JP2012222929A - Stator for rotary electric machine - Google Patents

Stator for rotary electric machine Download PDF

Info

Publication number
JP2012222929A
JP2012222929A JP2011085302A JP2011085302A JP2012222929A JP 2012222929 A JP2012222929 A JP 2012222929A JP 2011085302 A JP2011085302 A JP 2011085302A JP 2011085302 A JP2011085302 A JP 2011085302A JP 2012222929 A JP2012222929 A JP 2012222929A
Authority
JP
Japan
Prior art keywords
stator
metal tube
electrical machine
rotating electrical
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011085302A
Other languages
Japanese (ja)
Other versions
JP5652305B2 (en
Inventor
Kei Sasaki
慶 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011085302A priority Critical patent/JP5652305B2/en
Publication of JP2012222929A publication Critical patent/JP2012222929A/en
Application granted granted Critical
Publication of JP5652305B2 publication Critical patent/JP5652305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a stator for a rotary electric machine having a configuration including split cores, which achieves a configuration which can reduce the cost, can facilitate design and management of fastening force, enables easy manufacture of each component, and also has a cooling function without having a cooling dedicated component provided therein.SOLUTION: The stator includes a core body 24 constituted of a plurality of split cores 18 arranged annularly, and an external cylinder 20 which is a metal pipe wound around the outer periphery of the core body 24. Both end side parts of the external cylinder 20 are formed by bending radially outward. The both end side parts of the external cylinder 20 and the outer periphery face of the core body 24 are simultaneously welded and fixed.

Description

本発明は、円環状に配置された複数の分割コアを備える回転電機用ステータに関する。   The present invention relates to a stator for a rotating electrical machine including a plurality of divided cores arranged in an annular shape.

従来から、エンジン及びモータを駆動源として走行するハイブリッド車両や、電気自動車や燃料電池車等において、回転電機がモータや発電機として使用されている。また、回転電機をモータ及び発電機の両方の機能を有するものとして使用される場合もある。また、回転電機は、ステータと、ステータに対向配置され、回転するロータとを備える。このようなステータとして、高周波での鉄損を抑える等のために、絶縁被膜処理を施した金属磁性粉末の圧粉体や、樹脂を添加した金属磁性粉末の圧粉体を用いたステータコアを使用することが考えられる。   Conventionally, rotating electric machines have been used as motors and generators in hybrid vehicles, electric vehicles, fuel cell vehicles, and the like that travel using an engine and a motor as drive sources. Further, the rotating electrical machine may be used as having both functions of a motor and a generator. The rotating electrical machine includes a stator and a rotor that is disposed to face the stator and rotates. As such a stator, in order to suppress iron loss at high frequency, a stator core using a metal magnetic powder green compact with an insulating coating treatment or a metal magnetic powder green compact with a resin added is used. It is possible to do.

例えば、特許文献1には、円環状に配置した複数の分割コアの外周に外周薄板を巻き付け、外周薄板の周方向端部を径方向外側に折り曲げて形成した折り曲げ部である耳部同士が溶接により接続され、外周薄板と複数の分割コアとが嵌合されている。   For example, in Patent Literature 1, the outer peripheral thin plate is wound around the outer periphery of a plurality of divided cores arranged in an annular shape, and the ears that are bent portions formed by bending the circumferential end of the outer peripheral thin plate radially outward are welded together. The outer peripheral thin plate and the plurality of divided cores are fitted together.

また、外周薄板の軸方向に対向するように周方向に間隔をあけて複数組設けられる挟持片であって、舌片を径方向内側に折り曲げて設けられた挟持片により分割コアが挟持されている。また、挟持片を、分割コアのヨーク部の軸方向端面に形成された凹部に嵌合して、分割コアを周方向に位置決めしている。   Also, a plurality of sandwiching pieces provided at intervals in the circumferential direction so as to face the axial direction of the outer peripheral thin plate, and the split core is sandwiched by the sandwiching pieces provided by bending the tongue piece radially inward. Yes. Further, the sandwiching piece is fitted into a recess formed in the end surface in the axial direction of the yoke portion of the split core, thereby positioning the split core in the circumferential direction.

特開2007−195281号公報JP 2007-195281 A

上記の特許文献1に記載されたステータでは、分割コアの位置決めのために外周部に設ける外周薄板が折り曲げ部である挟持片を有し、外周薄板を成形するためのプレス工程が必要となるだけでなく、プレス型が複雑になる。また、挟持片の折り曲げ工程も必要になる。このように工程が増えることはコストが過度に上昇する原因となる。   In the stator described in Patent Document 1 above, the outer peripheral thin plate provided on the outer peripheral portion for positioning the split core has a sandwich piece that is a bent portion, and only requires a pressing step for forming the outer peripheral thin plate. Instead, the press mold becomes complicated. Moreover, the bending process of a clamping piece is also needed. Such an increase in the number of processes causes an excessive increase in cost.

また、外周薄板と分割コアとの相手部材に対する嵌合部の寸法を高精度にしなければ外周薄板と分割コアとの位置決め精度が不十分になりやすい。例えば、外周薄板の挟持片の曲げ精度自体や、挟持片の寸法や個々の部品の寸法ばらつきが重なった組み付け状態に合わせた曲げ固定が必要になる。このため、分割コアを備えるステータで、取り付け時の締め代ばらつきに対する設計や寸法管理による締め付け力管理を容易に行え、取り付け部品間での寸法精度を低くでき、各部品の製造を容易に行える構造の実現が望まれている。さらに、ステータを冷却するために冷却専用の別部品をステータに設ける場合、部品点数が増え、コストが過度に増大する可能性がある。このため、分割コアを備えるステータで、冷却専用の部品を設けることなく、冷却機能を持たせることも望まれている。   Moreover, unless the dimension of the fitting part with respect to the other member of an outer periphery thin plate and a split core is made highly accurate, the positioning accuracy of an outer periphery thin plate and a split core tends to become inadequate. For example, it is necessary to bend and fix in accordance with the assembled state in which the bending accuracy itself of the sandwiching piece of the outer peripheral thin plate, the dimension of the sandwiching piece, and the dimensional variation of individual parts overlap. For this reason, a stator with a split core can be used to easily manage the tightening force by designing and dimensional management for variations in tightening allowance during installation, reducing the dimensional accuracy between mounting parts, and facilitating the manufacture of each part. Realization of is desired. Furthermore, when another component dedicated to cooling is provided in the stator in order to cool the stator, the number of components increases and the cost may increase excessively. For this reason, it is also desired that a stator having a split core has a cooling function without providing a dedicated cooling component.

