JP2012223713A - Water atomizing solid-liquid separator - Google Patents

Water atomizing solid-liquid separator Download PDF

Info

Publication number
JP2012223713A
JP2012223713A JP2011094079A JP2011094079A JP2012223713A JP 2012223713 A JP2012223713 A JP 2012223713A JP 2011094079 A JP2011094079 A JP 2011094079A JP 2011094079 A JP2011094079 A JP 2011094079A JP 2012223713 A JP2012223713 A JP 2012223713A
Authority
JP
Japan
Prior art keywords
differential speed
current value
stock solution
solid
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011094079A
Other languages
Japanese (ja)
Inventor
Toshiki Katsumi
敏樹 勝海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowserve Japan Co Ltd
Original Assignee
Flowserve Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowserve Japan Co Ltd filed Critical Flowserve Japan Co Ltd
Priority to JP2011094079A priority Critical patent/JP2012223713A/en
Publication of JP2012223713A publication Critical patent/JP2012223713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Centrifugal Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water atomizing solid-liquid separator used for responding to concentration change of stock solution and capable of continuing operation even if a current value of a differential speed motor is increased.SOLUTION: The water atomizing solid-liquid separator 10 separates and dehydrates metal particles manufactured by a water atomizing method from the stock solution constituted of water and the metal particles. For separating/dehydrating the metal particles from the stock solution, rotation frequency of a screw conveyer 12 by the differential speed motor 19 is decreased with respect to rotation frequency of a rotary bowl 11 by a main speed motor 17 so as to have the differential speed. The water atomizing solid-liquid separator 10 includes an ammeter 21 for detecting a current value of the differential speed motor 19 and a control device 20 for automatically controlling rotation of the differential speed motor 19 at predetermined differential speed corresponding to the current value so as to respond to concentration change of the stock solution.

Description

本発明は、水アトマイズ法により製造した金属粒子を、原液である水から分離する水アトマイズ用固液分離機に関する。   The present invention relates to a solid-liquid separator for water atomization that separates metal particles produced by a water atomization method from water as a stock solution.

例えば、焼結金属を製造する場合の材料となる金属粒子(粉末)は、水アトマイズ法で製造される。この水アトマイズ法は、タンディッシュ(受け皿)に貯留した溶融金属をタンディッシュの下部に設けられた注湯ノズルから流出させ、この流出した溶融金属流に高圧水を噴射することで、溶融金属を飛散させて粉末化する金属粒子製造方法である。この水アトマイズ法による金属粒子製造の後工程では、微細な金属粒子を多量の水と分離し、金属粉末にする必要がある。   For example, metal particles (powder) that are materials for producing a sintered metal are produced by a water atomization method. In this water atomization method, molten metal stored in a tundish (a saucer) is caused to flow out of a pouring nozzle provided at the lower part of the tundish, and high-pressure water is injected into the flow of molten metal to thereby remove the molten metal. This is a method for producing metal particles which is pulverized to form powder. In the post-process for producing metal particles by this water atomization method, it is necessary to separate fine metal particles from a large amount of water into metal powder.

水アトマイズ製造における金属粒子と水とが一緒になった状態の原液から、分離・脱水する方法として従来の技術では、フィルター(例えば、特許文献1参照)や、真空脱水機(例えば、特許文献2参照)などが知られている。   In a conventional technique as a method for separating and dewatering from a stock solution in which metal particles and water are combined in water atomization production, a filter (for example, see Patent Document 1) or a vacuum dehydrator (for example, Patent Document 2). For example).

しかしながら、フィルター方式や真空脱水機では、ろ布を使用するため、原液を分離・脱水する際に、金属粒子の微粒子がフィルターに目詰まりするという問題があった。そのため、回収率が低く、含水率が高いという問題があった。
また、水アトマイズ法はバッチ製造であることから、分離脱水工程は、連続的に高回収率、低含水率で分離脱水することが高品質の金属粒子を製造する上で必要不可欠であるが、この連続的な処理が出来ないという問題があった。さらに、脱水後、空気にさらされる金属粒子は、時間の経過とともに酸化して変質するという問題があった。
However, since the filter system and the vacuum dehydrator use a filter cloth, there is a problem that fine particles of metal particles are clogged in the filter when the stock solution is separated and dehydrated. For this reason, there are problems that the recovery rate is low and the moisture content is high.
In addition, since the water atomization method is batch production, it is indispensable to continuously separate and dehydrate the separation and dehydration process at a high recovery rate and low water content in order to produce high-quality metal particles. There was a problem that this continuous processing could not be performed. Furthermore, after dehydration, the metal particles exposed to air have a problem that they are oxidized and deteriorated with the passage of time.

特開2009−35799号公報(段落0034)JP 2009-35799 A (paragraph 0034) 特開平10−280001号公報(段落0010)JP-A-10-280001 (paragraph 0010) 特開2005−144279号公報JP 2005-144279 A

これらの問題を解決するために、立型デカンタ式遠心分離機(以下、固液分離機という)で行うことが強く要望されていたが、従来の固液分離機は、固形分を原液から分離脱水するために、主速電動機による回転ボウルの回転数に対して、差速電動機によるスクリューコンベヤの回転数を下げて差速を持たせ、さらに、原液中の固形分の濃度が一定であるという条件に基づいて、この差速を一定にしている(例えば、特許文献3参照)。
このため、原液の濃度が増加すると、差速電動機の負荷(電流値)が増大するため、差速電動機の温度上昇によりサーマルが落ちて、安定した運転ができないという問題があった。
In order to solve these problems, it was strongly requested to use a vertical decanter centrifuge (hereinafter referred to as a solid-liquid separator). However, conventional solid-liquid separators separate solids from stock solutions. In order to dehydrate, the rotation speed of the screw conveyor by the differential speed electric motor is lowered with respect to the rotation speed of the rotating bowl by the main speed electric motor to give a differential speed, and the solid content concentration in the stock solution is constant. Based on conditions, this differential speed is made constant (for example, refer to Patent Document 3).
For this reason, when the concentration of the undiluted solution increases, the load (current value) of the differential speed motor increases, so that there is a problem that the thermal drops due to the temperature increase of the differential speed motor and stable operation cannot be performed.

そこで、本発明は、原液の濃度に増減の変化があっても運転が継続できるように改良して、これらの問題を一挙に解決するために創案されたものであり、フィルターのような目詰まりはなく、金属粒子は高回収率、低含水率で分離脱水を行い、連続的な分離脱水処理ができて、分離脱水後に金属粒子が空気にさらされて酸化することもなく、水アトマイズ用固液分離機を使用して原液の濃度変化に対応して、差速電動機も電流値の増大があっても、運転の継続が可能であり、かつ、差速電動機の回転を自動制御して差速の最適化による省エネでCOの発生が削減可能な水アトマイズ用固液分離機を提供することを課題とする。 Therefore, the present invention has been developed to solve these problems at once by improving the operation so that the operation can be continued even if the concentration of the stock solution changes, and clogging such as a filter is performed. The metal particles can be separated and dehydrated at a high recovery rate and low water content, and can be continuously separated and dehydrated. After separation and dehydration, the metal particles are not exposed to air and oxidized, and are solidified for water atomization. In response to changes in the concentration of the undiluted solution using a liquid separator, the differential speed motor can continue to operate even if the current value increases, and the rotation of the differential speed motor can be controlled automatically. It is an object to provide a solid-liquid separator for water atomization that can reduce the generation of CO 2 by energy saving by optimization of speed.

