inorganic thin film manufacturing method using vacuum film formation process≫
As another form of the method for producing an inorganic thin film of the present invention, a film forming step for forming an inorganic thin film on a support by a vacuum film forming method, and a heat treatment for heat-treating the formed inorganic thin film at a temperature of 300 ° C. or more A manufacturing method (hereinafter also referred to as “a manufacturing method of an inorganic thin film using a vacuum film-forming method”) having a process and a steam treatment process in which a heat-treated inorganic thin film is steam-treated in a steam atmosphere is also suitable.
According to the “method for producing an inorganic thin film using a vacuum film-forming method”, an inorganic thin film having a surface excellent in water droplet removal property and excellent in durability can be produced.
Further, according to the “method for manufacturing an inorganic thin film using a vacuum film forming method”, the density of the resistance points on the surface of the manufactured inorganic structure can be easily adjusted to 10 pieces / 30 mm 2 or less.
Further, according to the “method for producing an inorganic thin film using a vacuum film formation method”, at least one of the region where the frictional force is 10 nN or less and the region where the dynamic friction coefficient is 1.0 or less is provided on the surface. It is easy to manufacture the inorganic thin film containing.
The “method for producing an inorganic thin film using a vacuum film-forming method” may include other steps as necessary.
Specifically, the “method for producing an inorganic thin film using a vacuum film-forming method” is suitable as a method for producing a hafnia film.
 前記真空成膜法としては、スパッタリング、CVD(Chemical Vapor Deposition)、イオンプレーティング、真空蒸着等、公知の方法を用いることができるが、本発明の効果をより効果的に得る観点からは、スパッタリングであることが好ましい。
 なお、スパッタ電力については、所望の表面粗さ(Ra)と適切な成膜速度が達成できれば特に限定は無い。
 また、支持体としては後処理としての熱処理温度に耐えうる材料であれば特に限定はなく、例えば、前記≪構造体≫の項で説明した支持体と同様のものを用いることができる。また、支持体は、そのまま用いてもよいし、表面にシリカ(SiO)膜等が形成されたものを用いてもよい。
As the vacuum film forming method, a known method such as sputtering, CVD (Chemical Vapor Deposition), ion plating, vacuum deposition or the like can be used, but from the viewpoint of obtaining the effect of the present invention more effectively It is preferable that
Note that the sputtering power is not particularly limited as long as a desired surface roughness (Ra) and an appropriate film formation rate can be achieved.
The support is not particularly limited as long as it is a material that can withstand the heat treatment temperature as a post-treatment, and for example, the same support as described in the section “Structure” can be used. The support may be used as it is, or a support having a silica (SiO 2 ) film or the like formed on the surface.
 熱処理工程の好ましい条件は、前記≪無機構造物≫中の<前処理>の項で説明した条件と同様である。
 成膜温度の上限には特に限定はなく、支持体の軟化点及び成膜される無機薄膜(例えばハフニア膜)の軟化点のうち低い方の温度よりも更に低い温度であればよい。
 熱処理の温度は、結晶化の観点より、300℃以上1200℃以下が好ましい。
Preferable conditions for the heat treatment step are the same as those described in the section <Pretreatment> in << Inorganic structure >>.
The upper limit of the film formation temperature is not particularly limited, and may be any temperature lower than the lower one of the softening point of the support and the softening point of the inorganic thin film (for example, hafnia film) to be formed.
The temperature of the heat treatment is preferably 300 ° C. or higher and 1200 ° C. or lower from the viewpoint of crystallization.
 また、前記水蒸気処理工程は、熱処理された塗布膜を水蒸気処理することにより、前記熱処理された無機薄膜の表面の水滴転落角を低下させる工程である。
 前記水蒸気処理工程は、前記無機構造物素材の表面の水滴転落角を、10°以上低下させることが好ましく、20℃以上低下させることがより好ましく、30°以上低下させることが特に好ましい。
 水蒸気処理の好ましい条件は、前記≪無機構造物≫中、<水蒸気処理>の項および<水蒸気処理の好ましい条件>の項で説明した条件と同様である。
The water vapor treatment step is a step of reducing the water droplet falling angle on the surface of the heat-treated inorganic thin film by subjecting the heat-treated coating film to water vapor treatment.
In the steam treatment step, the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
Preferable conditions for the steam treatment are the same as those described in the section <Steam treatment> and <Preferred conditions for steam treatment> in <Inorganic structure>.
 上記真空成膜法を用いた無機薄膜の製造方法は、必要に応じ、その他の工程を有していてもよい。
 その他の工程としては、前述の前処理工程や前述の後処理工程等が挙げられる。
The manufacturing method of the inorganic thin film using the said vacuum film-forming method may have another process as needed.
Examples of other processes include the pretreatment process described above and the posttreatment process described above.
≪ガラス物品の製造方法≫
 本発明のガラス物品の製造方法は、ガラス素材を100℃以上500℃以下の温度で熱処理する熱処理工程と、熱処理されたガラス素材を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気で水蒸気処理する水蒸気処理工程と、を有する。
 ここでのガラス素材とは、熱処理及び水蒸気処理(即ち、滑水化処理)が施される前のガラス物品を指し、外見上は製造されるガラス物品(熱処理及び水蒸気処理が施されたガラス物品)と同様のものである。ガラス素材としては、表面の平坦性が高い(例えば、表面粗さRaが2nm以下)ことが好ましく、このためには、表面が鏡面状に研磨されたガラス素材を用いたり、フロート法により作製されたガラス素材を用いることが好適である。
 ガラス物品の具体例については前記≪無機構造物≫中の<無機固体>の項で説明したとおりである。
≪Glass article manufacturing method≫
The method for producing a glass article of the present invention includes a heat treatment step of heat treating a glass material at a temperature of 100 ° C. or more and 500 ° C. or less, and a heat treated glass material at a temperature of 30 ° C. or more and 100 ° C. or less and an absolute humidity of 15 g / m. A water vapor treatment step of carrying out water vapor treatment in three or more water vapor atmospheres.
The glass material here refers to a glass article before being subjected to heat treatment and water vapor treatment (that is, water slicking treatment), and is apparently manufactured glass article (glass article subjected to heat treatment and water vapor treatment). ). The glass material preferably has a high surface flatness (for example, a surface roughness Ra of 2 nm or less). For this purpose, a glass material having a mirror-polished surface or a float method is used. It is preferable to use a glass material.
Specific examples of the glass article are as described in the section of <Inorganic solid> in the << Inorganic structure >>.
 前記本発明のガラス物品の製造方法によれば、水滴除去性に優れた表面を有し、更に耐久性にも優れたガラス物品を製造することができる。
 また、前記本発明のガラス物品の製造方法によれば、製造されるガラス物品表面における前記抵抗点の密度を、10個/30mm以下に調整し易い。
 また、前記本発明のガラス物品の製造方法によれば、前記摩擦力が10nN以下である領域、及び、前記動摩擦係数が1.0以下である領域の少なくとも一方を表面に含むガラス物品を製造し易い。
According to the method for producing a glass article of the present invention, it is possible to produce a glass article having a surface excellent in water droplet removal property and further excellent in durability.
Moreover, according to the manufacturing method of the said glass article of this invention, it is easy to adjust the density of the said resistance point in the glass article surface manufactured to 10 pieces / 30mm < 2 > or less.
In addition, according to the method for producing a glass article of the present invention, a glass article including at least one of a region where the frictional force is 10 nN or less and a region where the dynamic friction coefficient is 1.0 or less is produced on the surface. easy.
 熱処理工程の好ましい条件は、前記≪無機構造物≫中の<前処理>の項で説明した条件と同様である。
 また、前記水蒸気処理工程は、熱処理されたガラス素材を水蒸気処理することにより、前記熱処理されたガラス素材の表面の水滴転落角を低下させる工程である。
 前記水蒸気処理工程は、前記無機構造物素材の表面の水滴転落角を、10°以上低下させることが好ましく、20℃以上低下させることがより好ましく、30°以上低下させることが特に好ましい。
 水蒸気処理の好ましい条件は、前記≪無機構造物≫中、<水蒸気処理>の項および<水蒸気処理の好ましい条件>の項で説明した条件と同様である。
Preferable conditions for the heat treatment step are the same as those described in the section <Pretreatment> in << Inorganic structure >>.
The steam treatment step is a step of reducing a water droplet falling angle on the surface of the heat-treated glass material by steam-treating the heat-treated glass material.
In the steam treatment step, the water droplet falling angle on the surface of the inorganic structure material is preferably reduced by 10 ° or more, more preferably by 20 ° C. or more, and particularly preferably by 30 ° or more.
Preferable conditions for the steam treatment are the same as those described in the section <Steam treatment> and <Preferred conditions for steam treatment> in <Inorganic structure>.
≪無機構造物の滑水性回復方法≫
 本発明の無機構造物の滑水性回復方法は、滑水性が低下した(例えば、転落角が50°を超えた)無機構造物表面を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気で水蒸気処理することにより、前記無機構造物の滑水性を回復させる(例えば、転落角を40°以下とする)方法である。
 この方法によれば、激しい摩耗などでいったん滑水性を失った無機構造物表面の滑水性を、回復させることができる。
 上記無機構造物の滑水性回復方法における水蒸気処理の好ましい条件は、前記≪無機構造物≫中、<水蒸気処理>の項および<水蒸気処理の好ましい条件>の項で説明した条件と同様である。
 また、上記方法における水蒸気処理の条件は、ノズルなどから50℃から100℃程度の水蒸気を吹き付ける条件であってもよい。
 水蒸気を吹き付ける条件の好ましい条件についても、前記≪無機構造物≫中、<水蒸気処理>の項で説明した条件と同様である。
≪Recovery method for water slidability of inorganic structures≫
In the method for recovering the water slidability of the inorganic structure of the present invention, the surface of the inorganic structure having a reduced water slidability (for example, the falling angle exceeds 50 °) is applied to a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / This is a method of recovering the water slidability of the inorganic structure (for example, setting the falling angle to 40 ° or less) by performing steam treatment in a steam atmosphere of m 3 or more.
According to this method, the water slidability of the surface of the inorganic structure once lost its slidability due to intense wear or the like can be recovered.
Preferable conditions for the steam treatment in the method for recovering water slidability of the inorganic structure are the same as those described in the section <Steam treatment> and <Preferred conditions for steam treatment> in <Inorganic structure>.
Further, the condition of the steam treatment in the above method may be a condition in which steam of about 50 to 100 ° C. is sprayed from a nozzle or the like.
The preferable conditions for spraying water vapor are also the same as the conditions described in the section <Water vapor treatment> in << Inorganic structure >>.
 以上で説明した、無機構造物、構造体、無機構造物の製造方法、無機薄膜の製造方法、ガラス物品の製造方法、及び無機構造物の滑水性回復方法は、水滴除去性(滑水性)及び耐久性に優れるため、車両関連、住宅関連、光学機器関連、産業機器関連、医療関連、電子部品関連、電気製品関連等、様々な産業分野に適用できる。 As described above, the inorganic structure, the structure, the manufacturing method of the inorganic structure, the manufacturing method of the inorganic thin film, the manufacturing method of the glass article, and the method of recovering the water slidability of the inorganic structure are: Since it is excellent in durability, it can be applied to various industrial fields such as vehicle-related, housing-related, optical equipment-related, industrial equipment-related, medical-related, electronic component-related, and electrical product-related.
 以下、本発明について実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 また、「室温」は25℃を表す。
 また、以下において、「接触角」及び「転落角」は、特に断りの無い限り、それぞれ、水接触角及び水滴転落角を指す。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.
“Room temperature” represents 25 ° C.
In the following, “contact angle” and “fall angle” refer to the water contact angle and the water drop fall angle, respectively, unless otherwise specified.
≪各種コート液の調製≫
 以下のようにして、塗布液として各種コート液(「前駆体溶液」ともいう)を調製した。
<アルミナコート液>
 アルミナコート液(0.1M)は、ポリビニルアルコール(PVA、重合度500)を水に溶解させて0.1質量%とした溶液に、硝酸アルミニウム9水和物を溶解させて、0.1mol/Lの硝酸アルミニウム9水和物溶液として調製した。
 また、アルミナコート液(0.5M)は、モノエタノールアミンをメタノールに溶解させて0.5mol/Lとした溶液に、硝酸アルミニウム9水和物を加え、超音波洗浄器(ブランソニック2510J-DTH Yamato)を用いて1時間撹拌し、0.5mol/Lの硝酸アルミニウム9水和物溶液として調製した。
≪Preparation of various coating solutions≫
Various coating liquids (also referred to as “precursor solutions”) were prepared as coating liquids as follows.
<Alumina coating solution>
The alumina coating solution (0.1M) was prepared by dissolving aluminum nitrate nonahydrate in a solution of 0.1% by mass by dissolving polyvinyl alcohol (PVA, polymerization degree 500) in water. Prepared as a solution of L in aluminum nitrate nonahydrate.
In addition, the alumina coating solution (0.5M) was prepared by adding aluminum nitrate nonahydrate to a solution of monoethanolamine dissolved in methanol to make 0.5 mol / L, and using an ultrasonic cleaner (Bransonic 2510J-DTH). Yamato) and stirred for 1 hour to prepare a 0.5 mol / L aluminum nitrate nonahydrate solution.
<ハフニアコート液>
 ハフニアコート液(0.5M)は、エタノールと硝酸(60質量%)と水とを、体積比9:1:0.2(=エタノール:硝酸(60質量%):水)で混合した溶液に、塩化ハフニウムを溶解させたのち、それを40℃3時間加温して、0.5mol/Lの塩化ハフニウム溶液として調製した。
 また、ハフニアコート液(0.1M)は、メタノールと、硝酸(60質量%)と、0.1質量%のポリビニルアルコール(PVA、重合度500)水溶液と、を体積比9:1:0.2(=メタノール:硝酸(60質量%):PVA0.1質量%水溶液)で混合した溶液に、塩化ハフニウムを溶解させたのち、それを40℃3時間加温して、0.1mol/Lの塩化ハフニウム溶液として調製した。
 また、ハフニアコート液(0.01M)は、塩化ハフニウムの含有量を変更した以外はハフニアコート液(0.1M)の調製と同様にして、0.01mol/Lの塩化ハフニウム溶液として調製した。
<Hafnia coating solution>
The hafnia coating liquid (0.5M) is a solution in which ethanol, nitric acid (60% by mass) and water are mixed at a volume ratio of 9: 1: 0.2 (= ethanol: nitric acid (60% by mass): water). After hafnium chloride was dissolved, it was heated at 40 ° C. for 3 hours to prepare a 0.5 mol / L hafnium chloride solution.
Further, the hafnia coating liquid (0.1M) was prepared by adding methanol, nitric acid (60% by mass), and 0.1% by mass of an aqueous polyvinyl alcohol (PVA, polymerization degree 500) volume ratio 9: 1: 0. After dissolving hafnium chloride in a solution mixed with 2 (= methanol: nitric acid (60% by mass): 0.1% by mass aqueous solution of PVA), it was heated at 40 ° C. for 3 hours to obtain 0.1 mol / L Prepared as hafnium chloride solution.
The hafnia coating solution (0.01 M) was prepared as a 0.01 mol / L hafnium chloride solution in the same manner as the hafnia coating solution (0.1 M) except that the content of hafnium chloride was changed.
<ジルコニアコート液>
 ジルコニアコート液は、ジエタノールアミンをメタノールに溶解させて0.5mol/Lとした溶液に、オキシ塩化ジルコニウム8水和物を加え、超音波洗浄器を用いて1時間撹拌し、0.5mol/Lのオキシ塩化ジルコニウム8水和物溶液として調製した。
<Zirconia coating solution>
The zirconia coating solution was prepared by adding zirconium oxychloride octahydrate to a solution in which diethanolamine was dissolved in methanol to 0.5 mol / L, stirring for 1 hour using an ultrasonic cleaner, 0.5 mol / L Prepared as a zirconium oxychloride octahydrate solution.
<セリアコート液>
 セリアコート液(0.1M)は、ポリビニルアルコール(PVA、重合度500)を水に溶解させて0.05質量%とした溶液に、硝酸セリウム6水和物を溶解させて、0.1mol/Lの硝酸セリウム6水和物溶液として調製した。
 また、セリアコート液(0.01M)は、ポリビニルアルコール(PVA、重合度500)を水に溶解させて0.1質量%とした溶液に、硝酸セリウム6水和物を溶解させて、0.01mol/Lの硝酸セリウム6水和物溶液として調製した。
<Ceria coating solution>
The ceria coat solution (0.1M) was prepared by dissolving cerium nitrate hexahydrate in a solution of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water to 0.05% by mass to obtain 0.1 mol / Prepared as a solution of L in cerium nitrate hexahydrate.
The ceria coat solution (0.01M) was prepared by dissolving cerium nitrate hexahydrate in a solution of 0.1% by mass of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water. Prepared as a 01 mol / L cerium nitrate hexahydrate solution.
<チタニアコート液>
 チタニアコート液は、日本曹達社製の光触媒チタニアコート液NDH-510Cを用いた。
<Titania coating solution>
As the titania coating solution, a photocatalytic titania coating solution NDH-510C manufactured by Nippon Soda Co., Ltd. was used.
<チタンアパタイト(TiHAP)コート液>
 チタンアパタイト(TiHAP)コート液は、以下の手順で調製した。
 エタノール(50mL)と2-エトキシエタノール(50mL)の混合溶液に、硝酸カルシウム4水和物(4.246g、0.018mol)を加えて攪拌溶解させたのち、5酸化2リン(0.905g、0.006mol)を加えて2時間攪拌した。得られた溶液に、チタンテトライソプロポキシド(0.568g、0.002mol)を加えて半日攪拌したのち、これをろ過し、得られたろ液をチタンアパタイト(TiHAP)コート液とした。
<Titanium apatite (TiHAP) coating solution>
A titanium apatite (TiHAP) coating solution was prepared by the following procedure.
To a mixed solution of ethanol (50 mL) and 2-ethoxyethanol (50 mL), calcium nitrate tetrahydrate (4.246 g, 0.018 mol) was added and dissolved with stirring, and then phosphorous pentoxide (0.905 g, 0.006 mol) was added and stirred for 2 hours. Titanium tetraisopropoxide (0.568 g, 0.002 mol) was added to the resulting solution and stirred for half a day, followed by filtration. The resulting filtrate was used as a titanium apatite (TiHAP) coating solution.
〔実験例1〕
≪単味の金属酸化物膜の形成及び評価≫
<ジルコニア(ZrO)膜の評価>
 パイレックス(登録商標)ガラス基板を、洗剤を使用して超音波洗浄(60℃、10分間)した。次に、前記ガラス基板をすすいで乾燥した後、300℃で30分間加熱処理し、再び室温に冷却した。
 次に、室温に冷却されたガラス基板上に、上記で得られたジルコニアコート液を1mL塗布し、回転数1500rpmで10秒間スピンコートして塗布膜を形成した。
 塗布膜が形成されたガラス基板を、雰囲気温度120℃に調製した乾燥機中で10分間放置し、更に、マッフル炉(KDF-P90G、株式会社デンケン)を用い、大気雰囲気下、雰囲気温度500℃で0.5時間加熱して、更に、前記マッフル炉中で5時間冷却し、ガラス基板上にジルコニア膜を形成した。5時間冷却後のジルコニア膜の膜面温度は室温であった。
[Experimental Example 1]
≪Formation and evaluation of simple metal oxide film≫
<Evaluation of zirconia (ZrO 2 ) film>
The Pyrex (registered trademark) glass substrate was subjected to ultrasonic cleaning (60 ° C., 10 minutes) using a detergent. Next, the glass substrate was rinsed and dried, then heat-treated at 300 ° C. for 30 minutes, and cooled again to room temperature.
Next, 1 mL of the zirconia coating solution obtained above was applied on a glass substrate cooled to room temperature, and spin coating was performed at 1500 rpm for 10 seconds to form a coating film.
The glass substrate on which the coating film has been formed is allowed to stand for 10 minutes in a dryer adjusted to an atmospheric temperature of 120 ° C., and further, using a muffle furnace (KDF-P90G, Denken Co., Ltd.), in an air atmosphere, an atmospheric temperature of 500 ° C. For 0.5 hour, and further cooled in the muffle furnace for 5 hours to form a zirconia film on the glass substrate. The film surface temperature of the zirconia film after cooling for 5 hours was room temperature.
 5時間冷却後のジルコニア膜に対し、温度40℃、相対湿度90%(絶対湿度46g/m)の雰囲気で、1時間水蒸気処理を施した。
 水蒸気処理の装置としては、恒温恒湿器(HUMIDIC CHAMBER IG420、ヤマト科学株式会社)を用いた。
The zirconia film after cooling for 5 hours was subjected to steam treatment for 1 hour in an atmosphere of a temperature of 40 ° C. and a relative humidity of 90% (absolute humidity 46 g / m 3 ).
A constant temperature and humidity chamber (HUMIDIC CHAMBER IG420, Yamato Scientific Co., Ltd.) was used as the steam treatment apparatus.
 以上で作製されたジルコニア膜は、干渉色が見られず無色透明であったことから、均質かつ膜厚が数十~数百nmであると思われる。
 また、以上で作製されたジルコニア膜の表面粗さ(Ra)は9.8nmであった。
 なお、本実験例において、表面粗さ(Ra)の測定は、AFM(原子間力顕微鏡;VN-8000、株式会社キーエンス製)を用い、測定範囲50μm四方の条件で、JIS B0601(1994)に準拠して行った。以下の実験例における表面粗さ(Ra)の測定方法も、特に断りがある場合を除き、本実験例における測定方法と同様である。
Since the zirconia film produced as described above was colorless and transparent with no interference color, it was considered to be uniform and have a film thickness of several tens to several hundreds of nanometers.
Further, the surface roughness (Ra) of the zirconia film produced as described above was 9.8 nm.
In this experimental example, the surface roughness (Ra) was measured according to JIS B0601 (1994) using an AFM (atomic force microscope; VN-8000, manufactured by Keyence Corporation) under a measurement range of 50 μm square. Performed in compliance. The measurement method of the surface roughness (Ra) in the following experimental examples is the same as the measurement method in this experimental example, unless otherwise specified.
- 水接触角及び水滴転落角の測定 -
 水蒸気処理前のジルコニア膜を室内環境(温度25℃、相対湿度60%(絶対湿度14g/m))で31日間保管し、水接触角(以下、単に「接触角」ともいう)及び水滴転落角(以下、単に「転落角」ともいう)の経時変化を測定した。得られた測定値の系列を、以下、「水蒸気処理無し(の場合)」とする。
 なお、水接触角及び水滴転落角の測定方法は前述のとおりである。
 転落角については、水平面に対し膜面を90°まで傾けても水滴が転落しない場合、便宜上、「転落角90°」と表記した。
 次に、水蒸気処理の時間を31日間までの間で種々変化させ、各処理時間ごとの接触角及び転落角を測定した。得られた測定値の系列を、以下、「水蒸気処理有り(の場合)」とする。
 得られた結果を図7A及び図7Bに示す。
-Measurement of water contact angle and water drop falling angle-
The zirconia membrane before steaming is stored for 31 days in an indoor environment (temperature: 25 ° C., relative humidity: 60% (absolute humidity: 14 g / m 3 )), water contact angle (hereinafter also simply referred to as “contact angle”) and water droplet falling The change with time of the angle (hereinafter, also simply referred to as “falling angle”) was measured. Hereinafter, the obtained series of measured values is referred to as “no steam treatment (in the case)”.
In addition, the measuring method of a water contact angle and a water drop fall angle is as above-mentioned.
Regarding the falling angle, when the film surface does not fall even if the film surface is tilted to 90 ° with respect to the horizontal plane, it is indicated as “falling angle 90 °” for convenience.
Next, the steam treatment time was variously changed up to 31 days, and the contact angle and the falling angle for each treatment time were measured. Hereinafter, the obtained series of measured values is referred to as “with water vapor treatment (in the case)”.
The obtained results are shown in FIGS. 7A and 7B.
 図7Aはジルコニア膜における水接触角の変化を示すグラフである。
 横軸の「経過日数」は、水蒸気処理無しの場合については前記室内環境における保管時間(単位:日)であり、水蒸気処理有りの場合については水蒸気処理時間(単位:日)である(以降のグラフについても同様である)。
 図7A中、白抜きの矢印についての上流側(矢先側に対し反対側)が水蒸気処理無しのプロット群であり、白抜きの矢印についての下流側(矢先側)が水蒸気処理有りのプロット群である(以降のグラフについても同様である)。
 図7Aに示すように、水蒸気処理無しの場合、接触角は不安定であった。具体的には、経過時間1日以内では20°未満であり、その後緩やかに上昇し、経過時間31日で70°程度に達する傾向であった。
 これに対し、水蒸気処理有りの場合、接触角が大幅に上昇すること、特に、3日以上の処理により接触角が90°以上にまで上昇することが確認された。
FIG. 7A is a graph showing a change in water contact angle in a zirconia membrane.