本発明は、回転電機用ステータにおいて、分割コアを備える構成において、コストを低減でき、かつ、設計や締め付け力管理を容易に行え、かつ、各部品の製造を容易に行え、しかも、冷却専用部品を設けることなく冷却機能を持たせる構成を実現することを目的とする。   The present invention relates to a stator for a rotating electrical machine, in a configuration including a split core, can reduce costs, can easily manage a design and tightening force, can easily manufacture each component, and can be used only for cooling. It aims at realizing the structure which gives a cooling function, without providing.

本発明に係る回転電機用ステータは、円環状に配置された複数の分割コアと、複数の分割コアの外周に巻き付けられた金属管と、を備え、金属管の両端寄り部分と、円環状に配置された複数の分割コアの外周とが同時に溶接固定されていることを特徴とする回転電機用ステータである。   A stator for a rotating electrical machine according to the present invention includes a plurality of divided cores arranged in an annular shape, and a metal tube wound around the outer periphery of the plurality of divided cores, and a portion near both ends of the metal tube, and an annular shape. A stator for a rotating electrical machine, wherein the outer circumferences of a plurality of divided cores arranged are fixed by welding at the same time.

また、本発明に係る回転電機用ステータにおいて、好ましくは、金属管は、断面矩形に形成され、複数の分割コアの外周に金属管を丸めた状態で両端寄り部分が同時に溶接固定されている。   Moreover, in the stator for a rotating electrical machine according to the present invention, preferably, the metal pipe is formed in a rectangular cross section, and both end portions are welded and fixed at the same time in a state in which the metal pipe is rounded around the outer periphery of the plurality of divided cores.

また、本発明に係る回転電機用ステータにおいて、好ましくは、金属管は、複数の分割コアの外周に複数周回分巻き付けられている。   In the stator for a rotating electrical machine according to the present invention, preferably, the metal pipe is wound around the outer periphery of the plurality of divided cores by a plurality of turns.

また、本発明に係る回転電機用ステータにおいて、好ましくは、金属管は、複数の分割コアの外周の周方向片側部分に巻き付けられた第1金属管であり、さらに、複数の分割コアの外周の周方向他側部分に巻き付けられた第2金属管を備え、第1、第2両金属管の一端寄り部分同士及び円環状に配置された複数の分割コアの外周の一部と、第1、第2両金属管の他端寄り部分同士及び円環状に配置された複数の分割コアの外周の別の部分とが、同時に溶接固定されている。   In the stator for a rotating electrical machine according to the present invention, preferably, the metal tube is a first metal tube wound around a circumferential one side portion of the outer periphery of the plurality of split cores, and further, the outer periphery of the plurality of split cores A second metal tube wound around the other side portion in the circumferential direction, and a portion of the outer periphery of the plurality of split cores arranged in an annular shape and the portions near the one end of the first and second metal tubes; The portions near the other ends of the second metal pipes and other portions on the outer periphery of the plurality of split cores arranged in an annular shape are simultaneously welded and fixed.

また、本発明に係る回転電機用ステータにおいて、好ましくは、金属管は、複数の分割コアの外周面に軸方向に沿う外形を有する扁平な矩形断面を有し、かつ、金属管の少なくとも軸方向一端面に、金属管内の流れと直交する方向に形成された冷媒噴出孔を有する。   In the stator for a rotating electrical machine according to the present invention, preferably, the metal tube has a flat rectangular cross section having an outer shape along the axial direction on the outer peripheral surface of the plurality of divided cores, and at least the axial direction of the metal tube One end face has a refrigerant ejection hole formed in a direction orthogonal to the flow in the metal tube.

本発明に係る回転電機用ステータによれば、分割コアを備える構成において、単純な管形状で複数の分割コアを円環状に一体に固定できるので、複雑なプレス型を使用せずコストを低減できる。また、組み付け時の締め代ばらつきに対する設計や締め付け力の管理を容易に行える。また、組み付ける部品間での寸法精度を過度に高くする必要がなくなり、各部品の製造を容易に行える。さらに、組み付け部品である金属管に冷媒を流すことで、冷却専用部品を設けることなくステータに冷却機能を持たせることができる。   According to the stator for a rotating electrical machine according to the present invention, in a configuration including a split core, a plurality of split cores can be integrally fixed in an annular shape with a simple tube shape, so that the cost can be reduced without using a complicated press die. . In addition, it is possible to easily manage the design and tightening force with respect to variations in tightening allowance during assembly. Further, it is not necessary to excessively increase the dimensional accuracy between the parts to be assembled, and each part can be easily manufactured. Furthermore, the cooling function can be given to the stator without providing a cooling-dedicated component by allowing the coolant to flow through the metal pipe, which is an assembly component.

