JP2012222239A - Semiconductor module and pressing force dispersion member - Google Patents

Semiconductor module and pressing force dispersion member Download PDF

Info

Publication number
JP2012222239A
JP2012222239A JP2011088375A JP2011088375A JP2012222239A JP 2012222239 A JP2012222239 A JP 2012222239A JP 2011088375 A JP2011088375 A JP 2011088375A JP 2011088375 A JP2011088375 A JP 2011088375A JP 2012222239 A JP2012222239 A JP 2012222239A
Authority
JP
Japan
Prior art keywords
pressing force
semiconductor module
dispersion
electrode
disc spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011088375A
Other languages
Japanese (ja)
Inventor
Yoshiki Morikawa
良樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2011088375A priority Critical patent/JP2012222239A/en
Publication of JP2012222239A publication Critical patent/JP2012222239A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the operation stability of a semiconductor module by making the pressing force of an elastic member act uniformly by each member constituting the semiconductor module.SOLUTION: In the semiconductor module including electrode terminals 3, 4 being connected electrically with the electrode layer of IGBT elements 2, 2, a spring electrode 6 is provided between the IGBT element 2 and the electrode terminal 4. The spring electrode 6 is constituted by holding a disc spring 5 between flat plate parts 8a, 8a formed by folding a conductive plate member 8. Furthermore, in order to disperse the pressing force of the disc spring 5, dispersion plates 7, 7 (pressing force dispersion members) are provided, respectively, between the flat plate part 8a and the disc spring 5.

Description

本発明は、圧接により半導体素子の電極層と電極端子とを電気的に接続する半導体モジュール及びこの半導体モジュールに備えられる押圧力分散部材に関する。   The present invention relates to a semiconductor module that electrically connects an electrode layer and an electrode terminal of a semiconductor element by pressure contact, and a pressing force dispersion member provided in the semiconductor module.

近年、産業用・車両用システムや変電設備、インバータ等電力変換装置といった分野等に用いられる絶縁形パワー半導体モジュールに対して、高耐圧、大容量のIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)の適用が行われている。このIGBTモジュールに代表される「絶緑形パワー半導体モジュール」若しくは「Isolated power semiconductor devices」は、それぞれJEC−2407−2007、IEC60747−15にて規格が制定されている。   In recent years, high-voltage, high-capacity IGBTs (Insulated Gate Bipolar Transistors) are used for insulated power semiconductor modules used in fields such as industrial and vehicle systems, substation equipment, and power converters such as inverters. Has been applied. Standards for “green green power semiconductor modules” or “Isolated power semiconductor devices” typified by this IGBT module are established in JEC-2407-2007 and IEC60747-15, respectively.

一般的な絶緑形パワー半導体モジュールにおいて、スイッチング素子であるIGBTやダイオード等の半導体素子は、半導体素子の下面に備えられた電極層をDBC(Direct Bond Copper)基板(或いはDCB基板)の銅回路箔上にはんだ付けすることにより備えられる(例えば、非特許文献1)。DBC基板とは、セラミックス等からなる絶縁板に銅回路箔を直接接合したものである。   In a general green-type power semiconductor module, a semiconductor element such as an IGBT or a diode as a switching element has a copper circuit on a DBC (Direct Bond Copper) substrate (or DCB substrate) with an electrode layer provided on the lower surface of the semiconductor element. It is provided by soldering on a foil (for example, Non-Patent Document 1). The DBC substrate is obtained by directly bonding a copper circuit foil to an insulating plate made of ceramics or the like.

半導体素子の上面に設けられる電極層には、超音波ボンディング等の方法によりアルミワイヤが接続され、例えば、DBC基板上の銅回路箔と電気的に結線される。そして、DBC基板の銅回路箔から外部へ電気を接続するための銅端子(リードフレームやブスバー)は、銅回路箔とはんだ付けにより接続される。さらに、この周りは(スーパー)エンジニアリングプラスチックのケースで囲まれ、その中を電気絶緑のためのシリコンゲル等が充填される。   An aluminum wire is connected to the electrode layer provided on the upper surface of the semiconductor element by a method such as ultrasonic bonding, and is electrically connected to, for example, a copper circuit foil on a DBC substrate. A copper terminal (lead frame or bus bar) for connecting electricity from the copper circuit foil of the DBC substrate to the outside is connected to the copper circuit foil by soldering. Furthermore, this area is surrounded by a (super) engineering plastic case and filled with silicon gel or the like for electric green.

年々電力密度の増加に伴い半導体素子上の電極とアルミワイヤ間等の接合温度が高くなり、はんだのせん断応力、アルミワイヤの応力が大きくなってきている。これに対して熱膨張の影響が半導体モジュールの設計寿命に至るまでの期間に亘って顕在化しないように半導体モジュールの構造を設計する必要がある。SiCやGaNのような高温で使用できるワイドバンドキャップ半導体素子の出現により、さらに熱膨張の影響の低減が要求されている。このように、半導体素子の動作温度の高温化が進んでおり、動作温度が175℃〜200℃となると、この温度がはんだ材料の融点に近いため、従来のはんだ材料を用いることができない場合がある。そこで、はんだに置換する材料として、例えば、金属系高温はんだ(Bi、Zn、Au)、化合物系高温はんだ(Sn−Cu)、低温焼結金属(Ag粉、nanoAg)等が提案されている。なお、次世代の半導体素子であるSiCは、250〜300℃での動作が報告されている。   As the power density increases year by year, the bonding temperature between the electrode on the semiconductor element and the aluminum wire increases, and the shear stress of the solder and the stress of the aluminum wire increase. On the other hand, it is necessary to design the structure of the semiconductor module so that the influence of thermal expansion does not become apparent over the period until the design life of the semiconductor module is reached. With the advent of wideband cap semiconductor elements that can be used at high temperatures such as SiC and GaN, there is a demand for further reduction of the effects of thermal expansion. As described above, the operating temperature of the semiconductor element is increasing, and when the operating temperature is 175 ° C. to 200 ° C., this temperature is close to the melting point of the solder material, so that the conventional solder material may not be used. is there. Therefore, as a material to be replaced with solder, for example, metal-based high-temperature solder (Bi, Zn, Au), compound-based high-temperature solder (Sn—Cu), low-temperature sintered metal (Ag powder, nanoAg), and the like have been proposed. In addition, operation | movement at 250-300 degreeC is reported for SiC which is a next-generation semiconductor element.

はんだを用いた絶緑形パワー半導体モジュールには、RoHS(Restriction of Hazardous Substances)に対応するためにはんだの鉛フリー化を行うことや、温度サイクル、パワーサイクル等の信頼性の向上させるために各部材間に働く応力を低減させること等の課題がある。   In order to comply with RoHS (Restriction of Hazardous Substances), lead-free solder and to improve the reliability of temperature cycle, power cycle, etc. There exists a subject, such as reducing the stress which acts between members.

はんだの鉛フリー化の課題に対して、鉛フリーはんだを用いることやはんだを用いない半導体モジュール構造が検討されている。例えば、鉛フリーはんだ材料として、上述のようなSn−Ag系やSn−Cu系のものが検討されている。   In order to solve the problem of lead-free solder, use of lead-free solder and semiconductor module structures not using solder are being studied. For example, as a lead-free solder material, Sn-Ag-based or Sn-Cu-based materials as described above are being studied.

一方、温度サイクル、パワーサイクル等の信頼性を向上させる課題に対しては、半導体モジュールを構成する各部材(半導体、金属、セラミックス等)の熱膨張率の違いより生じる課題を改善する必要がある。すなわち、基板−銅ベース間、基板−銅端子間において、銅とセラミックスの熱膨張係数の差から間のはんだにせん断応力が働き、はんだに亀裂が生じて熱抵抗が増大したり端子が剥離したりするおそれがある。さらに、半導体素子−基板間のはんだにも亀裂が生じる場合がある。その他、半導体素子上のアルミワイヤの接続部でもアルミニウムと半導体素子の熱膨張の差で応力が発生してアルミワイヤが疲労破断する場合がある。   On the other hand, for the problem of improving the reliability such as temperature cycle and power cycle, it is necessary to improve the problem caused by the difference in thermal expansion coefficient of each member (semiconductor, metal, ceramics, etc.) constituting the semiconductor module. . That is, between the substrate and the copper base, between the substrate and the copper terminal, the shear stress acts on the solder between the copper and ceramics due to the difference in the thermal expansion coefficient, causing cracks in the solder, increasing the thermal resistance, and peeling the terminals. There is a risk of Furthermore, cracks may also occur in the solder between the semiconductor element and the substrate. In addition, stress may be generated due to the difference in thermal expansion between aluminum and the semiconductor element at the connection portion of the aluminum wire on the semiconductor element, and the aluminum wire may be fatigued.

この2つの課題を解決する半導体モジュールとして、はんだを用いない半導体モジュール構造、すなわち、平型圧接構造パッケージが提案されている(特許文献1、非特許文献1、2)。   As a semiconductor module that solves these two problems, a semiconductor module structure that does not use solder, that is, a flat pressure contact structure package has been proposed (Patent Document 1, Non-Patent Documents 1 and 2).

この平型圧接構造パッケージにおいて、一般的に半導体素子(例えば、IGBT、ダイオード等)の端部には、半導体素子及びコンタクト端子の位置決めをするガイドが設けられる。そして、半導体素子の上面電極層がコンタクト端子に接触した状態で半導体素子が基板(Mo基板やDBC基板等)上に設けられる。そして、これらコンタクト端子と基板が半導体素子を挟持するように押圧された状態で半導体モジュール内に設けられる。平型圧接構造パッケージでは、各部材は圧接により接続されるため、はんだを用いることがなく、さらに、各部材の熱膨張率の違いによる応力を緩和することができる。   In this flat pressure contact structure package, a guide for positioning the semiconductor element and the contact terminal is generally provided at the end of the semiconductor element (for example, IGBT, diode, etc.). Then, the semiconductor element is provided on a substrate (Mo substrate, DBC substrate, etc.) with the upper electrode layer of the semiconductor element in contact with the contact terminal. The contact terminals and the substrate are provided in the semiconductor module in a state of being pressed so as to sandwich the semiconductor element. In the flat type pressure contact structure package, since each member is connected by pressure contact, solder is not used, and stress due to a difference in thermal expansion coefficient of each member can be relieved.