The “elapsed days” on the horizontal axis is the storage time (unit: day) in the indoor environment when there is no steam treatment, and the steam treatment time (unit: day) when there is steam treatment (hereinafter “day”). The same applies to the graph).
In FIG. 7A, the upstream side (the opposite side to the arrowhead side) of the white arrow is a plot group without steam treatment, and the downstream side (arrowhead side) of the white arrow is a plot group with steam treatment. Yes (same for subsequent graphs).
As shown in FIG. 7A, the contact angle was unstable when the steam treatment was not performed. Specifically, it was less than 20 ° within an elapsed time of 1 day, then gradually increased, and reached about 70 ° after an elapsed time of 31 days.
On the other hand, it was confirmed that when the steam treatment is performed, the contact angle is significantly increased, and in particular, the contact angle is increased to 90 ° or more by the treatment for 3 days or more.
 図7Bはジルコニア膜における転落角の変化を示すグラフである。
 図7Bに示すように、水蒸気処理無しの場合、転落角は不安定であった。具体的には、70°~90°の付近を推移していた。
 これに対し、水蒸気処理有りの場合により転落角が低下することが確認された。特に、水蒸気処理を7日以上行うことにより、転落角が40°以下になることがわかった。
FIG. 7B is a graph showing changes in the sliding angle in the zirconia film.
As shown in FIG. 7B, the falling angle was unstable when the steam treatment was not performed. Specifically, it was in the vicinity of 70 ° to 90 °.
On the other hand, it was confirmed that the falling angle is lowered when the steam treatment is performed. In particular, it was found that by performing the steam treatment for 7 days or more, the falling angle becomes 40 ° or less.
- XRD測定 -
 水蒸気処理後のジルコニア膜について、X線回折装置(RINT2100、株式会社リガク製)を用い、XRD測定(X線回折測定)を行った。
 詳細には、平行ビーム法で管電圧40kV、管電流30mA、スキャンステップ0.02°、スキャンスピード2°/min、の条件で対陰極として銅、フィルターとしてニッケルを使用してXRD測定を行った。
 図8は、水蒸気処理後のジルコニア膜のXRD測定結果である。
 図8に示すように、上記ジルコニア膜では明確な回折点が確認され、結晶構造を示す秩序が確認された。
-XRD measurement-
About the zirconia film | membrane after a water vapor process, the XRD measurement (X-ray diffraction measurement) was performed using the X-ray-diffraction apparatus (RINT2100, Rigaku Corporation make).
Specifically, XRD measurement was performed using a parallel beam method with a tube voltage of 40 kV, a tube current of 30 mA, a scan step of 0.02 °, a scan speed of 2 ° / min, using copper as the counter cathode and nickel as the filter. .
FIG. 8 is an XRD measurement result of the zirconia film after the water vapor treatment.
As shown in FIG. 8, clear diffraction points were confirmed in the zirconia film, and the order indicating the crystal structure was confirmed.
<アルミナ(Al)膜の評価>
 上記ジルコニア膜の評価において、ジルコニアコート液をアルミナコート液(0.5M)に変えたこと以外は上記ジルコニア膜の評価と同様にして、アルミナ膜の作製及び評価を行った。
 作製されたアルミナ膜は、干渉色が見られず無色透明であったことから、均質かつ膜厚が数十~数百nmであると思われる。
 また、以上で作製されたアルミナ膜の表面粗さ(Ra)は1.4nmであった。
<Evaluation of Alumina (Al 2 O 3 ) Film>
In the evaluation of the zirconia film, an alumina film was prepared and evaluated in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to an alumina coating liquid (0.5 M).
Since the produced alumina film was colorless and transparent with no interference color, it was considered to be uniform and have a film thickness of several tens to several hundreds of nanometers.
Moreover, the surface roughness (Ra) of the alumina film produced as described above was 1.4 nm.
 図9Aはアルミナ膜における水接触角の変化を示すグラフである。
 図9Aに示すように、水蒸気処理無しの場合、接触角は不安定であった。具体的には、経過時間1日以内では40°未満であり、経過時間3日以降50°から80°程度に向けて緩やかに上昇する傾向であった。
 これに対し、水蒸気処理有りとすることで、接触角が大幅に上昇すること、特に、1日以上の処理により接触角が80°以上にまで上昇することが確認された。
FIG. 9A is a graph showing a change in water contact angle in an alumina film.
As shown in FIG. 9A, the contact angle was unstable when the steam treatment was not performed. Specifically, the elapsed time was less than 40 ° within one day, and it tended to increase gradually from 50 ° to about 80 ° after three days elapsed.
On the other hand, it was confirmed that the contact angle is significantly increased by using the steam treatment, and in particular, the contact angle is increased to 80 ° or more by the treatment for 1 day or more.
 図9Bはアルミナ膜における水滴転落角の変化を示すグラフである。
 図9Bに示すように、水蒸気処理無しの場合、転落角は不安定であった。具体的には、40°~90°の範囲を推移していた。
 これに対し、水蒸気処理有りとすることで、転落角が低下することが確認された。特に、水蒸気処理を7日以上行うことにより、転落角が45°以下になることがわかった。
FIG. 9B is a graph showing a change in the water drop falling angle in the alumina film.
As shown in FIG. 9B, in the case of no steam treatment, the falling angle was unstable. Specifically, the range was 40 ° to 90 °.
On the other hand, it was confirmed that the falling angle is lowered by the steam treatment. In particular, it has been found that the falling angle is 45 ° or less by performing the steam treatment for 7 days or more.
 図10は、水蒸気処理後のアルミナ膜のXRD測定結果である。
 図10に示すように、上記アルミナ膜では明確な回折点が確認されず、上記アルミナ膜は非晶質であることが確認された。
FIG. 10 is an XRD measurement result of the alumina film after the steam treatment.
As shown in FIG. 10, a clear diffraction point was not confirmed in the alumina film, and it was confirmed that the alumina film was amorphous.
<セリア(CeO)膜の評価>
 上記ジルコニア膜の評価において、ジルコニアコート液を、セリアコート液(0.1M)又は(0.01M)に変えたこと以外は上記ジルコニア膜の評価と同様にして、セリア膜(0.1M)及びセリア膜(0.01M)それぞれの作製及び評価を行った。
 作製されたセリア膜(0.1M)及びセリア膜(0.01M)は、いずれも干渉色が見られず無色透明であったことから、均質かつ膜厚が数十~数百nmであると思われる。
 また、作製されたセリア膜(0.1M)の表面粗さRaは、2.0nmであった。
<Evaluation of Ceria (CeO 2 ) Film>
In the evaluation of the zirconia film, the ceria film (0.1M) and the zirconia coating liquid were changed in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to the ceria coating liquid (0.1M) or (0.01M). Each ceria film (0.01M) was produced and evaluated.
The prepared ceria film (0.1M) and ceria film (0.01M) were both colorless and transparent because no interference color was seen, so that the film thickness was uniform and the film thickness was several tens to several hundreds nm. Seem.
Moreover, the surface roughness Ra of the produced ceria film (0.1M) was 2.0 nm.
 図11Aは、水蒸気処理無しの場合のセリア膜における水接触角の変化を示すグラフであり、図11Bは、水蒸気処理有りの場合のセリア膜における水接触角の変化を示すグラフである。
 図11Aに示すように、水蒸気処理無しの場合、接触角は不安定であった。具体的には、セリア膜(0.1M)では、18°未満であった接触角が15日間の保管で50°程度に上昇していた。また、セリア膜(0.01M)では、16°程度であった接触角が15日間の保管で30°程度に上昇していた。
 これに対し、図11Bに示すように、水蒸気処理有りとすることで、接触角が大幅に上昇することが確認された。具体的には、3日以上の処理により接触角が、セリア膜(0.1M)で80°以上に、セリア膜(0.01M)で70°以上にまで上昇することが確認された。
FIG. 11A is a graph showing a change in the water contact angle in the ceria film without the water vapor treatment, and FIG. 11B is a graph showing a change in the water contact angle in the ceria film with the water vapor treatment.
As shown in FIG. 11A, the contact angle was unstable when no steam treatment was performed. Specifically, in the ceria film (0.1M), the contact angle that was less than 18 ° was increased to about 50 ° after storage for 15 days. In the ceria film (0.01M), the contact angle, which was about 16 °, increased to about 30 ° after storage for 15 days.
On the other hand, as shown in FIG. 11B, it was confirmed that the contact angle was significantly increased by the presence of the steam treatment. Specifically, it was confirmed that the contact angle rose to 80 ° or more for the ceria film (0.1M) and 70 ° or more for the ceria film (0.01M) by the treatment for 3 days or more.
 図12Aは、水蒸気処理無しの場合のセリア膜における水滴転落角の変化を示すグラフであり、図12Bは、水蒸気処理有りの場合のセリア膜における水滴転落角の変化を示すグラフである。
 図12Aに示すように、セリア膜(0.1M)及びセリア膜(0.01M)では、成膜当初から30日経過時まで、転落角は常に90°以上であり、水滴除去性が極めて悪かった。
 これに対し、図12Bに示すように、水蒸気処理有りとすることで転落角が低下することが確認された。具体的には、7日以上の処理により転落角が、セリア膜(0.1M)で50°以下に、セリア膜(0.01M)で40°以下にまで低下することがわかった。
FIG. 12A is a graph showing a change in the water drop falling angle in the ceria film without the water vapor treatment, and FIG. 12B is a graph showing a change in the water drop falling angle in the ceria film with the water vapor treatment.
As shown in FIG. 12A, in the ceria film (0.1M) and the ceria film (0.01M), the falling angle is always 90 ° or more from the beginning of the film formation until 30 days have elapsed, and the water droplet removability is extremely poor. It was.
On the other hand, as shown in FIG. 12B, it was confirmed that the falling angle is lowered by the presence of the steam treatment. Specifically, it was found that the treatment angle for 7 days or more lowered the sliding angle to 50 ° or less for the ceria film (0.1M) and to 40 ° or less for the ceria film (0.01M).
 図13は、水蒸気処理後のセリア膜(0.1M)のXRD測定結果である。
 図13に示すように、上記セリア膜では明確な回折点が確認され、結晶構造を示す秩序が確認された。
FIG. 13 is an XRD measurement result of the ceria film (0.1 M) after the water vapor treatment.
As shown in FIG. 13, clear diffraction points were confirmed in the ceria film, and the order indicating the crystal structure was confirmed.
<チタニア(TiO)膜の評価>
 上記ジルコニア膜の評価において、ジルコニアコート液をチタニアコート液に変えたこと以外は上記ジルコニア膜の評価と同様にして、チタニア膜の作製及び評価を行った。
 作製されたチタニア膜の膜厚を、分光エリプソメトリーないし走査型電子顕微鏡(SEM)等を用いて測定したところ、およそ100nmであった。
<Evaluation of titania (TiO 2 ) film>
In the evaluation of the zirconia film, the titania film was prepared and evaluated in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to a titania coating liquid.
When the thickness of the produced titania film was measured using a spectroscopic ellipsometry or a scanning electron microscope (SEM), it was about 100 nm.
 図14Aはチタニア膜における水接触角の変化を示すグラフである。
 図14Aに示すように、水蒸気処理無しの場合、接触角は不安定であった。具体的には、接触角は、経過時間1日以内では10°程度であり、その後緩やかに上昇し経過時間31日で25°程度に達する傾向であった。
 これに対し、水蒸気処理有りとすることで、接触角が大幅に上昇すること、特に、7日以上の処理により接触角が60°程度以上にまで上昇することが確認された。
FIG. 14A is a graph showing a change in water contact angle in a titania film.
As shown in FIG. 14A, the contact angle was unstable when no steam treatment was performed. Specifically, the contact angle tended to be about 10 ° within an elapsed time of 1 day, and then gradually increased to reach about 25 ° after an elapsed time of 31 days.
On the other hand, it was confirmed that the contact angle is significantly increased by using the steam treatment, and in particular, the contact angle is increased to about 60 ° or more by the treatment for 7 days or more.
 図14Bはチタニア膜における水滴転落角の変化を示すグラフである。
 図14Bに示すように、成膜当初から30日経過時まで、転落角は常に90°以上であり、水滴除去性が極めて悪かった。
 これに対し、水蒸気処理有りとすることで、転落角が低下することが確認された。特に、水蒸気処理を7日以上行うことにより、転落角が60°以下になることが確認された。
FIG. 14B is a graph showing the change of the water drop falling angle in the titania film.
As shown in FIG. 14B, the tumbling angle was always 90 ° or more from the beginning of the film formation until 30 days had elapsed, and the water droplet removal property was extremely poor.
On the other hand, it was confirmed that the falling angle is lowered by the steam treatment. In particular, it was confirmed that the falling angle becomes 60 ° or less by performing the steam treatment for 7 days or more.
<ハフニア(HfO)膜の評価>
 上記ジルコニア膜の評価において、ジルコニアコート液を、ハフニアコート液(0.5M)、(0.1M)、又は(0.01M)に変えたこと以外は上記ジルコニア膜の評価と同様にして、ハフニア膜(0.5M)、ハフニア膜(0.1M)、及びハフニア膜(0.01M)それぞれの作製及び評価を行った。
 作製されたハフニア膜(0.5M)、ハフニア膜(0.1M)、及びハフニア膜(0.01M)は、干渉色が見られず無色透明であったことから、均質かつ膜厚が数十~数百nmであると思われる。
 また、作製されたハフニア膜(0.1M)の表面粗さ(Ra)は、6.9nmであった。
<Evaluation of Hafnia (HfO 2 ) Film>
In the evaluation of the zirconia film, hafnia was performed in the same manner as the evaluation of the zirconia film except that the zirconia coating liquid was changed to a hafnia coating liquid (0.5 M), (0.1 M), or (0.01 M). A film (0.5M), a hafnia film (0.1M), and a hafnia film (0.01M) were produced and evaluated.
The produced hafnia film (0.5M), hafnia film (0.1M), and hafnia film (0.01M) were colorless and transparent with no interference color. It seems to be several hundred nm.
Moreover, the surface roughness (Ra) of the produced hafnia film (0.1 M) was 6.9 nm.
 図15Aは、水蒸気処理無しの場合のハフニア膜における水接触角の変化を示すグラフであり、図15Bは、水蒸気処理有りの場合のハフニア膜における水接触角の変化を示すグラフである。
 図15Aに示すように、水蒸気処理無しの場合、接触角は不安定であった。例えば、ハフニア膜(0.1M)では、10°未満であった接触角が15日間の保管で60°程度に上昇していた。
 これに対し、図15Bに示すように、水蒸気処理有りとすることで、接触角が大幅に上昇することが確認された。具体的には、1日以上の処理により接触角が80°以上にまで上昇することが確認された。
FIG. 15A is a graph showing a change in the water contact angle in the hafnia film without the water vapor treatment, and FIG. 15B is a graph showing a change in the water contact angle in the hafnia film with the water vapor treatment.
As shown in FIG. 15A, the contact angle was unstable when no steam treatment was performed. For example, in a hafnia film (0.1 M), the contact angle, which was less than 10 °, rose to about 60 ° after storage for 15 days.
On the other hand, as shown in FIG. 15B, it was confirmed that the contact angle was significantly increased by the presence of the steam treatment. Specifically, it was confirmed that the contact angle rose to 80 ° or more by treatment for 1 day or more.
 図16Aは、水蒸気処理無しの場合のハフニア膜における水滴転落角の変化を示すグラフであり、図16Bは、水蒸気処理有りの場合のハフニア膜における水滴転落角の変化を示すグラフである。
 図16Aに示すように、ハフニア膜(0.1M)及びハフニア膜(0.01M)では、成膜当初から7日経過時まで、転落角は常に90°以上であり、水滴除去性が極めて悪かった。15日経過以降は、転落角は50~70°に低下していた。
 これに対し、図16Bに示すように、水蒸気処理有りとすることで転落角が低下することが確認された。具体的には、1日以上の処理により転落角が、ハフニア膜(0.1M)で50°以下に、ハフニア膜(0.01M)で45°以下にまで低下することがわかった。
FIG. 16A is a graph showing a change in the water drop falling angle in the hafnia film without the water vapor treatment, and FIG. 16B is a graph showing a change in the water drop falling angle in the hafnia film with the water vapor treatment.
As shown in FIG. 16A, in the hafnia film (0.1M) and the hafnia film (0.01M), the tumbling angle is always 90 ° or more from the beginning of the film formation until the lapse of 7 days, and the water droplet removability is extremely poor. It was. After the 15th day, the falling angle had decreased to 50-70 °.
On the other hand, as shown in FIG. 16B, it was confirmed that the falling angle is reduced by the presence of the steam treatment. Specifically, it has been found that the rolling angle decreases to 50 ° or less for the hafnia film (0.1M) and 45 ° or less for the hafnia film (0.01M) by the treatment for one day or longer.
 図17Aは、ハフニア膜(0.5M)のXRD測定結果である。
 図17Bは、ハフニア膜(0.01M)のXRD測定結果である。
 図17Aに示すように、ハフニア膜(0.5M)では明確な回折点が確認され、結晶構造を示す秩序が確認された。
 図17Bに示すように、ハフニア膜(0.01M)では明確な回折点が確認されず、上記ハフニア膜(0.01M)は非晶質であることが確認された。
FIG. 17A is an XRD measurement result of a hafnia film (0.5M).
FIG. 17B is an XRD measurement result of the hafnia film (0.01M).
As shown in FIG. 17A, a clear diffraction point was confirmed in the hafnia film (0.5M), and an order indicating a crystal structure was confirmed.
As shown in FIG. 17B, a clear diffraction point was not confirmed in the hafnia film (0.01M), and it was confirmed that the hafnia film (0.01M) was amorphous.
<ブランク(ガラス基板)の評価>
 シリカ(SiO)膜に対する水蒸気処理の効果の確認を目的として、ブランク(ガラス基板)に対する水蒸気処理の効果を確認した。
 水蒸気処理は、「温度40℃、相対湿度90%(絶対湿度46g/m)」及び「温度40℃、相対湿度20%(絶対湿度10g/m)」の各条件にて行った(水蒸気処理のその他の条件はジルコニア膜の場合と同様である)。
 図18Aは、水蒸気処理有りの場合のブランクにおける水接触角の変化を示すグラフであり、図18Bは、水蒸気処理有りの場合のブランクにおける水滴転落角の変化を示すグラフである。
 図18Aに示すように、処理時間が長くなるにつれ、接触角が上昇した。
 特に、「温度40℃、相対湿度90%(絶対湿度46g/m)」では、3日間の処理で接触が55°を超えた。絶対湿度46g/mの条件は、絶対湿度10g/mの条件に比べ、接触角を上昇させる効果が大きかった。
 図18Bに示すように、「温度40℃、相対湿度90%」では、転落角が30°以下を維持した。絶対湿度46g/mの条件は、絶対湿度10g/mの条件に比べ、転落角を低下させる効果が大きかった。
<Evaluation of blank (glass substrate)>
For the purpose of confirming the effect of the water vapor treatment on the silica (SiO 2 ) film, the effect of the water vapor treatment on the blank (glass substrate) was confirmed.
The steam treatment was performed under the conditions of “temperature 40 ° C., relative humidity 90% (absolute humidity 46 g / m 3 )” and “temperature 40 ° C., relative humidity 20% (absolute humidity 10 g / m 3 )” (water vapor Other conditions for the treatment are the same as those for the zirconia film).
FIG. 18A is a graph showing a change in the water contact angle in the blank when there is a steam treatment, and FIG. 18B is a graph showing a change in the water drop falling angle in the blank when there is a steam treatment.
As shown in FIG. 18A, the contact angle increased as the processing time increased.
In particular, at a “temperature of 40 ° C. and a relative humidity of 90% (absolute humidity of 46 g / m 3 )”, the contact exceeded 55 ° after 3 days of treatment. The condition of the absolute humidity of 46 g / m 3 had a greater effect of increasing the contact angle than the condition of the absolute humidity of 10 g / m 3 .
As shown in FIG. 18B, at “temperature of 40 ° C. and relative humidity of 90%”, the falling angle was maintained at 30 ° or less. The condition of the absolute humidity of 46 g / m 3 had a greater effect of lowering the sliding angle than the condition of the absolute humidity of 10 g / m 3 .
〔実験例2〕
≪複合金属酸化物膜の形成及び評価≫
<アルミナ-チタニア膜の評価>
(接触角及び転落角の評価)
 実験例1のジルコニア膜の評価において、ジルコニアコート液を、アルミナコート液(0.5M)とチタニアコート液との混合溶液(アルミナコート液の体積:チタニアコート液の体積=100:1)に変えた以外は既述のジルコニア膜と同様にして、アルミナとチタニアとを含む膜(アルミナ-チタニア膜(100:1))を作製し、接触角及び転落角の測定を行った。
 更に、アルミナコート液(0.5M)とチタニアコート液との体積比を変えて(アルミナコート液の体積:チタニアコート液の体積=10:1又は1:1)、アルミナ-チタニア膜(100:1)、アルミナ-チタニア膜(10:1)をそれぞれ作製し、水蒸気処理時間に対する接触角及び転落角の変化をそれぞれ測定した。
 なお、アルミナ-チタニア膜(100:1)の表面粗さRaは、1.4nmであった。
 また、アルミナ-チタニア膜(10:1)の表面粗さRaは、1.5nmであった。
 また、アルミナ-チタニア膜(1:1)の表面粗さRaは、1.6nmであった。
 更に、対照用としてアルミナ膜の単味膜を実験例1と同様の方法により作製し、水蒸気処理時間に対する接触角及び転落角の変化を測定した。
[Experimental example 2]
≪Formation and evaluation of composite metal oxide film≫
<Evaluation of alumina-titania film>
(Evaluation of contact angle and sliding angle)
In the evaluation of the zirconia film of Experimental Example 1, the zirconia coating solution was changed to a mixed solution of alumina coating solution (0.5 M) and titania coating solution (volume of alumina coating solution: volume of titania coating solution = 100: 1). Except for the above, a film containing alumina and titania (alumina-titania film (100: 1)) was prepared in the same manner as the zirconia film described above, and the contact angle and the falling angle were measured.
Further, the volume ratio of the alumina coating liquid (0.5 M) and the titania coating liquid was changed (volume of the alumina coating liquid: volume of the titania coating liquid = 10: 1 or 1: 1) to obtain an alumina-titania film (100: 1) An alumina-titania film (10: 1) was prepared, and changes in contact angle and sliding angle with respect to the steam treatment time were measured.
The surface roughness Ra of the alumina-titania film (100: 1) was 1.4 nm.
The surface roughness Ra of the alumina-titania film (10: 1) was 1.5 nm.
The surface roughness Ra of the alumina-titania film (1: 1) was 1.6 nm.
Further, a simple alumina film was produced as a control by the same method as in Experimental Example 1, and changes in contact angle and falling angle with respect to the steam treatment time were measured.
 以上の測定結果を図19A及び図19Bに示す。
 図19A及び図19B中、例えば、「Al-Ti 100:1 40℃ 90%」等の表記は、アルミナコート液(0.5M)の体積:チタニアコート液の体積=100:1の混合溶液を用いて得られたアルミナ-チタニア膜を、温度40℃、相対湿度90%(絶対湿度46g/m)の条件で水蒸気処理して得られた試料であることを示している。
 また、「Al-MEA」は、アルミナの単味膜を示す。
 図19Aに示すように、各条件において高い接触角を示したが、特に、相対湿度90%(絶対湿度46g/m)の条件の場合には、3日以上の処理で80°を超えることが確認された。
 また、図19Bに示すように、アルミナコート液(0.5M)の割合が高い場合であって相対湿度90%(絶対湿度46g/m)の条件の場合に、転落角の低下が確認された。
The above measurement results are shown in FIGS. 19A and 19B.
In FIG. 19A and FIG. 19B, for example, “Al—Ti 100: 1 40 ° C. 90%” represents a mixed solution of alumina coating liquid (0.5 M): titania coating liquid volume = 100: 1. It shows that the alumina-titania film obtained by using this was a sample obtained by steam treatment under conditions of a temperature of 40 ° C. and a relative humidity of 90% (absolute humidity of 46 g / m 3 ).
“Al-MEA” indicates a simple film of alumina.
As shown in FIG. 19A, a high contact angle was exhibited in each condition, but in the case of a relative humidity of 90% (absolute humidity of 46 g / m 3 ), it exceeded 80 ° by treatment for 3 days or more. Was confirmed.
In addition, as shown in FIG. 19B, a decrease in the falling angle was confirmed when the ratio of the alumina coating liquid (0.5 M) was high and the relative humidity was 90% (absolute humidity 46 g / m 3 ). It was.