本発明の実施の形態の回転電機用ステータを構成するステータコアを示す図である。It is a figure which shows the stator core which comprises the stator for rotary electric machines of embodiment of this invention. 図1のA部拡大図である。It is the A section enlarged view of FIG. ステータコアにコイルを巻回したステータを示す、図2のB−B断面図である。FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 2, showing a stator having a coil wound around a stator core. 本発明の実施の形態の別例の第1例の回転電機用ステータを示す、図3に対応する図である。It is a figure corresponding to FIG. 3 which shows the stator for rotary electric machines of the 1st example of another example of embodiment of this invention. 本発明の実施の形態の別例の第2例の回転電機用ステータを示す、図3に対応する図である。It is a figure corresponding to FIG. 3 which shows the stator for rotary electric machines of the 2nd example of another example of embodiment of this invention. 本発明の実施の形態の別例の第3例の回転電機用ステータを示す、図3に対応する図である。It is a figure corresponding to FIG. 3 which shows the stator for rotary electric machines of the 3rd example of another example of embodiment of this invention. 本発明の実施の形態の別例の第4例の回転電機用ステータを構成するステータコアを示す図である。It is a figure which shows the stator core which comprises the stator for rotary electric machines of the 4th example of another example of embodiment of this invention. 本発明の実施の形態の別例の第5例の回転電機用ステータを示す、図3に対応する図である。It is a figure corresponding to FIG. 3 which shows the stator for rotary electric machines of the 5th example of another example of embodiment of this invention.

以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1から図3は、本発明の実施の形態の1例を示している。図1に示すように、モータや発電機として使用される回転電機を構成する回転電機用ステータである、ステータ10(図3)は、円環状に設けられたステータコア12と、ステータコア12の内周部の周方向複数個所に径方向に突出するように設けられたティース14に、集中巻きまたは分布巻きで巻回されたコイル16(図3)とを備える。また、ステータコア12は、円環状に周方向に隣接するように配置された複数の分割コア18と、複数の分割コア18の外周面に周方向に巻き付けられたパイプ状の金属管である外筒20とを備える。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. 1 to 3 show an example of an embodiment of the present invention. As shown in FIG. 1, a stator 10 (FIG. 3) that is a rotating electrical machine constituting a rotating electrical machine used as a motor or a generator includes an annular stator core 12 and an inner periphery of the stator core 12. A coil 16 (FIG. 3) wound by concentrated winding or distributed winding is provided on a tooth 14 provided so as to protrude in a radial direction at a plurality of locations in the circumferential direction of the section. The stator core 12 includes a plurality of divided cores 18 arranged in an annular shape so as to be adjacent to each other in the circumferential direction, and an outer cylinder that is a pipe-shaped metal tube wound around the outer peripheral surface of the plurality of divided cores 18 in the circumferential direction. 20.

図2に詳しく示すように、各分割コア18は、組み付けられた状態で外周部に設けられるヨーク要素22と、組み付けられた状態でヨーク要素22の内周側となる部分に設けられたティース14とを有する。分割コア18は、複数個が円環状に隣接するように配置され、コア本体24を構成する。各ティース14にはコイル16(図3)が巻回される。   As shown in detail in FIG. 2, each divided core 18 includes a yoke element 22 provided on the outer peripheral portion in the assembled state, and a tooth 14 provided on a portion on the inner peripheral side of the yoke element 22 in the assembled state. And have. The divided cores 18 are arranged so that a plurality of the divided cores 18 are adjacent to each other in an annular shape, and constitute a core body 24. A coil 16 (FIG. 3) is wound around each tooth 14.

図1に示すように、このようなコア本体24の外周面には、金属管であり、略円筒形に形成された外筒20を密着するように巻き付けている。図1、図3に示すように、外筒20は、コア本体24の円筒状の外周面に軸方向に沿うように、コア本体24の軸方向全長とほぼ同じ軸方向長さを有するように設けられた断面矩形状としている。そして外筒22が、コア本体24の外周面に沿って略円筒状に丸めて締め付けるようにコア本体24の外周面に周方向に巻き付けられ、外筒20の両端寄り部分の互いに対向する部分が、それぞれ径方向外側に曲げ形成されて曲げ部26が形成されている。また、外筒20の周方向両端寄り部分同士の間に隙間27(図2)が設けられている。   As shown in FIG. 1, the outer cylinder 20 which is a metal tube and is formed in a substantially cylindrical shape is wound around the outer peripheral surface of the core main body 24 so as to be in close contact therewith. As shown in FIGS. 1 and 3, the outer cylinder 20 has an axial length that is substantially the same as the overall axial length of the core body 24, along the axial direction on the cylindrical outer peripheral surface of the core body 24. It is provided with a rectangular cross section. Then, the outer cylinder 22 is wound around the outer peripheral surface of the core body 24 in a circumferential direction so as to be rounded and tightened into a substantially cylindrical shape along the outer peripheral surface of the core main body 24, and the portions of the outer cylinder 20 near the both ends are opposed to each other. The bent portion 26 is formed by bending outward in the radial direction. Further, a gap 27 (FIG. 2) is provided between the portions of the outer cylinder 20 near both ends in the circumferential direction.

そして、外筒20の周方向両端寄り部分と、コア本体24の外周面の周方向一部とが図1、図2に斜線部で示す溶接部28で、同時に溶接固定されている。すなわち、外筒20の両端寄り部分と分割コア18の外周部とが同時に溶接固定されている。図示の例では、コア本体24の周方向に関して、外筒20の周方向両端寄り部分の間に、2個の分割コア18の隣接する端部同士が位置し、2個の分割コア18と外筒20の両端寄り部分とが同時に溶接固定されている。ただし、コア本体24の周方向に関して、外筒20の周方向両端寄り部分の間に、1個の分割コア18の周方向中央部が位置する場合に、1個の分割コア18と外筒20の両端寄り部分とを同時に溶接固定することもできる。   And the part near the circumferential direction both ends of the outer cylinder 20 and the circumferential direction one part of the outer peripheral surface of the core main body 24 are weld-fixed simultaneously by the welding part 28 shown with a shaded part in FIG. 1, FIG. That is, the portions near both ends of the outer cylinder 20 and the outer peripheral portion of the split core 18 are fixed by welding at the same time. In the illustrated example, adjacent end portions of the two split cores 18 are located between both ends of the outer cylinder 20 in the circumferential direction of the core body 24, so The portions near both ends of the tube 20 are welded and fixed simultaneously. However, with respect to the circumferential direction of the core main body 24, when the central portion in the circumferential direction of the single divided core 18 is positioned between both ends of the outer cylinder 20 in the circumferential direction, the single divided core 18 and the outer cylinder 20 are located. It is also possible to weld and fix the portions near both ends of the same.