このような平型圧接構造パッケージでは、圧接によりコンタクト端子と半導体素子との接続、及び半導体素子と基板との接続が行われる。よって、この平型圧接構造パッケージを使用するためには、半導体モジュールの外部から半導体モジュール内に備えられる両端の電極部(コンタクト端子及び外部接続端子)に力を加えて電極部と半導体素子の電極層との圧接を行う必要がある。そこで、一般的に平型の半導体モジュールには、半導体モジュールを圧接するために、ばね等の弾性部材が備えられる。   In such a flat pressure contact structure package, the contact terminal and the semiconductor element are connected and the semiconductor element and the substrate are connected by pressure contact. Therefore, in order to use this flat pressure contact structure package, force is applied to the electrode portions (contact terminals and external connection terminals) at both ends provided in the semiconductor module from the outside of the semiconductor module, and the electrode portion and the electrode of the semiconductor element It is necessary to perform pressure contact with the layer. Therefore, in general, a flat semiconductor module is provided with an elastic member such as a spring in order to press-contact the semiconductor module.

米国特許第6320268号明細書US Pat. No. 6,320,268 特開平9−139148号公報JP-A-9-139148

電気学会高性能高機能パワーデバイス・パワーIC調査専門委員会、「パワーデバイス・パワーICハンドブック」、コロナ社、1996年7月、p289、p336IEEJ Technical Committee on High Performance and High Performance Power Devices and Power ICs, “Power Device and Power IC Handbook”, Corona, July 1996, p289, p336 森睦宏、関康和、「大容量IGBTの最近の進歩」、電気学会誌、社団法人電気学会、1998年5月、Vol.118(5)、pp.274−277Hiroshi Mori, Yasukazu Seki, “Recent Advances in Large Capacity IGBTs”, The Institute of Electrical Engineers of Japan, The Institute of Electrical Engineers of Japan, May 1998, Vol. 118 (5), pp. 274-277

この圧接構造の半導体モジュールでは、圧接力が各半導体素子等に均等にかかるように半導体モジュールを組み立てる必要がある。つまり、半導体モジュールを構成する各部材の圧接は圧接構造パッケージの上下の電極端子間とを電気的に絶緑し、弾性部材による圧接構造パッケージの圧接力が圧接構造パッケージの電極ポストに均等にかかるようにする必要がある。   In the semiconductor module having this pressure contact structure, it is necessary to assemble the semiconductor module so that the pressure contact force is equally applied to each semiconductor element or the like. That is, the pressure contact of each member constituting the semiconductor module electrically insulates between the upper and lower electrode terminals of the pressure contact structure package, and the pressure contact force of the pressure contact structure package by the elastic member is equally applied to the electrode posts of the pressure contact structure package. It is necessary to do so.

そして、この圧接が不良であった場合にはオン抵抗の増加や半導体素子温度の上昇等により半導体素子の破壊の原因となるおそれがある。   If the pressure contact is poor, the semiconductor element may be destroyed due to an increase in on-resistance or an increase in the temperature of the semiconductor element.

そこで、本発明は、半導体モジュールに備えられる弾性部材の押圧力を半導体素子の電極面により均一に作用させることに貢献することを目的としている。   Therefore, an object of the present invention is to contribute to causing the pressing force of the elastic member provided in the semiconductor module to act more uniformly on the electrode surface of the semiconductor element.

上記目的を達成する本発明の半導体モジュールは、半導体モジュールに備えられる弾性部材の押圧力を分散させる押圧力分散部材を備えたことを特徴としている。また、本発明の押圧力分散部材は、当該押圧力分散部材や弾性部材の位置を、当初備えられた位置を維持するよう位置制御を行うことを特徴としている。   The semiconductor module of the present invention that achieves the above object is characterized by including a pressing force dispersion member that disperses the pressing force of an elastic member provided in the semiconductor module. Further, the pressing force dispersion member of the present invention is characterized in that the position of the pressing force dispersion member or the elastic member is controlled so as to maintain the initially provided position.

すなわち、上記目的を達成する本発明の半導体モジュールは、半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、前記半導体素子と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を設けて構成される電極部材と、前記弾性部材の一端と前記導体平板との間に設けられる第1押圧力分散部材と、前記弾性部材の他端と前記導体平板との間に設けられる第2押圧力分散部材と、を備えたことを特徴としている。   That is, the semiconductor module of the present invention that achieves the above object is a semiconductor module comprising a semiconductor element and an electrode terminal electrically connected to an electrode layer of the semiconductor element, wherein the semiconductor element and the electrode terminal An electrode member configured by folding a conductor flat plate and providing an elastic member between the folded conductor flat plates, a first pressing force dispersion member provided between one end of the elastic member and the conductor flat plate, And a second pressing force dispersion member provided between the other end of the elastic member and the conductive flat plate.

また、上記目的を達成する本発明の半導体モジュールは、上記半導体モジュールにおいて、前記第1押圧力分散部材は、前記第2押圧力分散部材に滑合する滑合部を有することを特徴としている。   Moreover, the semiconductor module of the present invention that achieves the above object is characterized in that, in the semiconductor module, the first pressing force distribution member has a sliding portion that slides on the second pressing force distribution member.

また、上記目的を達成する本発明の半導体モジュールは、上記半導体モジュールにおいて、前記第1押圧力分散部材は、前記第2押圧力分散部材に遊嵌する遊嵌部と、前記第2押圧力分散部材の側面に当接する当接部と、を有することを特徴としている。   In the semiconductor module of the present invention that achieves the above object, in the semiconductor module, the first pressing force distribution member includes a loose fitting portion that loosely fits the second pressing force distribution member, and the second pressing force distribution. And a contact portion that contacts the side surface of the member.

また、上記目的を達成する本発明の半導体モジュールは、上記半導体モジュールにおいて、前記当接部は、前記弾性部材が弾性変形した時に前記導体平板の側面と当接することを特徴としている。   The semiconductor module of the present invention that achieves the above object is characterized in that, in the semiconductor module, the abutting portion abuts a side surface of the conductor flat plate when the elastic member is elastically deformed.

また、上記目的を達成する本発明の半導体モジュールは、上記半導体モジュールにおいて、前記第1押圧力分散部材と前記第2押圧力分散部材とを連結する中間部を有することを特徴としている。   Moreover, the semiconductor module of the present invention that achieves the above object is characterized in that in the semiconductor module, the semiconductor module has an intermediate portion that connects the first pressing force distribution member and the second pressing force distribution member.

また、上記目的を達成する本発明の半導体モジュールは、上記半導体モジュールにおいて、前記第1押圧力分散部材及び前記第2押圧力分散部材に、前記弾性部材が嵌合する嵌合部を形成することを特徴としている。   The semiconductor module of the present invention that achieves the above object is characterized in that, in the semiconductor module, a fitting portion into which the elastic member is fitted is formed in the first pressing force distribution member and the second pressing force distribution member. It is characterized by.

また、上記目的を達成する本発明の押圧力分散部材は、弾性部材を挟持する1対の押圧力分散部材であって、一方の押圧力分散部材は、他方の押圧力分散部材に滑合する滑合部を有することを特徴としている。   The pressing force distribution member of the present invention that achieves the above object is a pair of pressing force distribution members that sandwich an elastic member, and one pressing force distribution member slides on the other pressing force distribution member. It has a sliding part.

また、上記目的を達成する本発明の押圧力分散部材は、弾性部材を挟持する一対の押圧力分散部材であって、一方の押圧力分散部材は、他方の押圧力分散部材に遊嵌する遊嵌部と、前記他方の押圧力分散部材に当接する当接部と、を有することを特徴としている。   The pressing force distribution member of the present invention that achieves the above object is a pair of pressing force distribution members that sandwich an elastic member, and one of the pressing force distribution members is loosely fitted to the other pressing force distribution member. It has a fitting part and an abutting part which abuts on the other pressing force distribution member.

また、上記目的を達成する本発明の押圧力分散部材は、弾性部材を挟持する一対の押圧力分散部材であって、一方の押圧力分散部材と、他方の押圧力分散部材とを連結する中間部を有することを特徴としている。   The pressing force distribution member of the present invention that achieves the above object is a pair of pressing force distribution members that sandwich an elastic member, and is an intermediate that connects one pressing force distribution member and the other pressing force distribution member. It has the part.

以上の発明によれば、半導体モジュールに備えられる弾性部材の押圧力を半導体素子の電極面に対してより均一に作用させることに貢献する。   According to the above invention, it contributes to making the pressing force of the elastic member with which a semiconductor module is provided act on the electrode surface of a semiconductor element more uniformly.

本発明の実施形態1に係る半導体モジュールの要部断面図である。It is principal part sectional drawing of the semiconductor module which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る電極部材の斜視図である。It is a perspective view of the electrode member concerning Embodiment 1 of the present invention. 本発明の実施形態2に係る電極部材の斜視図であり(a)電極部材にかかる圧力が弱い場合の状態を示す図、(b)電極部材にかかる圧力が強い場合の状態を示す図である。It is a perspective view of the electrode member which concerns on Embodiment 2 of this invention, (a) The figure which shows a state when the pressure concerning an electrode member is weak, (b) The figure which shows a state when the pressure concerning an electrode member is strong . 本発明の実施形態3に係る電極部材の斜視図であり(a)電極部材にかかる圧力が弱い場合の状態を示す図、(b)電極部材にかかる圧力が強い場合の状態を示す図である。It is a perspective view of the electrode member which concerns on Embodiment 3 of this invention, (a) The figure which shows a state when the pressure concerning an electrode member is weak, (b) The figure which shows a state when the pressure concerning an electrode member is strong . 本発明の実施形態4に係る電極部材の側面図であり(a)電極部材にかかる圧力が弱い場合の状態を示す図、(b)電極部材にかかる圧力が強い場合の状態を示す図である。It is a side view of the electrode member which concerns on Embodiment 4 of this invention, (a) The figure which shows a state when the pressure concerning an electrode member is weak, (b) The figure which shows a state when the pressure concerning an electrode member is strong . 本発明の実施形態5に係る電極部材の斜視図である。It is a perspective view of the electrode member which concerns on Embodiment 5 of this invention.