(光触媒活性の評価)
 次に、アルミナ-チタニア膜「Al-Ti 100:1 40℃ 90%」について、光照射によるイソプロピルアルコール(IPA)ガスの気相分解に関する実験を行い、光触媒活性を評価した。
 まず、合成空気で置換した密閉容器内に上記で得られたアルミナ-チタニア膜を静置し、IPAガス(イソプロピルアルコールガス)を濃度2000ppmとなるように注入し、暗所で23時間保存した。その後、アルミナ-チタニア膜に紫外線(UV)を照射した。
 ここで、紫外線としては、ブラックライト(FL10BL-B、National社製)を用いた。また、アルミナ-チタニア膜に照射する紫外線の強さは、ライトと基板との距離を調節して1mW/cmとなるように設定した。
 UV照射時間毎に密閉容器内の気体を採取し、ガスクロマトグラフィーにより、残存するIPAガス(原料)の濃度、及び、アセトン(生成物)の濃度を測定した。
(Evaluation of photocatalytic activity)
Next, for the alumina-titania film “Al—Ti 100: 1 40 ° C. 90%”, an experiment on the vapor phase decomposition of isopropyl alcohol (IPA) gas by light irradiation was performed to evaluate the photocatalytic activity.
First, the alumina-titania film obtained above was allowed to stand in a sealed container replaced with synthetic air, IPA gas (isopropyl alcohol gas) was injected to a concentration of 2000 ppm, and stored in a dark place for 23 hours. Thereafter, the alumina-titania film was irradiated with ultraviolet rays (UV).
Here, black light (FL10BL-B, manufactured by National) was used as the ultraviolet rays. In addition, the intensity of the ultraviolet light applied to the alumina-titania film was set to 1 mW / cm 2 by adjusting the distance between the light and the substrate.
The gas in the sealed container was sampled every UV irradiation time, and the concentration of the remaining IPA gas (raw material) and the concentration of acetone (product) were measured by gas chromatography.
 更に、アルミナ-チタニア膜「Al-Ti 10:1 40℃ 90%」、アルミナ-チタニア膜「Al-Ti 1:1 40℃ 90%」についても、同様の実験を行った。 Further, the same experiment was performed for the alumina-titania film “Al—Ti 10: 1, 40 ° C. 90%” and the alumina-titania film “Al—Ti 1: 1, 40 ° C. 90%”.
 図20に、「Al-Ti 100:1 40℃ 90%」について光触媒活性の評価結果を、図21に「Al-Ti 10:1 40℃ 90%」についての光触媒活性の評価結果を、図22に「Al-Ti 1:1 40℃ 90%」についての光触媒活性の評価結果を、それぞれ示す。
 図20、図21、及び図22において、横軸(BL照射時間/h)はブラックライトの照射時間(単位:時間)を表し、左側の縦軸(IPA/ppm)は、残存するIPAガスの濃度(単位:ppm)を表す軸であり、右側の縦軸(Acetone/ppm)は、生成物であるアセトンの濃度(単位:ppm)を表す軸である。
 図20、図21、及び図22に示すように、「Al-Ti 100:1 40℃ 90%」、「Al-Ti 10:1 40℃ 90%」、及び「Al-Ti 1:1 40℃ 90%」のいずれにおいても、光触媒活性が確認された。
FIG. 20 shows the evaluation result of photocatalytic activity for “Al—Ti 100: 1 40 ° C. 90%”, and FIG. 21 shows the evaluation result of photocatalytic activity for “Al—Ti 10: 1 40 ° C. 90%”. The evaluation results of the photocatalytic activity for “Al—Ti 1: 1 40 ° C. 90%” are shown in FIG.
20, 21, and 22, the horizontal axis (BL irradiation time / h) represents the black light irradiation time (unit: hours), and the left vertical axis (IPA / ppm) represents the remaining IPA gas. It is an axis | shaft showing a density | concentration (unit: ppm), and the vertical axis | shaft (Acetone / ppm) on the right side is an axis | shaft showing the density | concentration (unit: ppm) of acetone which is a product.
As shown in FIGS. 20, 21, and 22, “Al—Ti 100: 1 40 ° C. 90%”, “Al—Ti 10: 1 40 ° C. 90%”, and “Al—Ti 1: 1 40 ° C.” The photocatalytic activity was confirmed in any of “90%”.
<ジルコニア-チタニア膜の評価>
(接触角及び転落角の評価)
 実験例1のジルコニア膜の評価において、ジルコニアコート液を、ジルコニアコート液とチタニアコート液との混合溶液(ジルコニアコート液の体積:チタニアコート液の体積=100:1)に変えた以外は実験例1のジルコニア膜と同様にして、ジルコニアとチタニアとを含む膜(ジルコニア-チタニア膜)を作製し、接触角及び転落角の測定を行った。
 更に、ジルコニアコート液とチタニアコート液との体積比を種々変化させ(ジルコニアコート液の体積:チタニアコート液の体積=10:1又は1:1)、水蒸気処理時間に対する接触角及び転落角の変化を測定した。
 なお、ジルコニア-チタニア膜(100:1)の表面粗さRaは、1.5nmであった。
 また、ジルコニア-チタニア膜(10:1)の表面粗さRaは、1.1nmであった。
 また、ジルコニア-チタニア膜(1:1)の表面粗さRaは、1.5nmであった。
 また、対照用としてジルコニアの単味膜を作製し、水蒸気処理時間に対する接触角及び転落角の変化を測定した。
<Evaluation of zirconia-titania film>
(Evaluation of contact angle and sliding angle)
In the evaluation of the zirconia film of Experimental Example 1, the zirconia coating liquid was changed to a mixed solution of zirconia coating liquid and titania coating liquid (volume of zirconia coating liquid: volume of titania coating liquid = 100: 1). A film containing zirconia and titania (zirconia-titania film) was produced in the same manner as for the zirconia film 1 and the contact angle and the falling angle were measured.
Furthermore, the volume ratio of the zirconia coating liquid and the titania coating liquid was variously changed (volume of the zirconia coating liquid: volume of the titania coating liquid = 10: 1 or 1: 1), and changes in the contact angle and the falling angle with respect to the steam treatment time. Was measured.
The surface roughness Ra of the zirconia-titania film (100: 1) was 1.5 nm.
The surface roughness Ra of the zirconia-titania film (10: 1) was 1.1 nm.
The surface roughness Ra of the zirconia-titania film (1: 1) was 1.5 nm.
In addition, a simple zirconia film was prepared as a control, and changes in the contact angle and the falling angle with respect to the steam treatment time were measured.
 以上の測定結果を図23A及び図23Bに示す。
 図23A及び図23B中、例えば、「Zr-Ti 100:1 40℃ 90%」等の表記は、ジルコニアコート液の体積:チタニアコート液の体積=100:1の混合溶液を用いて得られたジルコニア-チタニア膜を、温度40℃、相対湿度90%(絶対湿度46g/m)の条件で水蒸気処理して得られた試料であることを示している。
 また、「Zr-DEA」は、ジルコニアの単味膜を示す。
 図23Aに示すように、各条件において高い接触角を示し、特に、8日以上の処理で80°を超えることが確認された。
 また、図23Bに示すように、特に、相対湿度90%(絶対湿度46g/m)の条件の場合に、転落角の低下が確認された。
The above measurement results are shown in FIGS. 23A and 23B.
In FIG. 23A and FIG. 23B, for example, the notation such as “Zr—Ti 100: 1 40 ° C. 90%” was obtained using a mixed solution of zirconia coating solution volume: titania coating solution volume = 100: 1. This shows that the sample was obtained by subjecting a zirconia-titania film to steam treatment under conditions of a temperature of 40 ° C. and a relative humidity of 90% (absolute humidity of 46 g / m 3 ).
“Zr-DEA” represents a simple film of zirconia.
As shown in FIG. 23A, a high contact angle was exhibited in each condition, and in particular, it was confirmed that it exceeded 80 ° in the treatment for 8 days or more.
In addition, as shown in FIG. 23B, a drop in the falling angle was confirmed particularly in the case of a relative humidity of 90% (absolute humidity of 46 g / m 3 ).
<ハフニア-チタニア膜の評価>
(接触角及び転落角の評価)
 実験例1のジルコニア膜の評価において、ジルコニアコート液を、ハフニアコート液とチタニアコート液との混合溶液(ハフニアコート液の体積:チタニアコート液の体積=100:1)に変えた以外は実験例1のジルコニア膜と同様にして、ハフニアとチタニアとを含む膜(ハフニア-チタニア膜)を作製し、接触角及び転落角の測定を行った。
 更に、ハフニアコート液とチタニアコート液との体積比を種々変化させ(ハフニアコート液の体積:チタニアコート液の体積=10:1又は1:1)、水蒸気処理時間に対する接触角及び転落角の変化を測定した。
 また、対照用としてハフニアの単味膜を実験例1と同様の方法により作製し、水蒸気処理時間に対する接触角及び転落角の変化を測定した。
<Evaluation of hafnia-titania film>
(Evaluation of contact angle and sliding angle)
In the evaluation of the zirconia film of Experimental Example 1, the zirconia coating liquid was changed to a mixed solution of hafnia coating liquid and titania coating liquid (volume of hafnia coating liquid: volume of titania coating liquid = 100: 1). A film containing hafnia and titania (hafnia-titania film) was prepared in the same manner as the zirconia film 1 and the contact angle and the falling angle were measured.
Further, the volume ratio between the hafnia coating liquid and the titania coating liquid was changed variously (the volume of the hafnia coating liquid: the volume of the titania coating liquid = 10: 1 or 1: 1), and the change of the contact angle and the falling angle with respect to the steam treatment time. Was measured.
In addition, a simple hafnia film was prepared as a control by the same method as in Experimental Example 1, and changes in contact angle and sliding angle with respect to the steam treatment time were measured.
 以上の測定結果を図24A及び図24Bに示す。
 図24A及び図24B中、例えば、「Hf-Ti 100:1 40℃ 90%」等の表記は、ハフニアコート液の体積:チタニアコート液の体積=100:1の混合溶液を用いて得られたハフニア-チタニア膜を、温度40℃、相対湿度90%(絶対湿度46g/m)の条件で水蒸気処理して得られた試料であることを示している。
 また、「Hf 40℃ 90%」は、ハフニアの単味膜を、温度40℃、相対湿度90%(絶対湿度46g/m)の条件で水蒸気処理して得られた試料であることを示している。
 図24Aに示すように、各条件において高い接触角を示したが、特に、ハフニアの比率が高い場合に高い接触角を示した。
 また、図24Bに示すように、特に、相対湿度90%(絶対湿度46g/m)の条件の場合に、転落角の低下が確認された。
The above measurement results are shown in FIGS. 24A and 24B.
In FIG. 24A and FIG. 24B, for example, the notation “Hf—Ti 100: 1 40 ° C. 90%” or the like was obtained by using a mixed solution of hafnia coat liquid volume: titania coat liquid volume = 100: 1. This shows that the sample was obtained by subjecting a hafnia-titania film to steam treatment under conditions of a temperature of 40 ° C. and a relative humidity of 90% (absolute humidity of 46 g / m 3 ).
Further, "Hf 40 ° C. 90%" indicates that the Tan'ajimaku hafnia, temperature 40 ° C., a sample obtained by steam treatment at a relative humidity of 90% (absolute humidity 46 g / m 3) ing.
As shown in FIG. 24A, a high contact angle was exhibited in each condition, but a high contact angle was exhibited particularly when the ratio of hafnia was high.
Further, as shown in FIG. 24B, a drop in the falling angle was confirmed particularly in the case of a relative humidity of 90% (absolute humidity of 46 g / m 3 ).
<チタンアパタイト膜(TiHAP)の評価>
(接触角及び転落角の評価)
 実験例1のジルコニア膜の評価において、ジルコニアコート液をチタンアパタイト(TiHAP)コート液に変えた以外は実験例1のジルコニア膜と同様にして、チタンアパタイト膜(TiHAP)を作製し、接触角及び転落角の測定を行った。
<Evaluation of titanium apatite film (TiHAP)>
(Evaluation of contact angle and sliding angle)
In the evaluation of the zirconia film of Experimental Example 1, a titanium apatite film (TiHAP) was prepared in the same manner as the zirconia film of Experimental Example 1 except that the zirconia coating liquid was changed to a titanium apatite (TiHAP) coating liquid. The falling angle was measured.
 測定結果を図25A及び図25Bに示す。
 図25A及び図25B中、「TiHAP_1」のプロットは室温環境で保管した場合、「40℃95%」等のプロットは表記の温度及び相対湿度で水蒸気処理した場合のプロットである。
 図25Aに示すように、「90℃25%」及び「90℃50%」の各処理により、接触角が顕著に上昇した。
 また、図25Bに示すように、「90℃50%」の処理により、転落角が顕著に低下した。
The measurement results are shown in FIGS. 25A and 25B.
In FIG. 25A and FIG. 25B, the plot of “TiHAP_1” is a plot when the steam treatment is performed at the indicated temperature and relative humidity when the plot is “40 ° C. and 95%” when stored in a room temperature environment.
As shown in FIG. 25A, the contact angle was remarkably increased by the treatments of “90 ° C. 25%” and “90 ° C. 50%”.
Further, as shown in FIG. 25B, the rolling angle was remarkably reduced by the treatment of “90 ° C. 50%”.
〔実験例3〕
≪抵抗点の密度及び撥水性の評価≫
 上記で作製した単味の金属酸化物膜、及び、複合金属酸化物膜を含め、種々の無機薄膜(試料1~試料27)について、抵抗点の密度と撥水性(接触角及び転落角)との相関を評価した。
 抵抗点の密度、接触角、及び転落角の測定方法は前述の通りである。
 評価結果を表2に示す。
 また、各試料の作製条件は以下のとおりである。
[Experimental Example 3]
≪Evaluation of resistance point density and water repellency≫
For various inorganic thin films (Sample 1 to Sample 27) including the simple metal oxide film and the composite metal oxide film produced above, the resistance point density and water repellency (contact angle and falling angle) The correlation of was evaluated.
The method of measuring the resistance point density, contact angle, and sliding angle is as described above.
The evaluation results are shown in Table 2.
The preparation conditions for each sample are as follows.
(試料1)
 実験例1で作製したアルミナ膜(前記マッフル炉中で5時間冷却した後のアルミナ膜)を、温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気で、2ヶ月間保管した(即ち、水蒸気処理を施した)。
(試料2)
 実験例1で作製したアルミナ膜(前記マッフル炉中で5時間冷却した後のアルミナ膜)を、70℃の純水に1時間浸漬させ熱水処理を行った。
 熱水処理後のアルミナ膜を温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気で、2ヶ月間保管した(即ち、水蒸気処理を施した)。
(試料3)
 実験例1で作製したアルミナ膜(前記マッフル炉中で5時間冷却した後のアルミナ膜)である(保管無しで抵抗点の密度及び撥水性の評価を行った)。
(試料4)
 実験例1で作製したアルミナ膜(前記マッフル炉中で5時間冷却した後のアルミナ膜)を、70℃の純水に1時間浸漬させ熱水処理を行った。
 熱水処理後のアルミナ膜を、実験例1と同様の室内環境で1日間保管した。
(試料5)
 実験例1で作製したアルミナ膜(前記マッフル炉中で5時間冷却した後のアルミナ膜)を実験例1と同様の室内環境で4日間保管した。
(Sample 1)
The alumina film prepared in Example 1 (alumina film after cooling for 5 hours at the muffle furnace), the temperature 40 ° C., in an atmosphere of 95% relative humidity (absolute humidity 48 g / m 3), and stored for 2 months (In other words, steam treatment was performed).
(Sample 2)
The alumina film prepared in Experimental Example 1 (the alumina film after being cooled in the muffle furnace for 5 hours) was immersed in pure water at 70 ° C. for 1 hour and subjected to hot water treatment.
The alumina film after the hot water treatment was stored for 2 months in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ) (that is, subjected to steam treatment).
(Sample 3)
It is the alumina film (alumina film after cooling for 5 hours in the muffle furnace) produced in Experimental Example 1 (resistance point density and water repellency were evaluated without storage).
(Sample 4)
The alumina film prepared in Experimental Example 1 (the alumina film after being cooled in the muffle furnace for 5 hours) was immersed in pure water at 70 ° C. for 1 hour and subjected to hot water treatment.
The alumina membrane after the hot water treatment was stored for 1 day in the same indoor environment as in Experimental Example 1.
(Sample 5)
The alumina film produced in Experimental Example 1 (the alumina film after cooling in the muffle furnace for 5 hours) was stored for 4 days in the same indoor environment as in Experimental Example 1.
(試料6~試料10)
 下記条件により成膜したAl膜、Au膜、Cr膜、Si膜、及びTi膜のそれぞれを、温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気で、2ヶ月間保管した(即ち、水蒸気処理を施した)。
 各膜を形成する基板としては、実験例1と同様のガラス基板を用いた。
(Sample 6 to Sample 10)
Each of the Al film, Au film, Cr film, Si film, and Ti film formed under the following conditions was stored for 2 months in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ). (In other words, steam treatment was performed).
As a substrate for forming each film, the same glass substrate as in Experimental Example 1 was used.
-Al膜成膜条件-
 洗浄したガラス基板を抵抗加熱型真空蒸着装置(EBH-6)にセットした。Wポートにアルミニウムワイヤー(直径1mm、99.999%、Sigma-Aldrich社製)をセットし(蒸着ポートと基板の距離は15cm)、ロータリポンプと拡散ポンプで2×10-6Torrまで真空排気した後、徐々に加熱電流を上げて予熱・除気し、その後、2nm/secの製膜速度で3分間蒸着を行った(膜厚371nm)。蒸着では基板加熱を行っていない。蒸着後、自然冷却させた後、取り出した。
-Al film deposition conditions-
The cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6). An aluminum wire (diameter: 1 mm, 99.999%, manufactured by Sigma-Aldrich) was set in the W port (distance between the deposition port and the substrate was 15 cm), and evacuated to 2 × 10 −6 Torr with a rotary pump and a diffusion pump. Thereafter, the heating current was gradually increased to perform preheating and degassing, and then vapor deposition was performed at a film forming rate of 2 nm / sec for 3 minutes (film thickness 371 nm). Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
-Au膜成膜条件-
 洗浄したガラス基板を抵抗加熱型真空蒸着装置(EBH-6)にセットした。まず下地膜としてCrを後述の方法で約5nm蒸着した。そののちWポートに金ワイヤー(直径0.5mm、99.99%、Sigma-Aldrich社製)をセットし(蒸着ポートと基板の距離は15cm)、ロータリポンプと拡散ポンプで2×10-6Torrまで真空排気した後、徐々に加熱電流を上げて予熱・除気し、その後、0.5nm/secの製膜速度で200秒間蒸着を行った(膜厚約100nm)。蒸着では基板加熱を行っていない。蒸着後、自然冷却させた後、取り出した。
-Au film formation conditions-
The cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6). First, Cr was deposited as a base film by about 5 nm by the method described later. After that, a gold wire (diameter 0.5 mm, 99.99%, manufactured by Sigma-Aldrich) was set in the W port (distance between the deposition port and the substrate was 15 cm), and 2 × 10 −6 Torr with a rotary pump and a diffusion pump. After vacuum evacuation, the heating current was gradually increased to preheat and degas, and then vapor deposition was performed at a film forming rate of 0.5 nm / sec for 200 seconds (film thickness of about 100 nm). Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
-Cr膜成膜条件-
 洗浄したガラス基板を抵抗加熱型真空蒸着装置(EBH-6)にセットした。Taポートにクロミウムチップ(99.995%、Sigma-Aldrich社製)をセットし、その蒸着ポートと基板の距離は15cmとした。ロータリポンプと拡散ポンプで2×10-6Torrまで真空排気した後、徐々に加熱電流を上げて予熱・除気し、その後、0.6nm/secの製膜速度で170秒間蒸着を行った(膜厚約100nm)。蒸着では基板加熱を行っていない。蒸着後、自然冷却させた後、取り出した。
-Cr film formation conditions-
The cleaned glass substrate was set in a resistance heating vacuum deposition apparatus (EBH-6). A chromium chip (99.995%, manufactured by Sigma-Aldrich) was set in the Ta port, and the distance between the vapor deposition port and the substrate was 15 cm. After evacuating to 2 × 10 −6 Torr with a rotary pump and a diffusion pump, the heating current was gradually increased to preheat and degas, and then deposition was performed at a film forming rate of 0.6 nm / sec for 170 seconds ( (Film thickness of about 100 nm). Substrate heating is not performed in vapor deposition. After vapor deposition, it was naturally cooled and then taken out.
-Si膜およびTi膜スパッタ条件-
 洗浄したソーダライムガラス基板(基板サイズ50mm×50mm×2mmt)上に、下記条件のスパッタリングによりSi薄膜、Ti薄膜を成膜した。
-Si film and Ti film sputtering conditions-
On a cleaned soda lime glass substrate (substrate size 50 mm × 50 mm × 2 mmt), a Si thin film and a Ti thin film were formed by sputtering under the following conditions.
(1) Siスパッタリング条件
 ・装置:パーソナルコーター(日真精機株式会社製の仕様変更機)
 ・電源:REACTIVE PLASMA GENERATOR(ENI Technology,Inc.製PRG-50)、投入電力:250W(パルス)
 ・ターゲット:Si(4N,40mm×200mm×5mmt,0,01Ω・cm以下。三井金属製)
 ・基板加熱:なし
 ・バックプレッシャー:2.0×10-4Pa
 ・スパッタリング時の全圧:Ar(100%)をガス流量30sccmで導入し、メインバルブを調整して全圧0.3Paとした。
 以上のスパッタリング条件で、プリスパッタ10分の後、基板の搬送速度は8.3cm/minで2往復ターゲット下を通過させ、膜厚は114nm、Ra=0.4nm(25μm)であった。
(1) Si sputtering conditions-Equipment: Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.)
・ Power source: REACTIVE PLASMA GENERATOR (PRG-50 manufactured by ENI Technology, Inc.), input power: 250 W (pulse)
・ Target: Si (4N, 40 mm × 200 mm × 5 mmt, 0,01Ω · cm or less, made by Mitsui Metals)
・ Substrate heating: None ・ Back pressure: 2.0 × 10 −4 Pa
Total pressure during sputtering: Ar (100%) was introduced at a gas flow rate of 30 sccm, and the main valve was adjusted to a total pressure of 0.3 Pa.
Under the above sputtering conditions, after 10 minutes of pre-sputtering, the substrate transport speed was 8.3 cm / min and passed under two reciprocating targets, and the film thickness was 114 nm and Ra = 0.4 nm (25 μm 2 ).
(2) Tiスパッタリング条件
 ・装置:パーソナルコーター(日真精機株式会社製の仕様変更機)
 ・電源:DC電源、投入電力:1.2KW
 ・ターゲット:Ti(4N,40mm×200mm×5mmt,住友金属製)
 ・基板加熱:なし
 ・バックプレッシャー:2.0×10-4Pa
 ・スパッタリング時の全圧:Ar(100%)をガス流量30sccmで導入し、メインバルブを調整して全圧0.3Paとした。
 以上のスパッタリング条件で、プリスパッタ10分の後、基板の搬送速度は10.0cm/minで2往復ターゲット下を通過させ、膜厚は100nm、Ra=8.3nm(25μm)であった。
(2) Ti sputtering conditions-Equipment: Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.)
・ Power supply: DC power supply, input power: 1.2KW
-Target: Ti (4N, 40mm x 200mm x 5mmt, made by Sumitomo Metal)
・ Substrate heating: None ・ Back pressure: 2.0 × 10 −4 Pa
Total pressure during sputtering: Ar (100%) was introduced at a gas flow rate of 30 sccm, and the main valve was adjusted to a total pressure of 0.3 Pa.
Under the above sputtering conditions, after 10 minutes of pre-sputtering, the substrate transport speed was 10.0 cm / min, and passed under two reciprocating targets, and the film thickness was 100 nm and Ra = 8.3 nm (25 μm 2 ).
(試料11~試料12)
 石英ガラス及びシリコンウェハのそれぞれを、温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気で、2ヶ月間保管した(即ち、水蒸気処理を施した)。
(Sample 11 to Sample 12)
Each of the quartz glass and the silicon wafer was stored for 2 months in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ) (that is, subjected to steam treatment).
(試料13~試料14)
 下記条件で調製したジルコニアコート液を用い、実験例1と同様の方法により作製したジルコニア膜(前記マッフル炉中で5時間冷却した後のジルコニア膜)を、実験例1と同様の室内環境で5ヶ月間保管した。
(Sample 13 to Sample 14)
Using a zirconia coating solution prepared under the following conditions, a zirconia film (zirconia film after cooling in the muffle furnace for 5 hours) prepared in the same manner as in Experimental Example 1 was measured in the same indoor environment as in Experimental Example 1. Stored for months.