このように分割コア18の外周に外筒20を巻き付ける場合、円環状に配置した複数の分割コア18の内側に円筒状の治具(図示せず)を嵌合させて行うこともできる。また、外筒20を造る際に、丸い断面の金属管を潰して断面矩形の扁平形状に成形したあと、円筒状に丸め成形したり、矩形の断面を有する金属管を円筒状に丸め成形することができる。   Thus, when the outer cylinder 20 is wound around the outer periphery of the split core 18, a cylindrical jig (not shown) can be fitted inside the plurality of split cores 18 arranged in an annular shape. Further, when the outer cylinder 20 is manufactured, the metal tube having a round cross section is crushed and formed into a flat shape with a rectangular cross section, and then rounded into a cylindrical shape, or a metal tube having a rectangular cross section is rounded into a cylindrical shape. be able to.

また、図3に示すように、外筒20の内側に冷媒通路29を設けるとともに、図2に示すように、外筒20の径方向外側に向く一端部を冷媒入口30とし、外筒20の径方向外側に向く他端部を冷媒出口32とすることができる。そして冷媒、例えば冷却水や、オートマチックトランスミッションフルード(ATF)等の冷却油等の冷却液を、冷媒入口30から冷媒出口32に向け、外筒20内に流すことで、コア本体24を冷却することができる。このため、外筒20は、高い熱伝導性を有する材料、例えばアルミニウムやアルミニウム合金等により造るようにしてもよい。また、使用時には、冷媒入口30と冷媒出口32とに、図示しない冷媒経路の両端を接続し、冷媒経路の途中に熱交換部や冷媒ポンプを設けて、冷媒経路と外筒20とを含む冷媒循環経路に冷媒を循環させる。この場合、熱交換部で冷媒を空気や他の冷媒等と熱交換させて冷媒を冷却する。また、冷媒として冷却油を用いる場合に、熱交換部の代わりにオイルパンを設けて、オイルパンに冷媒を通過させることで冷却することもできる。   Further, as shown in FIG. 3, a refrigerant passage 29 is provided inside the outer cylinder 20, and as shown in FIG. 2, one end portion of the outer cylinder 20 facing the radially outer side serves as a refrigerant inlet 30, and the outer cylinder 20 The other end portion that faces radially outward can be the refrigerant outlet 32. The core body 24 is cooled by flowing a coolant, for example, coolant such as coolant or cooling oil such as automatic transmission fluid (ATF) from the coolant inlet 30 toward the coolant outlet 32 and into the outer cylinder 20. Can do. For this reason, the outer cylinder 20 may be made of a material having high thermal conductivity, such as aluminum or an aluminum alloy. Further, at the time of use, the refrigerant inlet 30 and the refrigerant outlet 32 are connected to both ends of a refrigerant path (not shown), a heat exchange part and a refrigerant pump are provided in the middle of the refrigerant path, and the refrigerant including the refrigerant path and the outer cylinder 20 Circulate the refrigerant in the circulation path. In this case, the heat exchange unit causes the refrigerant to exchange heat with air, other refrigerants, and the like to cool the refrigerant. Moreover, when using cooling oil as a refrigerant | coolant, it can cool by providing an oil pan instead of a heat exchange part, and letting a refrigerant | coolant pass through an oil pan.

このようなステータコア12は、ティース14にコイル16を巻回してステータ10(図3)を形成した状態で、図示しないハウジングの内側にステータ10を嵌合固定したり、ステータ10の外周部に図示しないブラケットを接合し、そのブラケットにより、図示しない固定部に固定して使用することができる。また、図3に示すように、コイル16のうち、ステータコア12の軸方向両端面から軸方向に突出する部分により、コイルエンド34が形成されている。   In such a stator core 12, the coil 10 is wound around the teeth 14 to form the stator 10 (FIG. 3), and the stator 10 is fitted and fixed inside a housing (not shown) or is shown on the outer periphery of the stator 10. The brackets that are not to be joined can be joined and fixed to a fixing portion (not shown) by the brackets. As shown in FIG. 3, a coil end 34 is formed by a portion of the coil 16 that protrudes in the axial direction from both axial end surfaces of the stator core 12.

このようなステータ10によれば、分割コア18を備える構成において、単純な管形状の外筒20で複数の分割コア18を円環状に一体に固定できるので、複雑なプレス型を使用せず、コストを低減できる。また、組み付け時の締め代ばらつきに対する設計や締め付け力の管理を容易に行える。すなわち、本実施の形態と異なり、円環状に配置された複数の分割コアを外側の筒部により焼き嵌めや圧入により固定する場合と異なり、外筒20に対するコア本体24の固定時の締め代ばらつきに対する設計や締め付け力の管理が容易になる。   According to such a stator 10, in the configuration including the split cores 18, the plurality of split cores 18 can be integrally fixed in an annular shape with a simple tube-shaped outer cylinder 20, so that a complicated press die is not used. Cost can be reduced. In addition, it is possible to easily manage the design and tightening force with respect to variations in tightening allowance during assembly. That is, unlike the present embodiment, unlike the case where a plurality of split cores arranged in an annular shape are fixed by shrink fitting or press-fitting with the outer cylindrical portion, variation in tightening allowance when the core body 24 is fixed to the outer cylinder 20 is different. The design and tightening force can be easily managed.