請求項1に記載された発明は、上部端板(11c)に接続された円筒部(11b)および下部のテーパ部(11a)とが立形の円筒状に一体に形成され、上部端板(11c)に堰板を設けた分離液溢流口(11e)を有し、回転自在に軸支させた円筒状の回転ボウル(11)と、前記回転ボウル(11)内に同軸に設けられ、差速装置(18)を介して前記回転ボウル(11)と差速をもって回転する回転自在のスクリューコンベヤ(12)と、前記回転ボウル(11)の円筒部の上部端板(11c)の挿管孔(11d)から軸心部に挿入され、前記円筒部に原液を供給する原液供給管(15)と、前記原液供給管(15)の下端部に連接して回転ボウル(11)内に、半径方向に設けられた分流リブ板(16)と、から主要部が構成され、水アトマイズ法により製造した金属粒子を、水と金属粒子からなる原液から分離脱水する水アトマイズ用の立形固液分離機(10)であって、前記差速電動機(19)の電流値を検出する電流計(21)と、前記電流値に対応した所定の差速で前記差速電動機(19)の回転を自動制御する制御装置(20)と、を備えたことを特徴とする。   According to the first aspect of the present invention, the cylindrical portion (11b) connected to the upper end plate (11c) and the lower tapered portion (11a) are integrally formed into a vertical cylindrical shape, and the upper end plate ( 11c) has a separation liquid overflow port (11e) provided with a weir plate, and is provided coaxially within the rotating bowl (11) and a cylindrical rotating bowl (11) rotatably supported by the shaft, A rotatable screw conveyor (12) that rotates at a differential speed with the rotating bowl (11) via a differential speed device (18), and an intubation hole in the upper end plate (11c) of the cylindrical portion of the rotating bowl (11) (11d) is inserted into the axial center portion, and a stock solution supply pipe (15) for supplying the stock solution to the cylindrical portion and a radius in the rotating bowl (11) connected to the lower end of the stock solution supply pipe (15) The main part is composed of a flow dividing rib plate (16) provided in a direction, A vertical solid-liquid separator (10) for water atomization that separates and dehydrates metal particles produced by the atomization method from a stock solution composed of water and metal particles, and detects the current value of the differential speed motor (19). An ammeter (21) and a control device (20) for automatically controlling the rotation of the differential speed motor (19) at a predetermined differential speed corresponding to the current value are provided.

請求項2に記載された発明は、請求項1に記載の水アトマイズ用固液分離機であって、前記制御装置(20)による前記差速電動機(19)の回転の自動制御は、前記差速電動機(19)の電流値が定格電流の70%の値までは、差速を4min−1で保ち、前記電流値が71〜75%の値になった場合は差速を、プラス1の5min−1、前記電流値が76〜80%の値になった場合は差速を、プラス2の6min−1、前記電流値が81〜85%の値になった場合は差速を、プラス3の7min−1、前記電流値が86〜90%の値になった場合は差速を、プラス4の8min−1、前記電流値が91〜95%の値になった場合は差速を、プラス5の9min−1、前記電流値が96〜100%の値になった場合は差速を、プラス6の10min−1に差速を増加させ、それ以下の電流値になった場合は、差速を減少させることを特徴とする。 The invention described in claim 2 is the solid-liquid separator for water atomization according to claim 1, wherein the automatic control of the rotation of the differential speed motor (19) by the control device (20) is the difference. The speed difference is kept at 4 min −1 until the current value of the high-speed motor (19) reaches 70% of the rated current, and when the current value becomes 71 to 75%, the speed difference is set to plus 1. 5min −1 , if the current value is 76 to 80%, the differential speed is positive, 6min −1 plus 2 and if the current value is 81 to 85%, the differential speed is positive 3 7min -1, the speed difference is when the current value becomes the value of 86-90%, 8min -1 plus 4, the speed difference is when the current value becomes the value of 91% and 95% , 9min -1 plus 5, the speed difference is when the current value becomes the value of 96 to 100%, 1 plus 6 min -1 increases the differential speed in the case became less current value, and decreases the differential rate.

請求項3に記載された発明は、請求項1に記載の水アトマイズ用固液分離機(10)であって、前記水アトマイズ用固液分離機(10)の内部に窒素ガスを供給することを特徴とする。   The invention described in claim 3 is the solid-liquid separator for water atomization (10) according to claim 1, wherein nitrogen gas is supplied into the solid-liquid separator for water atomization (10). It is characterized by.

請求項1に係る発明によれば、水アトマイズ法により製造した金属粒子を原液から分離脱水する装置に、これまで用いられていない水アトマイズ用固液分離機に差速電動機の回転を自動制御する制御装置を備え、主速電動機による回転ボウルの回転数に対して、差速電動機によるスクリューコンベヤの回転数を下げて差速を持たせ、原液の濃度変化に対応すべく差速電動機の電流値を検出し、この電流値に対応した所定の差速で回転を制御することにより、フィルターのような目詰まりがなく、金属粒子を高回収率で回収でき、回収した金属粒子は低含水率で分離脱水を行うことができる。また、連続的な分離脱水処理ができる水アトマイズ用固液分離機を提供することができる。   According to the first aspect of the invention, the rotation of the differential speed motor is automatically controlled by a solid-liquid separator for water atomization that has not been used so far in an apparatus that separates and dehydrates metal particles produced by the water atomization method from a stock solution. Equipped with a control device, the rotational speed of the rotating bowl of the main speed motor is reduced by lowering the rotational speed of the screw conveyor by the differential speed motor to give a differential speed, and the current value of the differential speed motor to respond to changes in the concentration of the stock solution , And the rotation is controlled at a predetermined differential speed corresponding to this current value, so that there is no clogging like a filter and the metal particles can be recovered at a high recovery rate. The recovered metal particles have a low water content. Separation and dehydration can be performed. Moreover, the solid-liquid separator for water atomization which can perform a continuous separation-dehydration process can be provided.

請求項2に係る発明によれば、負荷(電流値)が定格電流の70%までは、差速を、4min−1で一定に保ち、負荷が70%から5%の幅で上昇した場合は差速を、プラス1の5min−1、負荷が76〜80%になった場合は差速を、プラス2の6min−1、負荷が81〜85%になった場合は差速を、プラス3の7min−1、負荷が86〜90%になった場合は差速を、プラス4の8min−1、負荷が91〜95%になった場合は差速を、プラス5の9min−1、負荷が96〜100%になった場合は差速を、プラス6の10min−1に差速を増加させ、それ以下の負荷になった場合は、差速を減少させる木目細かな差速の回転数の自動制御をすることにより、電気エネルギーを削減できるため、COの発生が削減可能な水アトマイズ用固液分離機を提供することができる。
ちなみに、差速の最適化による省エネで、回転一時間当り2.25kwの低減ができる。
COの発生量は、1kwh当り0.36kgであるから、年間では、2.25kw×22h×250日×0.36=4.5ton、年間4.5tonのCOの削減ができる。
According to the invention of claim 2, when the load (current value) is up to 70% of the rated current, the differential speed is kept constant at 4 min −1 , and the load increases from 70% to 5%. the differential speed, plus 1 5min -1, the speed difference when the load becomes 76-80%, plus 2 6min -1, the speed difference when the load becomes 81-85%, plus 3 7min −1 , when the load is 86-90%, the differential speed is 8min −1 plus 4, when the load is 91-95%, the differential speed is 9min −1 plus the load 5 When the speed becomes 96 to 100%, the differential speed is increased to 10 min −1 of plus 6, and when the load is less than that, the rotational speed of the fine differential speed that decreases the differential speed by the automatic control, it is possible to reduce the electrical energy, the generation of CO 2 that can be reduced It is possible to provide a atomizing solid-liquid separator.
By the way, energy saving by optimizing the differential speed can reduce 2.25kw per hour of rotation.
Since the amount of CO 2 generated is 0.36 kg per 1 kWh, it can be reduced to 2.25 kw × 22 h × 250 days × 0.36 = 4.5 tons, and 4.5 tons of CO 2 annually.

請求項3に係る発明によれば、水アトマイズ用固液分離機の内部に、窒素ガスを供給することにより、空気は窒素ガスと置換され、金属粒子が空気中の酸素にさらされて酸化するのを防止することができる。さらに、金属粒子間には窒素ガスが充満されるため、時間の経過とともに酸化して変質するのを防止することができる。   According to the invention of claim 3, by supplying nitrogen gas into the solid-liquid separator for water atomization, air is replaced with nitrogen gas, and the metal particles are exposed to oxygen in the air and oxidized. Can be prevented. Furthermore, since the metal particles are filled with nitrogen gas, it can be prevented from being oxidized and denatured over time.