-試料13のジルコニアコート液の調製-
 ジルコニアコート液(2質量%)は、ポリビニルアルコール(PVA、重合度500)を水に溶解させて0.1質量%とした溶液に、オキシ酢酸ジルコニウムを溶解させて、2質量%のオキシ酢酸ジルコニウム溶液として調製した。
-Preparation of zirconia coating solution for sample 13-
A zirconia coating solution (2% by mass) is obtained by dissolving zirconium oxyacetate in a solution of 0.1% by mass of polyvinyl alcohol (PVA, polymerization degree 500) dissolved in water. Prepared as a solution.
-試料14のジルコニアコート液の調製-
 ジルコニアコート液(2質量%)は、1-プロパノール(1-PrOH)と水を、体積比28:7(=1-プロパノール:水)で混合した溶液に、オキシ酢酸ジルコニウムを溶解させて、2質量%のオキシ酢酸ジルコニウム溶液として調製した。
-Preparation of zirconia coating solution for sample 14-
A zirconia coating solution (2 mass%) is obtained by dissolving zirconium oxyacetate in a solution obtained by mixing 1-propanol (1-PrOH) and water in a volume ratio of 28: 7 (= 1-propanol: water). Prepared as a weight percent zirconium oxyacetate solution.
(試料15~試料17)
 実験例2で作製したジルコニア-チタニア膜(前記マッフル炉中で5時間冷却した後のジルコニア-チタニア膜)を、実験例1と同様の室内環境で5ヶ月間保管した。
(Sample 15 to Sample 17)
The zirconia-titania film prepared in Experimental Example 2 (zirconia-titania film after cooling in the muffle furnace for 5 hours) was stored for 5 months in the same indoor environment as in Experimental Example 1.
(試料18~試料20)
 実験例1で作製したチタニア膜(前記マッフル炉中で5時間冷却した後のチタニア膜)に対し、表2に示す処理を表2に示す期間行った。
(Sample 18 to Sample 20)
The treatment shown in Table 2 was performed for the period shown in Table 2 on the titania film prepared in Experimental Example 1 (the titania film after being cooled in the muffle furnace for 5 hours).
(試料21~試料24)
 実験例1で用いたガラス基板上に、下記条件のスパッタによりチタニア膜を形成した。 作製されたチタニア膜付き基板に対し、マッフル炉(KDF-P90G,株式会社デンケン製)を用い、雰囲気温度500℃の熱処理(焼成)を表2の「処理」欄に示す時間施した。
 焼成後のチタニア膜付き基板を、実験例1と同様の室内環境で表2に示す期間保管した。
(Sample 21 to Sample 24)
A titania film was formed on the glass substrate used in Experimental Example 1 by sputtering under the following conditions. The manufactured substrate with a titania film was subjected to heat treatment (firing) at an atmospheric temperature of 500 ° C. for the time shown in the “treatment” column of Table 2 using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
The substrate with the titania film after firing was stored for the period shown in Table 2 in the same indoor environment as in Experimental Example 1.
~ チタニア(TiO)スパッタリング条件 ~
 ・装置:パーソナルコーター(日真精機株式会社製の仕様変更機)
 ・電源:MAGNETRON DRIVE(Advanced Energy製)、投入電力:DC1200W
 ・ターゲット:Ti
 ・基板加熱:なし
 ・バックプレッシャー:2.0×10-4Pa、
 ・スパッタリング時の全圧:酸素をガス流量6sccmで、Arをガス流量24sccmで、それぞれ導入し、メインバルブを調整して全圧0.3Paとした。このとき、酸素分圧は20%である。
 以上のスパッタリング条件で、プリスパッタの後、TiO薄膜を100nm成膜した。
-Titania (TiO 2 ) sputtering conditions-
-Equipment: Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.)
・ Power supply: MAGNETRON DRIVE (manufactured by Advanced Energy), input power: DC1200W
・ Target: Ti
・ Substrate heating: None ・ Back pressure: 2.0 × 10 −4 Pa,
Total pressure during sputtering: Oxygen was introduced at a gas flow rate of 6 sccm and Ar was introduced at a gas flow rate of 24 sccm, and the main valve was adjusted to a total pressure of 0.3 Pa. At this time, the oxygen partial pressure is 20%.
Under the above sputtering conditions, a TiO 2 thin film was formed to a thickness of 100 nm after pre-sputtering.
(試料25~試料27)
 試料22~試料24の作製において、ガラス基板上にシリカ膜(下地膜)を形成し、形成されたシリカ膜上にチタニア膜を形成したこと以外は試料22~試料24の作製と同様にして試料25~試料27を作製した。
 ここで、シリカ膜(下地膜)は下記条件のスパッタにより形成した。
(Sample 25 to Sample 27)
Samples 22 to 24 were prepared in the same manner as Samples 22 to 24 except that a silica film (underlying film) was formed on a glass substrate and a titania film was formed on the formed silica film. Samples 25 to 27 were prepared.
Here, the silica film (underlying film) was formed by sputtering under the following conditions.
~ シリカ(SiO)スパッタリング条件 ~
 ・装置:パーソナルコーター(日真精機株式会社製の仕様変更機)
 ・電源:REACTIVE PLASMA GENERATOR(ENI Technology,Inc.製PRG-50)、投入電力:250W(パルス)
 ・ターゲット:Si
 ・基板加熱:なし
 ・バックプレッシャー:2.0×10-4Pa
 ・スパッタリング時の全圧:酸素(100%)をガス流量30sccmで導入し、メインバルブを調整して全圧0.5Paとした。
 以上のスパッタリング条件で、プリスパッタの後、SiO薄膜を20nm成膜した。
-Silica (SiO 2 ) sputtering conditions-
-Equipment: Personal coater (specification change machine manufactured by Nisshin Seiki Co., Ltd.)
・ Power source: REACTIVE PLASMA GENERATOR (PRG-50 manufactured by ENI Technology, Inc.), input power: 250 W (pulse)
・ Target: Si
・ Substrate heating: None ・ Back pressure: 2.0 × 10 −4 Pa
Total pressure during sputtering: Oxygen (100%) was introduced at a gas flow rate of 30 sccm, and the main valve was adjusted to a total pressure of 0.5 Pa.
Under the above sputtering conditions, a SiO 2 thin film having a thickness of 20 nm was formed after pre-sputtering.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<表2の説明>
・備考欄中「水滴伸び垂れ残る」とは、水滴が垂れる際、垂れる方向に伸びてしまい、該水滴の一部が薄膜上に残り続ける状態を示す。
・抵抗点の密度の平均値「999」は、抵抗点が非常に多く、本条件の測定限界である999点/30mm以上であることを示す。
<Description of Table 2>
In the remarks column, “water droplets remain stretched” indicates a state in which when the water droplets drip, the water droplets extend in the direction of dripping and a part of the water droplets remain on the thin film.
The average value “999” of the resistance points indicates that the resistance points are very many and are 999 points / 30 mm 2 or more, which is the measurement limit of this condition.
 表2に示すように、抵抗点の密度が10個/30mm以下の試料(1、8~10、12~14、16、18、22、23、25~27)では、抵抗点の密度が10個/30mmを超える試料と比較して、接触角が高く、転落角が低かった。
 また、抵抗点の密度を10個/30mm以下とするために、水蒸気処理を行うことが効果的であることが確認された。
As shown in Table 2, in the samples (1, 8 to 10, 12 to 14, 16, 18, 22, 23, 25 to 27) having a resistance point density of 10/30 mm 2 or less, the resistance point density is Compared with the sample exceeding 10 pieces / 30 mm 2 , the contact angle was high and the sliding angle was low.
In addition, it was confirmed that it is effective to perform the steam treatment in order to set the density of the resistance points to 10 pieces / 30 mm 2 or less.
〔実験例4〕
≪水蒸気処理条件の検討≫
<アルミナ膜の評価>
 実験例1のアルミナ膜の評価において、水蒸気処理の条件及び処理時間を種々変化させ、水接触角の変化を測定した。
 測定結果を図26に示す。
 図26中における各水蒸気処理条件の詳細は以下のとおりである。
[Experimental Example 4]
≪Study on steam treatment conditions≫
<Evaluation of alumina film>
In the evaluation of the alumina film of Experimental Example 1, the conditions of the water vapor treatment and the treatment time were variously changed, and the change in the water contact angle was measured.
The measurement results are shown in FIG.
Details of each steam treatment condition in FIG. 26 are as follows.
(水蒸気処理条件)
「温度40℃、相対湿度95%」
 … 温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気における処理を示す。
「温度60℃、相対湿度38%」
 … 温度60℃、相対湿度38%(絶対湿度49g/m)の雰囲気における処理を示す。
「温度80℃、相対湿度17%」
 … 温度80℃、相対湿度17%(絶対湿度50g/m)の雰囲気における処理を示す。
「温度20℃、相対湿度95%」
 … 温度20℃、相対湿度95%(絶対湿度16g/m)の雰囲気における処理を示す。
「温度80℃、相対湿度95%」
 … 温度80℃、相対湿度95%(絶対湿度277g/m)の雰囲気における処理を示す。
「温度80℃、dry」
 … 温度80℃、乾燥機(ANS-111S、自然対流式恒温器、いすゞ製作所)内の乾燥雰囲気における処理を示す。
「室内環境」
 … 温度25℃、相対湿度60%(絶対湿度14g/m)の雰囲気で保管したときの結果である。この条件において、処理日数は保管時間を表わす。
「温度80℃、相対湿度50%」
 … 温度80℃、相対湿度50%(絶対湿度146g/m)の雰囲気における処理を示す。
「温度80℃、相対湿度30%」
 … 温度80℃、相対湿度30%(絶対湿度88g/m)の雰囲気における処理を示す。
「温度80℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度80℃の雰囲気における処理を示す。
 なお、本明細書中において、「オートクレーブ」と表記してある処理は、いずれも飽和水蒸気による処理、即ち相対湿度100%の水蒸気雰囲気による処理であることを意味している。
「温度100℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度100℃の雰囲気における処理を示す。
「温度120℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度120℃の雰囲気における処理を示す。
「温度150℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度150℃の雰囲気における処理を示す。
「温度180℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度180℃の雰囲気における処理を示す。
「温度90℃、相対湿度30%」
 … 温度90℃、相対湿度30%(絶対湿度126g/m)の雰囲気における処理を示す。
「温度90℃、相対湿度50%」
 … 温度90℃、相対湿度50%(絶対湿度211g/m)の雰囲気における処理を示す。
「温度95℃、相対湿度25%」
 … 温度95℃、相対湿度25%(絶対湿度126g/m)の雰囲気における処理を示す。
(Steam treatment conditions)
"Temperature 40 ° C, relative humidity 95%"
A treatment in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ) is shown.
"Temperature 60 ° C, relative humidity 38%"
... Temperature 60 ° C., illustrates a process in an atmosphere of a relative humidity of 38% (absolute humidity 49g / m 3).
Temperature 80 ° C, relative humidity 17%”
A treatment in an atmosphere of a temperature of 80 ° C. and a relative humidity of 17% (absolute humidity of 50 g / m 3 ) is shown.
"Temperature 20 ° C, relative humidity 95%"
A treatment in an atmosphere of a temperature of 20 ° C. and a relative humidity of 95% (absolute humidity of 16 g / m 3 ) is shown.
Temperature 80 ° C, relative humidity 95%”
A treatment in an atmosphere of a temperature of 80 ° C. and a relative humidity of 95% (absolute humidity of 277 g / m 3 ) is shown.
"Temperature 80 ℃, dry"
... temperature 80 ° C, treatment in a dry atmosphere in a dryer (ANS-111S, natural convection thermostat, Isuzu Seisakusho).
"Indoor environment"
This is the result when stored in an atmosphere of a temperature of 25 ° C. and a relative humidity of 60% (absolute humidity 14 g / m 3 ). Under this condition, the number of processing days represents storage time.
"Temperature 80 ° C, relative humidity 50%"
A treatment in an atmosphere at a temperature of 80 ° C. and a relative humidity of 50% (absolute humidity 146 g / m 3 ) is shown.
"Temperature 80 ° C, relative humidity 30%"
A treatment in an atmosphere of a temperature of 80 ° C. and a relative humidity of 30% (absolute humidity of 88 g / m 3 ) is shown.
"Temperature 80 ° C (autoclave)"
The treatment in an atmosphere at a temperature of 80 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
In addition, in this specification, all the processes described as “autoclave” mean a process using saturated steam, that is, a process using a steam atmosphere having a relative humidity of 100%.
"Temperature 100 ° C (autoclave)"
A treatment in an atmosphere at a temperature of 100 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
"Temperature 120 ° C (autoclave)"
The treatment in an atmosphere at a temperature of 120 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
"Temperature 150 ° C (autoclave)"
A treatment in an atmosphere at a temperature of 150 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
Temperature 180 ° C (autoclave)”
The treatment in an atmosphere at a temperature of 180 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
Temperature 90 ° C, relative humidity 30%”
A treatment in an atmosphere of a temperature of 90 ° C. and a relative humidity of 30% (absolute humidity of 126 g / m 3 ) is shown.
"Temperature 90 ° C, relative humidity 50%"
A treatment in an atmosphere of a temperature of 90 ° C. and a relative humidity of 50% (absolute humidity of 211 g / m 3 ) is shown.
"Temperature 95 ° C, relative humidity 25%"
... Temperature 95 ° C., illustrates a process in an atmosphere of 25% relative humidity (absolute humidity 126g / m 3).
 図26に示すように、水蒸気処理の条件によって接触角の到達水準や時間変化に差異が見られ、接触角上昇に対しては最適な処理条件が存在する。例えば、絶対湿度の値が15g/mよりも低い条件では接触角は、90°に達しない。また、複数温度点でのオートクレーブ処理(飽和水蒸気による処理)のように、絶対湿度の値が高すぎる場合には接触角は一旦上昇した後、低下に転じたり、処理1日目の時点で接触角の初期値を下回る時間変化が生じる。 As shown in FIG. 26, there are differences in the contact angle arrival level and temporal changes depending on the conditions of the steam treatment, and there are optimum treatment conditions for increasing the contact angle. For example, the contact angle does not reach 90 ° under the condition where the absolute humidity value is lower than 15 g / m 3 . In addition, when the absolute humidity is too high, as in autoclave treatment at multiple temperature points (treatment with saturated steam), the contact angle increases once and then decreases or contacts at the first day of treatment. A time change below the initial value of the corner occurs.
<ハフニア膜の評価>
 実験例1のハフニア膜の評価において、水蒸気処理の条件及び処理時間を種々変化させ、水接触角の変化を測定した。
 測定結果を図27に示す。
 図27中における各水蒸気処理条件の詳細は以下のとおりである。
<Evaluation of hafnia film>
In the evaluation of the hafnia film in Experimental Example 1, the conditions of the water vapor treatment and the treatment time were variously changed, and the change in the water contact angle was measured.
The measurement results are shown in FIG.
The details of each steam treatment condition in FIG. 27 are as follows.
(水蒸気処理条件)
「温度40℃、相対湿度95%」
 … 温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気における処理を示す。
「温度90℃、相対湿度50%」
 … 温度90℃、相対湿度50%(絶対湿度211g/m)の雰囲気における処理を示す。
「温度150℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度150℃の雰囲気における処理を示す。
「温度120℃(オートクレーブ)」
 … 常温常圧にて内容積300ccの容器に純水5ccと共に封入密閉した後の、温度120℃の雰囲気における処理を示す。
「温度95℃、相対湿度25%」
 … 温度95℃、相対湿度25%(絶対湿度126g/m)の雰囲気における処理を示す。
(Steam treatment conditions)
"Temperature 40 ° C, relative humidity 95%"
A treatment in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity of 48 g / m 3 ) is shown.
"Temperature 90 ° C, relative humidity 50%"
A treatment in an atmosphere of a temperature of 90 ° C. and a relative humidity of 50% (absolute humidity of 211 g / m 3 ) is shown.
"Temperature 150 ° C (autoclave)"
A treatment in an atmosphere at a temperature of 150 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
"Temperature 120 ° C (autoclave)"
The treatment in an atmosphere at a temperature of 120 ° C. after sealing and sealing with 5 cc of pure water in a container with an internal volume of 300 cc at room temperature and normal pressure is shown.
"Temperature 95 ° C, relative humidity 25%"
A treatment in an atmosphere having a temperature of 95 ° C. and a relative humidity of 25% (absolute humidity 126 g / m 3 ) is shown.
 図27に示すように、水蒸気処理の条件によって接触角の到達水準や時間変化に差異が見られ、接触角上昇に対しては最適な処理条件が存在する。例えば、120℃と150℃の温度点でのオートクレーブ処理(飽和水蒸気による処理)のように、絶対湿度の値が高すぎる場合には接触角は一旦上昇した後、低下に転じる。 As shown in FIG. 27, there are differences in the level of contact angle and the change with time depending on the conditions of the steam treatment, and there are optimum treatment conditions for increasing the contact angle. For example, when the absolute humidity value is too high, such as autoclave treatment at 120 ° C. and 150 ° C. (saturated steam treatment), the contact angle once increases and then decreases.
〔実験例5〕
≪耐久性(耐摩擦性)の評価≫
 実験例1で作製されたハフニア膜(0.1M、水蒸気処理条件40℃、46g/m、処理時間15日)について、下記条件のトラバース試験を行い、膜の耐久性(耐摩擦性)を評価した。
[Experimental Example 5]
≪Evaluation of durability (friction resistance) ≫
The hafnia film (0.1 M, steam treatment condition 40 ° C., 46 g / m 3 , treatment time 15 days) produced in Experimental Example 1 was subjected to a traverse test under the following conditions to determine the durability (friction resistance) of the film. evaluated.
(トラバース試験条件)
 加重:0.1kg/cm(JIS L 3102-1978綿帆布1206)
 速度:30往復/分
(Traverse test conditions)
Load: 0.1 kg / cm 2 (JIS L 3102-1978 cotton canvas 1206)
Speed: 30 round trips / minute
(試験結果)
 ハフニア膜については、試験前と500往復の試験後とにおいて、接触角及び転落角に大きな変化は見られず、滑水性が維持されていた。
(Test results)
With respect to the hafnia film, the contact angle and the sliding angle were not significantly changed before and after the 500 reciprocating tests, and the sliding property was maintained.
〔実験例6〕
≪無機薄膜と有機薄膜との対比実験≫
<水滴の内部流動の観察>
 実験例1で作製されたアルミナ膜(0.1M、水蒸気処理条件40℃、46g/m、処理日数30日)を用い、転落する水滴の内部流動の観察を行った。
 具体的には、接触角測定装置(Drop Master500,協和界面化学株式会社)および転落角測定装置(SA-11,協和界面化学株式会社)を用い、薄膜表面に30mgの水滴を滴下した後、前記転落角測定装置を用いて前記薄膜表面を水平面に対して傾けながら、前記接触角測定装置に付属しているカメラから水滴を観察した。
[Experimental Example 6]
≪Contrast experiment between inorganic thin film and organic thin film≫
<Observation of internal flow of water drops>
Using the alumina membrane (0.1 M, steam treatment condition 40 ° C., 46 g / m 3 , treatment days 30 days) produced in Experimental Example 1, the internal flow of the falling water droplets was observed.
Specifically, using a contact angle measuring device (Drop Master 500, Kyowa Interface Chemical Co., Ltd.) and a falling angle measuring device (SA-11, Kyowa Interface Chemical Co., Ltd.), after dropping 30 mg of water droplets on the surface of the thin film, While tilting the surface of the thin film with respect to a horizontal plane using a falling angle measuring device, water droplets were observed from a camera attached to the contact angle measuring device.
 次に、対照用として、以下の条件でシリコンウェハ基板上に有機薄膜を形成し、有機薄膜について、同様の観察を行った。
-有機薄膜の形成条件-
 1H,1H,2H,2H-heptadecafluorodecyltrimethoxysilane (FAS-17, CF3(CF2)7(CH2)2Si(OCH3)3, TSL8233、GE東芝シリコーン)を1,3-bis(trifluoromethyl)benzene (C6H4(CF3)2)に溶解させ、130μMの溶液とした。洗浄したシリコンウェハをこの溶液に1日浸漬させたのち、アセトン、塩化メチレン、アセトン、水で順に流し洗いし、80℃の乾燥機内で乾燥させた。
Next, as a control, an organic thin film was formed on a silicon wafer substrate under the following conditions, and the same observation was performed on the organic thin film.
-Organic thin film formation conditions-
1H, 1H, 2H, 2H-heptadecafluorodecyltrimethoxysilane (FAS-17, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , TSL8233, GE Toshiba Silicone) is converted to 1,3-bis (trifluoromethyl) benzene ( It was dissolved in C 6 H 4 (CF 3 ) 2 ) to obtain a 130 μM solution. The cleaned silicon wafer was immersed in this solution for 1 day, then washed with acetone, methylene chloride, acetone and water in that order, and dried in a dryer at 80 ° C.
 観察の結果、アルミナ膜表面を転落する水滴の内部流動は、有機薄膜表面を転落する水滴の内部挙動に対し、異質な挙動を示していた。
 具体的には、有機薄膜表面を転落する水滴の内部流動は、液滴全体がキャタピラ状に回転する回転モードで滑落していくのに対し、アルミナ膜表面を転落する水滴の内部流動は、液滴の前方部分はキャタピラ状の回転モードとなりながらも、後方部分では単純な回転モードとは異なる複雑な内部流動となっていた。
As a result of observation, the internal flow of the water droplets falling on the surface of the alumina film showed a different behavior from the internal behavior of the water droplets falling on the surface of the organic thin film.
Specifically, the internal flow of water droplets falling on the surface of the organic thin film slides down in a rotation mode in which the entire droplet rotates in a caterpillar shape, whereas the internal flow of water droplets falling on the surface of the alumina film is Although the front part of the droplet was in a caterpillar rotation mode, the rear part had a complicated internal flow different from the simple rotation mode.
〔実験例7〕
≪シリコンに対する水蒸気処理実験≫
 シリコンウェハの鏡面状に研磨された面に対して、水蒸気処理(処理条件40℃、46g/m)を行い、処理時間を変化させ水接触角変化を測定した結果、水接触角は28°(初期値)から94°(112日後)に上昇した。つまり、シリコンに対しても水蒸気処理による接触角の上昇が確認された。
[Experimental Example 7]
≪Steam treatment experiment for silicon≫
As a result of performing water vapor treatment (treatment conditions: 40 ° C., 46 g / m 3 ) on the mirror-polished surface of the silicon wafer and measuring the change in water contact angle while changing the treatment time, the water contact angle was 28 °. It rose to 94 ° (after 112 days) from (initial value). That is, an increase in contact angle due to the water vapor treatment was also confirmed for silicon.
〔実験例8〕
≪室内環境保管後の水蒸気処理の効果≫
 実験例1で得られたアルミナ、チタニア、ハフニアに対して、薄膜作製後(前記マッフル炉中で5時間冷却した後)、アルミナについては28日間、チタニアについては145日間、ハフニアについては19日間、それぞれ室内環境(温度25℃、絶対湿度14g/m(相対湿度61%))にて保管した。
 その後、水蒸気処理条件40℃、46g/mにて、処理時間を変化させ、水接触角変化を測定した。測定結果を図28A及び図28Bに示す。
 図28Aは、水蒸気処理時間に対する水接触角の変化を示すグラフであり、図28Bは、水蒸気処理時間に対する水滴転落角の変化を示すグラフである。
 図28A及び図28Bに示すように、薄膜作製後に室内環境にて一定期間保管をしていても、水蒸気処理によって、実験例1と同水準への水接触角上昇及び実験例1と同水準への水滴転落角の低下が確認された。
[Experimental Example 8]
≪Effect of steam treatment after indoor environment storage≫
For alumina, titania and hafnia obtained in Experimental Example 1, after thin film preparation (after cooling in the muffle furnace for 5 hours), for alumina, 28 days for titania, 145 days for titania, 19 days for hafnia, each indoor environment and stored at (temperature 25 ° C., absolute humidity of 14 g / m 3 (relative humidity 61%)).
Thereafter, the treatment time was changed under steam treatment conditions of 40 ° C. and 46 g / m 3 , and the change in water contact angle was measured. The measurement results are shown in FIGS. 28A and 28B.
FIG. 28A is a graph showing a change in water contact angle with respect to the steam treatment time, and FIG. 28B is a graph showing a change in water drop falling angle with respect to the steam treatment time.
As shown in FIG. 28A and FIG. 28B, even if the film is stored for a certain period in the indoor environment after the thin film is produced, the water contact angle rises to the same level as in Experimental Example 1 and reaches the same level as in Experimental Example 1 by steam treatment. It was confirmed that the drop angle of water drops was lower.