また、複数の分割コア18と、分割コア18に巻き付けた外筒20とを同時に溶接により固定できるため、外筒20に対する分割コア18の位置決め精度が良好で、構成部品に要求される寸法精度を低くできる。すなわち、外筒20及び分割コア18である、組み付ける部品間での寸法精度を過度に高くする必要がなくなり、各部品の製造を容易に行える。また、外筒20が単純な形状で、さらに分割コア18に巻き付ける形状であるため、複数の分割コア18の軸方向厚さの違いや径方向の寸法の違いに対応することを容易に行える。さらに、組付け部品である外筒20に冷却機能を持たせ、外筒20に冷媒を流すことで、ステータ10に冷却専用部品を設けることなく、冷却機能を持たせることができる。このため、ステータ10に冷却機能を持たせるのにもかかわらず、部品点数を過剰にすることなく、設置空間を小さくでき、しかもコストの過度の上昇を防止できる。   Further, since the plurality of split cores 18 and the outer cylinder 20 wound around the split core 18 can be fixed simultaneously by welding, the positioning accuracy of the split core 18 with respect to the outer cylinder 20 is good, and the dimensional accuracy required for the component parts is increased. Can be lowered. That is, it is not necessary to excessively increase the dimensional accuracy between the parts to be assembled, which are the outer cylinder 20 and the split core 18, and each part can be easily manufactured. In addition, since the outer cylinder 20 has a simple shape and is wound around the split core 18, it is possible to easily cope with differences in axial thickness and radial dimensions of the plurality of split cores 18. Furthermore, the cooling function can be provided to the stator 10 without providing a cooling-dedicated part by providing the cooling function to the outer cylinder 20 that is an assembly part and allowing the coolant to flow through the outer cylinder 20. For this reason, although the stator 10 is provided with a cooling function, the installation space can be reduced without increasing the number of parts, and an excessive increase in cost can be prevented.

また、外筒20の管の形状が単純であるため、板材に深絞り等のプレス成形を施すことにより外筒20を作る場合と異なり、材料歩留まりを大幅に向上できる。なお、上記では、外筒20の断面が矩形である場合を説明したが、外筒20の断面は丸形や三角形等、他の形状とすることもできる。   Moreover, since the shape of the tube of the outer cylinder 20 is simple, unlike the case of making the outer cylinder 20 by performing press molding such as deep drawing on the plate material, the material yield can be greatly improved. In addition, although the case where the cross section of the outer cylinder 20 was a rectangle was demonstrated above, the cross section of the outer cylinder 20 can also be made into other shapes, such as a round shape and a triangle.

図4は、本発明の実施の形態の別例の第1例の回転電機用ステータを示す、図3に対応する図である。図4に示す別例の第1例の場合、上記の図1〜3の構成で設けていた外筒20(図1等)の代わりに、複数の分割コア18の外周にらせん状に複数周回分巻き付けられた細管状の金属管36が設けられている。図4に示す例では、金属管36は断面丸形としている。また、金属管36の内側に冷媒通路37が設けられている。そして、円環状に配置された複数の分割コア18により構成されるコア本体24の外周に金属管36を複数周回分巻き付け、両端寄り部分を径方向外側に曲げ形成した状態で、金属管36の両端寄り部分とコア本体24の外周面とが同時に溶接固定されている。この場合、金属管36の両端寄り部分同士が周方向に対向しない場合があるが、この場合は、金属管36の一端寄り部分及びコア本体24の外周部の溶接と、金属管36の他端寄り部分及びコア本体24の外周部の溶接との、複数個所の溶接部の溶接を同時に行う。また、このようにステータコア12を構成した状態で、ステータコア12を構成するティース14にコイル16を巻き付けることで、ステータ10を形成している。   FIG. 4 is a view corresponding to FIG. 3 and showing a first example of a rotating electrical machine stator of another example of the embodiment of the present invention. In the case of the first example of the other example shown in FIG. 4, instead of the outer cylinder 20 (FIG. 1 and the like) provided in the configuration of FIGS. A thin metal tube 36 is provided which is wound around. In the example shown in FIG. 4, the metal tube 36 has a round cross section. A refrigerant passage 37 is provided inside the metal pipe 36. Then, the metal tube 36 is wound around the outer periphery of the core body 24 constituted by the plurality of divided cores 18 arranged in an annular shape, and the portions of the metal tube 36 are bent radially outward at both ends. The portions near both ends and the outer peripheral surface of the core body 24 are welded and fixed simultaneously. In this case, the portions near both ends of the metal tube 36 may not face each other in the circumferential direction. In this case, welding of the portion near one end of the metal tube 36 and the outer peripheral portion of the core body 24 and the other end of the metal tube 36 are performed. Welding of the welded portions at a plurality of locations is performed simultaneously with the welding of the offset portion and the outer peripheral portion of the core body 24. In addition, the stator 10 is formed by winding the coil 16 around the teeth 14 constituting the stator core 12 in a state where the stator core 12 is constituted as described above.

このような構成によれば、金属管36を組み付け前に、コア本体24の軸方向(図4の左右方向)全長とほぼ同じ軸方向長さを有するように金属管36を扁平に成形する必要がなくなる。また、金属管36をコア本体24に複数周回分巻き付けているため、金属管36の断面寸法に応じて巻き付け周回を変化させることができる。このため、金属管36の断面寸法によらずに、ステータ10の軸方向全長(厚さ)の変化に対応することが容易になる。さらに、金属管36をコア本体24に複数周回分巻き付けるため、コア本体24と金属管36との接触面積及び金属管36の外部への放熱面積を保つか、または増大させつつ、扁平金属管に冷媒を流す場合と同一冷媒量で流速を増大できるので、冷却効率を向上でき、しかも金属管36内の冷媒の淀み、すなわち滞留を防止できる。その他の構成及び作用は、上記の図1〜3に示した実施形態の場合と同様である。   According to such a configuration, before assembling the metal tube 36, it is necessary to form the metal tube 36 in a flat shape so as to have substantially the same axial length as the axial direction (left-right direction in FIG. 4) of the core body 24. Disappears. Further, since the metal tube 36 is wound around the core body 24 for a plurality of turns, the winding turn can be changed according to the cross-sectional dimension of the metal tube 36. For this reason, it becomes easy to cope with the change in the overall axial length (thickness) of the stator 10 regardless of the cross-sectional dimension of the metal tube 36. Further, since the metal tube 36 is wound around the core body 24 a plurality of times, the flat metal tube is formed while maintaining or increasing the contact area between the core body 24 and the metal tube 36 and the heat radiation area to the outside of the metal tube 36. Since the flow rate can be increased with the same amount of refrigerant as in the case of flowing the refrigerant, the cooling efficiency can be improved, and the stagnation of the refrigerant in the metal tube 36, that is, the retention can be prevented. Other configurations and operations are the same as those in the embodiment shown in FIGS.

