JP2012219004A - Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device - Google Patents

Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device Download PDF

Info

Publication number
JP2012219004A
JP2012219004A JP2011089651A JP2011089651A JP2012219004A JP 2012219004 A JP2012219004 A JP 2012219004A JP 2011089651 A JP2011089651 A JP 2011089651A JP 2011089651 A JP2011089651 A JP 2011089651A JP 2012219004 A JP2012219004 A JP 2012219004A
Authority
JP
Japan
Prior art keywords
oil
repellent
glass
antifouling
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011089651A
Other languages
Japanese (ja)
Other versions
JP5660500B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Yoshifumi Suzaki
嘉文 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2011089651A priority Critical patent/JP5660500B2/en
Publication of JP2012219004A publication Critical patent/JP2012219004A/en
Application granted granted Critical
Publication of JP5660500B2 publication Critical patent/JP5660500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-repelling and oil-repelling antifouling glass which has improved durability such as wear resistance and weatherability, water droplet repellency, oil repellency, and antifouling performance in addition to water-repelling and oil-repelling functions, a method for manufacturing the same, and a glass window using the same, a solar energy utilization device, and optical equipment.SOLUTION: A wear-resistant, water-ultrarepellent and oil-repellent antifouling glass 10 has a glass substrate 14 having a plurality of confetti-like projections 11 and a water-repellent, oil-repellent and antifouling thin film 15a bonded to at least one part of the surface of the glass substrate 14 having a confetti-like projection 11, and the confetti-like projection 11 is composed of a substantially hemispherical first projection 12 and a plurality of conically-shaped or bamboo shoot shaped second projection 13 which are formed on the surface of the first projection 12 and have a smaller diameter of the bottom face than the first projection 12.

Description

本発明は、耐摩耗性超撥水撥油防汚性ガラスとその製造方法ならびにそれらを用いたガラス窓、太陽エネルギー利用装置、光学機器および表示装置に関し、より具体的には高耐久性で且つ撥水撥油防汚性の被膜が表面に形成された耐摩耗性超撥水撥油防汚性ガラスとその製造方法ならびにそれらを用いたガラス窓、太陽エネルギー利用装置、光学機器および表示装置に関する。 The present invention relates to a wear-resistant super water- and oil-repellent antifouling glass, a method for producing the same, a glass window using the same, a solar energy utilization device, an optical device, and a display device, and more specifically, has high durability and TECHNICAL FIELD The present invention relates to a wear-resistant super water- and oil-repellent antifouling glass having a water-repellent and oil-repellent antifouling coating formed on the surface, a method for producing the same, a glass window using the same, a solar energy utilization device, an optical device, and a display .

各種部材の表面に撥水性、撥油性および防汚性を付与するために、フッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる溶液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性の化学吸着膜単分子膜を形成できることが既によく知られている(例えば、特許文献1参照)。 In order to impart water repellency, oil repellency and antifouling properties to the surfaces of various members, a solution comprising a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent is used for chemical adsorption in the liquid phase. It is already well known that a molecular film-like water- and oil-repellent antifouling chemical adsorption film monomolecular film can be formed (for example, see Patent Document 1).

このような溶液中での単分子膜の製造原理は、基材表面のヒドロキシル基等の活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。しかしながら、特許文献1記載の化学吸着膜は吸着剤を平坦なガラス基材に適用した場合において、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるようにするためには撥水撥油防汚性や離水性が不十分であるという課題があった。また、特許文献1記載の化学吸着膜単分子膜が適用された耐摩耗性撥水撥油防汚性ガラスは、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。 The manufacturing principle of such a monomolecular film in a solution is to form a monomolecular film by using a dehydrochlorination reaction between active hydrogen such as hydroxyl group on the substrate surface and chlorosilyl group of chlorosilane-based adsorbent. is there. However, when the adsorbent is applied to a flat glass substrate, the chemical adsorption film described in Patent Document 1 has a water droplet contact angle of only about 120 degrees, so that water droplets and dirt can be removed naturally. Has the problem of insufficient water and oil repellency, antifouling properties and water separation. Further, the wear-resistant water- and oil-repellent and antifouling glass to which the chemical adsorption film monomolecular film described in Patent Document 1 is applied has a problem that durability such as wear resistance and weather resistance is poor.

そこで、本発明者は、板状の基材の表面に融着し、シリカ、アルミナ、ジルコニア等の硬質素材からなる撥水撥油防汚性の透明微粒子と、前記基材の表面のうち前記透明中核となる微粒子が融着していない部分を覆う撥水撥油防汚性物質の被膜とを有することを特徴とする撥水撥油防汚性反射防止膜、およびこれを用いた光学装置、太陽エネルギー利用装置、ディスプレイを提案した(特許文献2参照)。基材表面に融着した透明微粒子は、基材の表面に凹凸をもたらすと共に耐摩耗性を向上させるため、撥水撥油防汚性に加え、耐摩耗性を向上させることができるという利点を有している。 Therefore, the present inventor fused to the surface of the plate-like base material, the water- and oil-repellent antifouling transparent fine particles made of a hard material such as silica, alumina, zirconia, and the surface of the base material Water / oil / oil / repellency / antifouling anti-reflective coating having a coating of a water / oil / oil / repellency / antifouling substance covering a portion where fine particles as a transparent core are not fused, and an optical device using the same A solar energy utilization device and a display have been proposed (see Patent Document 2). The transparent fine particles fused to the surface of the base material provide unevenness on the surface of the base material and improve wear resistance, so that in addition to water and oil repellency and antifouling properties, it is possible to improve wear resistance. Have.