本発明の分離脱水方法で使用する水アトマイズ用固液分離機の拡大断面図である。It is an expanded sectional view of the solid-liquid separator for water atomization used with the separation dehydration method of the present invention. 本発明の水アトマイズ用固液分離機の制御装置の配置を示す摸式図である。It is a model diagram which shows arrangement | positioning of the control apparatus of the solid-liquid separator for water atomization of this invention. 差速電動機の回転を制御する流れを示すフローチャートである。It is a flowchart which shows the flow which controls rotation of a differential speed motor.

本発明に係る水アトマイズ用固液分離機の一実施の形態について、図面を参照して詳細に説明する。
図1に示すように、本発明に係る水アトマイズ用固液分離機10の最上部の原液供給口Aから、水アトマイズ法による金属粒子を製造した水と金属粒子とが一緒になった原液を、例えば定量ポンプで供給し、後記するスクリューコンベヤ12の回転を、後記する回転ボウル11の回転よりも遅く(差速)回転させることにより、原液を金属粒子と水とに分離脱水処理が連続してできて、分離液の水は分離液出口B、分離した固形分の金属粒子は分離固形分排出口Cから排出する。また、金属粒子の酸化を防止するため、水アトマイズ用固液分離機10の内部に窒素ガスを供給する窒素供給口D,Eが設けられている。
なお、差速とは、固形物を原液から分離脱水するために、主速電動機による回転ボウルの回転数に対して差速電動機によるスクリューコンベヤの回転数を下げて回転数に差を持たせる回転速度差をいう。この差速により回転に位相差を設けることで、比重差により分離された固形分をスクリューコンベヤ12の差速の回転により下側に搬送して外部に排出することができる。
また、原液とは、ここでは固形物である金属粒子が混入した状態の水をいう。また、この水(液体)を分離液、分離される固形物を分離固形物ともいう。
An embodiment of a solid-liquid separator for water atomization according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, from a raw solution supply port A at the top of a solid-liquid separator for water atomization 10 according to the present invention, a raw solution in which metal particles produced by water atomization are combined with water is produced. For example, by supplying with a metering pump and rotating the screw conveyor 12 to be described later slower (differential speed) than the rotation of the rotating bowl 11 to be described later, the stock solution is separated into metal particles and water and the dehydration process is continued. The separated liquid water is discharged from the separated liquid outlet B, and the separated solid metal particles are discharged from the separated solid outlet C. In order to prevent oxidation of the metal particles, nitrogen supply ports D and E for supplying nitrogen gas are provided inside the solid-liquid separator 10 for water atomization.
The differential speed is a rotation that reduces the rotational speed of the screw conveyor by the differential speed motor to give a difference in rotational speed to the rotational speed of the rotating bowl by the main speed motor in order to separate and dehydrate solids from the stock solution. The speed difference. By providing a phase difference in the rotation by this differential speed, the solid content separated by the specific gravity difference can be conveyed downward by the differential speed rotation of the screw conveyor 12 and discharged to the outside.
In addition, the undiluted solution here refers to water in a state in which solid metal particles are mixed. Moreover, this water (liquid) is also called a separated liquid, and the solid substance to be separated is also called a separated solid substance.

<水アトマイズ用固液分離機の構成>
本発明に係る水アトマイズ用固液分離機10は、下部小径端側に固形物排出口13を有するテーパ部11aと、前記テーパ部11aの上部大径端側に連なり、上部端板11cに堰板(図示せず)を設けた分離液溢流口11eを有する円筒部11bとから構成される回転ボウル11と、この回転ボウル11内に同一軸に設けられ、差速装置18を介して前記回転ボウル11と若干の差速をもって回転するスクリューコンベヤ12が設けられている。
<Configuration of solid-liquid separator for water atomization>
The solid-liquid separator 10 for water atomization according to the present invention is connected to a tapered portion 11a having a solid material discharge port 13 on the lower small diameter end side, and an upper large diameter end side of the tapered portion 11a, and a weir on the upper end plate 11c. A rotating bowl 11 composed of a cylindrical portion 11b having a separation liquid overflow port 11e provided with a plate (not shown), is provided on the same shaft in the rotating bowl 11, and is connected via the differential speed device 18 A screw conveyor 12 that rotates with the rotating bowl 11 at a slight differential speed is provided.

また、原液を供給する原液供給管15と、原液を回転ボウル11の内壁に分配する分流リブ板16と、前記回転ボウル11の下方に配設され、前記回転ボウル11の回転速度と若干の差速を持たせてスクリューコンベヤ12を回転させる差速装置18と、前記差速装置18の下方の主軸に配設され、前記回転ボウル11をプーリ11f,11gとベルト11hを介して高速回転させる主速電動機17と、前記差速装置18の下方に設けられ、前記差速装置18を介して前記スクリューコンベヤ12をプーリ12f,12gとベルト12hを介して低速回転させる差速電動機19と、これらをその上方に配設・固定する架台2と、主速電動機17と差速装置18と差速電動機19を制御する制御装置20と、から水アトマイズ用固液分離機10の主要部が構成されている。   Further, a stock solution supply pipe 15 for supplying the stock solution, a diverting rib plate 16 for distributing the stock solution to the inner wall of the rotating bowl 11, and a lower portion of the rotating bowl 11, and a slight difference from the rotational speed of the rotating bowl 11. A differential speed device 18 that rotates the screw conveyor 12 with a speed, and a main shaft that is disposed on a main shaft below the differential speed device 18 and that rotates the rotating bowl 11 at high speed via pulleys 11f and 11g and a belt 11h. A speed motor 17, a differential speed motor 19 provided below the differential speed device 18, which rotates the screw conveyor 12 at low speed via pulleys 12 f and 12 g and a belt 12 h via the differential speed device 18, and The solid-liquid separator 10 for water atomization from the gantry 2 disposed and fixed above, the control device 20 for controlling the main speed motor 17, the differential speed device 18, and the differential speed motor 19. The main unit is configured.

回転ボウル11を高速回転させる高速軸3(図1の下部参照)は、軸端部に設けられているベアリング(図示せず)によって回転自在に軸支されている。また、スクリューコンベヤ12に連結された低速軸4は、高速軸3の内径に装着されたベアリングによって回転自在に軸支されている。   A high speed shaft 3 (see the lower part of FIG. 1) for rotating the rotating bowl 11 at a high speed is rotatably supported by a bearing (not shown) provided at a shaft end portion. The low speed shaft 4 connected to the screw conveyor 12 is rotatably supported by a bearing attached to the inner diameter of the high speed shaft 3.

<回転ボウルの構成>
回転ボウル11は、上部端板11cと、この上部端板11cに接続された円筒部11b、そして、下部のテーパ部11aとを一体に、回転自在に形成されている。
<Configuration of rotating bowl>
The rotating bowl 11 is formed so as to be rotatable integrally with an upper end plate 11c, a cylindrical portion 11b connected to the upper end plate 11c, and a lower tapered portion 11a.

<スクリューコンベヤの構成>
スクリューコンベヤ12は、回転ボウル11の内周面に装着され、スクリューコンベヤ軸12aと、このスクリューコンベヤ軸12aの外周を螺旋状に形成したスクリューコンベヤ羽根12bとから構成されている。スクリューコンベヤ12の駆動は、差速電動機19を駆動源として差速装置18を介して行われ、回転ボウル11の回転速度と差速電動機19の回転速度の差に比例する差速でスクリューコンベヤ12を回転する。
<Configuration of screw conveyor>
The screw conveyor 12 is mounted on the inner peripheral surface of the rotating bowl 11, and includes a screw conveyor shaft 12a and screw conveyor blades 12b in which the outer periphery of the screw conveyor shaft 12a is formed in a spiral shape. The screw conveyor 12 is driven through a differential speed device 18 using the differential speed motor 19 as a drive source. The screw conveyor 12 is driven at a differential speed proportional to the difference between the rotational speed of the rotating bowl 11 and the rotational speed of the differential speed motor 19. Rotate.