なお、図4の別例の第1例では、金属管36の断面を丸形としているが、図5、図6にそれぞれ示す別例の第2例、第3例のように、金属管36の断面を三角形または正方形、長方形等の矩形とすることもできる。このように金属管36の断面を三角形または矩形とする場合には、金属管36とコア本体24との接触面積をより増大でき、冷却効率を向上させることができる。   In the first example of another example of FIG. 4, the cross section of the metal tube 36 is round. However, as in the second example and the third example of another example shown in FIGS. The cross section may be a rectangle such as a triangle, square, or rectangle. Thus, when the cross section of the metal tube 36 is triangular or rectangular, the contact area between the metal tube 36 and the core body 24 can be further increased, and the cooling efficiency can be improved.

図7は、本発明の実施の形態の別例の第4例の回転電機用ステータを構成するステータコアを示す図である。図7に示す別例の第4例のステータコア12では、円環状に配置された複数の分割コア18により構成されるコア本体24の外周に、パイプ状で断面矩形の金属管を複数系統に分けて巻き付けている。すなわち、図7に示す例では、コア本体24の外周面の周方向片側部分(図7の右側部分)に断面矩形で略半円状に形成された第1金属管38を巻き付け、コア本体24の外周面の周方向他側部分(図7の左側部分)に断面矩形で略半円状に形成された第2金属管40を巻き付けている。   FIG. 7 is a view showing a stator core constituting a stator for a rotating electrical machine of a fourth example of another example of the embodiment of the present invention. In the stator core 12 of the fourth example of another example shown in FIG. 7, a pipe-like metal tube having a rectangular cross section is divided into a plurality of systems on the outer periphery of a core body 24 constituted by a plurality of divided cores 18 arranged in an annular shape. It is wrapped around. That is, in the example shown in FIG. 7, a first metal tube 38 having a rectangular cross section and a substantially semicircular shape is wound around one side portion (right side portion in FIG. 7) of the outer peripheral surface of the core body 24. A second metal tube 40 having a rectangular cross section and a substantially semicircular shape is wound around the other circumferential portion of the outer peripheral surface (the left portion in FIG. 7).

また、各金属管38,40の両端寄り部分で互いにほぼ直径方向反対側部分をそれぞれ径方向外側に曲げ形成することで、曲げ部42を形成している。また、各金属管38,40の一端寄り部分同士を隙間をあけて、ステータコア12の周方向に対向させ、各金属管38,40の他端寄り部分同士を隙間をあけて、ステータコア12の周方向に対向させている。   In addition, the bent portions 42 are formed by bending the substantially opposite portions in the diametrical direction at the portions near both ends of the metal tubes 38 and 40 respectively outward in the radial direction. Further, the portions near one end of each of the metal tubes 38 and 40 are spaced apart from each other in the circumferential direction of the stator core 12, and the portions near the other end of each of the metal tubes 38 and 40 are spaced apart from each other so that the periphery of the stator core 12 is surrounded. Opposite to the direction.

そして、第1、第2両金属管38,40の一端寄り部分同士及びコア本体24の外周面の周方向一部と、第1、第2両金属管38,40の他端寄り部分同士及びコア本体24の外周面の別の部分である直径方向のほぼ反対側の部分とを、溶接部44,46により同時に溶接固定している。   Then, the portions near the one ends of the first and second metal tubes 38, 40 and a part of the outer peripheral surface of the core body 24 in the circumferential direction, the portions near the other ends of the first and second metal tubes 38, 40, and Another portion of the outer peripheral surface of the core main body 24 and a portion on the substantially opposite side in the diametrical direction are welded and fixed simultaneously by the welded portions 44 and 46.

さらに、各金属管38,40の両端部のうち、上側に向く一端部を冷媒入口30とし、下側に向く他端部を冷媒出口32としている。   Further, of both end portions of each of the metal pipes 38 and 40, one end portion facing upward is a refrigerant inlet 30 and the other end portion facing downward is a refrigerant outlet 32.

このような別例の第4例によれば、各金属管38,40内で冷媒を上側から下側に流すことができ、冷媒が各金属管38,40内で円環状に循環しないので、円環状に循環させる場合よりも冷媒温度を低減できるとともに、冷媒の熱劣化の防止を図れる。また、冷媒が各金属管38,40内で円環状に循環する構成でないので、使用時に各金属管38,40の冷媒入口30に、冷媒を冷却する冷却部を有する冷媒供給部(図示せず)の冷媒出口を接続すれば、各金属管38,40の冷媒出口32に冷媒経路を接続しなくてもよく、各金属管38,40内に冷媒供給部で冷却された冷媒を連続的に注入し、流すことができる。また、各金属管38,40の冷媒出口32からは下側に冷媒を噴出させ、下側で受け止めた図示しない冷媒溜まりから冷媒供給部にポンプ等により冷媒を戻すこともできる。その他の構成及び作用は、上記の図1〜図3に示した実施形態の場合と同様である。なお、上記では、金属管38,40の断面が矩形である場合を説明したが、金属管38,40の断面は丸形や三角形等、他の形状とすることもできる。   According to the fourth example of such another example, the refrigerant can flow from the upper side to the lower side in each metal tube 38, 40, and the refrigerant does not circulate in an annular shape in each metal tube 38, 40. Refrigerant temperature can be reduced as compared with the case of circulating in an annular shape, and thermal deterioration of the refrigerant can be prevented. Further, since the refrigerant is not configured to circulate in an annular shape in each of the metal tubes 38 and 40, a refrigerant supply unit (not shown) having a cooling unit for cooling the refrigerant at the refrigerant inlet 30 of each of the metal tubes 38 and 40 during use. ), The refrigerant path does not have to be connected to the refrigerant outlet 32 of each of the metal pipes 38 and 40, and the refrigerant cooled by the refrigerant supply unit is continuously contained in each of the metal pipes 38 and 40. Can be injected and flushed. Further, the refrigerant can be ejected downward from the refrigerant outlet 32 of each of the metal pipes 38 and 40, and the refrigerant can be returned to the refrigerant supply unit from a refrigerant pool (not shown) received on the lower side by a pump or the like. Other configurations and operations are the same as those in the embodiment shown in FIGS. In addition, although the case where the cross section of the metal tubes 38 and 40 was a rectangle was demonstrated above, the cross section of the metal tubes 38 and 40 can also be made into other shapes, such as a round shape and a triangle.