また、ガラス基材の表面により複雑な凹凸を有する表面構造を形成することで、さらに撥水撥油防汚性を向上するために、ガラス基材の表面に前記第1の中核となる微粒子を結合固定後、第1の中核となる微粒子が結合固定された前記ガラス基材の表面に前記第2の微粒子を結合固定し、第1及び第2の微粒子が結合固定された前記ガラス基材の表面に撥水撥油防汚性薄膜を形成することにより製造され、ガラス基材の表面の少なくとも一部を覆うように該ガラス基材の表面に結合固定された中核となる第1の微粒子と、第1の微粒子の表面の少なくとも一部を覆うようにその微粒子の表面に結合固定された、中核となる第1の微粒子よりも直径の小さな第2の微粒子と、第1および第2の微粒子の表面に形成された撥水撥油防汚性薄膜とを有する撥水撥油防汚性ガラスを提案した(特許文献3参照)。 Further, in order to further improve the water / oil repellency / antifouling property by forming a surface structure having complicated irregularities on the surface of the glass substrate, fine particles as the first core are formed on the surface of the glass substrate. After the bonding and fixing, the second fine particles are bonded and fixed to the surface of the glass substrate to which the first core fine particles are bonded and fixed, and the first and second fine particles are bonded and fixed. Produced by forming a water- and oil-repellent and antifouling thin film on the surface, and a first fine particle serving as a core bonded and fixed to the surface of the glass substrate so as to cover at least a part of the surface of the glass substrate; A second fine particle having a diameter smaller than that of the first fine particle serving as a core, and fixed to the surface of the fine particle so as to cover at least a part of the surface of the first fine particle, and the first and second fine particles Water and oil repellent antifouling thin film formed on the surface of Water-repellent, oil-repellent antifouling glass proposed (see Patent Document 3).

特開平4−132637号公報JP-A-4-132737 特開2008−247699号公報JP 2008-247699 A 特開2010−222199号公報JP 2010-222199 A

しかし、特許文献3記載の製造方法では、中核となる第1の微粒子の表面に第2の微粒子を結合固定させることが困難であり、例えば、水滴接触角160°を超える高い撥水撥油防汚性を発現できないという課題が残されている。 However, in the production method described in Patent Document 3, it is difficult to bond and fix the second fine particles to the surface of the first fine particles that are the core. For example, the water and oil repellency is high and the water droplet contact angle exceeds 160 °. The problem that it is not possible to express soiling remains.

本発明はかかる事情に鑑みてなされたもので、撥水撥油防汚機能に加え、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した耐摩耗性超撥水撥油防汚性ガラスとその製造方法ならびにそれらを用いたガラス窓、太陽エネルギー利用装置、光学機器および表示装置を提供することを目的とする。 The present invention has been made in view of such circumstances, in addition to water / oil repellent and antifouling functions, durability such as wear resistance and weather resistance, water droplet separation (also referred to as water slidability), oil repellency and antifouling properties. It is an object of the present invention to provide a wear-resistant super water- and oil-repellent antifouling glass having improved resistance, a method for producing the same, a glass window using the same, a solar energy utilization device, an optical device, and a display device.