<原液供給管の構成>
原液供給管15は、上部にフランジが形成された円筒管である。回転ボウル11の円筒部11bの前記上部端板11cの中心部に突出する挿管孔11dから挿入され、原液を回転ボウル11内の分流リブ板16に供給される。
分離液(水)の排出は、原液が供給されて回転ボウル11が回転すると、遠心力により原液が回転ボウル11の円筒部11bの内周面に、液面Fを形成し、分離液(水)は、上部端板11cに堰板を設けられた分離液溢流口11eから溢れ出て、分離液出口Bから機外に排出される。
固形物の排出は、テーパ部11aの下部小径端側には、固形物排出口13が設けられ、スクリューコンベヤ12によりテーパ部11a側に搬送され、脱水された固形物は、固形物排出口13から下方に落下し、分離固形物排出口Cからピット(図示せず)に設けられた機外搬出用コンベヤ(図示せず)等によって、機外に排出される。
なお、原液の供給は、水アトマイズ法による図示しない金属粒子製造装置から一旦、攪拌槽を経由して定量ポンプで原液供給管15から供給してもよいし、攪拌槽を経由しないでダイレクトに原液供給管15から原液を供給しても構わない。
<Configuration of stock solution supply pipe>
The stock solution supply pipe 15 is a cylindrical pipe having a flange formed at the top. It is inserted from an intubation hole 11 d projecting into the center of the upper end plate 11 c of the cylindrical portion 11 b of the rotating bowl 11, and the stock solution is supplied to the diverting rib plate 16 in the rotating bowl 11.
When the stock solution is supplied and the rotating bowl 11 rotates, the stock solution forms a liquid surface F on the inner peripheral surface of the cylindrical portion 11b of the rotary bowl 11 by centrifugal force, and the separated solution (water) is discharged. ) Overflows from the separated liquid overflow port 11e provided with a weir plate on the upper end plate 11c, and is discharged from the separated liquid outlet B to the outside of the apparatus.
For discharging solid matter, a solid matter discharge port 13 is provided on the lower small diameter end side of the tapered portion 11a, and the solid matter transported to the taper portion 11a side by the screw conveyor 12 is dehydrated. From the separated solid matter discharge port C, it is discharged out of the machine by an outboard conveyor (not shown) provided in a pit (not shown).
The stock solution may be supplied from an unillustrated metal particle production apparatus using a water atomizing method via a stirring tank, and then supplied from the stock solution supply pipe 15 with a metering pump, or directly without passing through the stirring tank. The stock solution may be supplied from the supply pipe 15.

<分流リブ板の構成>
分流リブ板16は、回転ボウル11内の半径方向に放射状に配置された原液分配治具である。原液の流れを縦に分割し、原液を回転ボウル11の内壁に移送する。分流リブ板16の1枚の形状は、平面(半径方向断面)から見ると回転ボウル11の中心から内壁に向かって幅が略一定の分割部材であり、軸方向に沿った正面断面図で見ると回転ボウル11の中心側から内壁側に向かって台形(末広がりの形)をしており、原液供給管15からの原液の流れを軸方向に縦分割する。すなわち、中心側と内壁側は開口している。
<Configuration of shunt rib plate>
The diverting rib plate 16 is a stock solution distribution jig arranged radially in the radial direction in the rotating bowl 11. The flow of the stock solution is divided vertically, and the stock solution is transferred to the inner wall of the rotating bowl 11. The shape of one of the flow dividing rib plates 16 is a divided member having a substantially constant width from the center of the rotating bowl 11 toward the inner wall when viewed from a plane (radial section), and is viewed from a front sectional view along the axial direction. And a trapezoidal shape (a shape that spreads toward the end) from the center side to the inner wall side of the rotating bowl 11, and the flow of the stock solution from the stock solution supply pipe 15 is vertically divided in the axial direction. That is, the center side and the inner wall side are open.

分流リブ板16は、中空のスクリューコンベヤ12に挿入される原液供給管15の下端部に連接して設けられ、スクリューコンベヤ軸12aの半径方向の軸方向に放射状に穿設された図示しない細溝に挿入して固定される。原液供給管15と隣接する分流リブ板16との間は連通している配管である。
分流リブ板16の開口している下底側(回転ボウル11の内壁側)はスクリューコンベヤ軸12aの外壁まで延びて位置している。このように分流リブ板16を設けることにより、原液の流れを軸方向から半径方向に変えて回転ボウル11の内壁に確実に原液を供給することができるので、回転ボウル11中で原液中の固形物を分離するのに必要な滞留時間を確保できる。
The diverting rib plate 16 is connected to the lower end of the stock solution supply pipe 15 inserted into the hollow screw conveyor 12, and is provided with narrow grooves (not shown) that are formed radially in the radial direction of the screw conveyor shaft 12a. Inserted into and fixed. The stock solution supply pipe 15 and the adjacent diverting rib plate 16 are pipes communicating with each other.
The lower bottom side (inner wall side of the rotating bowl 11) where the diverting rib plate 16 is open is located extending to the outer wall of the screw conveyor shaft 12a. By providing the diverting rib plate 16 in this way, the stock solution can be reliably supplied to the inner wall of the rotating bowl 11 by changing the flow of the stock solution from the axial direction to the radial direction. It is possible to secure the residence time necessary for separating the objects.

<主速電動機>
主速電動機17は、三相誘導電動機または三相同期電動機が使用され、定トルク/インバータ制御のため、回転数は周波数の制御により自動変速される。主速電動機17の回転数は、必要な遠心効果を得るためのものであり、原液の性状や必要な性能により決められる。主速電動機17の回転数は、例えば、高速(1000〜3500min−1)で回転し、ベルト11hを介してプーリ11f、11gによって減速機軸3を回転する。減速機軸3が回転すると、回転ボウル11が回転する。
<Main speed motor>
As the main speed motor 17, a three-phase induction motor or a three-phase synchronous motor is used. For constant torque / inverter control, the rotational speed is automatically shifted by controlling the frequency. The rotation speed of the main speed motor 17 is for obtaining a necessary centrifugal effect, and is determined by the properties of the stock solution and the required performance. The rotation speed of the main speed motor 17 is, for example, high speed (1000 to 3500 min −1 ), and the speed reducer shaft 3 is rotated by the pulleys 11f and 11g via the belt 11h. When the speed reducer shaft 3 rotates, the rotating bowl 11 rotates.

<差速電動機>
差速電動機19は、三相誘導電動機または三相同期電動機が使用され、定トルク/インバータ制御のため、回転数は周波数の制御により自動変速される。差速電動機19の回転は、差速装置18を介して主速電動機17の回転に対して、最適な差速で制御される。
差速電動機19の回転は、ベルト12hを介してとプーリ12f、12gによって減速機入力軸4が回転する。減速機入力軸4が回転すると、差速装置18を介してスクリューコンベヤ軸12を同一方向へ低速回転させる。
<Differential speed motor>
As the differential speed motor 19, a three-phase induction motor or a three-phase synchronous motor is used. For constant torque / inverter control, the rotational speed is automatically shifted by controlling the frequency. The rotation of the differential speed motor 19 is controlled at an optimum differential speed with respect to the rotation of the main speed motor 17 via the differential speed device 18.
As for the rotation of the differential speed motor 19, the speed reducer input shaft 4 is rotated by the pulleys 12f and 12g through the belt 12h. When the speed reducer input shaft 4 rotates, the screw conveyor shaft 12 is rotated at a low speed in the same direction via the differential speed device 18.