〔実験例9〕
≪水蒸気処理で滑水化しない素材≫
 有機膜に対して、水蒸気処理(処理条件40℃、46g/m)を行い、処理時間を変化させ、水接触角変化を測定した。
 実験に使用した有機膜は、ポリプロピレンとポリエチレンテレフタレート、ポリ塩化ビニル、ポリオキシメチレン、ポリカーボネート、ABS、ナイロン、ポリエチレン、ポリスチレン、アクリル樹脂である。その内、ポリ塩化ビニルとナイロン、アクリル樹脂については、水蒸気処理によって、水接触角が10°以上上昇した。その他の有機膜については、水接触角が低下、または上昇した場合でも10°未満におさまった。処理時間と水接触角変化の様子を表3に示す。
[Experimental Example 9]
≪Material that does not lubricate by steam treatment≫
The organic film was subjected to water vapor treatment (treatment conditions: 40 ° C., 46 g / m 3 ), the treatment time was changed, and the water contact angle change was measured.
The organic films used in the experiment are polypropylene and polyethylene terephthalate, polyvinyl chloride, polyoxymethylene, polycarbonate, ABS, nylon, polyethylene, polystyrene, and acrylic resin. Among them, for polyvinyl chloride, nylon, and acrylic resin, the water contact angle increased by 10 ° or more by the steam treatment. For other organic films, even when the water contact angle decreased or increased, it was kept below 10 °. Table 3 shows the treatment time and changes in the water contact angle.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<表3の説明>
 「PP」 … 有機膜、ポリプロピレンを示す。
 「PET」 … 有機膜、ポリエチレンテレフタレートを示す。
 「PVC」 … 有機膜、ポリ塩化ビニルを示す。
 「POM」 … 有機膜、ポリオキシメチレンを示す。
 「PC」 … 有機膜、ポリカーボネートを示す。
 「ABS」 … 有機膜、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)を示す。
 「PA」 … 有機膜、ナイロンを示す。
 「PE」 … 有機膜、ポリエチレンを示す。
 「PS」 … 有機膜、ポリスチレンを示す。
 「MA」 … 有機膜、アクリル樹脂を示す。
<Description of Table 3>
“PP”: Organic film, polypropylene.
“PET”: Organic film, polyethylene terephthalate.
“PVC”: Organic film, polyvinyl chloride.
“POM”: Organic film, polyoxymethylene.
“PC”: Organic film and polycarbonate.
“ABS”: Organic film, ABS (acrylonitrile-butadiene-styrene copolymer).
“PA”: Organic membrane, nylon.
“PE”: Organic film, polyethylene.
“PS”: Organic film, polystyrene.
“MA”: Organic film and acrylic resin.
〔実験例10〕
≪水蒸気処理で滑水化しない条件≫
 実験例1のアルミナ膜を作製直後(前記マッフル炉中で5時間冷却した直後)、70℃の純水に1時間浸漬させ熱水処理を行った。
 熱水処理直後の水接触角は46°であった。その後、水蒸気処理(処理条件40℃、46g/m)を3日間行ったが、水接触角は実験例1の水準(90°程度)までは上昇せず、到達した接触角は74°にとどまった。
 以上のように、水蒸気処理の前にアルミナ膜に対して熱水処理を行うと、水蒸気処理による滑水化効果が弱められる。
 また同様に、成膜後長期間一般の空気中に保管された薄膜では、表面に有機物の汚染が生じ、吸着分子が覆うことで、その後の水蒸気処理による滑水化の効果を減少させる。
 従って、作製後、出来るだけ早く水蒸気処理することが望ましい。
[Experimental Example 10]
≪Conditions that do not lubricate with steam treatment≫
Immediately after producing the alumina film of Experimental Example 1 (immediately after cooling in the muffle furnace for 5 hours), it was immersed in pure water at 70 ° C. for 1 hour and subjected to hydrothermal treatment.
The water contact angle immediately after the hot water treatment was 46 °. Thereafter, steam treatment (treatment conditions: 40 ° C., 46 g / m 3 ) was carried out for 3 days, but the water contact angle did not rise to the level of experimental example 1 (about 90 °), and the reached contact angle reached 74 °. Stayed.
As described above, if the hot water treatment is performed on the alumina membrane before the steam treatment, the water sliding effect by the steam treatment is weakened.
Similarly, in a thin film stored in general air for a long time after film formation, the surface is contaminated with organic matter and covered with adsorbed molecules, thereby reducing the effect of water slidability by subsequent water vapor treatment.
Therefore, it is desirable to perform steam treatment as soon as possible after production.
〔実験例11〕
≪液滴組成への依存性≫
 アルミナ膜(0.1M、水蒸気処理条件40℃、46g/m、処理日数30日)と有機薄膜(FAS-17及びODS)とを用い、水滴の組成を種々変化させ、液滴組成への依存性を調べた。測定方法は、水滴を純水から各種の溶液に変更した以外は前述の転落角の測定方法と同様である。
 アルミナ膜表面の場合、5質量%ショ糖水溶液の転落角は46°、ジエチレングリコールメチルエーテル25質量%水溶液の転落角は8°、イソプロピルアルコール25質量%水溶液の転落角は10°、NaCl溶液(10質量%水溶液)の転落角は30°であった。
 即ち、アルミナ膜の場合、上記のいずれの組成においても良好な滑水性を示したが、液滴組成により転落角の値が異なるという液滴組成依存性が確認された。
 一方、有機薄膜の場合、転落角の液滴組成依存性は確認されなかった。
 以上のように、無機薄膜と有機薄膜とでは、転落性の挙動に種々の相違があることが確認された。
[Experimental Example 11]
≪Dependence on droplet composition≫
Using an alumina membrane (0.1 M, water vapor treatment conditions 40 ° C., 46 g / m 3 , treatment days 30 days) and an organic thin film (FAS-17 and ODS), the composition of the water droplets can be variously changed to achieve a droplet composition. Dependency was examined. The measuring method is the same as the measuring method of the falling angle except that the water droplet is changed from pure water to various solutions.
In the case of an alumina membrane surface, the falling angle of a 5% by mass sucrose aqueous solution is 46 °, the falling angle of a 25% by mass diethylene glycol methyl ether aqueous solution is 8 °, the falling angle of a 25% by mass isopropyl alcohol aqueous solution is 10 °, and a NaCl solution (10 The falling angle of (mass% aqueous solution) was 30 °.
That is, in the case of the alumina film, good water slidability was exhibited in any of the above compositions, but it was confirmed that the composition of the droplet composition depended on the drop angle depending on the droplet composition.
On the other hand, in the case of the organic thin film, the drop composition dependency of the falling angle was not confirmed.
As described above, it was confirmed that there are various differences in the falling behavior between the inorganic thin film and the organic thin film.
〔実験例12〕
≪滑水性の回復≫
 滑水化処理(処理条件40℃、46g/m、140日間)したアルミナ薄膜(0.1M)表面に、加重:0.1kg/cm(JIS L 3102-1978綿帆布1206)速度:30往復/分の条件でトラバース試験20往復を行って摩耗させた際に、接触角が93°から80°へ劣化し、転落角が21°から67°へ劣化したが、再度水蒸気処理(処理条件40℃、46g/m、3日間)を行うことで滑水性が回復し、接触角93°、転落角33°に復活した。
[Experimental Example 12]
≪Resliding smoothness≫
Loaded to 0.1 kg / cm 2 (JIS L 3102-1978 cotton canvas 1206) on the surface of an alumina thin film (0.1 M) subjected to water slicking treatment (treatment conditions: 40 ° C., 46 g / m 3 , 140 days) Speed: 30 The contact angle deteriorated from 93 ° to 80 ° and the sliding angle deteriorated from 21 ° to 67 ° when the traverse test was carried out 20 times in the reciprocation / minute condition. The slipperiness was recovered by performing 40 ° C. and 46 g / m 3 for 3 days, and the contact angle was restored to 93 ° and the falling angle was 33 °.
〔実験例13〕
≪ガラス基板に対する水蒸気処理実験≫
 まず、ソーダライムガラス(SLG)基板に、150℃、300℃、400℃、500℃、600℃、及び700℃のいずれか1つの温度の熱処理を1時間施し、引き続き水蒸気処理(温度90℃、相対湿度50%(絶対湿度211g/m))を行い、水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、本実験例13において、ソーダライムガラス(SLG)基板としては、旭硝子 フロートガラス(JIS R3202)の大気開放側の面を用いた。
 また、熱処理はマッフル炉(KDF-P90G,株式会社デンケン製)を用い、大気雰囲気下で行った。
 また、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experimental Example 13]
≪Water vapor treatment experiment on glass substrate≫
First, a soda-lime glass (SLG) substrate is subjected to heat treatment at any one of 150 ° C., 300 ° C., 400 ° C., 500 ° C., 600 ° C., and 700 ° C. for 1 hour, followed by steam treatment (temperature 90 ° C., The relative humidity was 50% (absolute humidity 211 g / m 2 )), and the changes in the water contact angle and the water droplet falling angle with respect to the steam treatment time were measured.
In Experimental Example 13, as the soda lime glass (SLG) substrate, the surface of Asahi Glass float glass (JIS R3202) on the atmosphere open side was used.
The heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
 図29は、水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図29に示すように、熱処理の温度が150℃、300℃、400℃、及び500℃のときには、水蒸気処理による水接触角向上の効果が顕著に得られた。
FIG. 29 is a graph showing a change in water contact angle (°) with respect to the steam treatment time (elapsed time (days) in a steam atmosphere).
As shown in FIG. 29, when the temperature of the heat treatment was 150 ° C., 300 ° C., 400 ° C., and 500 ° C., the effect of improving the water contact angle by the steam treatment was remarkably obtained.
 図30は、水蒸気処理時間(水蒸気雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図30に示すように、熱処理の温度が150℃、300℃、400℃、及び500℃のときには、水蒸気処理による水滴転落角低下の効果が顕著に得られた。
FIG. 30 is a graph showing a change in the water drop falling angle (°) with respect to the steam treatment time (elapsed time (days) in a steam atmosphere).
As shown in FIG. 30, when the temperature of the heat treatment is 150 ° C., 300 ° C., 400 ° C., and 500 ° C., the effect of lowering the water drop falling angle by the steam treatment was remarkably obtained.
-比較実験例-
 上記水蒸気処理を、乾燥雰囲気(温度25℃、相対湿度2%(絶対湿度0.5g/m)に調整したTOYO Living社製Superdrybox)中で保管することに変更した以外は上記ガラス基板の水蒸気処理実験と同様にして、保管時間に対する水接触角及び水滴転落角の変化を測定した。
 図31は、保管時間(乾燥雰囲気における経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図31に示すように、いずれの温度の熱処理を施した場合においても、水接触角は50°程度又はそれ以下であった。
 図32は、保管時間(乾燥雰囲気における経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図32に示すように、水滴転落角は低下しないか、または不安定であった。
-Comparative experiment example-
The steam of the glass substrate was changed except that the steam treatment was stored in a dry atmosphere (Superdrybox manufactured by TOYO Living adjusted to a temperature of 25 ° C. and a relative humidity of 2% (absolute humidity 0.5 g / m 2 )). In the same manner as in the treatment experiment, changes in the water contact angle and the water drop falling angle with respect to the storage time were measured.
FIG. 31 is a graph showing a change in water contact angle (°) with respect to storage time (elapsed time (days) in a dry atmosphere).
As shown in FIG. 31, even when heat treatment at any temperature was performed, the water contact angle was about 50 ° or less.
FIG. 32 is a graph showing changes in the water drop falling angle (°) with respect to storage time (elapsed time (days) in a dry atmosphere).
As shown in FIG. 32, the water drop falling angle did not decrease or was unstable.
-熱処理温度と表面粗さRa-
 28℃におけるガラスの表面粗さRa(nm)、及び、各温度による熱処理後のガラスの表面粗さRa(nm)を下記表4に示す。
 表面粗さRa(nm)の測定は、測定範囲を0.5μm四方としたこと以外は実験例1と同様の方法により行った。
-Heat treatment temperature and surface roughness Ra-
Table 4 below shows the surface roughness Ra (nm) of the glass at 28 ° C. and the surface roughness Ra (nm) of the glass after the heat treatment at each temperature.
The surface roughness Ra (nm) was measured by the same method as in Experimental Example 1 except that the measurement range was 0.5 μm square.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、水蒸気処理による効果と、熱処理温度と、の間には直接の相関は見られなかった。
 熱処理温度が600℃及び700℃の場合に接触角向上及び転落角低下の効果が弱かった理由は明らかではないが、ソーダライムガラスの軟化点(730℃)に近いことが関係しているものと推測される。
As shown in Table 4, no direct correlation was found between the effect of the steam treatment and the heat treatment temperature.
The reason why the effect of improving the contact angle and reducing the falling angle is weak when the heat treatment temperature is 600 ° C. and 700 ° C. is not clear, but is related to the fact that it is close to the softening point (730 ° C.) of soda lime glass. Guessed.
-耐久性(耐摩擦性試験)試験-
 上記において、300℃の熱処理を施し、かつ、水蒸気処理(90℃、50%)を行ったサンプルについて、実験例5と同様の条件のトラバース試験を行った。
 図33は、摺動回数と接触角及び転落角との関係を示すグラフである。
 図33に示すように、摺動回数500回まで接触角は70°程度以上を維持しており、摺動回数500回まで転落角は40°以下を維持していた。このように、熱処理及び水蒸気処理によって得られた静的撥水性及び動的撥水性に優れた表面は、耐久性(耐摩擦性)にも優れていた。
-Durability (rub resistance test) test-
In the above, a traverse test under the same conditions as in Experimental Example 5 was performed on the sample subjected to the heat treatment at 300 ° C. and the steam treatment (90 ° C., 50%).
FIG. 33 is a graph showing the relationship between the number of sliding times, the contact angle, and the falling angle.
As shown in FIG. 33, the contact angle was maintained at about 70 ° or more until the number of sliding times of 500, and the sliding angle was maintained at 40 ° or less until the number of sliding times of 500. Thus, the surface excellent in static water repellency and dynamic water repellency obtained by heat treatment and steam treatment was also excellent in durability (friction resistance).
〔実験例14〕
≪金属基板に対する水蒸気処理実験≫
<Ag研磨板に対する水蒸気処理実験>
 まず、Ag研磨板に、500℃の熱処理を1時間施し、引き続き水蒸気処理(温度40℃、相対湿度95%(絶対湿度48g/m))を行い、水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Ag研磨板としては、(株)ニラコ製Ag(品番AG-403322、サイズ0.1mm×100mm×100mm、純度99.98%)を用いた。
 また、熱処理はマッフル炉(KDF-P90G,株式会社デンケン製)を用い、大気雰囲気下で行った。
 また、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experiment 14]
≪Water vapor treatment experiment on metal substrate≫
<Water vapor treatment experiment for Ag polishing plate>
First, the Ag polishing plate was heat treated at 500 ° C. for 1 hour, followed by water vapor treatment (temperature 40 ° C., relative humidity 95% (absolute humidity 48 g / m 2 )), water contact angle and water droplet falling with respect to the water vapor treatment time. The change in angle was measured.
Note that Ag (manufactured by Niraco Co., Ltd., product number AG-403322, size 0.1 mm × 100 mm × 100 mm, purity 99.98%) was used as the Ag polishing plate.
The heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
 一方、上記熱処理を行わなかったこと以外は上記と同様にして、水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。 On the other hand, changes in the water contact angle and the water droplet falling angle with respect to the steam treatment time were measured in the same manner as described above except that the heat treatment was not performed.
 図34は、Ag研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図34に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水接触角が低下したが(経過時間0日の時点参照)、水蒸気処理を行うことにより水接触角が80°以上に回復した。
FIG. 34 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in an Ag polishing plate.
As shown in FIG. 34, when heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of elapsed time 0 days), but by performing steam treatment The water contact angle recovered to 80 ° or more.
 図35は、Ag研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図35に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水滴転落角が高くなったが(経過時間0日の時点参照)、水蒸気処理を行うことにより水滴接触角が50°程度に低下した。
FIG. 35 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ag polishing plate.
As shown in FIG. 35, when the heat treatment was performed (“with heat treatment”), the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the steam treatment should be performed. As a result, the water droplet contact angle decreased to about 50 °.
<Cu研磨板に対する水蒸気処理実験>
 Ag研磨板をCu研磨板に変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Cu研磨板としては、(株)ニラコ製Cu(品番CU-113321、サイズ0.1mm×100mm×100mm、純度99.96%)を用いた。
<Water vapor treatment experiment for Cu polishing plate>
Except for changing the Ag polishing plate to a Cu polishing plate, changes in the water contact angle and the water drop falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
As the Cu polishing plate, Nilaco Cu (product number CU-113321, size 0.1 mm × 100 mm × 100 mm, purity 99.96%) was used.
 図36は、Cu研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図36に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水接触角が低下したが(経過時間0日の時点参照)、水蒸気処理を行うことにより水接触角が80°以上に回復した。
FIG. 36 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in a Cu polishing plate.
As shown in FIG. 36, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time of 0 days). The water contact angle recovered to 80 ° or more.
 図37は、Cu研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図37に示すように、熱処理を行った場合(「熱処理あり」)には水滴は転落しなかった。
FIG. 37 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Cu polishing plate.
As shown in FIG. 37, when the heat treatment was performed (“with heat treatment”), the water droplets did not fall.
<Al研磨板に対する水蒸気処理実験>
 Ag研磨板をAl研磨板に変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Al研磨板としては、(株)ニラコ製Al(品番AL-013321、サイズ0.1mm×100mm×100mm、純度99.999%)を用いた。
<Water vapor treatment experiment for Al polishing plate>
Except that the Ag polishing plate was changed to an Al polishing plate, changes in the water contact angle and the water drop falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
As the Al polishing plate, Nilaco's Al (part number AL-013321, size 0.1 mm × 100 mm × 100 mm, purity 99.999%) was used.
 図38は、Al研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図38に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水接触角が低下したが(経過時間0日の時点参照)、水蒸気処理を行うことにより水接触角が80°以上に回復した。
FIG. 38 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in an Al polishing plate.
As shown in FIG. 38, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time 0 days), but by performing the steam treatment The water contact angle recovered to 80 ° or more.
 図39は、Al研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図39に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水滴転落角が高くなったが(経過時間0日の時点参照)、水蒸気処理を行うことにより水滴接触角が40°程度又はそれ以下に低下した。
FIG. 39 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Al polishing plate.
As shown in FIG. 39, when the heat treatment was performed (“with heat treatment”), the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the water vapor treatment should be performed. As a result, the water droplet contact angle decreased to about 40 ° or less.
<Ni研磨板に対する水蒸気処理実験>
 Ag研磨板をNi研磨板に変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Ni研磨板としては、(株)ニラコ製Ni(品番NI-313324、サイズ0.1mm×100mm×500mm、純度99+%)を用いた。
<Water vapor treatment experiment on Ni polishing plate>
Except that the Ag polishing plate was changed to a Ni polishing plate, changes in the water contact angle and the water droplet falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
As the Ni polishing plate, Nilaco Ni (product number NI-313324, size 0.1 mm × 100 mm × 500 mm, purity 99 +%) was used.
 図40は、Ni研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図40に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水接触角が低下したが(経過時間0日の時点参照)、水蒸気処理を行うことにより水接触角が80°以上に回復した。
FIG. 40 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ni polishing plate.
As shown in FIG. 40, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of elapsed time 0 days), but by performing the steam treatment The water contact angle recovered to 80 ° or more.
 図41は、Ni研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図41に示すように、熱処理を行わなかった場合(「熱処理なし」)において、水蒸気処理により水滴転落角を50°以下に低下させることができたが、熱処理を行った場合(「熱処理あり」)には水滴は転落しなかった。
FIG. 41 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ni polishing plate.
As shown in FIG. 41, when the heat treatment was not performed (“no heat treatment”), the water droplet falling angle could be reduced to 50 ° or less by the steam treatment, but when the heat treatment was performed (“with heat treatment”). ) Did not fall.
<Fe研磨板に対する水蒸気処理実験>
 Ag研磨板をFe研磨板に変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Fe研磨板としては、(株)ニラコ製Fe(品番FE-223329、サイズ0.1mm×150mm×150mm、純度99.50%)を用いた。
<Water vapor treatment experiment for Fe polishing plate>
Except for changing the Ag polishing plate to an Fe polishing plate, the changes in the water contact angle and the water drop falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
As the Fe polishing plate, Nilaco Co., Ltd. (product number FE-223329, size 0.1 mm × 150 mm × 150 mm, purity 99.50%) was used.
 図42は、Fe研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図42に示すように、熱処理を行った場合(「熱処理あり」)には、水蒸気処理を行っても水接触角が上昇しなかった。
FIG. 42 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Fe polishing plate.
As shown in FIG. 42, when the heat treatment was performed (“with heat treatment”), the water contact angle did not increase even when the steam treatment was performed.
 図43は、Fe研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図43に示すように、熱処理を行わなかった場合(「熱処理なし」)において、水蒸気処理により水滴転落角を50°以下に低下させることができたが、熱処理を行った場合(「熱処理あり」)には水滴は転落しなかった。
FIG. 43 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Fe polishing plate.
As shown in FIG. 43, when the heat treatment was not performed (“no heat treatment”), the water droplet falling angle could be reduced to 50 ° or less by the steam treatment, but when the heat treatment was performed (“with heat treatment”). ) Did not fall.
<Ti研磨板に対する水蒸気処理実験>
 Ag研磨板をTi研磨板に変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Ti研磨板としては、(株)ニラコ製Ti(品番TI-453321、サイズ0.1mm×100mm×100mm、純度99.50%)を用いた。
<Water vapor treatment experiment for Ti polishing plate>
Except that the Ag polishing plate was changed to a Ti polishing plate, changes in the water contact angle and the water drop falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
As the Ti polishing plate, Nilaco Ti (product number TI-453321, size 0.1 mm × 100 mm × 100 mm, purity 99.50%) was used.
 図44は、Ti研磨板における水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図44に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水接触角が低下したが(経過時間0日の時点参照)、水蒸気処理を行うことにより水接触角が70°以上に回復した。
FIG. 44 is a graph showing a change in water contact angle (°) with respect to a water vapor treatment time (elapsed time (days)) in a Ti polishing plate.
As shown in FIG. 44, when the heat treatment was performed (“with heat treatment”), the water contact angle temporarily decreased after the heat treatment (see the time point of the elapsed time 0 days). The water contact angle recovered to 70 ° or more.
 図45は、Ti研磨板における水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図45に示すように、熱処理を行った場合(「熱処理あり」)、熱処理を行わなかった場合(「熱処理なし」)のいずれの場合においても、水蒸気処理により水滴転落角を50°以下に低下させることができた。
FIG. 45 is a graph showing the change of the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Ti polishing plate.
As shown in FIG. 45, in both cases of heat treatment (“with heat treatment”) and no heat treatment (“no heat treatment”), the water droplet falling angle is reduced to 50 ° or less by steam treatment. I was able to.
<Siウェハに対する水蒸気処理実験>
 Ag研磨板をSiウェハに変えたこと以外は<Ag研磨板に対する水蒸気処理実験>と同様にして水蒸気処理時間に対する水接触角及び水滴転落角の変化を測定した。
 なお、Siウェハとしては、(株)アキコーポレーション製Siウェハ(直径100mm±0.5mm、N型、面方位(100)、厚さ 525±25μm、抵抗1~10Ω・cm、オリフラ 32.5±2.5mm、片面ミラー研磨)を用いた。
<Water vapor treatment experiment for Si wafer>
Except that the Ag polishing plate was changed to a Si wafer, changes in the water contact angle and the water drop falling angle with respect to the water vapor treatment time were measured in the same manner as in the <Water vapor treatment experiment on the Ag polishing plate>.
Si wafers manufactured by Aki Corporation (diameter 100mm ± 0.5mm, N-type, plane orientation (100), thickness 525 ± 25μm, resistance 1-10Ω · cm, orientation flat 32.5 ± 2.5mm, Single-sided mirror polishing) was used.
 図46は、Siウェハにおける水蒸気処理時間(経過時間(日))に対する水接触角(°)の変化を示すグラフである。
 図46に示すように、熱処理を行った場合(「熱処理あり」)、熱処理を行わなかった場合(「熱処理なし」)のいずれの場合においても、水蒸気処理により水接触角を80°以上に向上させることができた。
FIG. 46 is a graph showing a change in water contact angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Si wafer.
As shown in FIG. 46, the water contact angle is increased to 80 ° or more by steam treatment in both cases where heat treatment was performed (“with heat treatment”) and when heat treatment was not performed (“no heat treatment”). I was able to.
 図47は、Siウェハにおける水蒸気処理時間(経過時間(日))に対する水滴転落角(°)の変化を示すグラフである。
 図47に示すように、熱処理を行った場合(「熱処理あり」)には、熱処理後、一時的に水滴転落角が高くなったが(経過時間0日の時点参照)、水蒸気処理を行うことにより水滴接触角が20°以下に低下した。
FIG. 47 is a graph showing a change in the water drop falling angle (°) with respect to the water vapor treatment time (elapsed time (days)) in the Si wafer.
As shown in FIG. 47, when the heat treatment was performed (“with heat treatment”), the water droplet falling angle temporarily increased after the heat treatment (see the time point of the elapsed time of 0 days), but the steam treatment should be performed. As a result, the water droplet contact angle decreased to 20 ° or less.