図8は、本発明の実施の形態の別例の第5例の回転電機用ステータを示す、図3に対応する図である。図8に示す別例の第5例の場合には、上記の図1〜図3に示した実施形態において、金属管である外筒20aを、複数の分割コア18により構成されるコア本体24の外周面に軸方向に沿う外形を有する扁平な矩形断面を有するように形成している。また、外筒20aの内側に冷媒通路29を設けるとともに、外筒20aの軸方向両端面の周方向複数個所に、外筒20a内の流れと直交する方向である、軸方向(図8の左右方向)に形成された冷媒噴出孔48を有するようにしている。   FIG. 8 is a view corresponding to FIG. 3 and showing a fifth example of the stator for a rotating electrical machine according to another example of the embodiment of the present invention. In the case of the fifth example of another example shown in FIG. 8, in the embodiment shown in FIGS. 1 to 3, the outer cylinder 20 a that is a metal tube is a core body 24 configured by a plurality of divided cores 18. Is formed so as to have a flat rectangular cross section having an outer shape along the axial direction. In addition, the refrigerant passage 29 is provided inside the outer cylinder 20a, and the axial direction (right and left in FIG. 8) is a direction orthogonal to the flow in the outer cylinder 20a at a plurality of circumferential positions on both axial end surfaces of the outer cylinder 20a. The refrigerant ejection holes 48 are formed in the direction).

このような構成によれば、外筒20aの内部を流れる冷媒が、冷媒通路29から冷媒噴出孔48を通じて外部に噴出され、噴出された冷媒は図8に矢印α方向で示すように、ステータ10の両側に設けられた各コイルエンド34にかかる。このため、各コイルエンド34を冷媒によりコア本体24を介さずに直接に冷却することができる。また、外筒20aはコア本体24の外周面に接触しているので、外筒20aを流れる冷媒によりコア本体24も冷却できる。すなわち、本構成例によれば、外筒20aを流れる冷媒によりコア本体24の外周部とコイル16とをより有効に冷却することができる。その他の構成及び作用は、上記の図1〜図3に示した実施形態と同様である。   According to such a configuration, the refrigerant flowing inside the outer cylinder 20a is ejected to the outside through the refrigerant passage 29 from the refrigerant passage 29, and the ejected refrigerant is shown in the direction of arrow α in FIG. It is applied to each coil end 34 provided on both sides. For this reason, each coil end 34 can be directly cooled by the refrigerant without passing through the core body 24. Further, since the outer cylinder 20a is in contact with the outer peripheral surface of the core body 24, the core body 24 can also be cooled by the refrigerant flowing through the outer cylinder 20a. That is, according to this configuration example, the outer peripheral portion of the core body 24 and the coil 16 can be more effectively cooled by the refrigerant flowing through the outer cylinder 20a. Other configurations and operations are the same as those of the embodiment shown in FIGS.

10 ステータ、12 ステータコア、14 ティース、16 コイル、18 分割コア、20,20a 外筒、22 ヨーク要素、24 コア本体、26 曲げ部、27 隙間、28 溶接部、29 冷媒通路、30 冷媒入口、32 冷媒出口、34 コイルエンド、36 金属管、37 冷媒通路、38 第1金属管、40 第2金属管、42 曲げ部、44,46 溶接部、48 冷媒噴出孔。   DESCRIPTION OF SYMBOLS 10 Stator, 12 Stator core, 14 teeth, 16 coils, 18 division | segmentation core, 20, 20a outer cylinder, 22 yoke element, 24 core main body, 26 bending part, 27 clearance gap, 28 welding part, 29 refrigerant path, 30 refrigerant inlet, 32 Refrigerant outlet, 34 Coil end, 36 Metal pipe, 37 Refrigerant passage, 38 First metal pipe, 40 Second metal pipe, 42 Bending part, 44, 46 Welding part, 48 Refrigerant ejection hole.

Claims (5)