(実施形態1)
本発明の実施形態1に係る半導体モジュール及び押圧力分散部材について、図を参照して詳細に説明する。
(Embodiment 1)
A semiconductor module and a pressing force dispersion member according to Embodiment 1 of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の実施形態1に係る半導体モジュール1は、IGBT素子2(半導体素子)、IGBT素子2の電極層と電気的に接続されるコレクタ電極端子3、IGBT素子2の電極層と電気的に接続されるエミッタ電極端子4、及びIGBT素子2とエミッタ電極端子4との間に設けられるばね電極6より構成される。   As shown in FIG. 1, the semiconductor module 1 according to Embodiment 1 of the present invention includes an IGBT element 2 (semiconductor element), a collector electrode terminal 3 electrically connected to an electrode layer of the IGBT element 2, and an IGBT element 2. The emitter electrode terminal 4 is electrically connected to the electrode layer, and the spring electrode 6 is provided between the IGBT element 2 and the emitter electrode terminal 4.

ばね電極6は、導電板部材8を折り返し、導電板部材8を折り返すことで形成される平板部8a,8a間に皿ばね5を挟持して構成される。さらに、皿ばね5の押圧力を分散させるために、平板部8aと皿ばね5との間に、それぞれ分散板7,7(押圧力分散部材)が設けられる。   The spring electrode 6 is configured by folding the conductive plate member 8 and sandwiching the disc spring 5 between the flat plate portions 8 a and 8 a formed by folding the conductive plate member 8. Furthermore, in order to disperse the pressing force of the disc spring 5, dispersal plates 7 and 7 (pressing force dispersing members) are provided between the flat plate portion 8a and the disc spring 5, respectively.

分散板7は、図2に示すように、皿ばね5が弾性変形する方向に一対設けられ、この皿ばね5を挟持した一対の分散板7,7が平板部8a,8a間に設けられる。分散板7は、平板部8aと略同じ大きさであり、複数の皿ばね5が1つの分散板7を押圧し、この分散板7が平板部8aを押圧する。分散板7としては、例えば、ステンレス板、モリブデン(Mo)板、タングステン(W)板等、既知の硬い金属からなる板を用いる(他の実施形態に係る分散板も同様である)。   As shown in FIG. 2, a pair of dispersion plates 7 are provided in the direction in which the disc spring 5 is elastically deformed, and a pair of dispersion plates 7 and 7 sandwiching the disc spring 5 are provided between the flat plate portions 8a and 8a. The dispersion plate 7 has substantially the same size as the flat plate portion 8a, and the plurality of disc springs 5 press one dispersion plate 7, and the distribution plate 7 presses the flat plate portion 8a. As the dispersion plate 7, for example, a plate made of a known hard metal such as a stainless steel plate, a molybdenum (Mo) plate, or a tungsten (W) plate is used (the same applies to the dispersion plates according to other embodiments).

導電板部材8は、銅、アルミニウム等の導電材料より構成される。この導電板部材8の折返し部分8bはU字状に折り返す形態の他に、導電板部材8の両端を折り返す形態等、皿ばね5及び分散板7を挟持できる形態であればどのように折り返してもよい。   The conductive plate member 8 is made of a conductive material such as copper or aluminum. The folded portion 8b of the conductive plate member 8 can be folded back as long as the disc spring 5 and the dispersion plate 7 can be sandwiched, such as a folded shape of both ends of the conductive plate member 8 in addition to the folded shape of the U shape. Also good.

IGBT素子2は、図1に示すように、コレクタ(カソード)電極端子3上にモリブデン製コンタクト電極9を介して設けられる。IGBT素子2には、図示省略するが、上面にエミッタ、ゲート(制御電極)が形成され、底面にコレクタが形成されている。つまり、コレクタ電極端子3は、コンタクト電極9を介してIGBT素子2のコレクタと電気的に接続される。なお、実施形態の説明では、便宜上、上面及び底面とするが、上下方向は、本発明をなんら限定するものではない。また、ゲート(制御電極)と制御回路との接続については、従来の接続方法を用いればよいので図示省略する。   The IGBT element 2 is provided on a collector (cathode) electrode terminal 3 via a molybdenum contact electrode 9 as shown in FIG. Although not shown, the IGBT element 2 has an emitter and a gate (control electrode) formed on the top surface and a collector formed on the bottom surface. That is, the collector electrode terminal 3 is electrically connected to the collector of the IGBT element 2 through the contact electrode 9. In the description of the embodiment, for convenience, the top surface and the bottom surface are used, but the vertical direction does not limit the present invention. The connection between the gate (control electrode) and the control circuit is not shown because a conventional connection method may be used.

コレクタ電極端子3(及び、エミッタ電極端子4)は、周知の電極材料からなる電極端子を用いることができる。例えば、半導体モジュール1(IGBT素子2)の放熱性を向上させるために、コレクタ電極端子3(及び、エミッタ電極端子4)の材料に銅等の熱伝導性の良い金属を用いる。   As the collector electrode terminal 3 (and the emitter electrode terminal 4), an electrode terminal made of a known electrode material can be used. For example, in order to improve the heat dissipation of the semiconductor module 1 (IGBT element 2), a metal having good thermal conductivity such as copper is used as the material of the collector electrode terminal 3 (and the emitter electrode terminal 4).

コンタクト電極9(及び、後述のコンタクト電極10)は、半導体モジュールに用いられるコンタクト電極を適宜選択して用いる。例えば、コンタクト電極9(コンタクト電極10)の材料にIGBT素子2を構成する材料(例えば、SiやSiC、GaN)に比較的熱膨張係数が近い材料(例えば、MoやW、その他化合物等)を用いると、コンタクト電極9(コンタクト電極10)がIGBT素子2とコレクタ電極端子3(ばね電極6)との熱応力の緩衝板として作用し、半導体モジュール1の温度サイクルに対する信頼性を向上させることができる。   As the contact electrode 9 (and a contact electrode 10 described later), a contact electrode used in a semiconductor module is appropriately selected and used. For example, the material of the IGBT element 2 (for example, Si, SiC, GaN) is used as a material for the contact electrode 9 (contact electrode 10). When used, the contact electrode 9 (contact electrode 10) acts as a buffer plate for the thermal stress between the IGBT element 2 and the collector electrode terminal 3 (spring electrode 6), thereby improving the reliability of the semiconductor module 1 with respect to the temperature cycle. it can.

IGBT素子2のエミッタには、コンタクト電極10、ばね電極6を介してエミッタ電極端子4が設けられる。すなわち、エミッタ電極端子4は、コンタクト電極10、ばね電極6を介してIGBT素子2のエミッタと電気的に接続される。   An emitter electrode terminal 4 is provided on the emitter of the IGBT element 2 via a contact electrode 10 and a spring electrode 6. That is, the emitter electrode terminal 4 is electrically connected to the emitter of the IGBT element 2 through the contact electrode 10 and the spring electrode 6.

さらに、コレクタ電極端子3とエミッタ電極端子4をIGBT素子2方向に押圧するように、コレクタ電極端子3とエミッタ電極端子4のそれぞれに絶縁板13、13を介して冷却板11、12が設けられる。この冷却板11、12は、コレクタ電極端子3とエミッタ電極端子4をIGBT素子2方向に押圧した状態で固定される。   Further, cooling plates 11 and 12 are provided on the collector electrode terminal 3 and the emitter electrode terminal 4 via the insulating plates 13 and 13 so as to press the collector electrode terminal 3 and the emitter electrode terminal 4 in the direction of the IGBT element 2. . The cooling plates 11 and 12 are fixed in a state where the collector electrode terminal 3 and the emitter electrode terminal 4 are pressed in the direction of the IGBT element 2.

冷却板11、12は、銅、アルミニウム等の金属板や熱伝導性の高いセラミックス板が用いられる。この冷却板11、12にヒートシンクを接続したり、冷却板11、12に直接冷却媒体(気体または液体)を接触させたりすることで半導体モジュール1を冷却する。この冷却板11、12を半導体モジュール1の筺体として用いることができるが、さらに図示省略の筺体に冷却板11、12に挟持されたIGBT素子2を収納してもよい。また、絶縁板13、13を備えず、冷却板11、12を半導体モジュール1の外部回路と接続される外部接続用電極として用いることも可能である。   As the cooling plates 11 and 12, a metal plate such as copper or aluminum or a ceramic plate having high thermal conductivity is used. The semiconductor module 1 is cooled by connecting a heat sink to the cooling plates 11 and 12 or bringing a cooling medium (gas or liquid) into direct contact with the cooling plates 11 and 12. Although the cooling plates 11 and 12 can be used as a housing of the semiconductor module 1, the IGBT element 2 sandwiched between the cooling plates 11 and 12 may be housed in a housing not shown. Further, the insulating plates 13 and 13 are not provided, and the cooling plates 11 and 12 can be used as external connection electrodes connected to an external circuit of the semiconductor module 1.

上記構成からなる半導体モジュール1は、コレクタ電極端子3とエミッタ電極端子4をIGBT素子2方向に押圧するように冷却板11、12が設けられるので、ばね電極6の皿ばね5に弾性エネルギーが蓄積される。ばね電極6は、皿ばね5の弾性力により、エミッタ電極端子4と絶縁板13とを冷却板12方向に押圧し、コンタクト電極10をIGBT素子2(IGBT素子2のエミッタ)方向に押圧する。また、ばね電極6の押圧により、コレクタ電極端子3及び絶縁板13は冷却板11方向に押圧され、この押圧する力の反力によりコレクタ電極端子3がコンタクト電極9をIGBT素子2(IGBT素子2のコレクタ)方向に押圧する。このように、半導体モジュール1内部で各部材を押圧する力のバランスが保たれ、各部材間に適当な圧接力が働く。   In the semiconductor module 1 having the above configuration, the cooling plates 11 and 12 are provided so as to press the collector electrode terminal 3 and the emitter electrode terminal 4 in the direction of the IGBT element 2, so that elastic energy is accumulated in the disc spring 5 of the spring electrode 6. Is done. The spring electrode 6 presses the emitter electrode terminal 4 and the insulating plate 13 in the direction of the cooling plate 12 and the contact electrode 10 in the direction of the IGBT element 2 (emitter of the IGBT element 2) by the elastic force of the disc spring 5. Further, the collector electrode terminal 3 and the insulating plate 13 are pressed in the direction of the cooling plate 11 by the pressing of the spring electrode 6, and the collector electrode terminal 3 causes the contact electrode 9 to be connected to the IGBT element 2 (IGBT element 2) by the reaction force of the pressing force. Press in the direction of the collector. Thus, the balance of the force which presses each member inside the semiconductor module 1 is maintained, and an appropriate pressure contact force works between each member.