<金属基板に対する水蒸気処理実験のまとめ>
 本実験例14における、金属基板に対する水蒸気処理実験の結果をまとめると下記表5のようになる。
<Summary of steam treatment experiment on metal substrate>
The results of the water vapor treatment experiment on the metal substrate in Experimental Example 14 are summarized as shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5において、「水滴転落性」の欄では、水滴転落角90°未満の場合を「転落」とし、金属版を水平面に対して90°に傾けても転落しなかった場合を「×」と表記した。
 表5に示すように、熱処理を行わなかった場合、いずれの金属基板においても表面粗さRaが小さく、水蒸気処理後に水滴転落性が確認された。
 熱処理を行った場合、Ag研磨板、Al研磨板、Ti研磨板、Siウェハについては、熱処理を行った場合においても表面粗さRaが小さく、ガラス基板の場合(実験例13)と同様に、水蒸気処理後に水滴の転落が確認された。
In Table 5, in the column of “water drop tumbling property”, the case where the water drop tumbling angle is less than 90 ° is defined as “falling”, and the case where the metal plate does not fall even when tilted at 90 ° with respect to the horizontal plane is indicated as “x”. Indicated.
As shown in Table 5, when the heat treatment was not performed, the surface roughness Ra was small in any metal substrate, and water droplet falling property was confirmed after the water vapor treatment.
When the heat treatment is performed, the Ag polishing plate, the Al polishing plate, the Ti polishing plate, and the Si wafer have a small surface roughness Ra even when the heat treatment is performed, as in the case of the glass substrate (Experimental Example 13), Dropping of water droplets was confirmed after the steam treatment.
 また、Ag研磨板、Al研磨板、Ti研磨板、Siウェハでは、熱処理を行った場合(「熱処理あり」)、熱処理後に一時的に水接触角が低下し(経過時間0日の時点)、水蒸気処理を行うことにより水接触角が回復する、という共通の傾向が見られた(図34、図38、図44、図46)。
 また、これらの金属基板では、熱処理を行った場合(「熱処理あり」)、熱処理後に一時的に水滴転落角が高くなり(経過時間0日の時点参照)、水蒸気処理を行うことにより水滴接触角が低下する、という共通の傾向が見られた(図35、図39、図45、図47)。
 これらの金属基板における水接触角及び水滴転落角の挙動は、熱処理により一旦表面の有機物が除去されて親水性の状態となり、その後水蒸気処理により、表面に水酸基、特殊な構造を有するHOのクラスター、及び有機物が、抵抗点が少ない状態で均一性よく積み重ねられ(例えば、図56参照)、その結果、水滴接触角が低下したことを示すものと推測される。
In addition, in the case of Ag polishing plate, Al polishing plate, Ti polishing plate, and Si wafer, when the heat treatment is performed (“with heat treatment”), the water contact angle temporarily decreases after the heat treatment (at the time when the elapsed time is 0 days), A common tendency was observed that the water contact angle was recovered by performing steam treatment (FIGS. 34, 38, 44, and 46).
In addition, in these metal substrates, when heat treatment is performed (“with heat treatment”), the water droplet falling angle temporarily increases after the heat treatment (see the time point of elapsed time 0), and the water droplet contact angle is obtained by performing the water vapor treatment. There was a common trend of lowering (FIGS. 35, 39, 45, and 47).
The behavior of the water contact angle and water drop falling angle in these metal substrates is such that the surface organic substances are once removed by heat treatment to become a hydrophilic state, and then the surface of the H 2 O having a special structure is formed by steam treatment. It is presumed that the cluster and the organic matter are stacked with good uniformity in a state where the resistance point is small (see, for example, FIG. 56), and as a result, the water droplet contact angle is reduced.
 一方、Cu研磨板、Ni研磨板、Fe研磨板については、熱処理を行った場合には水滴が転落しなかった。この理由は明らかではないが、熱処理により表面粗さRaが大きくなったことが原因であると推察される。 On the other hand, with respect to the Cu polishing plate, the Ni polishing plate, and the Fe polishing plate, the water droplets did not fall down when the heat treatment was performed. The reason for this is not clear, but it is presumed that this is because the surface roughness Ra is increased by the heat treatment.
〔実験例15〕
≪ハフニア膜の形成及び評価≫
<ハフニア膜(1000℃)試料の作製>
 マグネトロンスパッタ装置を用い、スパッタターゲットをHfとして、充分な到達真空度まで真空引きした後、酸素分圧100%、全圧0.3Pa、スパッタリングDC電力300Wで、サファイアガラス基板(支持体)上に約100nmのハフニア膜(asdepo)を成膜した。
[Experimental Example 15]
≪Formation and evaluation of hafnia film≫
<Preparation of Hafnia Film (1000 ° C.) Sample>
Using a magnetron sputtering apparatus, the sputtering target is Hf, and after evacuating to a sufficient ultimate vacuum, the oxygen partial pressure is 100%, the total pressure is 0.3 Pa, and the sputtering DC power is 300 W on the sapphire glass substrate (support). A hafnia film (asdepo) of about 100 nm was formed.
 なお、スパッタ電力については、所望の表面粗さ(Ra)と適切な成膜速度が達成できれば上記電力に限定されるものではない。また、支持体としては後処理としての熱処理温度に耐えうる材料であれば特に限定されない。また、支持体は、そのまま用いてもよいし、表面にシリカ(SiO)膜等が形成されたものを用いてもよい。本実験例ではスパッタリング法による製膜方法で説明したが成膜の方法は、スパッタリング、CVD、イオンプレーティング、真空蒸着等、公知の方法を用いることができる。 Note that the sputtering power is not limited to the above power as long as a desired surface roughness (Ra) and an appropriate deposition rate can be achieved. The support is not particularly limited as long as it is a material that can withstand the heat treatment temperature as a post-treatment. The support may be used as it is, or a support having a silica (SiO 2 ) film or the like formed on the surface. In this experimental example, the film forming method by the sputtering method has been described, but a known method such as sputtering, CVD, ion plating, vacuum deposition, or the like can be used as the film forming method.
 成膜後のハフニア膜(asdepo(アズデポ))に対し、1000℃で90分間の熱処理(アニール)を行った。
 また、熱処理はマッフル炉(KDF-P90G,株式会社デンケン製)を用い、大気雰囲気下で行った。
 以上により、ハフニア膜(1000℃)試料を作製した。
The hafnia film (asdepo) after film formation was subjected to heat treatment (annealing) at 1000 ° C. for 90 minutes.
The heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
A hafnia film (1000 ° C.) sample was thus manufactured.
<ハフニア膜(500℃)試料の作製>
 サファイアガラス基板を、表面にシリカ膜が成膜されたソーダライムガラス基板に変更し、シリカ膜(下地膜)上に上記と同様の条件で約100nmのハフニア膜(asdepo)を成膜した。ここで、シリカ膜の形成条件は、実験例3の試料25~27におけるSiO膜の形成条件と同様である。
 成膜後のハフニア膜(asdepo)に対し、500℃で30分間の熱処理(アニール)を行った。
 また、熱処理はマッフル炉(KDF-P90G,株式会社デンケン製)を用い、大気雰囲気下で行った。
 以上により、ハフニア膜(500℃)試料を作製した。
 以下、本実験例中に記載の無い条件は、実験例1における条件と同様である。
<Preparation of Hafnia Film (500 ° C.) Sample>
The sapphire glass substrate was changed to a soda lime glass substrate having a silica film formed on the surface, and a hafnia film (asdepo) of about 100 nm was formed on the silica film (underlayer film) under the same conditions as described above. Here, the conditions for forming the silica film are the same as the conditions for forming the SiO 2 film in Samples 25 to 27 of Experimental Example 3.
The deposited hafnia film (asdepo) was subjected to heat treatment (annealing) at 500 ° C. for 30 minutes.
The heat treatment was performed in an air atmosphere using a muffle furnace (KDF-P90G, manufactured by Denken Co., Ltd.).
As described above, a sample of a hafnia film (500 ° C.) was produced.
Hereinafter, the conditions not described in this experimental example are the same as the conditions in Experimental example 1.
<XRD測定結果>
 図48は、ハフニア膜(500℃)及び成膜後であって熱処理前のハフニア膜(asdepo)のXRD測定結果であり、図49は、ハフニア膜(1000℃)及び成膜後であって熱処理前のハフニア膜(asdepo)のXRD測定結果である。
 図48及び図49に示すように、ハフニア膜(500℃)及びハフニア膜(1000℃)のいずれにおいても、熱処理後は、asdepoと比較して、結晶構造を示す回折線が増大しており、結晶化が進んでいることが確認された。
 特に、ハフニア膜(1000℃)では、ハフニア膜(500℃)と比較して、より結晶化が進んでいることが確認された。
<Results of XRD measurement>
FIG. 48 shows the XRD measurement result of the hafnia film (500 ° C.) and the hafnia film (asdepo) after the film formation and before the heat treatment, and FIG. 49 shows the heat treatment after the hafnia film (1000 ° C.) and the film formation. It is a XRD measurement result of the previous hafnia film | membrane (asdepo).
As shown in FIGS. 48 and 49, in both the hafnia film (500 ° C.) and the hafnia film (1000 ° C.), the diffraction lines indicating the crystal structure are increased after the heat treatment as compared with asdepo. It was confirmed that crystallization was progressing.
In particular, it was confirmed that the crystallization of the hafnia film (1000 ° C.) is more advanced than the hafnia film (500 ° C.).
<水蒸気処理>
 次に、ハフニア膜(500℃)及びハフニア膜(1000℃)のそれぞれについて水蒸気雰囲気下に放置し(即ち、水蒸気処理を施し)、放置時間(処理時間)に対する水接触角及び水滴転落角の変化を測定した。更に、対比として、ハフニア膜(500℃)及びハフニア膜(1000℃)のそれぞれについて、乾燥雰囲気下に放置したとき(Dry)の、放置時間に対する水接触角及び水滴転落角の変化を測定した。
 水蒸気処理条件及び乾燥雰囲気の条件の詳細は以下のとおりである。
<Steam treatment>
Next, each of the hafnia film (500 ° C.) and the hafnia film (1000 ° C.) is left in a water vapor atmosphere (that is, subjected to a water vapor treatment), and changes in water contact angle and water droplet falling angle with respect to the standing time (treatment time). Was measured. Further, as a comparison, the changes in the water contact angle and the water droplet falling angle with respect to the standing time when the hafnia film (500 ° C.) and the hafnia film (1000 ° C.) were left in a dry atmosphere (Dry) were measured.
The details of the steam treatment conditions and the dry atmosphere conditions are as follows.
-水蒸気処理条件及び乾燥雰囲気の条件-
「40℃、95%」
 … 温度40℃、相対湿度95%(絶対湿度48g/m)の雰囲気中に放置した。
「90℃、50%」
 … 温度90℃、相対湿度50%(絶対湿度211g/m)の雰囲気中に放置した。
「Dry」
 … 乾燥雰囲気(温度25℃、相対湿度2%(絶対湿度0.5g/m)に調整したTOYO LIVING社製Superdrybox)中に放置した。
-Steam treatment conditions and dry atmosphere conditions-
"40 ° C, 95%"
... left in an atmosphere of a temperature of 40 ° C. and a relative humidity of 95% (absolute humidity 48 g / m 3 ).
"90 ° C, 50%"
... left in an atmosphere of a temperature of 90 ° C. and a relative humidity of 50% (absolute humidity 211 g / m 3 ).
"Dry"
... left in a dry atmosphere (Superdrybox manufactured by TOYO LIVING, adjusted to a temperature of 25 ° C and a relative humidity of 2% (absolute humidity 0.5 g / m 2 )).
 図50は、ハフニア膜(500℃)における水接触角の変化を示すグラフである。
 図50に示すように、水蒸気処理を行った場合(「40℃、95%」、「90℃、50%」)には、乾燥雰囲気中に放置した場合(Dry)に比べて、より短い時間で接触角を上昇させることができた。接触角上昇の効果は、「90℃、50%」の条件で特に顕著であった。
FIG. 50 is a graph showing a change in water contact angle in a hafnia film (500 ° C.).
As shown in FIG. 50, when the water vapor treatment is performed (“40 ° C., 95%”, “90 ° C., 50%”), the time is shorter than when left in a dry atmosphere (Dry). It was possible to raise the contact angle. The effect of increasing the contact angle was particularly remarkable under the condition of “90 ° C., 50%”.
 図51は、ハフニア膜(500℃)における水滴転落角の変化を示すグラフである。
 図51に示すように、乾燥雰囲気中に放置した場合(Dry)には、水滴は転落しなかった。
 これに対し水蒸気処理(「40℃、95%」、「90℃、50%」)を行うことにより、水滴転落角を低下させることができた。水滴転落角を低下させる効果は、「90℃、50%」で顕著であり、この条件では24時間の処理により水滴転落角を低下させることができた。
FIG. 51 is a graph showing changes in the water drop falling angle in a hafnia film (500 ° C.).
As shown in FIG. 51, when left in a dry atmosphere (Dry), the water droplets did not fall.
On the other hand, by performing steam treatment (“40 ° C., 95%”, “90 ° C., 50%”), the water droplet falling angle could be reduced. The effect of reducing the water drop falling angle is remarkable at “90 ° C., 50%”. Under these conditions, the water drop falling angle could be reduced by treatment for 24 hours.
 図52は、ハフニア膜(1000℃)における水接触角の変化を示すグラフである。
 図52に示すように、接触角上昇の効果は、「90℃、50%」の条件で特に顕著であった。
FIG. 52 is a graph showing a change in water contact angle in a hafnia film (1000 ° C.).
As shown in FIG. 52, the effect of increasing the contact angle was particularly remarkable under the condition of “90 ° C., 50%”.
 図53は、ハフニア膜(1000℃)における水滴転落角の変化を示すグラフである。
 図53に示すように、乾燥雰囲気中に放置した場合(Dry)には、水滴転落角は不安定な挙動を示した。
 これに対し水蒸気処理(「40℃、95%」、「90℃、50%」)を行った場合には、水滴転落角を低下させることができ、しかも放置時間24時間以降は水滴転落角は安定していた。
FIG. 53 is a graph showing changes in the water drop falling angle in the hafnia film (1000 ° C.).
As shown in FIG. 53, when left in a dry atmosphere (Dry), the water drop falling angle showed an unstable behavior.
On the other hand, when steam treatment (“40 ° C., 95%”, “90 ° C., 50%”) is performed, the water droplet falling angle can be reduced, and after the standing time of 24 hours, the water droplet falling angle is It was stable.
<表面粗さRa>
 水滴転落角と表面粗さとの相関を調べるために、ハフニア膜(1000℃)を「Dry」条件で340時間放置した試料(水滴転落角が高い試料)と、ハフニア膜(1000℃)を「90℃、50%」条件で340時間放置した試料(水滴転落角が低い試料)と、について、表面粗さRaを測定した。
 表面粗さRaの測定は、各試料中の3箇所(測定点1~3)のそれぞれについて、測定範囲25μm角と測定範囲0.5μm角との2条件で行った。
<Surface roughness Ra>
In order to investigate the correlation between the water drop falling angle and the surface roughness, a sample in which the hafnia film (1000 ° C.) was allowed to stand for 340 hours under the “Dry” condition (a sample with a high water drop falling angle) and a hafnia film (1000 ° C.) were set to “90”. The surface roughness Ra was measured for a sample that was left for 340 hours under the condition of “° C., 50%” (a sample having a low waterdrop angle).
The surface roughness Ra was measured under two conditions of a measurement range of 25 μm square and a measurement range of 0.5 μm square at each of three locations (measurement points 1 to 3) in each sample.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表6に示すように、いずれの試料も表面粗さRaは小さく、表面粗さRaに有意差は見られなかった。
 「90℃、50%」の試料について水滴転落角が低下した理由は、表面粗さRaが小さいことに加え、水蒸気処理により表面の抵抗点を減少させることができたため、と推測される。
As shown in Table 6 above, all the samples had a small surface roughness Ra, and no significant difference was observed in the surface roughness Ra.
The reason why the water drop sliding angle decreased for the sample of “90 ° C., 50%” is presumed to be that the surface resistance point was reduced by the steam treatment in addition to the small surface roughness Ra.
〔実験例16〕
≪水蒸気処理前後の摩擦力及び動摩擦係数の測定≫
 以下の各測定試料の表面について、摩擦力及び動摩擦係数の測定を行った。
 摩擦力及び動摩擦係数の測定は、各測定試料について、水蒸気処理を施す前と水蒸気処理を施した後とにそれぞれ行った。
 ここで、水蒸気処理の条件は、温度90℃相対湿度50%の水蒸気雰囲気中に、測定試料を4日間(96時間)保管する条件とした。
 また、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experimental Example 16]
≪Measurement of friction force and dynamic friction coefficient before and after steam treatment≫
The surface of each measurement sample below was measured for friction force and dynamic friction coefficient.
The measurement of the frictional force and the dynamic friction coefficient was performed on each measurement sample before and after the steam treatment.
Here, the conditions for the steam treatment were such that the measurement sample was stored for 4 days (96 hours) in a steam atmosphere at a temperature of 90 ° C. and a relative humidity of 50%.
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
<測定試料>
・アルミナ膜(Al) … 実験例1で作製したアルミナ膜(ゾルゲル法)と同様のアルミナ膜を用いた。
・ハフニア膜(HfO) … 実験例1で作製したハフニア膜(0.1M)(ゾルゲル法)と同様のハフニア膜を用いた。
・石英ガラス基板(Quartz Glass;Q.G.) … 両面の表面粗さRaが0.3nm±0.1nm(25μm角内)である石英ガラス基板を用いた。
・ステンレス基板(Stainless steel(SUS)) … SUS304基板(株式会社ニラコ製品、型番753323)を片面鏡面研磨して作製された、片面(水蒸気処理が施される面)の表面粗さRaが1.6nm±0.1nm(25μm角内)であるSUS304基板(以下、「SUS304鏡面研磨板」ともいう)を用いた。
<Measurement sample>
Alumina film (Al 2 O 3 ): An alumina film similar to the alumina film (sol-gel method) produced in Experimental Example 1 was used.
Hafnia film (HfO 2 ) A hafnia film similar to the hafnia film (0.1M) (sol-gel method) produced in Experimental Example 1 was used.
Quartz glass substrate (Quartz Glass; Q.G.) A quartz glass substrate having a surface roughness Ra of 0.3 nm ± 0.1 nm (within 25 μm square) on both sides was used.
-Stainless steel substrate (Stainless steel (SUS)) ... The surface roughness Ra of one side (surface subjected to water vapor treatment) produced by single-side mirror polishing of a SUS304 substrate (Niraco Co., Ltd., model No. 75323) is 1. A SUS304 substrate (hereinafter also referred to as “SUS304 mirror polishing plate”) having a thickness of 6 nm ± 0.1 nm (within 25 μm square) was used.
<測定方法>
 摩擦力顕微鏡(日本電子(株)製、製品名JSPM-5200)に下記カンチレバーを取り付け、該カンチレバーの探針によって測定試料表面を走査することにより、摩擦力及び動摩擦係数を測定した。
<Measurement method>
A friction force microscope (manufactured by JEOL Ltd., product name: JSPM-5200) was attached with the following cantilever, and the surface of the measurement sample was scanned with the probe of the cantilever to measure the friction force and the dynamic friction coefficient.
~カンチレバー~
・製品名: オリンパス(株)製OMCL-RC800PSA-1
・垂直方向(厚み方向)のバネ定数: 0.05[N/m]
・材質: 窒化シリコン(Si
・レバー幅w: w=20[μm]
・レバー厚さt: t=0.8[μm]
・レバー長さl: l=200[μm]
・探針長さh: h=2.9[μm]
・せん断弾性係数G: G=7.35×1010[N/m
・ねじれバネ定数k: k=0.000375[N/rad]
※ ここで、ねじれバネ定数kは、下記式(A)により求められる値である。
 k=(wtG)/(3l(h+t/2))  …  式(A)
[式(A)において、w、t、G、l、及びhは、それぞれ、レバー幅、レバー厚さ、せん断弾性係数、レバー長さ、及び探針長さを表す。]
~ Cantilever ~
-Product name: Olympus OMCL-RC800PSA-1
-Spring constant in the vertical direction (thickness direction): 0.05 [N / m]
・ Material: Silicon nitride (Si 3 N 4 )
・ Lever width w: w = 20 [μm]
・ Lever thickness t: t = 0.8 [μm]
・ Lever length l: l = 200 [μm]
-Probe length h: h = 2.9 [μm]
Shear elastic modulus G: G = 7.35 × 10 10 [N / m 2 ]
-Torsion spring constant k: k = 0.000375 [N / rad]
* Here, the torsion spring constant k is a value obtained by the following equation (A).
k = (wt 3 G) / (3l (h + t / 2)) Formula (A)
[In Formula (A), w, t, G, l, and h represent a lever width, a lever thickness, a shear elastic modulus, a lever length, and a probe length, respectively. ]
~測定条件~
・測定モード: コンタクトモード
・押付圧N: N=14[nF]
・クロック(1点を測定するのに要する時間): 333.33μsec
・測定点の数: 各試料につき256点×256点
・測定範囲(走査領域): 2μm×2μm(アルミナ膜)、又は、0.5μm×0.5μm(ハフニア膜、Q.G.、SUS)
・走査速度: 5.9[μm/sec](アルミナ膜)、又は、1.5[μm/sec](ハフニア膜、Q.G.、SUS)
 ※ここで、走査速度は、走査距離(2μm又は1.5μm)を、測定箇所一行(256点)を走査するために必要な時間(クロック333.33μsec×256点)で割ることにより算出した。
-Measurement conditions-
・ Measurement mode: Contact mode ・ Pressing pressure N: N = 14 [nF]
-Clock (time required to measure one point): 333.33 μsec
Number of measurement points: 256 points × 256 points for each sample Measurement range (scanning area): 2 μm × 2 μm (alumina film) or 0.5 μm × 0.5 μm (hafnia film, QG, SUS)
Scanning speed: 5.9 [μm / sec] (alumina film) or 1.5 [μm / sec] (hafnia film, Q.G., SUS)
* Here, the scanning speed was calculated by dividing the scanning distance (2 μm or 1.5 μm) by the time (clock 333.33 μsec × 256 points) required to scan one line (256 points) at the measurement location.
~摩擦力F~
 上記測定条件により測定された測定電圧Vを用い、下記式(B)に従って、摩擦力Fを求めた。
 F=(ka(V-V)/2d)×10[nN] … 式(B)
 上記式(B)において、k、a、V、V、及びdは、それぞれ以下の値を示す。
・ねじれバネ定数k: k=0.000375[N/rad]
・力感度a(装置依存の値): a=0.015[mm/V]
・測定電圧V: 上記測定条件により測定された電圧
・基準電圧V: V=0[V]
・光ディテクタとカンチレバーとの距離d(装置依存の値): d=40[mm]
~ Friction force F ~
Using the measurement voltage V measured under the above measurement conditions, the frictional force F was determined according to the following formula (B).
F = (ka (V−V 0 ) / 2d) × 10 9 [nN] Formula (B)
In the above formula (B), k, a, V, V 0 , and d represent the following values, respectively.
-Torsion spring constant k: k = 0.000375 [N / rad]
Force sensitivity a (apparatus-dependent value): a = 0.015 [mm / V]
-Measurement voltage V: Voltage measured under the above measurement conditions -Reference voltage V 0 : V 0 = 0 [V]
-Distance d between optical detector and cantilever (device-dependent value): d = 40 [mm]
~動摩擦係数μ~
 下記式(C)に従って、動摩擦係数μを求めた。
 μ=F/N   … 式(C)
 上記式(C)において、F及びNは、それぞれ、以下の値を表す。
・摩擦力F: 1回の測定(256点×256点)における摩擦力Fの最頻値F
・押付圧N: N=14[nF]
~ Dynamic friction coefficient μ ~
The dynamic friction coefficient μ was determined according to the following formula (C).
μ = F M / N Formula (C)
In the above formula (C), F M and N respectively represent the following values.
Friction force F M : Mode value F M of the friction force F in one measurement (256 points × 256 points)
・ Pressing pressure N: N = 14 [nF]
<摩擦力Fの測定結果>
~摩擦力F~
 図57は、アルミナ膜(Al)の摩擦力の測定結果を示すグラフである。
 図58は、ハフニア膜(HfO)の摩擦力の測定結果を示すグラフである。
 図59は、石英ガラス基板(Q.G.)の摩擦力の測定結果を示すグラフである。
 図60は、ステンレス基板(SUS)の摩擦力の測定結果を示すグラフである。
<Measurement result of frictional force F>
~ Friction force F ~
FIG. 57 is a graph showing the measurement results of the frictional force of the alumina film (Al 2 O 3 ).