円環状に配置された複数の分割コアと、
複数の分割コアの外周に巻き付けられた金属管と、を備え、
金属管の両端寄り部分と、円環状に配置された複数の分割コアの外周とが同時に溶接固定されていることを特徴とする回転電機用ステータ。
A plurality of split cores arranged in an annular shape;
A metal tube wound around the outer periphery of the plurality of split cores,
A stator for a rotating electrical machine, wherein portions near both ends of a metal tube and the outer circumferences of a plurality of split cores arranged in an annular shape are welded and fixed simultaneously.
請求項1に記載の回転電機用ステータにおいて、
金属管は、断面矩形に形成され、複数の分割コアの外周に金属管を丸めた状態で両端寄り部分が同時に溶接固定されていることを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to claim 1,
A stator for a rotating electrical machine, wherein a metal tube is formed in a rectangular cross section, and both end portions are welded and fixed at the same time in a state where the metal tube is rounded around the outer periphery of a plurality of divided cores.
請求項1に記載の回転電機用ステータにおいて、
金属管は、複数の分割コアの外周に複数周回分巻き付けられていることを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to claim 1,
The stator for a rotating electrical machine, wherein the metal tube is wound around the outer periphery of the plurality of divided cores by a plurality of turns.
請求項1に記載の回転電機用ステータにおいて、
金属管は、複数の分割コアの外周の周方向片側部分に巻き付けられた第1金属管であり、
さらに、複数の分割コアの外周の周方向他側部分に巻き付けられた第2金属管を備え、
第1、第2両金属管の一端寄り部分同士及び円環状に配置された複数の分割コアの外周の一部と、第1、第2両金属管の他端寄り部分同士及び円環状に配置された複数の分割コアの外周の別の部分とが、同時に溶接固定されていることを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to claim 1,
The metal tube is a first metal tube wound around a circumferential one side portion of the outer periphery of the plurality of split cores,
Furthermore, it comprises a second metal tube wound around the other circumferential portion of the outer periphery of the plurality of split cores,
Parts near one end of both the first and second metal tubes and a part of the outer periphery of the plurality of split cores arranged in an annular shape, and parts near the other ends of the first and second metal tubes and an annular shape A stator for a rotating electrical machine, wherein another part of the outer periphery of the plurality of divided cores is welded and fixed simultaneously.
請求項1に記載の回転電機用ステータにおいて、
金属管は、複数の分割コアの外周面に軸方向に沿う外形を有する扁平な矩形断面を有し、かつ、金属管の少なくとも軸方向一端面に、金属管内の流れと直交する方向に形成された冷媒噴出孔を有することを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to claim 1,
The metal tube has a flat rectangular cross section having an outer shape along the axial direction on the outer peripheral surfaces of the plurality of divided cores, and is formed on at least one axial end surface of the metal tube in a direction perpendicular to the flow in the metal tube. A stator for a rotating electrical machine having a refrigerant ejection hole.
JP2011085302A 2011-04-07 2011-04-07 Stator for rotating electrical machine Expired - Fee Related JP5652305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011085302A JP5652305B2 (en) 2011-04-07 2011-04-07 Stator for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011085302A JP5652305B2 (en) 2011-04-07 2011-04-07 Stator for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2012222929A true JP2012222929A (en) 2012-11-12
JP5652305B2 JP5652305B2 (en) 2015-01-14

Family

ID=47273887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011085302A Expired - Fee Related JP5652305B2 (en) 2011-04-07 2011-04-07 Stator for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5652305B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292656B1 (en) * 2012-12-05 2013-09-18 快堂 池田 "Left-handed winding-gap-right-handed winding" fitting and cooling pipe that also serves as the magnetic pole of the toroidal core
JP2016500510A (en) * 2012-12-20 2016-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Synchronous motor manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545512A (en) * 1977-06-16 1979-01-17 Mitsubishi Electric Corp Production of steel sheet made motor
JPH0720072U (en) * 1993-09-16 1995-04-07 株式会社安川電機 Spindle motor cooling device
JP2001025211A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Motor and manufacture thereof
JP2001504677A (en) * 1996-11-04 2001-04-03 エービービー エービー Stator for rotating electric machine and method of manufacturing stator
JP2007195281A (en) * 2006-01-17 2007-08-02 Sumitomo Electric Ind Ltd Stator core for dynamo-electric machine, and stator using that stator core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545512A (en) * 1977-06-16 1979-01-17 Mitsubishi Electric Corp Production of steel sheet made motor
JPH0720072U (en) * 1993-09-16 1995-04-07 株式会社安川電機 Spindle motor cooling device
JP2001504677A (en) * 1996-11-04 2001-04-03 エービービー エービー Stator for rotating electric machine and method of manufacturing stator
JP2001025211A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Motor and manufacture thereof
JP2007195281A (en) * 2006-01-17 2007-08-02 Sumitomo Electric Ind Ltd Stator core for dynamo-electric machine, and stator using that stator core

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292656B1 (en) * 2012-12-05 2013-09-18 快堂 池田 "Left-handed winding-gap-right-handed winding" fitting and cooling pipe that also serves as the magnetic pole of the toroidal core
WO2014087890A1 (en) * 2012-12-05 2014-06-12 Ikeda Kaidou Fitting tool doubling as magnet ic pole of "left-handed-thread winding/gap/right-handed-thread winding" toroidal core, and cooling pipe
JP2014112986A (en) * 2012-12-05 2014-06-19 Kaido Ikeda Magnetic-pole-doubling mounting tool for "left hand wind, gap, and right hand wind" toroidal core, and cooling pipe
JP2016500510A (en) * 2012-12-20 2016-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Synchronous motor manufacturing method

Also Published As

Publication number Publication date
JP5652305B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
EP2632026B1 (en) Cooling jacket for axial flux machine
US9614417B2 (en) Axial flux permanent magnet motor
CN205565914U (en) Stator and motor
WO2015198961A1 (en) Stator of electric motor and cooling structure for dynamo-electric machine
JP2004248429A (en) Stator coil module, its manufacturing method and rotating electric machine
JP5774255B1 (en) Method for manufacturing cage rotor and cage rotor
JP4066982B2 (en) Stator cooling structure for disk-type rotating electrical machine
JP5331521B2 (en) Toroidal winding motor
JP2014108009A (en) Rotary electric machine
US20200153292A1 (en) Stator unit of rotary electric machine
CN107534355A (en) Electric rotating machine
JP6452164B2 (en) Rotating electric machine stator
CN110247485A (en) The stator of rotating electric machine
JP5047224B2 (en) Electric motor
JP5652305B2 (en) Stator for rotating electrical machine
KR20130032828A (en) Electric machine module cooling system and method
JP2011182573A (en) Stator
JP6374797B2 (en) Cooling structure of rotating electric machine
JP6210003B2 (en) Stator core, rotating electric machine, and stator core manufacturing method
KR101755492B1 (en) Stator assembly structure for drive motor of hybrid electric vehicle
CN112104116A (en) Stator assembly, motor and electric drive axle system
JP2015019494A (en) Rotary machine and method of manufacturing the same
JP2010206928A (en) Linear motor, armature of linear motor, and method of armature of manufacturing linear motor
JP2015095908A (en) Electric motor
CN210327237U (en) Liquid cooling casing and liquid cooling motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

LAPS Cancellation because of no payment of annual fees