前記目的に沿う本発明の第1の態様は、複数の金平糖状の突起を有するガラス基材と、前記突起を有するガラス基材の表面の少なくとも一部に結合した撥水撥油防汚性薄膜とを有し、前記金平糖状の突起が、中核となる略半球状の第1の突起と、前記第1の突起の表面に形成され、前記第1の突起の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起で構成されていることを特徴とする耐摩耗性超撥水撥油防汚性ガラスを提供することにより上記課題を解決するものである。
ガラス基材の表面に中核となる微粒子を結合固定して第1の突起を形成し、更にその表面に第2の突起を結合固定することにより、複雑な凹凸を有する表面構造を形成できる。そのため、平坦な表面を有する場合によりも撥水撥油防汚性を向上できる。また、少なくとも金平糖状の突起の表面に撥水撥油防汚性薄膜を形成することにより、一般に親水性を有するガラス基材の表面に撥水性、撥油性及び防汚性を付与できる。
According to the first aspect of the present invention, the glass substrate having a plurality of confetti-like protrusions and a water / oil / oil repellent and antifouling thin film bonded to at least a part of the surface of the glass substrate having the protrusions. The scallop-shaped projections are formed on the surface of the substantially hemispherical first projection as a core and the surface of the first projection, and the diameter of the bottom surface is smaller than the diameter of the first projection. The object is solved by providing a wear-resistant super water- and oil-repellent and antifouling glass comprising a plurality of conical or bamboo shoot-like second protrusions.
A surface structure having complex irregularities can be formed by bonding and fixing fine particles as cores on the surface of the glass substrate to form first protrusions, and further bonding and fixing second protrusions on the surface. Therefore, the water / oil repellency / antifouling property can be improved as compared with the case of having a flat surface. In addition, by forming a water- and oil-repellent and antifouling thin film on at least the surface of the confetti-like protrusions, it is possible to impart water repellency, oil repellency and antifouling properties to the surface of a generally glass substrate having hydrophilicity.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記第1の突起が、球状または略球状の中核となる微粒子を前記ガラス基材の表面に融着させ、あるいはバインダを介して結合させることにより形成されていてもよい。
中核となる第1の微粒子が融着又はバインダを介してガラス基材の表面に結合固定されているため、耐摩耗性超撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the wear-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention, the first protrusion is formed by fusing a fine particle having a spherical or substantially spherical core to the surface of the glass substrate. Alternatively, they may be formed by bonding via a binder.
Since the first fine particles as the core are bonded and fixed to the surface of the glass substrate through fusion or binder, the wear resistance, weather resistance, etc. of the surface of the wear-resistant super water- and oil-repellent antifouling glass Can be improved.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記ガラス基材、前記金平糖状の突起および前記バインダがいずれも透明であり、
前記中核となる微粒子の直径が30〜100nmであり、
前記第2の突起の高さが10〜30nmであってもよい。
ガラス基材、金平糖状の突起がいずれも透明であり、中核となる微粒子の直径が可視光の最短波長(400nm)よりも小さく(好ましくは100nm程度)、かつ第2の突起の直径が数nm〜数十nm(好ましくは10〜30nm)であるため、入射光の散乱や乱反射が抑制され、透明度及び光学特性に優れた耐摩耗性超撥水撥油防汚性ガラスを提供できる。
In the wear-resistant super water- and oil-repellent antifouling glass according to the first aspect of the present invention, the glass substrate, the scalloped projections and the binder are all transparent,
The diameter of the core fine particles is 30 to 100 nm,
The second protrusion may have a height of 10 to 30 nm.
Both the glass substrate and the confetti-like protrusion are transparent, the diameter of the core fine particle is smaller than the shortest wavelength (400 nm) of visible light (preferably about 100 nm), and the diameter of the second protrusion is several nm. Since it is ˜several tens nm (preferably 10 to 30 nm), it is possible to provide a wear-resistant super water / oil repellent / antifouling glass excellent in transparency and optical properties because scattering and irregular reflection of incident light are suppressed.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記第2の突起の高さが、前記第1の突起の高さの1/10以上1/2以下であってもよい。 In the wear-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention, the height of the second protrusion is 1/10 or more and 1/2 or less of the height of the first protrusion. It may be.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記第2の突起が、酸化亜鉛からなるものであってもよい。 In the wear-resistant super water / oil / oil repellent glass according to the first aspect of the present invention, the second protrusion may be made of zinc oxide.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記微粒子が、ガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるものであってもよい。
中核となる微粒子がガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるため、耐摩耗性超撥水撥油防汚性ガラスの表面の耐久性を向上できる。
In the wear-resistant super water / oil / oil repellent glass according to the first aspect of the present invention, the fine particles may be made of a material selected from the group consisting of glass, silica, alumina and zirconia. .
Since the core fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia, the durability of the surface of the wear-resistant super water- and oil-repellent antifouling glass can be improved.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、前記撥水撥油防汚性薄膜が単分子膜であることが好ましい。
撥水撥油防汚性薄膜が単分子膜であるため、得られる耐摩耗性超撥水撥油防汚性ガラスの色調や透明度を損なうことがない。
In the wear-resistant super water / oil repellent / antifouling glass according to the first aspect of the present invention, the water / oil repellent / antifouling thin film is preferably a monomolecular film.
Since the water- and oil-repellent and antifouling thin film is a monomolecular film, the color tone and transparency of the resulting wear-resistant super water- and oil-repellent and antifouling glass are not impaired.

本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスにおいて、表面の臨界表面エネルギーは理想的には低いほど良いが、1mN/m以上3mN/m以下であることが好ましい。
表面の臨界表面エネルギーが上記範囲であるため、得られる耐摩耗性超撥水撥油防汚性ガラスの撥水性、撥油性及び防汚性の全てを向上できる。
In the wear-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention, the lower the critical surface energy of the surface, the better, but it may be 1 mN / m or more and 3 mN / m or less. preferable.
Since the critical surface energy of the surface is in the above range, it is possible to improve all of the water repellency, oil repellency and antifouling property of the resulting wear-resistant super water / oil / oil repellent glass.