<差速装置>
差速装置18は、3段で減速する遊星歯車減速装置である。差速装置18の減速機軸3と、スクリューコンベヤ軸12aの減速機入力軸4とは同一芯上にあり、同一方向に回転する。差速装置18は、差速1回転当りの減速比分の回転数を減速する。したがって、大きな差速を得るためには、減速比を小さくしなければならないが、極端に小さくすると大きなトルクが電動機に求められることから、結果的に電動機の出力が大きくなり、消費電力が大きくなるが、消費電力が大きくなるのを抑制して、最適な減速比と出力トルクを設定している。
差速装置18の速比は、ここでは、例えば150である。したがって、例えば、主速電動機17の回転数は2500min−1、差速電動機19の回転数は1900min−1、とすれば、差速は、(2500−1900)÷150=4min−1となり、
回転数は2500min−1、差速電動機19の回転数は1000min−1、とすれば、差速は、(2500−1000)÷150=10min−1となる。
<Differential speed device>
The differential speed device 18 is a planetary gear speed reducer that decelerates in three stages. The speed reducer shaft 3 of the differential speed device 18 and the speed reducer input shaft 4 of the screw conveyor shaft 12a are on the same core and rotate in the same direction. The differential speed device 18 decelerates the number of rotations corresponding to the reduction ratio per one differential speed revolution. Therefore, in order to obtain a large differential speed, the reduction ratio must be reduced. However, if the torque is extremely reduced, a large torque is required of the motor, resulting in an increase in the output of the motor and an increase in power consumption. However, the optimal reduction ratio and output torque are set by suppressing the increase in power consumption.
Here, the speed ratio of the differential speed device 18 is, for example, 150. Thus, for example, the rotational speed of the main speed motor 17 2500min -1, rotational speed 1900Min -1 differential speed electric motor 19, and if, the differential speed is, (2500-1900) ÷ 150 = 4min -1 , and the
If rotational speed 2500min -1, rotation speed of the differential speed electric motor 19 1000min -1, and, differential speed becomes (2500-1000) ÷ 150 = 10min -1 .

<差速電動機の出力と制御方法>
差速電動機19の出力を小さくするためには、大きな減速比が必要になるが、減速比を大きくすると、差速範囲が狭くなるため、大きな減速比は採用しない。また、差速電動機19のトルクは、回転数に反比例して大きくなる。
そこで、使用する差速電動機19を定トルク/インバータ制御とし、基底回転数を常用差速付近(低速側)に設定にすることにより、最高回転数時より高トルクを得ることができる。
また、トルク特性を定トルク仕様にすることで、低速域から基底回転数まで一定のトルクを得ることができる。このような電動機の仕様の設定により、差速範囲全域で一定トルクを保つことができ、濃度に対応させた差速制御運転による24時間連続の安定運転が可能になり、長時間稼動可能な水アトマイズ用固液分離機の提供ができる。
<Output and control method of differential speed motor>
In order to reduce the output of the differential speed motor 19, a large reduction ratio is required. However, if the reduction ratio is increased, the differential speed range is narrowed, so that a large reduction ratio is not adopted. Further, the torque of the differential speed motor 19 increases in inverse proportion to the rotational speed.
Therefore, by setting the differential speed motor 19 to be used as a constant torque / inverter control and setting the base rotational speed near the normal differential speed (low speed side), a higher torque can be obtained than at the maximum rotational speed.
Further, by setting the torque characteristics to a constant torque specification, a constant torque can be obtained from the low speed range to the base rotational speed. By setting the specifications of the motor as described above, a constant torque can be maintained over the entire differential speed range, and stable operation for 24 hours can be performed by the differential speed control operation corresponding to the concentration. A solid-liquid separator for atomization can be provided.

つぎに、水アトマイズ用固液分離機10の動作について説明する。
主速電動機17が自動起動されると、回転ボウル11が例えば高速(1000〜3500min−1)で回転する。そして、つづいて差速電動機19が自動起動されると、主速電動機17の回転数に対して差速電動機19の回転速度は、例えば差速が4min−1となる低い回転速度が設定され、スクリューコンベヤ12が回転する。この時、差速電動機19の電流値が定格電流の70%の値以下であれば、この差速が4min−1で回転が維持される。
Next, the operation of the water-atomizing solid / liquid separator 10 will be described.
When the main speed motor 17 is automatically activated, the rotating bowl 11 rotates at a high speed (1000 to 3500 min −1 ), for example. Then, when the differential speed motor 19 is automatically activated, the rotational speed of the differential speed motor 19 is set to a low rotational speed at which the differential speed is 4 min −1 with respect to the rotational speed of the main speed motor 17, The screw conveyor 12 rotates. At this time, if the current value of the differential speed motor 19 is equal to or less than 70% of the rated current, the rotation is maintained at the differential speed of 4 min −1 .

窒素供給口D,Eから窒素ガスが供給され、機内の空気が窒素ガスに置換される。また、回転ボウル11の上部の原液供給口Aの原液供給管15から原液が供給されると、原液は分流リブ板16に衝突して放射状に均一に分割され、遠心力を受けて均一に分散する。分流リブ板16から回転ボウル11の円筒部11bに供給された原液中の固形物(金属粒子)は、遠心力を受けて円筒部11bの内壁側に沈降する。沈降した固形物は、スクリューコンベヤ12のスクリューコンベヤ羽根12bにより分離され、つぎに、テーパ部11aに於ける遠心力により、脱水されて固形物排出口13に搬送される。そして、その脱水された金属粒子の固形物は、固形物排出口13から落下し、図示しないピット等に設けられたベルトコンベヤ等により機外に排出される。
一方、回転ボウル11内で分離され、スクリューコンベヤ12のスクリューコンベヤ羽根12bにより分離された分離液の水は、上方に移動し、円筒部11bの上部端板11cに設けた分離液溢流口11eから堰板を溢流し、分離液出口Bから機外に排出される。なお、窒素ガスは、空気中に78%含まれており、不燃性で、不活性である。
Nitrogen gas is supplied from the nitrogen supply ports D and E, and the air in the machine is replaced with nitrogen gas. Further, when the stock solution is supplied from the stock solution supply pipe 15 of the stock solution supply port A at the upper part of the rotating bowl 11, the stock solution collides with the flow dividing rib plate 16 and is uniformly divided radially, and receives the centrifugal force and is uniformly dispersed. To do. Solids (metal particles) in the stock solution supplied from the diverting rib plate 16 to the cylindrical portion 11b of the rotating bowl 11 are subjected to centrifugal force and settle on the inner wall side of the cylindrical portion 11b. The settled solid matter is separated by the screw conveyor blade 12b of the screw conveyor 12, and then dehydrated by the centrifugal force in the tapered portion 11a and conveyed to the solid matter discharge port 13. Then, the dehydrated metal particles are dropped from the solid discharge port 13 and discharged outside the apparatus by a belt conveyor or the like provided in a pit (not shown).
On the other hand, the water of the separated liquid separated in the rotating bowl 11 and separated by the screw conveyor blades 12b of the screw conveyor 12 moves upward, and the separated liquid overflow port 11e provided in the upper end plate 11c of the cylindrical portion 11b. Overflows the dam plate and is discharged from the separation liquid outlet B to the outside of the apparatus. Nitrogen gas is contained 78% in the air, is nonflammable and inert.

従来、固液分離機の差速制御は、運転条件としては固定値でよかった理由は、原液の濃度は一定であり、原液の供給条件は、流量も変化せず、一定であったからである。
供給条件が一定であるから、分離液及び分離固形物の性状も一定になった。
しかしながら、水アトマイズ製造では、原液の濃度を一定に保つことは困難であることが判ったことから、分離する固形物である金属粒子の性状(含水率)などに範囲を定め、許容できる範囲で差速を制御する方法をあみ出した。これは、運転制御(シーケンス含)と、それを可能にする機器(差速電動機、主速電動機含む)の仕様の設定を変更したことにより、安定した連続運転ができる。
Conventionally, the differential speed control of the solid-liquid separator may have a fixed operating condition because the concentration of the stock solution is constant and the supply condition of the stock solution is constant without changing the flow rate.
Since the supply conditions were constant, the properties of the separation liquid and the separated solid were also constant.
However, in water atomization production, it was found difficult to keep the concentration of the stock solution constant.Therefore, a range was defined for the properties (moisture content) of the metal particles that are solids to be separated, and within an acceptable range. A method to control the differential speed was devised. This is because the operation control (including sequence) and the setting of the specifications of the devices (including the differential speed motor and the main speed motor) that enable it are changed, so that stable continuous operation can be performed.