FIG. 58 is a graph showing the measurement results of the frictional force of the hafnia film (HfO 2 ).
59 is a graph showing the measurement results of the frictional force of the quartz glass substrate (QG).
FIG. 60 is a graph showing the measurement results of the frictional force of the stainless steel substrate (SUS).
 図57~図60において、横軸は摩擦力F(Friction Force(nN))を表し、縦軸は度数を表す。
 図57~図60において、「pre.」は水蒸気処理前の摩擦力を表し、「tre.」は水蒸気処理後の摩擦力を表す。
 また、図57~図60において、1つの波形は、1回(256点×256点)の測定の結果を示している。例えば、図57は、アルミナ膜について、水蒸気処理前の摩擦力測定を2回行い、水蒸気処理後の摩擦力測定を3回行った結果を示している。このため、図57には、「pre.」の波形が2つ、「tre.」の波形が3つ表されている。
57 to 60, the horizontal axis represents the friction force F (Friction Force (nN)), and the vertical axis represents the frequency.
57 to 60, “pre.” Represents the friction force before the steam treatment, and “tre.” Represents the friction force after the steam treatment.
In FIGS. 57 to 60, one waveform shows the result of one measurement (256 points × 256 points). For example, FIG. 57 shows the result of performing the frictional force measurement before the water vapor treatment twice and the frictional force measurement after the water vapor treatment three times for the alumina film. Therefore, FIG. 57 shows two “pre.” Waveforms and three “tre.” Waveforms.
 図57に示すように、アルミナ膜では、水蒸気処理により表面の摩擦力が低下していた。詳しくは、水蒸気処理後の摩擦力の最頻値(ピーク値を指す。以下同じ。)は、水蒸気処理前の摩擦力の最頻値と比較して、半分以下であった。
 また、水蒸気処理後のアルミナ膜表面は、摩擦力が10nN以下である領域を含んでいた。
 また、このアルミナ膜について、水蒸気処理前の接触角、水蒸気処理後の接触角、水蒸気処理前の水滴転落角、及び水蒸気処理後の水滴転落角を測定したところ、それぞれ、8.4°±0.8°、83.0°±2.1°、90°、及び、14±1°であった。
As shown in FIG. 57, in the alumina film, the surface frictional force was reduced by the water vapor treatment. Specifically, the mode of friction force after the steam treatment (referred to as a peak value; the same applies hereinafter) was less than half of the mode of friction force before the steam treatment.
Further, the surface of the alumina film after the water vapor treatment included a region where the frictional force was 10 nN or less.
Further, the contact angle before the water vapor treatment, the contact angle after the water vapor treatment, the water droplet falling angle before the water vapor treatment, and the water droplet falling angle after the water vapor treatment were measured for this alumina film, respectively. 8 °, 83.0 ° ± 2.1 °, 90 °, and 14 ± 1 °.
 図58に示すように、ハフニア膜では、水蒸気処理により表面の摩擦力が低下していた。詳しくは、水蒸気処理後の摩擦力の最頻値は、水蒸気処理前の摩擦力の最頻値と比較して、半分以下であった。
 また、水蒸気処理後のハフニア膜表面は、摩擦力が10nN以下である領域を含んでいた。
 また、このハフニア膜について、水蒸気処理前の接触角、水蒸気処理後の接触角、水蒸気処理前の水滴転落角、及び水蒸気処理後の水滴転落角を測定したところ、それぞれ、7.3°±0.5°、86.7°±0.3°、90°、及び、16.7°±1.2°であった。
As shown in FIG. 58, the surface frictional force of the hafnia film was reduced by the water vapor treatment. Specifically, the mode value of the frictional force after the steam treatment was less than half compared to the mode value of the frictional force before the steam treatment.
In addition, the surface of the hafnia film after the water vapor treatment included a region where the frictional force was 10 nN or less.
Further, with respect to the hafnia film, the contact angle before the steam treatment, the contact angle after the steam treatment, the water drop falling angle before the steam treatment, and the water drop falling angle after the steam treatment were measured. 0.5 °, 86.7 ° ± 0.3 °, 90 °, and 16.7 ° ± 1.2 °.
 図59に示すように、石英ガラス基板では、水蒸気処理により表面の摩擦力が低下していた。詳しくは、水蒸気処理後の摩擦力の最頻値は、水蒸気処理前の摩擦力の最頻値と比較して、半分以下であった。
 また、水蒸気処理後の石英ガラス基板表面は、摩擦力が10nN以下である領域を含んでいた。
 また、この石英ガラス基板について、水蒸気処理前の接触角、水蒸気処理後の接触角、水蒸気処理前の水滴転落角、及び水蒸気処理後の水滴転落角を測定したところ、それぞれ、6.1°±1.1°、77.4°±1.1°、90°、及び、21°±1°であった。
As shown in FIG. 59, in the quartz glass substrate, the surface frictional force was reduced by the water vapor treatment. Specifically, the mode value of the frictional force after the steam treatment was less than half compared to the mode value of the frictional force before the steam treatment.
Further, the surface of the quartz glass substrate after the water vapor treatment included a region where the frictional force was 10 nN or less.
Further, the quartz glass substrate was measured for a contact angle before the water vapor treatment, a contact angle after the water vapor treatment, a water droplet falling angle before the water vapor treatment, and a water droplet falling angle after the water vapor treatment. They were 1.1 °, 77.4 ° ± 1.1 °, 90 °, and 21 ° ± 1 °.
 図60に示すように、ステンレス基板では、水蒸気処理により表面の摩擦力が低下していた。また、水蒸気処理後のステンレス基板表面は、摩擦力が10nN以下である領域を含んでいた。
 また、このステンレス基板について、水蒸気処理前の接触角、水蒸気処理後の接触角、水蒸気処理前の水滴転落角、及び水蒸気処理後の水滴転落角を測定したところ、それぞれ、10.1°±1.7°、80.3°±0.9°、90°、及び、32°±1.4°であった。
As shown in FIG. 60, in the stainless steel substrate, the surface frictional force was reduced by the steam treatment. Further, the surface of the stainless steel substrate after the steam treatment included a region where the frictional force was 10 nN or less.
Further, when the contact angle before the steam treatment, the contact angle after the steam treatment, the water drop falling angle before the steam treatment, and the water drop falling angle after the steam treatment were measured for this stainless steel substrate, 10.1 ° ± 1 7 °, 80.3 ° ± 0.9 °, 90 °, and 32 ° ± 1.4 °.
<動摩擦係数μの測定結果>
 各測定試料についての動摩擦係数μを下記表7に示す。
<Measurement results of dynamic friction coefficient μ>
The dynamic friction coefficient μ for each measurement sample is shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、いずれの測定試料においても、水蒸気処理により表面の動摩擦係数μが低下していた。特に、アルミナ膜、ハフニア膜、及び石英ガラス基板については、動摩擦係数μ(平均値)が1.0以下にまで低下していた。 As shown in Table 7, the dynamic friction coefficient μ of the surface was lowered by the steam treatment in any measurement sample. In particular, for the alumina film, the hafnia film, and the quartz glass substrate, the dynamic friction coefficient μ (average value) was lowered to 1.0 or less.
<比較例>
 次に、比較例として、水蒸気処理を施していない下記の測定試料について、上記と同様に、摩擦力及び動摩擦係数の測定を行った。
・シリコンウェハ(Si(100)) … リンドープN型Si((株)アキコーポレーション)
・サファイアガラス(Sapphire(0001)) … Al((株)アキコーポレーション)
<Comparative example>
Next, as a comparative example, the friction force and the dynamic friction coefficient were measured in the same manner as described above for the following measurement sample that was not subjected to the steam treatment.
-Silicon wafer (Si (100)) ... Phosphorus-doped N-type Si (Aki Corporation)
・ Sapphire glass (Sapphire (0001)): Al 2 O 3 (Aki Corporation)
 図61は、水蒸気処理が施されていない、シリコンウェハ及びサファイアガラスの摩擦力の測定結果を示すグラフである。
 図61に示すように、水蒸気処理が施されていないシリコンウェハ及びサファイアガラスは、いずれも摩擦力が高く、摩擦力が10nN以下である領域を含んでいなかった。
FIG. 61 is a graph showing the measurement results of the frictional force of a silicon wafer and sapphire glass that have not been subjected to water vapor treatment.
As shown in FIG. 61, the silicon wafer and the sapphire glass not subjected to the water vapor treatment both had high frictional force and did not include a region where the frictional force was 10 nN or less.
 また、水蒸気処理が施されていないシリコンウェハの動摩擦係数μは1.6であり、水蒸気処理が施されていないサファイアガラスの動摩擦係数μは1.3であり、いずれも1.0を超えていた。 Further, the dynamic friction coefficient μ of the silicon wafer not subjected to the water vapor treatment is 1.6, and the dynamic friction coefficient μ of the sapphire glass not subjected to the water vapor treatment is 1.3, both of which exceed 1.0. It was.
〔実験例17〕
≪水蒸気処理条件の検討2≫
 以下の各測定試料の表面について、前処理として、エキシマーランプ照射処理又は超音波洗浄処理を行い(前処理の条件を以下に示す)、次いで、種々の条件の水蒸気処理(水蒸気処理の条件を以下に示す)を4日間施し、該水蒸気処理後の接触角及び水滴転落角を測定した。
 また、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experimental Example 17]
≪Study of steam treatment conditions 2≫
Excimer lamp irradiation treatment or ultrasonic cleaning treatment is performed as a pretreatment on the surface of each measurement sample below (pretreatment conditions are shown below), and then water vapor treatment under various conditions (water vapor treatment conditions are as follows) For 4 days, and the contact angle and water drop falling angle after the steam treatment were measured.
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
<測定試料>
・ステンレス基板 … 実験例16で用いたSUS304鏡面研磨板と同じSUS304鏡面研磨板を用いた。
・ソーダライムガラス基板 … 実験例13で用いたソーダライムガラス基板と同じソーダライムガラス基板を用いた。
・石英ガラス基板 … 実験例16で用いた石英ガラス基板と同じ石英ガラス基板を用いた。
・アルミナ膜(Al) … 実験例16で用いたアルミナ膜と同様のアルミナ膜を用いた。
・ハフニア膜(HfO) … 実験例16で用いたハフニア膜と同様のハフニア膜を用いた。
<Measurement sample>
Stainless steel substrate: The same SUS304 mirror polishing plate as the SUS304 mirror polishing plate used in Experimental Example 16 was used.
-Soda lime glass substrate The same soda lime glass substrate as the soda lime glass substrate used in Experimental Example 13 was used.
Quartz glass substrate: The same quartz glass substrate as that used in Experimental Example 16 was used.
Alumina film (Al 2 O 3 ): An alumina film similar to the alumina film used in Experimental Example 16 was used.
Hafnia film (HfO 2 ) A hafnia film similar to the hafnia film used in Experimental Example 16 was used.
<前処理の条件>
・エキシマーランプ照射処理 … 各測定試料の水蒸気処理を施す側の表面に対し、前処理として、エキシマーランプ(ウシオ電機株式会社社製UEP20B、波長172nm)を、10mW/cmの強度にて0.166時間照射した。
・超音波洗浄処理 … 各測定試料の水蒸気処理を施す側の表面に対し、前処理として、超音波洗浄装置(米BRANSON社製5510J-MT 42kHz)を用い、ピュアーソフト洗剤1:4純水溶液中、135Wの条件にて、0.33時間の超音波洗浄処理を行った。
<Conditions for pretreatment>
Excimer lamp irradiation treatment: As a pretreatment, an excimer lamp (UEP20B manufactured by Ushio Electric Co., Ltd., wavelength 172 nm) is applied to the surface of each measurement sample on the side subjected to water vapor treatment at an intensity of 10 mW / cm 2 . Irradiated for 166 hours.
-Ultrasonic cleaning treatment: For the surface of each measurement sample on the side subjected to the steam treatment, an ultrasonic cleaning device (5510J-MT 42 kHz, manufactured by BRANSON, USA) is used as a pretreatment, in a pure soft detergent 1: 4 pure aqueous solution. And ultrasonic cleaning treatment for 0.33 hours under the condition of 135 W.
<水蒸気処理条件>
・28℃2%RHdrybox … 実験例15に示した乾燥機中において、温度28℃、相対湿度2%の条件の水蒸気雰囲気中にて、測定試料を4日間保管した。
・40℃95%RH恒温槽 … 実験例4で説明した条件と同様の40℃95%の水蒸気雰囲気中にて、測定試料を4日間保管した。
・90℃50%RH恒温槽 … 実験例4で説明した条件と同様の90℃50%の水蒸気雰囲気中にて、測定試料を4日間保管した。
・120℃オートグレーブ … 実験例4で説明した条件と同様の120℃オートグレーブの水蒸気雰囲気中にて、測定試料を4日間保管した。
・180℃オートグレーブ … 実験例4で説明した条件と同様の180℃オートグレーブ条件の水蒸気雰囲気中にて、測定試料を4日間保管した。
<Steam treatment conditions>
-28 degreeC 2% RHdrybox ... In the dryer shown in Experimental Example 15, the measurement sample was stored for 4 days in the water vapor atmosphere of temperature 28 degreeC and relative humidity 2% conditions.
40 ° C. and 95% RH constant temperature bath: The measurement sample was stored for 4 days in a steam atmosphere at 40 ° C. and 95% similar to the conditions described in Experimental Example 4.
-90 degreeC 50% RH constant temperature bath ... The measurement sample was stored for 4 days in the 90 degreeC50% water vapor | steam atmosphere similar to the conditions demonstrated in Experimental example 4. FIG.
-120 degreeC auto-grave ... The measurement sample was stored for 4 days in the water vapor | steam atmosphere of the 120 degreeC auto-grave similar to the conditions demonstrated in Experimental example 4.
-180 degreeC auto-grave ... The measurement sample was stored for 4 days in the water vapor | steam atmosphere of the 180 degreeC auto-grave conditions similar to the conditions demonstrated in Experimental example 4. FIG.
<評価結果>
~ステンレス基板~
 表8に、ステンレス基板に関する、前処理条件、水蒸気処理条件、並びに水蒸気処理後の接触角及び水滴転落角を示す。
 表8に示すように、温度×相対湿度が、3800(℃・%)、4500(℃・%)、又は12000(℃・%)の条件(特に、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件)の水蒸気処理を施したステンレスは、優れた滑水性(低い転落角)を示した。
 これらの条件のうち、表面酸化をより抑制する観点からみた特に好ましい条件は、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件である。
<Evaluation results>
-Stainless steel substrate-
Table 8 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for the stainless steel substrate.
As shown in Table 8, the temperature x relative humidity is 3800 (° C.%), 4500 (° C.%), or 12000 (° C.%) (particularly, the temperature x relative humidity is 3800 (° C.% ) Or 4500 (degrees C.%) water vapor treated stainless steel showed excellent sliding properties (low sliding angle).
Among these conditions, a particularly preferable condition from the viewpoint of further suppressing the surface oxidation is a temperature × relative humidity of 3800 (° C.%) or 4500 (° C.%).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
~ソーダライムガラス基板~
 表9に、ソーダライムガラス基板に関する、前処理条件、水蒸気処理条件、並びに水蒸気処理後の接触角及び水滴転落角を示す。
 表9に示すように、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件の水蒸気処理を施したソーダライムガラス基板は、優れた滑水性(低い転落角)を示した。
~ Soda lime glass substrate ~
Table 9 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for a soda lime glass substrate.
As shown in Table 9, the soda-lime glass substrate subjected to the steam treatment under the conditions of temperature × relative humidity of 3800 (° C./%) or 4500 (° C./%) has an excellent sliding property (low falling angle). Indicated.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
~石英ガラス基板~
 表10に、アルミナ膜(Al)に関する、前処理条件、水蒸気処理条件、並びに水蒸気処理後の接触角及び水滴転落角を示す。
 表10に示すように、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件の水蒸気処理を施した石英ガラスは、優れた滑水性(低い転落角)を示した。
-Quartz glass substrate-
Table 10 shows the pretreatment conditions, the steam treatment conditions, the contact angle after the steam treatment, and the water drop falling angle regarding the alumina film (Al 2 O 3 ).
As shown in Table 10, the quartz glass subjected to the steam treatment under the conditions of temperature × relative humidity of 3800 (° C./%) or 4500 (° C./%) showed excellent sliding property (low sliding angle). .
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
~アルミナ膜~
 表11に、アルミナ膜に関する、前処理条件、水蒸気処理条件、並びに水蒸気処理後の接触角及び水滴転落角を示す。
 表11に示すように、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件の水蒸気処理を施したアルミナ膜は、優れた滑水性(低い転落角)を示した。
~ Alumina film ~
Table 11 shows the pretreatment conditions, the steam treatment conditions, the contact angle after the steam treatment, and the water drop falling angle for the alumina film.
As shown in Table 11, the alumina film subjected to the steam treatment under the conditions of temperature × relative humidity of 3800 (° C./%) or 4500 (° C./%) showed excellent sliding property (low sliding angle). .
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
~ハフニア膜~
 表12に、ハフニア膜に関する、前処理条件、水蒸気処理条件、並びに水蒸気処理後の接触角及び水滴転落角を示す。
 表12に示すように、温度×相対湿度が、3800(℃・%)又は4500(℃・%)の条件の水蒸気処理を施したハフニア膜は、優れた滑水性(低い転落角)を示した。
~ Hafnia film ~
Table 12 shows pretreatment conditions, water vapor treatment conditions, contact angle after water vapor treatment, and water drop falling angle for the hafnia film.
As shown in Table 12, the hafnia film subjected to the steam treatment under the conditions of temperature × relative humidity of 3800 (° C./%) or 4500 (° C./%) showed excellent sliding property (low sliding angle). .
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
〔実験例18〕
≪水蒸気処理後の滑水性の長期安定性に関する評価≫
 HfO膜(実験例16で用いたハフニア膜と同様のハフニア膜)及びAl膜(実験例16で用いたアルミナ膜と同様のアルミナ膜)の各測定試料について、下記表13及び表14に示す種々の条件の水蒸気処理を行い、水蒸気処理後直後(水蒸気処理後1時間以内)及び水蒸気処理から1年経過後において、水滴転落角及び水接触角をそれぞれ測定した。
 なお、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experiment 18]
≪Evaluation on long-term stability of water slide after steam treatment≫
For each measurement sample of the HfO 2 film (hafnia film similar to the hafnia film used in Experimental Example 16) and the Al 2 O 3 film (alumina film similar to the alumina film used in Experimental Example 16), the following Table 13 and Table Water vapor treatment under various conditions shown in Fig. 14 was performed, and the water drop falling angle and the water contact angle were measured immediately after the water vapor treatment (within 1 hour after the water vapor treatment) and one year after the water vapor treatment.
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
 表13は、水蒸気処理後直後(水蒸気処理後1時間以内)及び水蒸気処理から1年経過後の、水滴転落角を示す。
 表14は、水蒸気処理後直後(水蒸気処理後1時間以内)及び水蒸気処理から1年経過後の、水接触角を示す。
Table 13 shows the water drop falling angle immediately after the steam treatment (within 1 hour after the steam treatment) and after one year from the steam treatment.
Table 14 shows the water contact angle immediately after the steam treatment (within 1 hour after the steam treatment) and after one year from the steam treatment.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表13に示すように、温度40℃以上の水蒸気処理条件で処理した試料(特に、温度×相対湿度が2700(℃・%)以上の条件)は、処理から1年経過後においても水滴転落角の増加が抑えられており、長期に渡り滑水性が維持されていた。
 このように、ある程度の熱負荷がかかっている試料は、滑水性の長期安定性にも優れている。
 この結果から、水蒸気処理後に、後処理として熱処理(例えば水蒸気処理温度以上の温度の熱処理)を施すことで、滑水性の長期安定性をより向上できることが示唆された。
As shown in Table 13, the sample treated under the water vapor treatment condition at a temperature of 40 ° C. or higher (particularly the condition where the temperature × relative humidity is 2700 (° C./%) or higher) is the water drop falling angle even after 1 year from the treatment. The increase in water was suppressed, and the sliding property was maintained for a long time.
Thus, the sample to which a certain amount of heat load is applied is also excellent in the long-term stability of the water slidability.
From this result, it was suggested that the long-term stability of the water slidability can be further improved by performing a heat treatment (for example, a heat treatment at a temperature equal to or higher than the steam treatment temperature) as a post-treatment after the steam treatment.
〔実験例19〕
≪水蒸気処理後の滑水性の熱的安定性に関する評価≫
 ソーダライムガラス基板(SLG)及びハフニア膜(HfO)について、水蒸気処理後に、後処理として種々の条件の熱処理(以下、「後熱処理」ともいう)を施し、この後熱処理後の水接触角及び水滴転落角を測定した。
 また、対比実験として、水蒸気処理後に、室温(25℃)において後熱処理と同じ時間保管したときの水接触角及び水滴転落角を測定した。
 ここで、ソーダライムガラス基板及びハフニア膜としては、実験例17と同様のソーダライムガラス基板及びハフニア膜を用いた。
 また、水蒸気処理条件は、温度90℃相対湿度50%の水蒸気雰囲気中に、測定試料を4日間(96時間)保管する条件とした。
 また、この後熱処理は、実験例1と同様のマッフル炉を用いて行った。
 後熱処理の温度は、200℃、300℃、400℃、及び500℃の各温度とし、いずれの温度についても、熱処理時間は1時間とした。
 また、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experimental Example 19]
≪Evaluation of thermal stability of water slide after steam treatment≫
The soda-lime glass substrate (SLG) and the hafnia film (HfO 2 ) are subjected to heat treatment under various conditions (hereinafter also referred to as “post-heat treatment”) after the water vapor treatment, and the water contact angle after the post-heat treatment and The water drop falling angle was measured.
Further, as a comparison experiment, after the steam treatment, the water contact angle and the water drop falling angle when stored at room temperature (25 ° C.) for the same time as the post-heat treatment were measured.
Here, as the soda lime glass substrate and the hafnia film, the same soda lime glass substrate and the hafnia film as in Experimental Example 17 were used.
The water vapor treatment conditions were such that the measurement sample was stored for 4 days (96 hours) in a water vapor atmosphere at a temperature of 90 ° C. and a relative humidity of 50%.
Further, the post-heat treatment was performed using the same muffle furnace as in Experimental Example 1.
The temperature of the post heat treatment was 200 ° C., 300 ° C., 400 ° C., and 500 ° C., and the heat treatment time was 1 hour for each temperature.
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
 図62は、ソーダライムガラス(SLG)における、後熱処理の温度と、水接触角(CA)及び水滴転落角(SA)と、の関係を示すグラフである。
 図63は、ハフニア膜(HfO)における、後熱処理の温度と、水接触角(CA)及び水滴転落角(SA)と、の関係を示すグラフである。
FIG. 62 is a graph showing the relationship between post-heat treatment temperature, water contact angle (CA), and water drop falling angle (SA) in soda lime glass (SLG).
FIG. 63 is a graph showing the relationship between the post-heat treatment temperature, the water contact angle (CA), and the water drop falling angle (SA) in the hafnia film (HfO 2 ).
 図62及び図63に示すように、300℃以下の後熱処理を行った場合には、水滴転落角を低く維持できる(滑水性を安定的に維持できる)ことが確認された。
 この実験例19と前記実験例18との結果より、水蒸気処理後に後処理として、水蒸気処理温度以上300℃以下の熱処理を施すことで、滑水性の長期安定性をより向上させることができることが示唆された。
As shown in FIGS. 62 and 63, it was confirmed that the water drop falling angle can be kept low (slidability can be stably maintained) when post-heat treatment at 300 ° C. or lower is performed.
From the results of Experimental Example 19 and Experimental Example 18, it is suggested that the long-term stability of water slidability can be further improved by performing a heat treatment at a steam treatment temperature of 300 ° C. or less as a post-treatment after the steam treatment. It was done.
〔実験例20〕
≪水中での凝着力に関する実験≫
 下記測定試料について、水蒸気処理前後において、水中での凝着力に関する実験を行った。
 ここで、水蒸気処理条件は、温度90℃相対湿度50%の水蒸気雰囲気中に、測定試料を4日間(96時間)保管する条件とした。
 なお、本実験例中に記載の無い条件は、実験例1における条件と同様である。
[Experiment 20]
≪Experiment on adhesion force in water≫
The following measurement samples were subjected to experiments on the adhesion force in water before and after the steam treatment.
Here, the steam treatment conditions were such that the measurement sample was stored for 4 days (96 hours) in a steam atmosphere at a temperature of 90 ° C. and a relative humidity of 50%.
The conditions not described in this experimental example are the same as the conditions in Experimental example 1.
<測定試料>
・アルミナ膜(Al) … 実験例16で用いたアルミナ薄膜と同様のアルミナ薄膜を用いた。
・ハフニア膜(HfO) … 実験例16で用いたハフニア膜と同様のハフニア膜を用いた。
<Measurement sample>
Alumina film (Al 2 O 3 ): An alumina thin film similar to the alumina thin film used in Experimental Example 16 was used.