そして、皿ばね5と平板部8aとの間に分散板7を設けることで、皿ばね5の押圧力が平板部8aにより均等にかかるようになる。つまり、皿ばね5と接触する箇所は接触面積が減少するため、皿ばね5と接触している部分の押圧力が強くなり、皿ばね5と接触している部分に凹みが発生する場合がある。凹みが生じると、皿ばね5による押圧が相殺されてしまう。半導体モジュール1は、皿ばね5の両端に分散板7を設けることで、分散板7と皿ばね5との接触部で皿ばね5の弾性力が集中しても、分散板7が変形せず、皿ばね5の弾性力を損なうことなく、均等に平板部8aに作用させることができる。   Then, by providing the dispersion plate 7 between the disc spring 5 and the flat plate portion 8a, the pressing force of the disc spring 5 is evenly applied to the flat plate portion 8a. That is, since the contact area of the portion that contacts the disc spring 5 decreases, the pressing force of the portion that is in contact with the disc spring 5 is increased, and a dent may be generated in the portion that is in contact with the disc spring 5. . If a dent arises, the press by the disk spring 5 will be canceled. In the semiconductor module 1, the dispersion plate 7 is provided at both ends of the disc spring 5, so that even if the elastic force of the disc spring 5 is concentrated at the contact portion between the dispersion plate 7 and the disc spring 5, the dispersion plate 7 is not deformed. The flat plate portion 8a can be evenly applied without impairing the elastic force of the disc spring 5.

以上のように、本発明の実施形態1に係る半導体モジュール1によれば、皿ばね5の両端に分散板7を設けることで、皿ばね5の弾性力が導電板部材8(平板部8a)の一部に集中せず、ばね電極6とエミッタ電極端子4(またはコンタクト電極10)との接続面で押圧する力がより均一になる。   As described above, according to the semiconductor module 1 according to the first embodiment of the present invention, by providing the dispersion plates 7 at both ends of the disc spring 5, the elastic force of the disc spring 5 is increased to the conductive plate member 8 (flat plate portion 8a). The force of pressing on the connection surface between the spring electrode 6 and the emitter electrode terminal 4 (or the contact electrode 10) becomes more uniform.

また、半導体モジュール1にばね電極6を備えるだけで、半導体素子の電極面等、半導体モジュール1に備えられる各部材に適切な圧接力を加えることができる。その結果、半導体モジュール1の組立て作業が容易になり、不適切な組立てによる半導体モジュール1の性能低下や半導体素子2の破壊の発生を防止することができる。さらに、半導体モジュール1を構成する各部材が圧接により接続されるため、はんだフリーな半導体モジュール1を得ることができる。   Further, only by providing the semiconductor module 1 with the spring electrode 6, an appropriate pressure contact force can be applied to each member provided in the semiconductor module 1, such as an electrode surface of the semiconductor element. As a result, the assembling work of the semiconductor module 1 is facilitated, and the performance degradation of the semiconductor module 1 and the destruction of the semiconductor element 2 due to improper assembly can be prevented. Furthermore, since each member which comprises the semiconductor module 1 is connected by press-contact, the solder free semiconductor module 1 can be obtained.

また、半導体モジュール1の保管または動作時において、半導体モジュール1の温度が低下または上昇した場合、内部部品の熱収縮や熱膨張による各部材間距離の変動幅を皿ばね5(ばね電極6)の形状変化によって緩和することができ、各部材間に働く圧接力を所定の圧接力に維持することができる。すなわち、IGBT素子2と各電極端子3、4との電気的な接続が良好に保たれることで半導体モジュール1の動作安定性が向上し、各電極端子3、4と冷却部材11、12との密着性が確保され、半導体モジュール1の放熱性が向上する。   Further, when the temperature of the semiconductor module 1 is lowered or raised during the storage or operation of the semiconductor module 1, the fluctuation width of the distance between the members due to the thermal contraction or thermal expansion of the internal components is determined by the disc spring 5 (spring electrode 6). It can be relieved by the shape change, and the pressing force acting between the members can be maintained at a predetermined pressing force. That is, the electrical connection between the IGBT element 2 and each electrode terminal 3, 4 is kept good, so that the operational stability of the semiconductor module 1 is improved, and each electrode terminal 3, 4 and the cooling members 11, 12 are Is ensured, and the heat dissipation of the semiconductor module 1 is improved.

そして、導電板部材8が皿ばね5を包むようにばね電極6を形成しているので、この導電板部材8が熱拡散板として作用し、半導体モジュール1の放熱性が向上する。   Since the spring electrode 6 is formed so that the conductive plate member 8 wraps the disc spring 5, the conductive plate member 8 acts as a heat diffusion plate, and the heat dissipation of the semiconductor module 1 is improved.

(実施形態2)
本発明の実施形態2に係る半導体モジュール及び押圧力分散部材について、図3を参照して詳細に説明する。実施形態2に係る半導体モジュールは、半導体モジュールに備えられる分散板15,16(押圧力分散部材)の形状が、実施形態1に係る分散板7と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同じである。よって、実施形態の説明では、分散板15,16(及び、ばね電極14)について詳細に説明し、実施形態1と同様の構成については同じ符号を付し、その詳細な説明を省略する(実施形態3〜5についても同様である)。
(Embodiment 2)
A semiconductor module and a pressing force dispersion member according to Embodiment 2 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the second embodiment will be described with reference to FIG. 1 except that the shape of the dispersion plates 15 and 16 (pressing force dispersion member) provided in the semiconductor module is different from that of the dispersion plate 7 according to the first embodiment. This is the same as the semiconductor module 1 according to the first embodiment. Therefore, in the description of the embodiment, the dispersion plates 15 and 16 (and the spring electrode 14) will be described in detail, the same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted (implementation). The same applies to Forms 3 to 5.)

図3(a)に示すように、本発明の実施形態2に係るばね電極14は、導電板部材8を折り返し、導電板部材8を折り返すことで形成される平板部8a,8a間に皿ばね5を挟持して構成される。さらに、この平板部8aと皿ばね5との間にそれぞれ分散板15,16(押圧力分散部材)が設けられる。すなわち、分散板15,16は、皿ばね5が弾性変形する方向に一対設けられ、この皿ばね5を挟持した一対の分散板15,16が平板部8a,8a間に設けられる。   As shown in FIG. 3A, the spring electrode 14 according to the second embodiment of the present invention is a disc spring between the flat plate portions 8 a and 8 a formed by folding the conductive plate member 8 and folding the conductive plate member 8. 5 is configured. Further, distribution plates 15 and 16 (pressing force distribution members) are provided between the flat plate portion 8a and the disc spring 5, respectively. That is, a pair of dispersion plates 15 and 16 are provided in a direction in which the disc spring 5 is elastically deformed, and a pair of dispersion plates 15 and 16 sandwiching the disc spring 5 are provided between the flat plate portions 8a and 8a.

皿ばね5の一端に設けられる分散板15は、皿ばね5または平板部8aと接触する中央部15aと中央部15aの側端に形成された一対の側部15b,15bより構成される。側部15bは、中央部15aと一体に形成され、側部15bの厚さは中央部15aの厚さより薄く形成される。そして、側部15bを皿ばね5方向に折り曲げることで、皿ばね5の他端に設けられる分散板16が滑合する滑合部が形成される。   The dispersion plate 15 provided at one end of the disc spring 5 includes a central portion 15a that contacts the disc spring 5 or the flat plate portion 8a and a pair of side portions 15b and 15b formed at the side ends of the central portion 15a. The side part 15b is formed integrally with the central part 15a, and the thickness of the side part 15b is formed thinner than the thickness of the central part 15a. And the sliding part which the dispersion | distribution plate 16 provided in the other end of the disk spring 5 slides is formed by bending the side part 15b in the disk spring 5 direction.

そして、分散板15の滑合部が分散板16に滑合した状態で、分散板15と分散板16との間に皿ばね5が設けられる。すなわち、分散板15と分散板16との間に皿ばね5が設けられるとともに、分散板15の側部15b,15b間に分散板16が設けられる。   The disc spring 5 is provided between the dispersion plate 15 and the dispersion plate 16 in a state in which the sliding portion of the dispersion plate 15 is engaged with the dispersion plate 16. That is, the disc spring 5 is provided between the dispersion plate 15 and the dispersion plate 16, and the dispersion plate 16 is provided between the side portions 15 b and 15 b of the dispersion plate 15.

上記構成からなる本発明の実施形態2に係る分散板15,16は、分散板15の滑合部に分散板16が滑合することで、分散板15と分散板16との相対的な位置関係が所定の位置に維持される。さらに、分散板15と分散板16との相対的な位置関係が所定の位置に維持されることで、分散板15と分散板16との間に設けられる皿ばね5に圧接方向と垂直方向の力が作用することが抑制され、皿ばね5の位置ずれが防止される。なお、側部15bの内周面が皿ばね5の変位に伴い分散板16の側面と滑動するので、側部15bと分散板16の側面との接触により皿ばね5の変位が妨げられることはない。   The dispersion plates 15 and 16 according to the second embodiment of the present invention having the above-described configuration are relative positions of the dispersion plate 15 and the dispersion plate 16 when the dispersion plate 16 slides on the sliding portion of the dispersion plate 15. The relationship is maintained in place. In addition, the relative positional relationship between the dispersion plate 15 and the dispersion plate 16 is maintained at a predetermined position, so that the disc spring 5 provided between the dispersion plate 15 and the dispersion plate 16 is in a direction perpendicular to the pressure contact direction. The action of force is suppressed, and the disc spring 5 is prevented from being displaced. In addition, since the inner peripheral surface of the side part 15b slides with the side surface of the dispersion | distribution plate 16 with the displacement of the disc spring 5, the displacement of the disc spring 5 is prevented by contact with the side part 15b and the side surface of the dispersion | distribution plate 16. Absent.