例えば、水アトマイズ後の金属粉は比重が大きいため、水の中で分散し難く沈降するのが早い。ポンプなどで循環させて分散させるが、不規則な原液の濃度変化により、脱水時に発生するトルクが増減する。
そこで、差速が制御される差速電動機19や、差速装置18の運転状態を安定させるため、発生トルクに合わせて差速を制御装置20によって自動制御する。
図2は、水アトマイズ用固液分離機の制御装置の配置を示す摸式図である。
図2に示すように、機外には制御装置20が設けられている。差速電動機19と制御装置20とは電気的に接続され、電流計21が配置されている。また、主速電動機17と制御装置20とも電気的に接続され、主速電動機17、差速電動機19の回転数の変更が可能になっている。
そして、原液の濃度変化に対応するため、差速電動機19の電流値を検出し、この電流値の数値を基にして制御装置20内の図示しない演算回路にて演算されて、差速を決め、差速電動機19の回転数を変更して制御する。
For example, since the metal powder after water atomization has a large specific gravity, it is difficult to disperse in water and settles quickly. Although it is circulated and dispersed by a pump or the like, the torque generated during dehydration increases or decreases due to irregular concentration changes in the stock solution.
Therefore, the differential speed is automatically controlled by the control device 20 in accordance with the generated torque in order to stabilize the operation state of the differential speed motor 19 for controlling the differential speed and the differential speed device 18.
FIG. 2 is a schematic diagram showing the arrangement of the control device of the solid-liquid separator for water atomization.
As shown in FIG. 2, a control device 20 is provided outside the machine. The differential speed motor 19 and the control device 20 are electrically connected, and an ammeter 21 is disposed. The main speed motor 17 and the control device 20 are also electrically connected, and the rotation speeds of the main speed motor 17 and the differential speed motor 19 can be changed.
Then, in order to cope with the change in the concentration of the stock solution, the current value of the differential speed motor 19 is detected and calculated by a calculation circuit (not shown) in the control device 20 based on the value of the current value to determine the differential speed. The speed of the differential speed motor 19 is changed and controlled.

差速電動機19の電流値の検出は、電流計21の電気信号を連続的にシーケンサに取込み、図3のフローチャートに基づいて瞬時に最適な差速が求められ、変更される。
例えば、原液の濃度に変化があり、濃度が下がった場合は、差速電動機19の電流値も下がるため、差速が見直され、適正な差速まで下げられる。
このように、原液の濃度の変化に対応して、木目細かに差速電動機19の回転を適正な差速の回転数にする回転の制御をすることにより高負荷運転を抑制でき、安定運転が可能になり、差速電動機19の出力も低出力方向で安定するため、省エネ30%となり、年間当り相当量のCOの削減が可能である。
To detect the current value of the differential speed motor 19, the electric signal of the ammeter 21 is continuously taken into the sequencer, and the optimum differential speed is obtained and changed instantaneously based on the flowchart of FIG.
For example, when there is a change in the concentration of the stock solution and the concentration decreases, the current value of the differential speed motor 19 also decreases, so that the differential speed is reviewed and reduced to an appropriate differential speed.
In this way, in response to changes in the concentration of the stock solution, it is possible to suppress high-load operation by controlling the rotation of the differential speed motor 19 so that the rotation of the differential speed motor 19 becomes an appropriate differential speed. Since the output of the differential speed motor 19 is stabilized in the low output direction, energy saving is 30%, and a considerable amount of CO 2 can be reduced per year.

ここで、本発明の水アトマイズ製造設備における原液に濃度変化があっても、それに対応できる水アトマイズ用固液分離機10の制御装置20の制御を説明する。
図3は、差速電動機の回転を制御する流れを示すフローチャートである。
図3に示すように、ステップS01は、差速電動機19の電流値が定格電流の70%の値以下かどうかを電流計21(図2参照)で検出し、定格電流の70%の値以下の場合(S01/Yes)はステップS02に進み、制御装置20が差速電動機19の回転数を、主速電動機19の回転数より下げ、例えば、差速を4min−1にして回転を制御する。
差速電動機19の定格電流値の70%の値以上の場合(S01/No)は、ステップS03に進む。
ステップS03は、前記同様に、差速電動機19の電流値が定格電流の71〜75%の値かどうかを電流計21で検出し、定格電流の71〜75%の値の場合(S03/Yes)はステップS04に進み、制御装置20が差速電動機19の差速をプラス1の5min−1にして回転を制御する。差速電動機19の定格電流の71〜75%の値以上の場合(S03/No)は、ステップS05に進む。
ステップS05は、差速電動機19の電流値が定格電流の76〜80%の値かどうかを検出し、その範囲内の場合(S05/Yes)はステップS06に進み、制御装置20が差速電動機19の差速をプラス2の6min−1にして回転を制御する。
定格電流の76〜80%以上の場合(S05/No)は、ステップS07に進む。
ステップS07は、差速電動機19の電流値が定格電流の81〜85%の値かどうかを電流計21で検出し、その範囲内の場合(S07/Yes)はステップS08に進み、制御装置20が差速電動機19の差速をプラス3の7min−1にして回転を制御する。
定格電流の81〜85%の値以上の場合(S07/No)は、ステップS09に進む。
Here, control of the control device 20 of the solid-liquid separator 10 for water atomization that can cope with changes in the concentration of the stock solution in the water atomization production facility of the present invention will be described.
FIG. 3 is a flowchart showing a flow for controlling the rotation of the differential speed motor.
As shown in FIG. 3, step S01 detects whether or not the current value of the differential speed motor 19 is equal to or less than 70% of the rated current with the ammeter 21 (see FIG. 2), and is less than or equal to 70% of the rated current. In this case (S01 / Yes), the process proceeds to step S02, and the control device 20 controls the rotation by lowering the rotational speed of the differential speed motor 19 from the rotational speed of the main speed motor 19, for example, by setting the differential speed to 4 min −1. .
If it is equal to or greater than 70% of the rated current value of the differential speed motor 19 (S01 / No), the process proceeds to step S03.
In the step S03, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 71 to 75% of the rated current in the same manner as described above, and if the current value is 71 to 75% of the rated current (S03 / Yes) ) Proceeds to step S04, and the control device 20 controls the rotation by setting the differential speed of the differential speed motor 19 to 5min −1 of plus 1. When the value is 71% to 75% or more of the rated current of the differential speed motor 19 (S03 / No), the process proceeds to step S05.
In step S05, it is detected whether or not the current value of the differential speed motor 19 is 76 to 80% of the rated current. If the current value is within the range (S05 / Yes), the process proceeds to step S06, and the control device 20 performs the differential speed motor. The rotational speed is controlled by setting the differential speed of 19 to 6min −1 of plus 2.
When it is 76 to 80% or more of the rated current (S05 / No), the process proceeds to step S07.
In step S07, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 81 to 85% of the rated current. If within the range (S07 / Yes), the process proceeds to step S08, and the control device 20 The rotational speed is controlled by setting the differential speed of the differential speed motor 19 to 7 min −1 of plus 3.
If the value is 81 to 85% or more of the rated current (S07 / No), the process proceeds to step S09.