本発明の第2の態様は、溶媒に分散させた球状または略球状の中核となる微粒子をガラス基材の表面に散布する工程Aと、前記中核となる微粒子が散布された前記ガラス基材を加熱して、前記ガラス基材の表面に前記中核となる微粒子を結合固定または融着させ、略半球状の第1の突起を形成する工程Bと、前記第1の突起の表面に、該第1の突起の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の第2の突起を形成する工程Cと、前記第1および第2の突起とから構成される金平糖状の突起が形成された前記ガラス基材の表面に撥水撥油防汚性薄膜を形成する工程Dとを有することを特徴とする耐摩耗性超撥水撥油防汚性ガラスの製造方法を提供することにより上記課題を解決するものである。
工程A〜Cにおいて、ガラス基材の表面に結合固定または融着した複数の金平糖状の突起を形成することにより、ガラス基材の表面に複雑な凹凸を形成できる。そのため、平坦なガラス基材及び中核となる微粒子のみが表面に結合固定されたガラス基材よりも撥水性、撥油性及び防汚性を向上できる。また、工程Cにおいて、少なくとも金平糖状の突起の表面に撥水撥油防汚性薄膜を形成することにより、撥水性、撥油性及び防汚性を更に向上できる。
According to a second aspect of the present invention, there is provided a step A in which spherical or substantially spherical core particles dispersed in a solvent are sprayed on the surface of a glass substrate, and the glass substrate on which the core particles are sprayed. Heating to bond and fix or fuse the fine particles as the core to the surface of the glass substrate to form a substantially hemispherical first protrusion; and to the surface of the first protrusion, the first protrusion Forming a plurality of conical or bamboo shoot-like second protrusions having a bottom diameter smaller than the diameter of one protrusion, and a confetti-like protrusion comprising the first and second protrusions; By providing a process D for forming a water- and oil-repellent and antifouling thin film on the surface of the glass substrate, the method for producing a wear-resistant super water- and oil-repellent and antifouling glass is provided. The present invention solves the above problems.
In Steps A to C, complex irregularities can be formed on the surface of the glass substrate by forming a plurality of confetti-like projections bonded or fused to the surface of the glass substrate. Therefore, the water repellency, oil repellency and antifouling property can be improved as compared with the glass substrate in which only the flat glass substrate and the core fine particles are bonded and fixed to the surface. Further, in step C, the water and oil repellency and antifouling properties can be further improved by forming a water and oil repellency and antifouling property thin film on at least the surface of the confetti-like protrusions.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記ガラス基材、前記第1および第2の突起がいずれも透明であり、前記金平糖状の突起の高さが30〜300nmであってもよい。 In the method for producing a wear-resistant super water- and oil-repellent antifouling glass according to the second aspect of the present invention, the glass substrate and the first and second protrusions are both transparent, The height of the protrusion may be 30 to 300 nm.

前記の場合において、前記中核となる微粒子の直径が30〜100nmであり、前記第2の突起の高さが10〜30nmであることが好ましい。 In the above case, it is preferable that the diameter of the core fine particle is 30 to 100 nm, and the height of the second protrusion is 10 to 30 nm.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記工程Bにおいて、前記分散液を塗布後の前記ガラス基材を、ガラス基板の軟化点以上で中核となる微粒子の融点以下で加熱し、前記ガラス基材の表面に前記中核となる微粒子を融着してもよい。 In the method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to the second aspect of the present invention, in the step B, the glass substrate after the dispersion is applied is not less than the softening point of the glass substrate. The core fine particles may be fused to the surface of the glass substrate by heating at a temperature equal to or lower than the melting point of the core fine particles.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記分散液が、溶媒の蒸発および/またはその後の化学反応によりバインダを生成するバインダ前駆体を含み、前記工程Bにおいて、前記バインダを介して前記ガラス基材の表面に前記中核となる微粒子を結合固定または融着してもよい。
融着又はバインダを介してガラス基材の表面に中核となる微粒子を結合固定または融着するため、耐摩耗性超撥水撥油防汚性ガラスの表面の耐摩耗性及び耐候性等を向上できる。
In the method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to the second aspect of the present invention, the dispersion comprises a binder precursor that generates a binder by evaporation of a solvent and / or subsequent chemical reaction. In addition, in the step B, the core fine particles may be bonded and fixed or fused to the surface of the glass substrate via the binder.
Since the core fine particles are bonded, fixed, or fused to the surface of the glass substrate via fusing or a binder, the wear resistance, weather resistance, etc. of the surface of the abrasion-resistant super water- and oil-repellent antifouling glass are improved. it can.

工程Bにおいてバインダを介して中核となる微粒子を結合固定する本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記バインダ前駆体が、ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体であってもよい。
ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体をバインダ前駆体として用いることにより、製造される耐摩耗性超撥水撥油防汚性ガラスの透明度を損なうことなく第1及び第2の微粒子をそれぞれガラス基材及び第1の中核となる微粒子の表面に結合固定できる。
In the process for producing a wear-resistant super water- and oil-repellent and antifouling glass according to the second aspect of the present invention in which the fine particles as the core are bonded and fixed via a binder in the step B, the binder precursor is a sol-gel It may be a metal sol precursor that forms a transparent metal oxide by a method.
By using a metal sol precursor that forms a transparent metal oxide by a sol-gel method as a binder precursor, the first and The second fine particles can be bonded and fixed to the surface of the glass substrate and the fine particles serving as the first core, respectively.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記工程Bの後で、結合固定されなかった前記中核となる微粒子を洗浄除去してもよい。 In the method for producing a wear-resistant super water- and oil-repellent antifouling glass according to the second aspect of the present invention, after the step B, the core fine particles that are not bonded and fixed may be washed away. .