Hafnia film (HfO 2 ) A hafnia film similar to the hafnia film used in Experimental Example 16 was used.
<測定方法>
 水中での凝着力の測定には、実験例16で用いた摩擦力顕微鏡及びカンチレバーを用いた。
 まず、測定試料表面に対し、予め、エアーイオナイザ(WINSTAT BF-2Z;シシド静電気株式会社)を用いた除電処理を15秒間行い、除電処理後の測定試料を水中に沈めた。
 次に、水中の測定試料の表面に対し、カンチレバーの探針を近づけていき、更に接触させて押し付ける操作(以下、「アプローチ(approach)操作」ともいう)を行い、このアプローチ操作の過程中における、探針と試料表面との間に働く力を測定した。
 次に、上記アプローチ操作後、測定試料表面にカンチレバーの探針が押し付けられた状態から、カンチレバーの探針を測定試料表面から離す操作(以下、「リトラクション(retraction)操作」ともいう)を行い、このリトラクション操作の過程中における、探針と試料表面との間に働く力を測定した。
 その他、水中での凝着力の測定方法の詳細は、Journal of Physical Chemistry, B, 105, 10579-10587 (2001)やJournal of Colloid and Interface Science, 307, 418-424 (2007)に記載されており、本実験例においてもこれらの文献に記載された方法と同様の方法により行った。
<Measurement method>
The friction force microscope and cantilever used in Experimental Example 16 were used to measure the adhesion force in water.
First, the surface of the measurement sample was preliminarily subjected to a static elimination treatment using an air ionizer (WINSTAT BF-2Z; Sisid Electrostatic Co., Ltd.) for 15 seconds, and the measurement sample after the static elimination treatment was submerged in water.
Next, move the probe of the cantilever closer to the surface of the measurement sample in water, and further press it against the surface (hereinafter also referred to as “approach operation”). The force acting between the probe and the sample surface was measured.
Next, after the above approach operation, after the cantilever probe is pressed against the measurement sample surface, the cantilever probe is moved away from the measurement sample surface (hereinafter also referred to as “retraction operation”). The force acting between the probe and the sample surface during the retraction operation was measured.
In addition, details of the method for measuring the adhesion force in water are described in Journal of Physical Chemistry, B, 105, 10579-10587 (2001) and Journal of Colloid and Interface Science, 307, 418-424 (2007). In the present experimental example, the same method as described in these documents was used.
<測定結果>
 図64~図71に、水中での凝着力の測定結果を示す。
 図64~図71において、横軸は、探針と試料表面との距離(Separation distance[nm])を示しており、縦軸は探針と試料表面との間に働く力(Force[nN])を示している。
 図64~図71において、縦軸に示される力(Force[nN])が正の値である状態は、探針と試料表面との間に、互いに押し付け合う力が働いている状態を表す。縦軸に示される力(Force[nN])が負の値である状態は、探針と試料表面との間に、互いに引っ張り合う力が生じている状態、即ち、探針と試料表面との間に凝着力が生じている状態(探針と試料表面とが互いにくっつき合っている状態)を表す。
<Measurement results>
64 to 71 show the measurement results of the adhesion force in water.
64 to 71, the horizontal axis represents the distance between the probe and the sample surface (Separation distance [nm]), and the vertical axis represents the force acting between the probe and the sample surface (Force [nN]). ).
In FIGS. 64 to 71, a state where the force (Force [nN]) indicated on the vertical axis is a positive value represents a state in which forces pressing each other act between the probe and the sample surface. A state in which the force (Force [nN]) shown on the vertical axis is a negative value is a state in which a pulling force is generated between the probe and the sample surface, that is, between the probe and the sample surface. This represents a state in which an adhesion force is generated between them (a state in which the probe and the sample surface stick to each other).
 図64は、水蒸気処理前のアルミナ膜表面に対し、アプローチ操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである(図64中では、「Al2O3、pre.、approach」と表記する)。
 図65は、水蒸気処理後のアルミナ膜表面について、アプローチ操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである(図65中では、「Al2O3、tre.、approach」と表記する)。
 図66は、水蒸気処理前のアルミナ膜表面に対し、リトラクション操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである(図66中では、「Al2O3、pre.、retraction」と表記する)。
 図67は、水蒸気処理後のアルミナ膜表面について、リトラクション操作を行った過程中における、探針とアルミナ膜表面との間に働く力を示すグラフである(図67中では、「Al2O3、tre.、retraction」と表記する)。
FIG. 64 is a graph showing the force acting between the probe and the surface of the alumina film during the approach operation performed on the surface of the alumina film before the steam treatment (in FIG. 64, “Al 2 O 3 , pre., Approach ").
FIG. 65 is a graph showing the force acting between the probe and the alumina film surface during the approach operation on the alumina film surface after the steam treatment (in FIG. 65, “Al 2 O 3 , Tre., Approach ").
FIG. 66 is a graph showing the force acting between the probe and the alumina film surface in the process of performing the retraction operation on the alumina film surface before the steam treatment (in FIG. 66, “Al 2 O 3 , pre., Retraction ”).
FIG. 67 is a graph showing the force acting between the probe and the alumina film surface during the retraction operation on the alumina film surface after the steam treatment (in FIG. 67, “Al 2 O 3 , tre., Retraction ”).
 図64及び図65に示すように、アプローチ操作中の力の挙動に関しては、水蒸気処理前のアルミナ膜と水蒸気処理後のアルミナ膜とで大きな差は見られなかった。
 一方、図66及び図67に示すように、リトラクション操作中の力の挙動に関しては、水蒸気処理前のアルミナ膜と水蒸気処理後のアルミナ膜とで大きな差が見られた。
 図67に示すように、水蒸気処理後のアルミナ膜では、水蒸気処理前のアルミナ膜(図66)と比較して、探針とアルミナ膜表面との間に大きな凝着力が生じていた。この理由は、アルミナ膜表面が水蒸気処理によって滑水化されたことにより、探針とアルミナ膜表面との間に水が存在しにくくなり、探針とアルミナ膜表面とが強くくっつき合う状態となったため、と推測される。
As shown in FIGS. 64 and 65, regarding the behavior of force during the approach operation, there was no significant difference between the alumina film before the steam treatment and the alumina film after the steam treatment.
On the other hand, as shown in FIGS. 66 and 67, regarding the behavior of the force during the retraction operation, there was a large difference between the alumina film before the steam treatment and the alumina film after the steam treatment.
As shown in FIG. 67, in the alumina film after the steam treatment, a larger adhesion force was generated between the probe and the alumina film surface than the alumina film before the steam treatment (FIG. 66). This is because the surface of the alumina film is made water-sliding by the water vapor treatment, so that it is difficult for water to exist between the probe and the surface of the alumina film, and the probe and the surface of the alumina film are strongly adhered to each other. Therefore, it is guessed.
 図68は、水蒸気処理前のハフニア膜表面について、アプローチ操作を行った過程中における、探針と試料表面との間に働く力を示すグラフである(図68中では、「HfO2、pre.、approach」と表記する)。
 図69は、水蒸気処理後のハフニア膜表面について、アプローチ操作を行った過程中における、探針と試料表面との間に働く力を示すグラフである(図69中では、「HfO2、tre.、approach」と表記する)。
 図70は、水蒸気処理前のハフニア膜表面について、リトラクション操作を行った過程中における、探針と試料表面との間に働く力の変化をグラフである(図70中では、「HfO2、pre.、retraction」と表記する)。
 図71は、水蒸気処理後のハフニア膜表面について、リトラクション操作を行った過程中における、探針と試料表面との間に働く力の変化をグラフである(図71中では、「HfO2、tre.、retraction」と表記する)。
FIG. 68 is a graph showing the force acting between the probe and the sample surface during the approach operation on the hafnia film surface before the steam treatment (in FIG. 68, “HfO 2 , pre. , "Approach").
FIG. 69 is a graph showing the force acting between the probe and the sample surface during the approach operation on the surface of the hafnia film after the water vapor treatment (in FIG. 69, “HfO 2 , tre. , "Approach").
FIG. 70 is a graph showing changes in the force acting between the probe and the sample surface during the retraction operation on the surface of the hafnia film before the steam treatment (in FIG. 70, “HfO 2 , pre., retraction ”).
FIG. 71 is a graph showing a change in force acting between the probe surface and the sample surface during the retraction operation on the surface of the hafnia film after the steam treatment (in FIG. 71, “HfO 2 , tre., retraction ”).
 図68及び図69に示すように、アプローチ操作中の力の挙動に関しては、水蒸気処理前のハフニア膜と水蒸気処理後のハフニア膜とで大きな差は見られなかった。
 一方、図71に示すように、水蒸気処理後のハフニア膜では、水蒸気処理前のハフニア膜(図70)と比較して、探針とハフニア膜表面との間に大きな凝着力が生じていた。この理由は、ハフニア膜表面が水蒸気処理によって滑水化されたことにより、探針とハフニア膜表面との間に水が存在しにくくなり、探針とハフニア膜表面とが強くくっつき合う状態となったため、と推測される。
As shown in FIGS. 68 and 69, with respect to the behavior of the force during the approach operation, there was no significant difference between the hafnia film before the steam treatment and the hafnia film after the steam treatment.
On the other hand, as shown in FIG. 71, in the hafnia film after the water vapor treatment, a larger adhesion force was generated between the probe and the surface of the hafnia film than in the hafnia film before the water vapor treatment (FIG. 70). The reason is that the surface of the hafnia film is made water-slidable by the water vapor treatment, so that it is difficult for water to exist between the probe and the surface of the hafnia film, and the probe and the surface of the hafnia film are strongly adhered to each other. Therefore, it is guessed.
 日本出願2009-205175及び日本出願2010-028083の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosures of Japanese application 2009-205175 and Japanese application 2010-028083 are incorporated herein by reference in their entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (20)

  1.  無機構造物素材を準備する工程と、
     前記無機構造物素材を水蒸気処理することにより、前記無機構造物素材の表面の水滴転落角を低下させる水蒸気処理工程と、
    を有する無機構造物の製造方法。
    Preparing an inorganic structure material;
    A steam treatment step for reducing a water droplet falling angle on the surface of the inorganic structure material by steaming the inorganic structure material;
    The manufacturing method of the inorganic structure which has this.
  2.  前記水蒸気処理は、前記無機構造物素材を、温度30℃以上100℃以下、かつ、絶対湿度15g/m以上の水蒸気雰囲気に曝すことにより行う請求項1に記載の無機構造物の製造方法。 2. The method for producing an inorganic structure according to claim 1, wherein the steam treatment is performed by exposing the inorganic structure material to a steam atmosphere having a temperature of 30 ° C. to 100 ° C. and an absolute humidity of 15 g / m 3 or more.
  3.  前記水蒸気処理は、温度(℃)と相対湿度(%)との積が2000℃・%以上10000℃・%以下の水蒸気雰囲気に曝すことにより行う請求項1に記載の無機構造物の製造方法。 The method for producing an inorganic structure according to claim 1, wherein the steam treatment is performed by exposing to a steam atmosphere having a product of temperature (° C) and relative humidity (%) of 2000 ° C ·% or more and 10,000 ° C ·% or less.
  4.  前記水蒸気処理工程の前に、前記無機構造物素材に対し、該無機構造物素材の表面の有機物を除去する前処理を施す前処理工程を有する請求項1に記載の無機構造物の製造方法。 The method for producing an inorganic structure according to claim 1, further comprising a pretreatment step of performing a pretreatment for removing organic substances on the surface of the inorganic structure material with respect to the inorganic structure material before the water vapor treatment step.
  5.  前記前処理は、100℃以上の熱処理、超音波洗浄処理、及び紫外線照射処理の少なくとも1種である請求項4に記載の無機構造物の製造方法。 The method for producing an inorganic structure according to claim 4, wherein the pretreatment is at least one of heat treatment at 100 ° C or higher, ultrasonic cleaning treatment, and ultraviolet irradiation treatment.
  6.  前記水蒸気処理工程の後に、前記無機構造物素材に対し、後処理として、前記水蒸気の温度以上300℃以下の熱処理を施す後処理工程を有する請求項1に記載の無機構造物の製造方法。 The manufacturing method of the inorganic structure of Claim 1 which has the post-processing process which performs the heat processing more than the temperature of the said water vapor | steam and the 300 degreeC or less as a post-processing with respect to the said inorganic structure raw material after the said water vapor treatment process.
  7.  前記無機構造物素材が、金属、合金、無機酸化物、及びガラスから選択される少なくとも1種を含む請求項1に記載の無機構造物の製造方法。 The method for producing an inorganic structure according to claim 1, wherein the inorganic structure material includes at least one selected from a metal, an alloy, an inorganic oxide, and glass.
  8.  前記無機構造物素材が、ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜である請求項1に記載の無機構造物の製造方法。 The inorganic structure material is an inorganic solid containing at least one selected from stainless steel, soda lime glass, and quartz glass, or at least one selected from the group consisting of alumina, ceria, titania, hafnia, and silica. The method for producing an inorganic structure according to claim 1, wherein the inorganic thin film contains an inorganic thin film.
  9.  無機酸化物の前駆体を含む塗布液を支持体上に塗布して塗布膜を形成する塗布膜形成工程と、
     形成された塗布膜を300℃以上の温度で熱処理する熱処理工程と、
     熱処理された塗布膜を水蒸気処理することにより、前記熱処理された塗布膜の表面の水滴転落角を低下させる水蒸気処理工程と、
    を有する無機薄膜の製造方法。
    A coating film forming step in which a coating liquid containing an inorganic oxide precursor is coated on a support to form a coating film;
    A heat treatment step of heat-treating the formed coating film at a temperature of 300 ° C. or higher;
    A steam treatment step for reducing a water droplet falling angle on the surface of the heat-treated coating film by steam-treating the heat-treated coating film;
    The manufacturing method of the inorganic thin film which has.
  10.  表面における水滴の滑落を阻害する抵抗点の密度が、10個/30mm以下である無機構造物。 An inorganic structure in which the density of resistance points that inhibit sliding of water droplets on the surface is 10 pieces / 30 mm 2 or less.
  11.  水蒸気処理されて得られた請求項10に記載の無機構造物。 The inorganic structure according to claim 10 obtained by steam treatment.
  12.  金属、合金、無機酸化物、及びガラスから選択される少なくとも1種を含む請求項10に記載の無機構造物の製造方法。 The manufacturing method of the inorganic structure of Claim 10 containing at least 1 sort (s) selected from a metal, an alloy, an inorganic oxide, and glass.
  13.  ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜である請求項10に記載の無機構造物。 An inorganic thin film containing at least one selected from the group consisting of at least one selected from stainless steel, soda-lime glass, and quartz glass, or from the group consisting of zirconia, alumina, ceria, titania, hafnia, and silica. The inorganic structure according to claim 10.
  14.  水に対する接触角が30°以上であり、水滴転落角が40°以下である請求項10に記載の無機構造物。 The inorganic structure according to claim 10, wherein a contact angle with water is 30 ° or more and a water drop falling angle is 40 ° or less.
  15.  厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された摩擦力が10nN以下である領域、
    及び、
     厚み方向のバネ定数が0.05N/mであるSi製のカンチレバーを用い、押付圧14nNの条件で、摩擦力顕微鏡により測定された動摩擦係数が1.0以下である領域
    の少なくとも一方を表面に含む無機構造物。
    Using a Si 3 N 4 cantilever having a spring constant in the thickness direction of 0.05 N / m, a region where the friction force measured by a friction force microscope is 10 nN or less under a pressing pressure of 14 nN,
    as well as,
    Using a cantilever made of Si 3 N 4 having a spring constant in the thickness direction of 0.05 N / m and at a pressing pressure of 14 nN, at least one of the regions having a dynamic friction coefficient measured by a friction force microscope of 1.0 or less An inorganic structure containing on the surface.
  16.  水蒸気処理されて得られた請求項15に記載の無機構造物。 The inorganic structure according to claim 15 obtained by steam treatment.
  17.  表面における前記摩擦力の平均値が、前記水蒸気処理の前よりも低下している請求項16に記載の無機構造物。 The inorganic structure according to claim 16, wherein an average value of the frictional force on the surface is lower than that before the steam treatment.
  18.  表面における前記摩擦力の平均値が、前記水蒸気処理の前よりも半分以下に低下している請求項16に記載の無機構造物。 The inorganic structure according to claim 16, wherein an average value of the frictional force on the surface is reduced to half or less than that before the steam treatment.
  19.  ステンレス、ソーダライムガラス、及び石英ガラスから選択される少なくとも1種を含む無機固体、又は、ジルコニア、アルミナ、セリア、チタニア、ハフニア、及びシリカからなる群から選択される少なくとも1種を含む無機薄膜である請求項15に記載の無機構造物。 An inorganic thin film containing at least one selected from the group consisting of at least one selected from stainless steel, soda-lime glass, and quartz glass, or from the group consisting of zirconia, alumina, ceria, titania, hafnia, and silica. The inorganic structure according to claim 15.
  20.  水に対する接触角が30°以上であり、水滴転落角が40°以下である請求項15に記載の無機構造物。 The inorganic structure according to claim 15, wherein the contact angle with water is 30 ° or more and the water drop falling angle is 40 ° or less.
PCT/JP2010/065177 2009-09-04 2010-09-03 Inorganic structure, method for producing same, and method for producing inorganic thin film WO2011027872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011529962A JPWO2011027872A1 (en) 2009-09-04 2010-09-03 INORGANIC STRUCTURE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING INORGANIC THIN FILM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-205175 2009-09-04
JP2009205175 2009-09-04
JP2010-028083 2010-02-10
JP2010028083 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011027872A1 true WO2011027872A1 (en) 2011-03-10

Family

ID=43649407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065177 WO2011027872A1 (en) 2009-09-04 2010-09-03 Inorganic structure, method for producing same, and method for producing inorganic thin film

Country Status (2)

Country Link
JP (1) JPWO2011027872A1 (en)
WO (1) WO2011027872A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114203A (en) * 2014-12-17 2016-06-23 株式会社東芝 Fluid friction resistance reduction coating and water power generation system
WO2017104424A1 (en) * 2015-12-17 2017-06-22 コニカミノルタ株式会社 Photosensitive composition for volume hologram manufacturing, method for manufacturing volume hologram, volume hologram, and holographic optical element
EP2696919B1 (en) * 2011-04-15 2019-07-24 W.L. Gore & Associates, Inc. Method of reducing friction between syringe components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107502A (en) * 1988-10-17 1990-04-19 Tokuyama Soda Co Ltd Treatment of inorganic oxide
JPH06246165A (en) * 1993-02-19 1994-09-06 Japan Storage Battery Co Ltd Production of photocatalyst
JP2003054951A (en) * 2001-08-23 2003-02-26 Ube Nitto Kasei Co Ltd Method for producing titanium oxide thin film and method for producing organic-inorganic composite gradient material
WO2003031673A1 (en) * 2001-10-02 2003-04-17 Advanced Systems Of Technology Incubation Thin metal oxide film and process for producing the same
US20060029808A1 (en) * 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
JP2009213954A (en) * 2008-03-07 2009-09-24 Univ Of Tokyo Thin film, its manufacturing method and glass
WO2009118552A1 (en) * 2008-03-28 2009-10-01 Pilkington Group Limited Superhydrophobic coatings and method for making the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107502A (en) * 1988-10-17 1990-04-19 Tokuyama Soda Co Ltd Treatment of inorganic oxide
JPH06246165A (en) * 1993-02-19 1994-09-06 Japan Storage Battery Co Ltd Production of photocatalyst
JP2003054951A (en) * 2001-08-23 2003-02-26 Ube Nitto Kasei Co Ltd Method for producing titanium oxide thin film and method for producing organic-inorganic composite gradient material
WO2003031673A1 (en) * 2001-10-02 2003-04-17 Advanced Systems Of Technology Incubation Thin metal oxide film and process for producing the same
US20060029808A1 (en) * 2004-08-06 2006-02-09 Lei Zhai Superhydrophobic coatings
JP2009213954A (en) * 2008-03-07 2009-09-24 Univ Of Tokyo Thin film, its manufacturing method and glass
WO2009118552A1 (en) * 2008-03-28 2009-10-01 Pilkington Group Limited Superhydrophobic coatings and method for making the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROAKI IMAI ET AL.: "Preparation of porous anatase coating from sol-gel-derived titanium dioxide and titanium dioxide-silica by water- vapor exposure", JOURNAL OF AMERICAN CERAMIC SOCIETY, vol. 82, no. 9, September 1999 (1999-09-01), pages 2301 - 2304 *
IRENEUSZ PIWONSKI ET AL.: "Vapor phase modification of sol-gel derived titania (Ti02) surfaces", APPLIED SURFACE SCIENCE, vol. 253, 2006, pages 2835 - 2840 *
KENJI OWAKI ET AL.: "Wettability and Friction Coefficient of the Oxide Thin Film Surface", THE JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 49, no. 2, 1 February 1998 (1998-02-01), pages 73 - 76 *
LEO CHAU-KUANG LIAU ET AL.: "Kinetic investigation of photocatalytic Ti02 films prepared by the sol-gel method and low temperature treatments", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 38, no. 10, 2005, pages 813 - 817 *
NAOKI ARIMITSU ET AL.: "Dependence of photoinduced surface friction force variation on UV intensity and atmosphere in polycrystalline Ti02 thin films", JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A: CHEMISTRY, vol. 203, no. 2-3, 15 April 2009 (2009-04-15), pages 155 - 160, XP026081002, DOI: doi:10.1016/j.jphotochem.2009.01.009 *
TOSHIYA WATANABE ET AL.: "Development of Inorganic Oxide Coated Glass with Highly Water Removability", JIDOSHA GIJUTSU, vol. 63, no. 6, 1 June 2009 (2009-06-01), pages 96 - 97 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696919B1 (en) * 2011-04-15 2019-07-24 W.L. Gore & Associates, Inc. Method of reducing friction between syringe components
EP3560535A1 (en) * 2011-04-15 2019-10-30 W. L. Gore & Associates, Inc. Method of reducing friction between syringe components
JP2016114203A (en) * 2014-12-17 2016-06-23 株式会社東芝 Fluid friction resistance reduction coating and water power generation system
WO2017104424A1 (en) * 2015-12-17 2017-06-22 コニカミノルタ株式会社 Photosensitive composition for volume hologram manufacturing, method for manufacturing volume hologram, volume hologram, and holographic optical element

Also Published As

Publication number Publication date
JPWO2011027872A1 (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Takeda et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering
Wang et al. Fabrication of a superhydrophobic surface on a wood substrate
Adak et al. Non lithographic block copolymer directed self-assembled and plasma treated self-cleaning transparent coating for photovoltaic modules and other solar energy devices
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
Tsuge et al. Fabrication of transparent TiO2 film with high adhesion by using self-assembly methods: Application to super-hydrophilic film
Takagi et al. Photocatalytic, antifogging mirror
Barreca et al. Photoinduced superhydrophilicity and photocatalytic properties of ZnO nanoplatelets
WO2010005019A1 (en) Inorganic thin film and process for production thereof, and glass
Čolović et al. Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation
JP2016528149A (en) Super hydrophilic coating
WO2011027872A1 (en) Inorganic structure, method for producing same, and method for producing inorganic thin film
WO2016039693A1 (en) Amorphous metal oxide films
WO2012020295A1 (en) Optical elements having long-lasting hydrophilic and anti-fog properties and method for their preparation
Katsumata et al. Photoinduced surface roughness variation in polycrystalline TiO2 thin films
Mālnieks et al. Optical, photocatalytical and structural properties of TiO2–SiO2 sol-gel coatings on high content SiO2 enamel surface
Risse et al. Investigation into the photo-induced change in wettability of hydrophobized TiO2 films
Kemell et al. Transparent superhydrophobic surfaces by self‐assembly of hydrophobic monolayers on nanostructured surfaces
CN107963805B (en) Method for preparing self-cleaning and anti-fog glass by using annealing process
Vrakatseli et al. Photoinduced superhydrophilicity of amorphous TiOx-like thin films by a simple room temperature sol-gel deposition and atmospheric plasma jet treatment
RU2447190C2 (en) Method for production of photocatalytically active coating
Chiou et al. Influence of oxygen flow rate on photocatalytic TiO 2 films deposited by rf magnetron sputtering
Kim et al. Enhanced hydrophilic property of TiO 2 thin film deposited on glass etched with O 2 plasma
JP4117371B2 (en) Silica-titania composite membrane, production method thereof and composite structure
Vrakatseli et al. Comparative study of RF reactive magnetron sputtering and sol-gel deposition of UV induced superhydrophilic TiOx thin films
Singh et al. XANES and XRR study on phase evolution of TiO2 films developed using HiPIMS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529962

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813819

Country of ref document: EP

Kind code of ref document: A1