ステップS09は、差速電動機19の電流値が定格電流の86〜90%の値かどうかを電流計21で検出し、その範囲内の場合(S09/Yes)はステップS10に進み、制御装置20が差速電動機19の差速をプラス4の8min−1にして回転を制御する。
定格電流の86〜90%の値以上の場合(S09/No)は、ステップS11に進む。
ステップS11は、差速電動機19の電流値が定格電流の91〜95%の値かどうかを電流計21で検出し、その範囲内の場合(S11/Yes)はステップS12に進み、制御装置20が差速電動機19の差速をプラス5の9min−1にして回転を制御する。
定格電流の91〜95%の値以上の場合(S11/No)は、ステップS13に進む。
ステップS13は、差速電動機19の電流値が定格電流の96〜100%の値かどうかを電流計21で検出し、その範囲内の場合(S13/Yes)はステップS14に進み、制御装置20が差速電動機19の差速をプラス6の10min−1にして回転を制御する。
定格電流値の96〜100%の値以上の場合(S13/No)は、ステップS15に進む。
ステップS15は、差速電動機19の電流値が定格電流の101〜105%の値かどうかを電流計21で検出し、その範囲内の場合(S15/Yes)は、ステップS16に進み、制御装置20が警報器(図示せず)を作動させて送り、例えばアラームを発する。また、定格電流値の101〜105%の値以上の場合(S15/No)は、ステップS17に進む。
ステップS17は、差速電動機19の電流値が定格電流の106%の値以上かどうかを電流計21で検出し、106%の値以上の場合(S17/Yes)は、ステップS18に進み、制御装置20が警報器(22)を作動させて、例えばアラーム音を発し、主速電動機17と差速電動機19の停止をさせる。
In step S09, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 86 to 90% of the rated current. If it is within the range (S09 / Yes), the process proceeds to step S10, and the control device 20 The rotational speed is controlled by setting the differential speed of the differential speed motor 19 to 8 min −1 of plus 4.
When the value is 86% to 90% or more of the rated current (S09 / No), the process proceeds to step S11.
In step S11, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 91 to 95% of the rated current. If within the range (S11 / Yes), the process proceeds to step S12, and the control device 20 Controls the rotation by setting the differential speed of the differential speed motor 19 to 9 min −1 of plus 5.
If the value is 91 to 95% of the rated current or more (S11 / No), the process proceeds to step S13.
In step S13, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 96 to 100% of the rated current. If it is within the range (S13 / Yes), the process proceeds to step S14, and the control device 20 Controls the rotation by setting the differential speed of the differential speed motor 19 to 10 min −1 of plus 6.
When the value is 96 to 100% or more of the rated current value (S13 / No), the process proceeds to step S15.
In step S15, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is 101 to 105% of the rated current. If it is within the range (S15 / Yes), the process proceeds to step S16, and the control device 20 activates and sends an alarm (not shown), for example, generating an alarm. Moreover, when it is more than the value of 101-105% of a rated current value (S15 / No), it progresses to step S17.
In step S17, the ammeter 21 detects whether or not the current value of the differential speed motor 19 is equal to or greater than 106% of the rated current. If the current value is equal to or greater than 106% (S17 / Yes), the process proceeds to step S18. The device 20 activates the alarm device (22), for example, generates an alarm sound, and stops the main speed motor 17 and the differential speed motor 19.

以上、本発明の水アトマイズ用固液分離機を使用した一実施の形態について説明したが、本発明は、前記した一実施の形態に限定されることなく、適宜変更して実施することができる。
なお、電流値に対する差速は、プラス1、プラス2…と段階的に増加させるようにしたが、プラス1→1.1→1.2…のように無段階的に増加させる方法であっても構わない。
また、アラーム(警報)は、図示しない操作盤のCRT画面に警告文の表示をするほか、スピーカーからの警報音やパトライトによる光の点滅によってアラームを発してもよい。また、動力伝達手段はプーリ・ベルト方式として開示したが、ギヤ方式やその他の動力伝達手段を採用しても構わない。
また、立型の固液分離機を使用する効果としては、固液分離機の停止時、横型では内部に水及び固形分が堆積し酸化などの変質の恐れが高いのに対し、立型は停止時、固形分は機外に排出されるので酸化しにくい構造になっている。
さらに、金属粒子は従来95%の回収率が99.5%へ、従来20%の含水率が10%以下へ向上し、性能がアップした。
また、窒素ガスを供給して機内の空気を置換することにより、分離脱水後に金属粒子が空気の酸素にさらされて酸化することもない。
さらに、水アトマイズ用固液分離機を使用して原液の濃度変化に対応して、むら、むだのない効率のよい運転が可能になり、差速電動機19の回転を制御して差速の最適化により、例えば7.5kwの差速電動機19の場合、1時間当り2.25kwhの消費電力の低減が可能になり、年間4.5tonのCOの削減に貢献できる。
As mentioned above, although one embodiment using the solid-liquid separator for water atomization of the present invention was described, the present invention is not limited to the above-described one embodiment, and can be implemented with appropriate modifications. .
Although the differential speed with respect to the current value is increased stepwise as plus 1, plus 2,..., It may be increased steplessly as plus 1 → 1.1 → 1.2.
In addition to displaying a warning text on a CRT screen of an operation panel (not shown), an alarm may be generated by an alarm sound from a speaker or flashing light from a patrol light. The power transmission means is disclosed as a pulley / belt system, but a gear system or other power transmission means may be employed.
In addition, the effect of using a vertical solid-liquid separator is that when the solid-liquid separator is stopped, the horizontal type accumulates water and solids inside, and there is a high risk of deterioration such as oxidation. At the time of stopping, the solid content is discharged outside the machine, so it is difficult to oxidize.
Furthermore, the metal particles have been improved in performance, with a 95% recovery rate of 99.5% and a 20% moisture content of 10% or less.
Further, by supplying nitrogen gas to replace the air in the apparatus, the metal particles are not exposed to oxygen in the air after separation and dehydration to be oxidized.
Furthermore, using a solid-liquid separator for water atomization, it is possible to perform efficient operation without unevenness and waste in response to changes in the concentration of the stock solution, and the rotation of the differential speed motor 19 is controlled to optimize the differential speed. For example, in the case of the differential speed motor 19 of 7.5 kw, it becomes possible to reduce the power consumption of 2.25 kwh per hour and contribute to the reduction of CO 2 of 4.5 tons per year.

1 床面(基礎)
2 架台
2a 下ハウジング
2b 上ハウジング
3 減速機軸
4 減速機入力軸
5,6 ベアリング
10 水アトマイズ用の固液分離機
11 回転ボウル
11a テーパ部
11b 円筒部
11c 上部端板
11d 挿管孔
11e 分離液溢流口
12 スクリューコンベヤ
12a スクリューコンベヤ軸
12b スクリューコンベヤ羽根
13 固形物排出口
14 分離液排出口
15 原液供給管
16 分流リブ板
17 主速電動機
18 差速装置
19 差速電動機
20 制御装置
21 電流計
22 警報器
A 原液供給口
B 分離液出口
C 分離固形物排出口
D,E 窒素供給口
1 Floor (basic)
DESCRIPTION OF SYMBOLS 2 Base 2a Lower housing 2b Upper housing 3 Reduction gear shaft 4 Reduction gear input shaft 5,6 Bearing 10 Solid-liquid separator for water atomization 11 Rotating bowl 11a Taper portion 11b Cylindrical portion 11c Upper end plate 11d Intubation hole 11e Separation liquid overflow Port 12 Screw conveyor 12a Screw conveyor shaft 12b Screw conveyor blade 13 Solid material discharge port 14 Separation liquid discharge port 15 Stock solution supply pipe 16 Dividing rib plate 17 Main speed motor 18 Differential speed device 19 Differential speed motor 20 Control device 21 Ammeter 22 Alarm A A Stock solution supply port B Separation solution outlet C Separation solid discharge port D, E Nitrogen supply port

Claims (3)