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記工程Bにおいて、前記ガラス基材の表面に付着、結合固定または融着された前記中核となる微粒子の表面に、大気圧プラズマ法を用いて酸化亜鉛からなる前記突起を形成することが好ましい。 In the method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to the second aspect of the present invention, in the step B, the core adhered, bonded, or fused to the surface of the glass substrate; It is preferable to form the protrusions made of zinc oxide on the surface of the fine particles to be formed using an atmospheric pressure plasma method.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記工程Dにおいて、前記ガラス基材および前記金平糖状の突起の表面官能基と反応して結合を形成する反応基とフッ化炭素基またはジメチルシリル基とを有する化合物を含む反応液を前記第1及び第2の微粒子が結合固定された前記ガラス基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成してもよい。
表面官能基と反応基との反応により形成された結合を介して撥水撥油防汚性薄膜を金平糖状の突起の表面に結合固定することにより、撥水撥油防汚性薄膜の耐久性を向上できる。
In the method for producing a wear-resistant super water- and oil-repellent antifouling glass according to the second aspect of the present invention, in the step D, it reacts with the surface functional groups of the glass substrate and the confetti-like protrusions to bond. A surface of the glass substrate on which the first and second fine particles are bonded and fixed, and a reaction solution containing a compound having a reactive group for forming a fluorinated carbon group or a dimethylsilyl group. A film of the compound bonded and fixed to the surface may be formed through a bond formed by a reaction between the compound and the reactive group.
Durability of water- and oil-repellent antifouling thin film by bonding and fixing the water-repellent and oil-repellent antifouling thin film to the surface of confetti-like protrusions through a bond formed by the reaction between the surface functional group and the reactive group Can be improved.

この場合において、前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、及び/又は
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含んでいてもよい。
反応基としてアルコキシシリル基を用いることにより、反応時にハロゲン化水素等の有害な副生成物の生成を防ぐことができると共に、反応液が縮合触媒を含んでいるため、撥水撥油防汚性薄膜の形成に必要な処理時間を短縮できる。
In this case, the reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or two or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Alternatively, (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds may be included as a condensation catalyst.
By using an alkoxysilyl group as a reactive group, it is possible to prevent the formation of harmful by-products such as hydrogen halide during the reaction, and the reaction solution contains a condensation catalyst. The processing time required for forming the thin film can be shortened.

更に、前記工程Cの後で余分な前記反応液を洗浄除去してもよい。
余分な反応液を洗浄除去することにより、撥水撥油防汚性薄膜を単分子膜とすることができるため、製造される耐摩耗性超撥水撥油防汚性ガラスの透明度を損なうことがない。
Further, after the step C, the excess reaction solution may be removed by washing.
By washing and removing excess reaction liquid, the water- and oil-repellent and antifouling thin film can be made into a monomolecular film, thus impairing the transparency of the abrasion-resistant super water- and oil-repellent and antifouling glass produced. There is no.

本発明の第2の態様に係る耐摩耗性超撥水撥油防汚性ガラスの製造方法において、前記工程Bの前に前記工程Cを行ってもよい。 In the method for producing an abrasion-resistant super water / oil / oil repellent glass according to the second aspect of the present invention, the step C may be performed before the step B.

本発明の第3の態様は、ガラス基材、金平糖状の突起およびバインダがいずれも透明であり、中核となる微粒子の直径が30〜100nmであり、円錐状またはタケノコ状の突起の高さが10〜30nmである本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスを有するガラス窓を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、透明度及び耐久性にも優れたガラス窓を提供できる。
In the third aspect of the present invention, the glass substrate, the confetti-like protrusion and the binder are all transparent, the diameter of the core fine particle is 30 to 100 nm, and the height of the conical or bamboo-like protrusion is high. The object is solved by providing a glass window having a wear-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention having a thickness of 10 to 30 nm.
In addition to water repellency, oil repellency and antifouling properties, a glass window having excellent transparency and durability can be provided.

本発明の第4の態様は、ガラス基材、金平糖状の突起およびバインダがいずれも透明であり、中核となる微粒子の直径が30〜100nmであり、円錐状またはタケノコ状の突起の高さが10〜30nmである本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスを有する太陽エネルギー利用装置を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、耐久性及び耐候性にも優れ、入射光の散乱や乱反射が抑制されるため光エネルギーの利用効率にも優れた太陽エネルギー利用装置を提供できる。
In the fourth aspect of the present invention, the glass substrate, the confetti-like protrusion and the binder are all transparent, the diameter of the core fine particle is 30 to 100 nm, and the height of the conical or bamboo shoot-like protrusion is high. The above-mentioned problems are solved by providing a solar energy utilization device having the wear-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention having a thickness of 10 to 30 nm.
In addition to water repellency, oil repellency, and antifouling properties, it is possible to provide a solar energy utilization device that is excellent in durability and weather resistance and that is excellent in light energy utilization efficiency because scattering and diffuse reflection of incident light are suppressed.

本発明の第5の態様は、ガラス基材、金平糖状の突起およびバインダがいずれも透明であり、中核となる微粒子の直径が30〜100nmであり、円錐状またはタケノコ状の突起の高さが10〜30nmである本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスを有する光学機器を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、耐久性及び耐候性にも優れ、入射光の散乱や乱反射が抑制されるため透明性や光学特性にも優れた光学装置を提供できる。
In the fifth aspect of the present invention, the glass substrate, the confetti-like protrusions and the binder are all transparent, the diameter of the core fine particles is 30 to 100 nm, and the height of the conical or bamboo shoot-like protrusions is The above-mentioned problems are solved by providing an optical apparatus having the abrasion-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention having a thickness of 10 to 30 nm.
In addition to water repellency, oil repellency and antifouling properties, it is excellent in durability and weather resistance, and since scattering and diffuse reflection of incident light are suppressed, an optical device excellent in transparency and optical characteristics can be provided.