図3(b)に示すように、平板部8a,8aの間隔を狭めるような力がばね電極14に作用した場合、側部15bがさらに平板部8aの側面と摺動するように側部15bの長さを設定すると、皿ばね5の変位により、分散板15と平板部8aとの相対位置を当初備えられた位置を維持するよう制御することができる。また、分散板15と平板部8aの相対な位置にずれが生じていても、側部15bが平板部8aの側面に沿って摺動することで、分散板15と平板部8aとの相対位置を補正することができる。なお、分散板16と平板部8aとの境界で、側部15bの移動が妨げられないように、側部15bの端部をテーパ状(側部15bの先端ほど、分散板16の側面からの距離が広がるよう)に形成してもよい。   As shown in FIG. 3B, when a force that reduces the distance between the flat plate portions 8a and 8a is applied to the spring electrode 14, the side portion 15b is further slid with the side surface of the flat plate portion 8a. If the length of the disc spring 5 is set, the relative position between the dispersion plate 15 and the flat plate portion 8a can be controlled to maintain the initially provided position by the displacement of the disc spring 5. Further, even if the relative position between the dispersion plate 15 and the flat plate portion 8a is shifted, the relative position between the dispersion plate 15 and the flat plate portion 8a is obtained by sliding the side portion 15b along the side surface of the flat plate portion 8a. Can be corrected. In addition, the end of the side portion 15b is tapered so that the movement of the side portion 15b is not hindered at the boundary between the dispersion plate 16 and the flat plate portion 8a (the tip of the side portion 15b is closer to the side surface of the dispersion plate 16). You may form so that distance may spread.

なお、滑合部を形成する時に、中央部15aと側部15bとの間に間隙15cを形成すると、側部15bの分散板16と接する面の法線方向の可撓性が向上する。よって、半導体モジュールを構成する各部材の熱膨張率により、側部15b,15bとの間隔と分散板16の幅とに差が生じた場合においても、側部15bが皿ばね5の変位を妨げない。   When forming the sliding portion, if the gap 15c is formed between the central portion 15a and the side portion 15b, the flexibility in the normal direction of the surface in contact with the dispersion plate 16 of the side portion 15b is improved. Therefore, even when a difference occurs between the distance between the side portions 15b and 15b and the width of the dispersion plate 16 due to the coefficient of thermal expansion of each member constituting the semiconductor module, the side portion 15b prevents the disc spring 5 from being displaced. Absent.

以上のように、本発明の実施形態2に係る分散板15,16によれば、分散板15と分散板16との相対的な位置を、当初備えられた位置を維持するよう制御することができる。よって、分散板15,16や皿ばね5の位置ずれの発生を抑制し、皿ばね5による圧接力を半導体モジュールを構成する各部材に適切に作用させることができる。   As described above, according to the dispersion plates 15 and 16 according to the second embodiment of the present invention, the relative positions of the dispersion plate 15 and the dispersion plate 16 can be controlled so as to maintain the initially provided position. it can. Therefore, it is possible to suppress the occurrence of displacement of the dispersion plates 15 and 16 and the disc spring 5 and to appropriately apply the pressure contact force by the disc spring 5 to each member constituting the semiconductor module.

よって、図1に示した半導体モジュール1において、ばね電極6の代わりに本発明の実施形態2に係るばね電極14を設ける半導体モジュールは、ばね電極14に備えられる皿ばね5(及び、分散板15,16)の位置ずれを防止することができる。その結果、実施形態1に係る半導体モジュール1の奏する効果に加えて、より均一な圧接力を半導体モジュールを構成する各部材(半導体素子の電極層等)に加えることができる。   Therefore, in the semiconductor module 1 shown in FIG. 1, the semiconductor module provided with the spring electrode 14 according to the second embodiment of the present invention instead of the spring electrode 6 is the disc spring 5 (and the dispersion plate 15) provided in the spring electrode 14. 16) can be prevented from being displaced. As a result, in addition to the effects exhibited by the semiconductor module 1 according to the first embodiment, a more uniform pressure contact force can be applied to each member (such as an electrode layer of a semiconductor element) constituting the semiconductor module.

なお、本実施形態では、分散板15に滑合部を形成した形態であるが、分散板16に滑合部を形成し、この滑合部に分散板15を滑合させる形態としてもよい。   In addition, in this embodiment, although it is the form which formed the sliding part in the dispersion | distribution board 15, it is good also as a form which forms a sliding part in the dispersion | distribution board 16, and makes the dispersion | distribution board 15 slide to this sliding part.

(実施形態3)
本発明の実施形態3に係る半導体モジュール及び押圧力分散部材について、図4を参照して詳細に説明する。実施形態3に係る半導体モジュールは、半導体モジュールに備えられる分散板18,19(押圧力分散部材)の形状が、実施形態1に係る分散板7と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同じである。よって、実施形態の説明では分散板18,19が備えられるばね電極17について詳細に説明する。
(Embodiment 3)
A semiconductor module and a pressing force dispersion member according to Embodiment 3 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the third embodiment will be described with reference to FIG. 1 except that the shape of the dispersion plates 18 and 19 (pressing force dispersion member) provided in the semiconductor module is different from that of the dispersion plate 7 according to the first embodiment. This is the same as the semiconductor module 1 according to the first embodiment. Therefore, in the description of the embodiment, the spring electrode 17 provided with the dispersion plates 18 and 19 will be described in detail.

図4(a)に示すように、本発明の実施形態3に係るばね電極17は、導電板部材8を折り返し、導電板部材8を折り返すことで形成される平板部8a,8a間に皿ばね5を挟持して構成される。さらに、この平板部8aと皿ばね5との間にそれぞれ分散板18,19が設けられる。すなわち、分散板18,19は、皿ばね5が弾性変形する方向に一対設けられ、この皿ばね5を挟持した一対の分散板18,19が平板部8a,8a間に設けられる。   As shown in FIG. 4A, the spring electrode 17 according to the third embodiment of the present invention is a disc spring between the flat plate portions 8a and 8a formed by folding the conductive plate member 8 and folding the conductive plate member 8. 5 is configured. Further, dispersion plates 18 and 19 are provided between the flat plate portion 8a and the disc spring 5, respectively. That is, a pair of dispersion plates 18 and 19 are provided in a direction in which the disc spring 5 is elastically deformed, and a pair of dispersion plates 18 and 19 sandwiching the disc spring 5 are provided between the flat plate portions 8a and 8a.

皿ばね5の一端に設けられる分散板18は、皿ばね5または平板部8aと接触する中央部18aと中央部18aの側端に形成された1対の側部18b,18bより構成される。側部18bは、中央部18aと一体に形成され、側部18bの厚さは中央部18aの厚さより薄く形成される。そして、側部18bを皿ばね5方向に折り曲げることで、皿ばね5の他端に設けられる分散板19が遊嵌する遊嵌部が形成される。すなわち、折り曲げられた側部18b,18b間の距離が分散板19の幅よりも広くなるように側部18b,18bが折り返される。さらに、側部18bは、分散板19方向に凸となるように山折りされ、当接部18cが形成される。このように当接部18cを形成すると、側部18bに斜面18d,18eが形成される。   The dispersion plate 18 provided at one end of the disc spring 5 includes a central portion 18a that contacts the disc spring 5 or the flat plate portion 8a and a pair of side portions 18b and 18b formed at the side ends of the central portion 18a. The side part 18b is formed integrally with the central part 18a, and the thickness of the side part 18b is formed thinner than the thickness of the central part 18a. Then, by bending the side portion 18b in the direction of the disc spring 5, a loose fitting portion in which the dispersion plate 19 provided at the other end of the disc spring 5 is loosely fitted is formed. That is, the side portions 18 b and 18 b are folded back so that the distance between the bent side portions 18 b and 18 b is wider than the width of the dispersion plate 19. Further, the side portion 18b is mountain-folded so as to be convex in the direction of the dispersion plate 19, and an abutting portion 18c is formed. When the contact portion 18c is formed in this way, slopes 18d and 18e are formed on the side portion 18b.

そして、分散板18の当接部18cが分散板19の側面を摺動するように、分散板18の遊嵌部に分散板19が遊嵌され、さらに、分散板18と分散板19との間に皿ばね5が設けられる。すなわち、分散板18と分散板19との間に皿ばね5が設けられるとともに、分散板18の側部18b,18b間に分散板19が設けられる。   Then, the dispersion plate 19 is loosely fitted to the loose fitting portion of the dispersion plate 18 so that the contact portion 18 c of the dispersion plate 18 slides on the side surface of the dispersion plate 19. A disc spring 5 is provided between them. That is, the disc spring 5 is provided between the dispersion plate 18 and the dispersion plate 19, and the dispersion plate 19 is provided between the side portions 18 b and 18 b of the dispersion plate 18.

図4(b)に示すように、平板部8a,8aの間隔を狭めるような力が作用した場合、当接部18cが平板部8aの側面を摺動するように当接部18cを形成する位置が設定される。   As shown in FIG. 4B, when a force that reduces the distance between the flat plate portions 8a and 8a is applied, the contact portion 18c is formed so that the contact portion 18c slides on the side surface of the flat plate portion 8a. The position is set.

上記構成からなる本発明の実施形態3に係る分散板18,19によれば、皿ばね5の変位に伴って当接部18cが分散板19の側面を摺動することで、分散板18と分散板19との相対的な位置を所定の状態に維持することができる。また、皿ばね5の変位に伴い当接部18cが平板部8aの側面を摺動することで、分散板18と平板部8aの相対的な位置が、当初備えられた位置を維持するよう制御することができる。   According to the dispersion plates 18 and 19 according to the third embodiment of the present invention having the above-described configuration, the abutment portion 18c slides on the side surface of the dispersion plate 19 as the disc spring 5 is displaced. The relative position with respect to the dispersion plate 19 can be maintained in a predetermined state. Further, the abutting portion 18c slides on the side surface of the flat plate portion 8a in accordance with the displacement of the disc spring 5, so that the relative positions of the dispersion plate 18 and the flat plate portion 8a are controlled so as to maintain the initially provided position. can do.