上部端板(11c)に接続された円筒部(11b)および下部のテーパ部(11a)とが立形の円筒状に一体に形成され、上部端板(11c)に堰板を設けた分離液溢流口(11e)を有し、回転自在に軸支させた円筒状の回転ボウル(11)と、
前記回転ボウル(11)内に同軸に設けられ、差速装置(18)を介して前記回転ボウル(11)と差速をもって回転する回転自在のスクリューコンベヤ(12)と、
前記回転ボウル(11)の円筒部の上部端板(11c)の挿管孔(11d)から軸心部に挿入され、前記円筒部に原液を供給する原液供給管(15)と、
前記原液供給管(15)の下端部に連接して回転ボウル(11)内に、半径方向に設けられた分流リブ板(16)と、から主要部が構成され、
水アトマイズ法により製造した金属粒子を、水と金属粒子からなる原液から分離脱水する水アトマイズ用の立形固液分離機(10)であって、
前記差速電動機(19)の電流値を検出する電流計(21)と、
前記電流値に対応した所定の差速で前記差速電動機(19)の回転を自動制御する制御装置(20)と、
を備えたことを特徴とする水アトマイズ用固液分離機(10)。
A separated liquid in which a cylindrical portion (11b) connected to the upper end plate (11c) and a lower tapered portion (11a) are integrally formed in a vertical cylindrical shape, and a weir plate is provided on the upper end plate (11c) A cylindrical rotating bowl (11) having an overflow port (11e) and rotatably supported;
A rotatable screw conveyor (12) provided coaxially in the rotating bowl (11) and rotating at a differential speed with the rotating bowl (11) via a differential speed device (18);
A stock solution supply pipe (15) that is inserted into the shaft center portion from the intubation hole (11d) of the upper end plate (11c) of the cylindrical portion of the rotating bowl (11) and supplies the stock solution to the cylindrical portion;
A main part is constituted by a diverting rib plate (16) provided in the radial direction in the rotating bowl (11) connected to the lower end of the stock solution supply pipe (15),
A vertical solid-liquid separator (10) for water atomization that separates and dehydrates metal particles produced by the water atomization method from a stock solution composed of water and metal particles,
An ammeter (21) for detecting a current value of the differential speed motor (19);
A control device (20) for automatically controlling the rotation of the differential speed motor (19) at a predetermined differential speed corresponding to the current value;
A solid-liquid separator for water atomization (10), comprising:
前記制御装置(20)による前記差速電動機(19)の回転の自動制御は、前記差速電動機(19)の電流値が定格電流の70%の値までは、差速を4min−1で保ち、前記電流値が71〜75%の値になった場合は差速を、プラス1の5min−1、前記電流値が76〜80%の値になった場合は差速を、プラス2の6min−1、前記電流値が81〜85%の値になった場合は差速を、プラス3の7min−1、前記電流値が86〜90%の値になった場合は差速を、プラス4の8min−1、前記電流値が91〜95%の値になった場合は差速を、プラス5の9min−1、前記電流値が96〜100%の値になった場合は差速を、プラス6の10min−1に差速を自動増加させ、それ以下の電流値になった場合は、差速を自動減少させることを特徴とする請求項1に記載の水アトマイズ用固液分離機(10)。 The automatic control of the rotation of the differential speed motor (19) by the control device (20) is to maintain the differential speed at 4 min −1 until the current value of the differential speed motor (19) is 70% of the rated current. When the current value is 71 to 75%, the differential speed is 5 min −1 of plus 1, and when the current value is 76 to 80%, the differential speed is 6 min of plus 2. −1 , when the current value is 81 to 85%, the differential speed is 7 min −1 of 3 plus, and when the current value is 86 to 90%, the differential speed is 4 plus. 8 min −1 , the differential speed when the current value is 91 to 95%, plus 5 min 9 −1 , the differential speed when the current value is 96 to 100%, The differential speed is automatically increased to 10 min -1 of plus 6, and when the current value is less than that, the differential speed is automatically reduced. The solid-liquid separator (10) for water atomization of Claim 1 characterized by the above-mentioned. 前記水アトマイズ用固液分離機(10)の内部に窒素ガスを供給することを特徴とする請求項1に記載の水アトマイズ用固液分離機(10)。   The solid-liquid separator (10) for water atomization according to claim 1, wherein nitrogen gas is supplied into the solid-liquid separator (10) for water atomization.
JP2011094079A 2011-04-20 2011-04-20 Water atomizing solid-liquid separator Pending JP2012223713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011094079A JP2012223713A (en) 2011-04-20 2011-04-20 Water atomizing solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011094079A JP2012223713A (en) 2011-04-20 2011-04-20 Water atomizing solid-liquid separator

Publications (1)

Publication Number Publication Date
JP2012223713A true JP2012223713A (en) 2012-11-15

Family

ID=47274512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011094079A Pending JP2012223713A (en) 2011-04-20 2011-04-20 Water atomizing solid-liquid separator

Country Status (1)

Country Link
JP (1) JP2012223713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079685A (en) * 2012-10-16 2014-05-08 Flowserve Japan Co Ltd Vertical type solid liquid separator
CN104570797A (en) * 2014-12-11 2015-04-29 北京光华纺织集团有限公司 Control device of solid-liquid separator
CN105521874A (en) * 2015-12-09 2016-04-27 丽水市天宁电机有限公司 Food residue and water separating unit and method
JP2016077934A (en) * 2014-10-10 2016-05-16 日本フローサーブ株式会社 Solid-liquid separation device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611023Y1 (en) * 1967-11-11 1971-04-16
JPS5798604A (en) * 1980-12-08 1982-06-18 Kawasaki Steel Corp Recovering device for metallic powder suspended in liquid
JPS57156156U (en) * 1981-03-30 1982-10-01
JPS6244511A (en) * 1985-08-19 1987-02-26 Kobe Steel Ltd Device for separating and gathering metallic powder
JPH09506031A (en) * 1993-12-07 1997-06-17 ドル−オリバー インコーポレイテッド Disk decanter type centrifuge
JPH10128158A (en) * 1996-11-01 1998-05-19 Trinity Ind Corp Centrifugal separator
JP2001323303A (en) * 2000-05-16 2001-11-22 Kubota Corp Manufacturing method of metal powder
JP2003268418A (en) * 2002-03-19 2003-09-25 Tamura Kaken Co Ltd Method for manufacturing metal powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611023Y1 (en) * 1967-11-11 1971-04-16
JPS5798604A (en) * 1980-12-08 1982-06-18 Kawasaki Steel Corp Recovering device for metallic powder suspended in liquid
JPS57156156U (en) * 1981-03-30 1982-10-01
JPS6244511A (en) * 1985-08-19 1987-02-26 Kobe Steel Ltd Device for separating and gathering metallic powder
JPH09506031A (en) * 1993-12-07 1997-06-17 ドル−オリバー インコーポレイテッド Disk decanter type centrifuge
JPH10128158A (en) * 1996-11-01 1998-05-19 Trinity Ind Corp Centrifugal separator
JP2001323303A (en) * 2000-05-16 2001-11-22 Kubota Corp Manufacturing method of metal powder
JP2003268418A (en) * 2002-03-19 2003-09-25 Tamura Kaken Co Ltd Method for manufacturing metal powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079685A (en) * 2012-10-16 2014-05-08 Flowserve Japan Co Ltd Vertical type solid liquid separator
JP2016077934A (en) * 2014-10-10 2016-05-16 日本フローサーブ株式会社 Solid-liquid separation device
CN104570797A (en) * 2014-12-11 2015-04-29 北京光华纺织集团有限公司 Control device of solid-liquid separator
CN105521874A (en) * 2015-12-09 2016-04-27 丽水市天宁电机有限公司 Food residue and water separating unit and method

Similar Documents

Publication Publication Date Title
JP6609624B2 (en) Aggregation mixing device
JP2012223713A (en) Water atomizing solid-liquid separator
US10201788B2 (en) Polymer flocculant mixing and dissolving system configured to control pressure on discharge side of regenerative mixer and method thereof
JP5442099B2 (en) Centrifuge
CN107073564A (en) Apparatus and method for the processing of high shear liquid metals
CN101204675A (en) Continuous-blending muller
CN102089052A (en) Apparatus and method for mechanical deaeration
TWI406737B (en) Method and device for managing coolant of wire saw
JP5041298B2 (en) Operation control method of screw press connected to rotary concentrator
US10654015B2 (en) Method for controlling rapid stirrer, and rapid stirrer
JP2016077934A (en) Solid-liquid separation device
CN204602433U (en) Batch centrifugal equipment for separating liquid from solid
CN201410414Y (en) Novel horizontal spiral centrifuge
JP2012030158A (en) Concentrated sludge dehydration system and control method therefor
CN210304154U (en) Multifunctional centrifuge
CN210729193U (en) Glass fiber spun yarn impregnating compound emulsifying equipment
JP6513460B2 (en) Separation filtration system and separation filtration method
CN203425928U (en) Small-sized ultra-high-speed decanter centrifuge
JP2011230019A (en) Control system, control device and control method
CN201524608U (en) Horizontal scroll discharge sedimentary centrifuge capable of accelerating concentration and dewatering
CN206286069U (en) A kind of horizontal type screw settling centrifuge
CN201064740Y (en) Solid and liquid separator for vertical centrifugal machine
CN212856215U (en) Overflow type three-phase separator
CN215354052U (en) Vertical spiral discharging centrifugal machine
JP5912684B2 (en) Disc type filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130308

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107