本発明の第6の態様は、ガラス基材、金平糖状の突起およびバインダがいずれも透明であり、中核となる微粒子の直径が30〜100nmであり、円錐状またはタケノコ状の突起の高さが10〜30nmである本発明の第1の態様に係る耐摩耗性超撥水撥油防汚性ガラスを有する表示装置を提供することにより上記課題を解決するものである。
撥水性、撥油性及び防汚性に加え、耐久性及び耐候性にも優れ、入射光の散乱や乱反射が抑制されるため透明性や光学特性にも優れた表示装置を提供できる。
In the sixth aspect of the present invention, the glass substrate, the confetti-like projections and the binder are all transparent, the diameter of the core fine particles is 30 to 100 nm, and the height of the conical or bamboo shoot-like projections is The above-mentioned problems are solved by providing a display device having an abrasion-resistant super water- and oil-repellent and antifouling glass according to the first aspect of the present invention having a thickness of 10 to 30 nm.
In addition to water repellency, oil repellency and antifouling properties, it is excellent in durability and weather resistance, and since scattering and diffuse reflection of incident light are suppressed, a display device excellent in transparency and optical characteristics can be provided.

本発明によれば、撥水撥油防汚機能に加え、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した耐摩耗性超撥水撥油防汚性ガラスとその製造方法が提供される。また、本発明によれば、撥水性、撥油性及び防汚性に加え、透明度及び耐久性にも優れたガラス窓、撥水性、撥油性及び防汚性に加え、耐候性及び光エネルギーの利用効率にも優れた太陽エネルギー利用装置、及び撥水性、撥油性及び防汚性に加え、耐久性、透明度及び光学特性にも優れた光学機器および耐指紋付着性に優れた表示装置が提供される。 According to the present invention, in addition to the water / oil repellent / antifouling function, durability such as wear resistance and weather resistance, water-drop separation (also referred to as water slidability), oil repellency, and antifouling properties are improved. A water- and oil-repellent antifouling glass and a method for producing the same are provided. Further, according to the present invention, in addition to water repellency, oil repellency and antifouling properties, in addition to glass windows excellent in transparency and durability, water repellency, oil repellency and antifouling properties, weather resistance and utilization of light energy Provided are a solar energy utilization device with excellent efficiency, and an optical device excellent in durability, transparency and optical characteristics in addition to water repellency, oil repellency and antifouling properties, and a display device excellent in fingerprint resistance. .

本発明の一実施の形態に係る耐摩耗性超撥水撥油防汚性ガラスの断面構造を模式的に説明した説明図である。It is explanatory drawing which demonstrated typically the cross-section of the abrasion-resistant super water-repellent oil-repellent antifouling glass which concerns on one embodiment of this invention. 同耐摩耗性超撥水撥油防汚性ガラスの製造方法において、ガラス基材の表面に中核となる微粒子を融着する工程の説明図である。It is explanatory drawing of the process of fuse | melting the microparticles | fine-particles used as a core on the surface of a glass base material in the manufacturing method of the abrasion-resistant super water-repellent oil-repellent antifouling glass. 同耐摩耗性超撥水撥油防汚性ガラスの製造方法において、ガラス基材の表面に融着した中核となる微粒子の表面に複数の円錐状の突起を形成する工程の説明図である。It is explanatory drawing of the process of forming a several cone-shaped protrusion on the surface of the microparticles | fine-particles used as the core fused | fused to the surface of the glass base material in the manufacturing method of the abrasion-resistant super water-repellent oil-repellent antifouling glass. 実施例1において製造した耐摩耗性超撥水撥油防汚性ガラスの表面の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of the surface of the wear-resistant super water- and oil-repellent antifouling glass produced in Example 1. FIG.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図1〜3は単なる概略説明図であり、ガラス基材、第1及び第2の突起並びに撥水撥油防汚性薄膜を形成する化合物の大きさについては、必ずしも実際の大きさの比率を反映していない。
図1に示すように、本発明の第1の実施の形態に係る耐摩耗性超撥水撥油防汚性ガラス10は、複数の金平糖状の突起11が形成されたガラス基材14と、突起11を有するガラス基材14aの表面の少なくとも一部に結合した撥水撥油防汚性薄膜15aとを有している。金平糖状の突起11は、中核となる略半球状の第1の突起12と、第1の突起12の表面に形成され、第1の突起12の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起13で構成されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. 1 to 3 are merely schematic illustrations, and the size of the compound that forms the glass substrate, the first and second protrusions, and the water / oil repellent / antifouling thin film is not necessarily an actual size. The ratio is not reflected.
As shown in FIG. 1, a wear-resistant super water- and oil-repellent and antifouling glass 10 according to a first embodiment of the present invention includes a glass substrate 14 on which a plurality of confetti-like protrusions 11 are formed, It has a water- and oil-repellent and antifouling thin film 15 a bonded to at least a part of the surface of the glass substrate 14 a having the protrusions 11. The confetti-like projections 11 are formed on the surface of a substantially hemispherical first projection 12 as a core and the surface of the first projection 12, and a plurality of conical shapes having a bottom diameter smaller than the diameter of the first projection 12. Or it is comprised by the 2nd protrusion 13 of a bamboo shoot shape.