さらに、当接部18cは、皿ばね5方向に折り曲げられた側部18bを、さらに分散板19方向に凸となるよう山折りして形成されているので、当接部18cと分散板19(または、平板部8a)の側面との接触面積が小さく、当接部18cと分散板19(または、平板部8a)の摺動により皿ばね5の変位が妨げられない。   Further, the contact portion 18c is formed by folding the side portion 18b bent in the direction of the disc spring 5 so as to be further convex in the direction of the dispersion plate 19, so that the contact portion 18c and the dispersion plate 19 ( Alternatively, the contact area with the side surface of the flat plate portion 8a) is small, and the displacement of the disc spring 5 is not hindered by the sliding of the contact portion 18c and the dispersion plate 19 (or the flat plate portion 8a).

もし、分散板18と平板部8aとの相対位置にずれが生じた場合、当接部18cが皿ばね5の変位に伴って移動することで平板部8aが所定の状態に補正される。このとき、斜面18eにより、平板部8aが所定の位置となるように誘導される。同様に、分散板18と分散板19との相対位置にずれが生じた場合、斜面18dにより分散板19が所定の位置となるように誘導される。   If a shift occurs in the relative position between the dispersion plate 18 and the flat plate portion 8a, the flat plate portion 8a is corrected to a predetermined state by moving the contact portion 18c with the displacement of the disc spring 5. At this time, the flat plate portion 8a is guided to a predetermined position by the inclined surface 18e. Similarly, when the relative position between the dispersion plate 18 and the dispersion plate 19 is shifted, the dispersion plate 19 is guided to a predetermined position by the inclined surface 18d.

以上のように、本発明の実施形態3に係る分散板18,19によれば、分散板18と分散板19(及び、平板部8a)との相対的な位置が、当初備えられた位置を維持するように制御することができる。よって、本発明の実施形態2と同様に、分散板18,19や皿ばね5の位置ずれの発生を抑制し、皿ばね5による圧接力を半導体モジュールを構成する各部材(半導体素子の電極層等)に適切に作用させることができる。   As described above, according to the dispersion plates 18 and 19 according to the third embodiment of the present invention, the relative positions of the dispersion plate 18 and the dispersion plate 19 (and the flat plate portion 8a) are the positions initially provided. It can be controlled to maintain. Therefore, similarly to the second embodiment of the present invention, the occurrence of displacement of the dispersion plates 18 and 19 and the disc spring 5 is suppressed, and the pressure contact force by the disc spring 5 is used to form each member (electrode layer of the semiconductor element) of the semiconductor module. Etc.).

よって、図1に示した半導体モジュール1において、ばね電極6の代わりに本発明の実施形態3に係るばね電極17を備えた半導体モジュールは、ばね電極17に備えられる皿ばね5(及び、分散板18,19)の位置ずれを防止することができる。その結果、実施形態1に係る半導体モジュール1の奏する効果に加えて、より均一な圧接力を半導体モジュールを構成する各部材に作用させることができる。   Therefore, in the semiconductor module 1 shown in FIG. 1, the semiconductor module provided with the spring electrode 17 according to Embodiment 3 of the present invention instead of the spring electrode 6 is the disc spring 5 (and the dispersion plate) provided in the spring electrode 17. 18, 19) can be prevented from being displaced. As a result, in addition to the effect produced by the semiconductor module 1 according to the first embodiment, a more uniform pressure contact force can be applied to each member constituting the semiconductor module.

なお、本実施形態では、分散板18に遊嵌部及び当接部18cを形成した形態であるが、分散板19に遊嵌部及び当接部を形成する形態としても同様の効果を得ることができる。   In addition, in this embodiment, although it is the form which formed the loose fitting part and the contact part 18c in the dispersion | distribution board 18, the same effect is acquired also as a form which forms the loose fitting part and the contact part in the dispersion | distribution board 19. Can do.

また、分散板18の側部18bに皿ばね5の変位方向に当接部を複数形成し、個々の当接部が分散板19の側面や平板部8aの側面に当接する形態とすると、皿ばね5の変位にかかわらず分散板18、分散板19、平板部8aの相対的な位置が所定の位置となるように維持することができる。   In addition, when a plurality of abutting portions are formed on the side portion 18b of the dispersion plate 18 in the displacement direction of the disc spring 5, and each abutting portion abuts on the side surface of the dispersion plate 19 or the side surface of the flat plate portion 8a, Regardless of the displacement of the spring 5, the relative positions of the dispersion plate 18, the dispersion plate 19, and the flat plate portion 8a can be maintained at a predetermined position.

(実施形態4)
本発明の実施形態4に係る半導体モジュール及び押圧力分散部材について、図5を参照して詳細に説明する。実施形態4に係る半導体モジュールは、半導体モジュールに備えられる分散板21,22(押圧力分散部材)の形状が、実施形態1に係る分散板7と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同じである。よって、実施形態の説明では、分散板21,22が備えられるばね電極20について詳細に説明する。
(Embodiment 4)
A semiconductor module and a pressing force dispersion member according to Embodiment 4 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the fourth embodiment will be described with reference to FIG. 1 except that the shape of the dispersion plates 21 and 22 (pressing force dispersion members) provided in the semiconductor module is different from that of the dispersion plate 7 according to the first embodiment. This is the same as the semiconductor module 1 according to the first embodiment. Therefore, in description of embodiment, the spring electrode 20 with which the dispersion plates 21 and 22 are provided is demonstrated in detail.

図5(a)に示すように、本発明の実施形態4に係るばね電極20は、導電板部材8を折り返し、導電板部材8を折り返すことで形成される平板部8a,8a間に皿ばね5を挟持して構成される。さらに、この平板部8aと皿ばね5との間にそれぞれ分散板21,22が設けられる。すなわち、分散板21,22は、皿ばね5が弾性変形する方向に一対設けられ、この皿ばね5を挟持した一対の分散板21,22が平板部8a,8a間に設けられる。   As shown in FIG. 5 (a), the spring electrode 20 according to the fourth embodiment of the present invention is a disc spring between the flat plate portions 8a and 8a formed by folding the conductive plate member 8 and folding the conductive plate member 8. 5 is configured. Further, dispersion plates 21 and 22 are provided between the flat plate portion 8a and the disc spring 5, respectively. That is, a pair of dispersion plates 21 and 22 are provided in a direction in which the disc spring 5 is elastically deformed, and a pair of dispersion plates 21 and 22 sandwiching the disc spring 5 is provided between the flat plate portions 8a and 8a.

分散板21と分散板22は、中間部23を介して接続されている。この分散板21、中間部23、及び分散板22は、一体に形成され、さらに中間部23の厚さは、分散板21(分散板22)の厚さより薄く形成される。そして、この中間部23を折り返し、分散板21と分散板22間に皿ばね5を設ける。   The dispersion plate 21 and the dispersion plate 22 are connected via an intermediate portion 23. The dispersion plate 21, the intermediate portion 23, and the dispersion plate 22 are integrally formed, and the thickness of the intermediate portion 23 is formed thinner than the thickness of the dispersion plate 21 (dispersion plate 22). Then, the intermediate portion 23 is folded back, and the disc spring 5 is provided between the dispersion plate 21 and the dispersion plate 22.

以上のように、本発明の実施形態4に係る分散板21,22は、分散板21と分散板22とが中間部23を介して一体に形成されているので、分散板21と分散板22の相対的な位置が予め固定されている。そして、分散板21,22の位置ずれが防止されているので、皿ばね5の圧接方向と垂直方向の力が皿ばね5に作用することを抑制し、皿ばね5の位置ずれを防止することができる。その結果、皿ばね5による圧接力を半導体モジュールを構成する各部材(半導体素子の電極層等)に適切に作用させることができる。   As described above, in the dispersion plates 21 and 22 according to the fourth embodiment of the present invention, the dispersion plate 21 and the dispersion plate 22 are integrally formed via the intermediate portion 23. Therefore, the dispersion plate 21 and the dispersion plate 22 are integrated. The relative position is fixed in advance. Further, since the displacement of the dispersion plates 21 and 22 is prevented, the force in the direction perpendicular to the press-contact direction of the disc spring 5 is suppressed from acting on the disc spring 5, and the disc spring 5 is prevented from being displaced. Can do. As a result, the pressure contact force by the disc spring 5 can be made to act appropriately on each member (such as the electrode layer of the semiconductor element) constituting the semiconductor module.

図5(b)に示すように、中間部23の厚さが分散板21,22の厚さより薄く形成されているので、平板部8a,8aの間隔を狭めるような力が作用した場合、中間部23が撓み、皿ばね5の変位が妨げられない。   As shown in FIG. 5 (b), since the thickness of the intermediate portion 23 is formed thinner than the thickness of the dispersion plates 21 and 22, when a force that reduces the distance between the flat plate portions 8a and 8a is applied, The part 23 is bent and the displacement of the disc spring 5 is not hindered.

よって、図1に示した半導体モジュール1において、ばね電極6の代わりに本発明の実施形態4に係るばね電極20を備えた半導体モジュールは、ばね電極20に備えられる分散板21,22(及び、皿ばね5)の位置ずれを防止することができる。その結果、実施形態1に係る半導体モジュール1の効果に加えて、より均一な圧接力を半導体モジュールを構成する各部材に加えることができる。   Therefore, in the semiconductor module 1 shown in FIG. 1, the semiconductor module including the spring electrode 20 according to the fourth embodiment of the present invention instead of the spring electrode 6 includes the dispersion plates 21 and 22 (and The displacement of the disc spring 5) can be prevented. As a result, in addition to the effects of the semiconductor module 1 according to the first embodiment, a more uniform pressure contact force can be applied to each member constituting the semiconductor module.

なお、本実施形態では、分散板21と分散板22とを接続する中間部23を一体に形成した形態であるが、分散板21と分散板22を接続することができるものであれば、中間部23の形状や材質等は特に限定されるものではない。また、中間部23を形成する箇所も分散板21と分散板22の側面を接続する形態であれば特に限定されるものではなく、実施形態4で説明した半導体モジュールと同様の作用効果を得ることができる。   In the present embodiment, the intermediate portion 23 that connects the dispersion plate 21 and the dispersion plate 22 is integrally formed. However, if the dispersion plate 21 and the dispersion plate 22 can be connected, an intermediate portion 23 is provided. The shape, material, and the like of the portion 23 are not particularly limited. Also, the location where the intermediate portion 23 is formed is not particularly limited as long as the side surfaces of the dispersion plate 21 and the dispersion plate 22 are connected, and the same effect as the semiconductor module described in the fourth embodiment can be obtained. Can do.

(実施形態5)
本発明の実施形態5に係る半導体モジュール及び押圧力分散部材について、図6を参照して詳細に説明する。実施形態5に係る半導体モジュールは、半導体モジュールに備えられる分散板25,26(押圧力分散部材)の形状が、実施形態1に係る分散板7と異なること以外は、図1を例示して説明した実施形態1に係る半導体モジュール1と同様である。よって、分散板25,26が備えられるばね電極24について詳細に説明する。
(Embodiment 5)
A semiconductor module and a pressing force dispersion member according to Embodiment 5 of the present invention will be described in detail with reference to FIG. The semiconductor module according to the fifth embodiment will be described with reference to FIG. 1 except that the shape of the dispersion plates 25 and 26 (pressing force dispersion member) provided in the semiconductor module is different from that of the dispersion plate 7 according to the first embodiment. This is the same as the semiconductor module 1 according to the first embodiment. Therefore, the spring electrode 24 provided with the dispersion plates 25 and 26 will be described in detail.

図6に示すように、本発明の実施形態5に係るばね電極24は、導電板部材8を折り返し、導電板部材8を折り返すことで形成される平板部8a,8a間に皿ばね5を挟持して構成される。さらに、この導電板部材8と皿ばね5との間にそれぞれ分散板25,26が設けられる。すなわち、分散板25,26は、皿ばね5が弾性変形する方向に一対設けられ、この皿ばね5を挟持した一対の分散板25,26が平板部8a,8a間に設けられる。   As shown in FIG. 6, the spring electrode 24 according to the fifth embodiment of the present invention folds the conductive plate member 8 and sandwiches the disc spring 5 between the flat plate portions 8 a and 8 a formed by folding the conductive plate member 8. Configured. Further, dispersion plates 25 and 26 are provided between the conductive plate member 8 and the disc spring 5, respectively. That is, a pair of dispersion plates 25 and 26 are provided in the direction in which the disc spring 5 is elastically deformed, and a pair of dispersion plates 25 and 26 sandwiching the disc spring 5 is provided between the flat plate portions 8a and 8a.

分散板26は、分散板26の皿ばね5と接する面に皿ばね5が嵌合する嵌合溝26aが形成される。そして、嵌合溝26aに皿ばね5を設けることで、皿ばね5が分散板26に固定される。同様に、分散板25の皿ばね5と接する面に皿ばね5が嵌合する嵌合溝25aを形成し、この嵌合溝25aに皿ばね5を設けると、皿ばね5により分散板25と分散板26の相対的な位置が所定の位置となるように制御できる。嵌合溝25a,26aの幅及び形状は、皿ばね5の弾性変形を妨げない幅及び形状とする。   The dispersion plate 26 is formed with a fitting groove 26 a in which the disc spring 5 is fitted on the surface of the dispersion plate 26 that contacts the disc spring 5. The disc spring 5 is fixed to the dispersion plate 26 by providing the disc spring 5 in the fitting groove 26a. Similarly, a fitting groove 25a for fitting the disc spring 5 is formed on the surface of the dispersion plate 25 in contact with the disc spring 5, and the disc spring 5 is provided in the fitting groove 25a. The relative position of the dispersion plate 26 can be controlled to be a predetermined position. The widths and shapes of the fitting grooves 25a and 26a are set to widths and shapes that do not hinder the elastic deformation of the disc spring 5.

以上のように、本発明の実施形態5に係る分散板25,26によれば、分散板26に皿ばね5が固定されるので皿ばね5の位置ずれを防止することができる。また、皿ばね5を基準として分散板25と分散板26との相対位置が所定の位置となるように維持することができる。その結果、皿ばね5による圧接力を半導体モジュールを構成する各部材(半導体素子等)に適切に作用させることができる。   As described above, according to the dispersion plates 25 and 26 according to the fifth embodiment of the present invention, the disc spring 5 is fixed to the dispersion plate 26, so that the disc spring 5 can be prevented from being displaced. Further, it is possible to maintain the relative position of the dispersion plate 25 and the dispersion plate 26 with respect to the disc spring 5 as a predetermined position. As a result, the pressure contact force by the disc spring 5 can be appropriately applied to each member (semiconductor element or the like) constituting the semiconductor module.

よって、図1に示した半導体モジュール1において、ばね電極6の代わりに本発明の実施形態5に係るばね電極24を備えた半導体モジュールは、ばね電極24に備えられる皿ばね5(及び、分散板25,26)の位置ずれを防止することができる。その結果、実施形態1に係る半導体モジュール1の効果に加えて、より均一な圧接力を半導体モジュールを構成する各部材に加えることができる。   Therefore, in the semiconductor module 1 shown in FIG. 1, the semiconductor module including the spring electrode 24 according to the fifth embodiment of the present invention instead of the spring electrode 6 is the disc spring 5 (and the dispersion plate) provided in the spring electrode 24. 25, 26) can be prevented. As a result, in addition to the effects of the semiconductor module 1 according to the first embodiment, a more uniform pressure contact force can be applied to each member constituting the semiconductor module.

なお、実施形態5に係る分散板25,26を実施形態2〜4に記載の分散板と組み合わせることで、皿ばね5や分散板のずれの防止をさらに確実なものとすることができる。   In addition, by combining the dispersion plates 25 and 26 according to Embodiment 5 with the dispersion plates described in Embodiments 2 to 4, it is possible to further prevent the disc spring 5 and the dispersion plate from being displaced.

以上のように、本発明の半導体モジュールによれば、半導体モジュールに備えられる弾性部材の両端に押圧力分散部材を設けることで、弾性部材の押圧力を半導体素子により均一に作用させることができる。   As described above, according to the semiconductor module of the present invention, the pressing force dispersion member is provided at both ends of the elastic member provided in the semiconductor module, so that the pressing force of the elastic member can be applied uniformly to the semiconductor element.

また、本発明の押圧力分散部材は、押圧力分散部材や弾性部材の位置を、当初備えられた位置を維持するよう制御することができるので、半導体モジュールを構成する各部材に作用する圧接力をより均一にすることができる。   Moreover, since the pressing force dispersion member of the present invention can control the position of the pressing force dispersion member and the elastic member so as to maintain the initially provided position, the pressure contact force acting on each member constituting the semiconductor module. Can be made more uniform.

なお、実施形態のように、導電板部材に弾性部材で包んで電極部材を構成した場合、半導体素子で発生した熱が導電板部材において拡散するので、半導体モジュールの放熱性が向上する。よって、SiC、GaNなどの高温で使用可能な半導体素子の性能を生かす半導体モジュールにおいて、温度サイクル、パワーサイクル等の信頼性を向上させることができる。   When the electrode member is configured by wrapping the conductive plate member with an elastic member as in the embodiment, the heat generated in the semiconductor element diffuses in the conductive plate member, so that the heat dissipation of the semiconductor module is improved. Therefore, in a semiconductor module that takes advantage of the performance of a semiconductor element that can be used at a high temperature, such as SiC and GaN, reliability such as temperature cycle and power cycle can be improved.

しかしながら、導電板部材を折り返すと、導電板部材を折り返すことで形成される折返し部と、導電板部材を折り返すことで形成される開口部とでは、同じ力に対する抗力が異なる場合がある。このような折返し部と開口部との抗力の違いは、弾性部材や押圧力分散部材の位置ずれの原因となる場合がある。   However, when the conductive plate member is folded, the folded portion formed by folding the conductive plate member and the opening formed by folding the conductive plate member may have different resistance to the same force. Such a difference in drag between the folded portion and the opening portion may cause a positional shift of the elastic member or the pressing force dispersing member.

そして、半導体素子等の各部材を圧接により接続する半導体モジュールでは、振動や弾性部材の変位等の影響により、押圧力分散部材や弾性部材の位置が所定の位置からずれてしまうと、半導体モジュールを構成する各部材に作用する弾性部材の圧接力にばらつきが生じるおそれがある。   In a semiconductor module in which each member such as a semiconductor element is connected by pressure contact, if the position of the pressing force dispersion member or the elastic member is deviated from a predetermined position due to the influence of vibration or displacement of the elastic member, the semiconductor module is There is a possibility that variation occurs in the pressure contact force of the elastic member acting on each component member.

そこで、本発明の押圧力分散部材を備えた半導体モジュールは、押圧力分散部材や弾性部材が所定の位置となるように制御し、万が一押圧力分散部材や弾性部材が所定の位置からずれた場合でも、所定の位置となるように補正することができる。   Therefore, the semiconductor module provided with the pressing force dispersion member of the present invention is controlled so that the pressing force dispersion member and the elastic member are in a predetermined position, and the pressing force distribution member and the elastic member are shifted from the predetermined position. However, it can be corrected so as to be a predetermined position.

よって、本発明の押圧力分散部材を備えた半導体モジュールは、押圧力分散部材や弾性部材が所定の位置となるように維持することで、半導体モジュールを構成する各部材に作用する圧接力をより均一にすることができる。   Therefore, the semiconductor module provided with the pressing force dispersion member of the present invention maintains the pressing force dispersion member and the elastic member at a predetermined position, thereby further increasing the pressure contact force acting on each member constituting the semiconductor module. It can be made uniform.

その結果、電極部材の弾性力により半導体モジュールに備えられる各部材を圧接する半導体モジュールの温度サイクル、パワーサイクル等の信頼性が向上する。つまり、はんだ接合あるいはワイヤーボンドを用いず、かつ使い勝手の良い絶縁形パワー半導体モジュールを得ることができ、半導体モジュールの高信頼性、環境性、利便性を同時に実現することができる。   As a result, the reliability such as the temperature cycle and power cycle of the semiconductor module that press-contacts each member provided in the semiconductor module by the elastic force of the electrode member is improved. That is, an insulating power semiconductor module that is easy to use without using solder bonding or wire bonding can be obtained, and high reliability, environmental friendliness, and convenience of the semiconductor module can be realized at the same time.