耐摩耗性超撥水撥油防汚性ガラス10は、溶媒に分散させた球状または略球状の中核となる微粒子16をガラス基材14の表面に散布する工程Aと、中核となる微粒子16が散布されたガラス基材14を加熱して、ガラス基材14の表面に中核となる微粒子16を結合固定または融着させ、略半球状の第1の突起12を形成する工程Bと、ガラス基材14の表面に付着、結合固定または融着された第1の突起12の表面に、第1の突起12の直径よりも底面の直径の小さな複数のタケノコ状の突起13(円錐状またはタケノコ状の第2の突起の一例:以下、単に「突起」と略称する場合がある。)を形成する工程Cと、融着した中核となる微粒子16aの形成する半球状の突起(第1の突起の一例)12およびタケノコ状の突起13から構成される金平糖状の突起11が形成されたガラス基材14aの表面に撥水撥油防汚性薄膜15aを形成する工程Dとを有する方法により製造される。
以下、工程A〜Dについてより詳細に説明する。
The abrasion resistant super water / oil repellent antifouling glass 10 has a step A in which spherical or substantially spherical fine particles 16 dispersed in a solvent are dispersed on the surface of the glass substrate 14, and the fine particles 16 as the core are formed. A step B of heating the dispersed glass substrate 14 to bond or fix the core fine particles 16 to the surface of the glass substrate 14 to form a first hemispherical first protrusion 12; A plurality of bamboo shoot-like protrusions 13 (conical or bamboo shoot-like) having a bottom diameter smaller than the diameter of the first protrusion 12 are attached to the surface of the first protrusion 12 attached, bonded, fixed or fused to the surface of the material 14. An example of the second projection of the first projection: Hereinafter, the process C for forming the projection may be abbreviated as “projection”), and a hemispherical projection (the first projection of the first projection) formed by the fused fine particles 16a. Example) Consists of 12 and bamboo shoot-like projections 13 Produced by the process and a step D of forming a water-repellent oil-repellent antifouling thin film 15a on the surface of the candy-like projections 11 are formed glass substrate 14a to be.
Hereinafter, the processes A to D will be described in more detail.

(1)工程A
耐摩耗性超撥水撥油防汚性ガラス10の製造に用いられるガラス基材14の形状については特に制限はなく、レンズ、プリズム等の平板状以外の形状のものを用いることもできる。また、ガラス基材14の大きさについても特に制限はなく、任意の大きさのものを用いることができる。更に、ガラス基材14の材質についても特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、ガラスセラミックス等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。
(1) Process A
There is no restriction | limiting in particular about the shape of the glass base material 14 used for manufacture of abrasion-resistant super water-repellent oil-repellent antifouling glass 10, The thing of shapes other than flat form, such as a lens and a prism, can also be used. Moreover, there is no restriction | limiting in particular also about the magnitude | size of the glass base material 14, The thing of arbitrary magnitude | sizes can be used. Furthermore, there is no restriction | limiting in particular also about the material of the glass base material 14, The thing of arbitrary materials, such as soda lime glass, crystal glass, quartz glass, borosilicate glass, glass ceramics, can be used, from polymethyl methacrylate etc. An organic material such as acrylic glass (plexiglass) can also be used.

微粒子16を散布する前に、ガラス基材14の表面を洗浄し、表面に付着した汚れを除去しておくことが好ましい。洗浄には、洗浄液中への浸漬(加熱、撹拌および超音波照射等を併用してもよい。)、コロナ処理、酸素プラズマ処理、あるいはエキシマ光の照射等の任意の方法を用いることができる。 Before spraying the fine particles 16, it is preferable to clean the surface of the glass substrate 14 and remove the dirt adhering to the surface. For the cleaning, any method such as immersion in a cleaning solution (heating, stirring, ultrasonic irradiation or the like may be used in combination), corona treatment, oxygen plasma treatment, or excimer light irradiation can be used.

耐摩耗性超撥水撥油防汚性ガラス10の製造に用いられる中核となる微粒子16は、球状または略球状であり、直径は、10nm〜5mm、好ましくは20nm〜400nm、より好ましくは30〜100nmである。特に、ガラス窓、太陽エネルギー利用装置、光学機器、タッチパネル等の表示装置等に用いるために透明度が必要とされる耐摩耗性超撥水撥油防汚性ガラス10の製造のためには、入射光の散乱や乱反射による透明度の低下を抑制するために、中核となる微粒子16の直径は、可視光の波長よりも短い400nm以下である必要があり、もっとも好ましい直径の範囲は、上記の30〜100nmである。 The fine particles 16 serving as the core used in the production of the wear-resistant super water / oil repellent antifouling glass 10 are spherical or substantially spherical, and have a diameter of 10 nm to 5 mm, preferably 20 nm to 400 nm, more preferably 30 to 30 nm. 100 nm. In particular, for the production of the abrasion-resistant super water- and oil-repellent antifouling glass 10 that requires transparency for use in display devices such as glass windows, solar energy utilization devices, optical devices, touch panels, etc. In order to suppress a decrease in transparency due to light scattering and irregular reflection, the diameter of the core fine particle 16 needs to be 400 nm or less, which is shorter than the wavelength of visible light, and the most preferable diameter range is 30 to 30 above. 100 nm.