なお、本発明の半導体モジュール及び押圧力分散部材は、上述した実施形態1〜5に限らず、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明に係る半導体モジュール及び押圧力分散部材である。   The semiconductor module and the pressing force dispersion member of the present invention are not limited to the above-described first to fifth embodiments, and can be appropriately changed in design without impairing the characteristics of the present invention. It is a semiconductor module and a pressing force dispersion member according to the present invention.

例えば、実施形態ではIGBT素子を備えた平型圧接構造の半導体モジュールを例示して説明したが、本発明はこの実施形態に限定されるものではなく、圧接により半導体素子の電極層と外部(若しくは、内部の別の回路)に接続するための電極端子とを電気的に接続する半導体モジュールに適用可能である。   For example, in the embodiment, a semiconductor module having a flat pressure contact structure including an IGBT element has been described as an example. However, the present invention is not limited to this embodiment, and the electrode layer of the semiconductor element and the outside (or the outside (or The present invention can be applied to a semiconductor module that is electrically connected to an electrode terminal for connection to another internal circuit.

また、半導体モジュールに備えられる半導体素子は、IGBT素子に限定されるものでなく、サイリスタ(GTOサイリスタ等)、トランジスタ(MOSFET等)、FWD素子等の半導体素子を適宜選択して用いることができる。   The semiconductor element provided in the semiconductor module is not limited to the IGBT element, and a semiconductor element such as a thyristor (GTO thyristor, etc.), a transistor (MOSFET, etc.), an FWD element, or the like can be appropriately selected and used.

また、本発明の実施形態では、電極部材に設けられた弾性部材の弾性力を分散させる押圧力分散部材を例示して説明したが、弾性部材は、弾性部材の押圧力を分散させる作用を奏する場所であれば設置場所は特に限定しない。   Further, in the embodiment of the present invention, the pressing force dispersion member that disperses the elastic force of the elastic member provided on the electrode member has been described as an example. However, the elastic member has an effect of dispersing the pressing force of the elastic member. If it is a place, an installation place will not be specifically limited.

また、弾性部材は、皿ばね5に限定されるものではなく、波板ばね、凸ばね、メッシュばね等を用いることができる。また、皿ばね5の数も特に限定されるものではなく、半導体モジュールを構成する各部材に作用させる圧接力に応じて、皿ばね5の数が設定される。   Further, the elastic member is not limited to the disc spring 5, and a wave plate spring, a convex spring, a mesh spring, or the like can be used. Further, the number of the disc springs 5 is not particularly limited, and the number of the disc springs 5 is set according to the pressure contact force applied to each member constituting the semiconductor module.

また、それぞれの皿ばね5に対して押圧分散板を設ける形態としてもよいが、それぞれの皿ばね5に対して一つの分散板を設けることで、それぞれの皿ばね5の特性や皿ばね5の設けられる位置の違いによる弾性力の差異にかかわらず、分散板が導電板部材8をより均等に押圧することができる。   Moreover, although it is good also as a form which provides a press dispersion plate with respect to each disc spring 5, by providing one dispersion plate with respect to each disc spring 5, the characteristic of each disc spring 5 or the disc spring 5 of FIG. The dispersion plate can press the conductive plate member 8 more evenly regardless of the difference in elastic force due to the difference in the provided position.

1…半導体モジュール
2…半導体素子
3…コレクタ電極端子(電極端子)
4…エミッタ電極端子(電極端子)
5…皿ばね(弾性部材)
6,14,17,20,24…ばね電極(電極部材)
7,15,16,18,19,21,22,25,26…分散板(押圧力分散部材)
8…導電板部材(導体平板)
8a…平板部
8b…折返し部
15a,18a…中央部
15b,18b…側部
18c…当接部
23…中間部
25a,26a…嵌合溝
DESCRIPTION OF SYMBOLS 1 ... Semiconductor module 2 ... Semiconductor element 3 ... Collector electrode terminal (electrode terminal)
4. Emitter electrode terminal (electrode terminal)
5 ... Belleville spring (elastic member)
6, 14, 17, 20, 24 ... Spring electrode (electrode member)
7,15,16,18,19,21,22,25,26 ... dispersion plate (pressing force dispersion member)
8 ... Conductive plate member (conductive plate)
8a ... Flat plate portion 8b ... Folded portions 15a, 18a ... Central portions 15b, 18b ... Side portions 18c ... Abutting portions 23 ... Intermediate portions 25a, 26a ... Fitting grooves

Claims (9)

半導体素子と、前記半導体素子の電極層と電気的に接続される電極端子とを備えた半導体モジュールであって、
前記半導体素子と前記電極端子間に、導体平板を折り返し、この折り返した導体平板間に弾性部材を設けて構成される電極部材と、
前記弾性部材の一端と前記導体平板との間に設けられる第1押圧力分散部材と、
前記弾性部材の他端と前記導体平板との間に設けられる第2押圧力分散部材と、を備えた
ことを特徴とする半導体モジュール。
A semiconductor module comprising a semiconductor element and an electrode terminal electrically connected to the electrode layer of the semiconductor element,
An electrode member configured by folding a conductive plate between the semiconductor element and the electrode terminal, and providing an elastic member between the folded conductive plates;
A first pressing force dispersion member provided between one end of the elastic member and the conductor flat plate;
A semiconductor module, comprising: a second pressing force dispersion member provided between the other end of the elastic member and the conductor flat plate.
前記第1押圧力分散部材は、前記第2押圧力分散部材に滑合する滑合部を有する
ことを特徴とする請求項1に記載の半導体モジュール。
2. The semiconductor module according to claim 1, wherein the first pressing force dispersing member has a sliding portion that slides on the second pressing force dispersing member.
前記第1押圧力分散部材は、
前記第2押圧力分散部材に遊嵌する遊嵌部と、
前記第2押圧力分散部材の側面に当接する当接部と、を有する
ことを特徴とする請求項1に記載の半導体モジュール。
The first pressing force dispersing member is
A loosely fitting portion loosely fitted to the second pressing force dispersing member;
The semiconductor module according to claim 1, further comprising a contact portion that contacts a side surface of the second pressing force dispersion member.
前記当接部は、前記弾性部材が弾性変形した時に前記導体平板の側面と当接する
ことを特徴とする請求項3に記載の半導体モジュール。
The semiconductor module according to claim 3, wherein the abutting portion abuts against a side surface of the conductor flat plate when the elastic member is elastically deformed.
前記第1押圧力分散部材と前記第2押圧力分散部材とを連結する中間部を有する
ことを特徴とする請求項1に記載の半導体モジュール。
2. The semiconductor module according to claim 1, further comprising an intermediate portion that connects the first pressing force distribution member and the second pressing force distribution member.
前記第1押圧力分散部材及び前記第2押圧力分散部材に、前記弾性部材が嵌合する嵌合部を形成する
ことを特徴とする請求項1から請求項5のいずれか1項に記載の半導体モジュール。
6. The fitting portion according to claim 1, wherein a fitting portion into which the elastic member is fitted is formed in the first pressing force distribution member and the second pressing force distribution member. Semiconductor module.
弾性部材を挟持する1対の押圧力分散部材であって、
一方の押圧力分散部材は、他方の押圧力分散部材に滑合する滑合部を有する
ことを特徴とする押圧力分散部材。
A pair of pressing force dispersion members sandwiching the elastic member,
One pressing force distribution member has a sliding portion that slides on the other pressing force distribution member.
弾性部材を挟持する一対の押圧力分散部材であって、
一方の押圧力分散部材は、
他方の押圧力分散部材に遊嵌する遊嵌部と、
前記他方の押圧力分散部材に当接する当接部と、を有する
ことを特徴とする押圧力分散部材。
A pair of pressing force dispersion members that sandwich the elastic member,
One pressing force dispersion member is
A loosely fitting portion loosely fitted to the other pressing force dispersing member;
And a contact portion that contacts the other pressing force dispersion member.
弾性部材を挟持する一対の押圧力分散部材であって、
一方の押圧力分散部材と、他方の押圧力分散部材とを連結する中間部を有する
ことを特徴とする押圧力分散部材。
A pair of pressing force dispersion members that sandwich the elastic member,
A pressing force dispersing member having an intermediate portion for connecting one pressing force dispersing member and the other pressing force dispersing member.
JP2011088375A 2011-04-12 2011-04-12 Semiconductor module and pressing force dispersion member Withdrawn JP2012222239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011088375A JP2012222239A (en) 2011-04-12 2011-04-12 Semiconductor module and pressing force dispersion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011088375A JP2012222239A (en) 2011-04-12 2011-04-12 Semiconductor module and pressing force dispersion member

Publications (1)

Publication Number Publication Date
JP2012222239A true JP2012222239A (en) 2012-11-12

Family

ID=47273410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011088375A Withdrawn JP2012222239A (en) 2011-04-12 2011-04-12 Semiconductor module and pressing force dispersion member

Country Status (1)

Country Link
JP (1) JP2012222239A (en)

Similar Documents

Publication Publication Date Title
JP4967447B2 (en) Power semiconductor module
JP2012119651A (en) Semiconductor module and electrode member
JP6755386B2 (en) Manufacturing method of power semiconductor module and power semiconductor module
CN102446864A (en) Power module and method for manufacturing same
EP2889902B1 (en) Electric power semiconductor device
JP6149938B2 (en) Semiconductor module
JP4146888B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP5899952B2 (en) Semiconductor module
JP5807432B2 (en) Semiconductor module and spacer
JP6056286B2 (en) Semiconductor module and semiconductor module manufacturing method
JP2013102065A (en) Semiconductor module and electrode member
JP2015002273A (en) Semiconductor module
JP2012084621A (en) Electrode terminal and semiconductor module
JP2014116478A (en) Semiconductor module, semiconductor module manufacturing method and power conversion apparatus
JP5909924B2 (en) Semiconductor module
JP2015026667A (en) Semiconductor module
JP5724415B2 (en) Semiconductor module
JP7118205B1 (en) Semiconductor device and semiconductor module using the same
JP2005209784A (en) Pressure contact semiconductor device and converter using same
JP2019067976A (en) Semiconductor device
JP2012222239A (en) Semiconductor module and pressing force dispersion member
JP2013236035A (en) Semiconductor module and manufacturing method of the same
JP2011176087A (en) Semiconductor module, and power conversion apparatus
JP2012227455A (en) Semiconductor module
JP2015115349A (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701