中核となる微粒子16の材質について特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、ガラスセラミックス、シリカ、アルミナ、ジルコニア等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。特に、シリカ、アルミナ、ジルコニア等の硬質の無機酸化物からなる中核となる微粒子を用いる場合には、得られる耐摩耗性超撥水撥油防汚性ガラス10の表面の硬度および耐摩耗性を向上できる。 There are no particular restrictions on the material of the core fine particles 16, and any material such as soda-lime glass, crystal glass, quartz glass, borosilicate glass, glass ceramics, silica, alumina, zirconia, etc. can be used. An organic material such as acrylic glass (plexiglass) made of methyl acid can also be used. In particular, when using fine particles as the core composed of hard inorganic oxides such as silica, alumina, zirconia, etc., the hardness and wear resistance of the surface of the resulting wear-resistant super water- and oil-repellent antifouling glass 10 are reduced. It can be improved.

中核となる微粒子16の散布は任意の方法を用いて行うことができるが、例えば、中核となる微粒子16を溶媒に分散させた分散液をガラス基材14に塗布後、溶媒を蒸発させる方法が好ましく用いられる。
分散液の調製には、中核となる微粒子16を均一に分散でき、ガラス基材14および中核となる微粒子16と反応したり、膨潤や変形を起こしたりしない限りにおいて任意の溶媒を用いることができるが、揮発性、安全性、環境負荷および経済性等の観点から、水、エタノール、イソプロピルアルコール等の低級アルコール系溶媒およびこれらの混合溶媒が好ましい。溶媒の量は、中核となる微粒子16の大きさおよび比重等に依存するため一義的に決定することは困難であるが、例えば、中核となる微粒子16の重量の4〜200倍(第1の分散液に含まれる中核となる微粒子16の濃度が約0.5〜約20重量%)、好ましくは10〜100倍、より好ましくは10〜50倍である。溶媒の量が少なすぎると、得られる第1の分散液がスラリー状になり、中核となる微粒子16をガラス基材14の表面に均一に分散することが困難になり、逆に多すぎると作業効率が低下する。
The dispersion of the fine particles 16 serving as the core can be performed using any method. For example, a method of evaporating the solvent after applying a dispersion liquid in which the fine particles 16 serving as the core are dispersed in a solvent to the glass substrate 14 is available. Preferably used.
For the preparation of the dispersion, any solvent can be used as long as it can uniformly disperse the fine particles 16 serving as the core and does not react with the glass substrate 14 and the fine particles 16 serving as the core or cause swelling or deformation. However, from the viewpoints of volatility, safety, environmental burden, economy, and the like, lower alcohol solvents such as water, ethanol, isopropyl alcohol, and mixed solvents thereof are preferable. Although the amount of the solvent depends on the size and specific gravity of the fine particles 16 serving as the core, it is difficult to uniquely determine. For example, the amount of the solvent is 4 to 200 times the weight of the fine particles 16 serving as the core (first The concentration of the fine particles 16 serving as the core contained in the dispersion is about 0.5 to about 20% by weight), preferably 10 to 100 times, more preferably 10 to 50 times. If the amount of the solvent is too small, the resulting first dispersion becomes a slurry, making it difficult to uniformly disperse the fine particles 16 serving as the core on the surface of the glass substrate 14, and conversely if too much, Efficiency is reduced.

ガラス基材14の表面に分散液を塗布後、溶媒を蒸発させると、ガラス基材14の表面に中核となる微粒子16を均一に分散させることができる。第1の分散液の塗布には、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法を用いることができる。 When the solvent is evaporated after applying the dispersion on the surface of the glass substrate 14, the fine particles 16 serving as the core can be uniformly dispersed on the surface of the glass substrate 14. For the application of the first dispersion, any method such as a dip coating method, a spin coating method, a spray method, a screen printing method, or the like can be used.

(2)工程B
次いで、中核となる微粒子16を表面に散布したガラス基材14の表面を、ガラス基板14の軟化点以上で中核となる微粒子16の融点以下の温度で加熱し、中核となる微粒子16が表面に融着したガラス基材14aを得る。加熱温度および加熱時間は、用いられるガラス基材14および中核となる微粒子16の材質等に依存するため一義的に決定することは困難であるが、例えば、ガラス基材14としてソーダ石灰ガラス、中核となる微粒子16としてシリカ微粒子を用いる場合には、650℃で30分〜1時間程度加熱することにより、中核となる微粒子16が表面に融着し、中核となる微粒子を融着させたガラス基材14bが得られる。
(2) Process B
Next, the surface of the glass substrate 14 on which the fine particles 16 serving as the core are dispersed is heated at a temperature not lower than the softening point of the glass substrate 14 and not higher than the melting point of the fine particles 16 serving as the core. A fused glass substrate 14a is obtained. Although the heating temperature and the heating time depend on the glass substrate 14 used and the material of the fine particles 16 serving as the core, it is difficult to determine uniquely. For example, as the glass substrate 14, soda lime glass, the core In the case where silica fine particles are used as the fine particles 16 to be used, a glass substrate in which the core fine particles 16 are fused to the surface by heating at 650 ° C. for about 30 minutes to 1 hour, and the core fine particles are fused. The material 14b is obtained.

分散液は、溶媒の蒸発および/またはその後の化学反応により、ガラス基板14および中核となる微粒子16の表面に結合可能なバインダを生成するバインダ前駆体を含んでいてもよい。バインダ前駆体としては、ゾル−ゲル法により透明な金属酸化物の被膜を形成できる物質、より具体的には、テトラアルコキシシランSi(OR)(Rは、メチル基、エチル基、n−プロピル基、i−プロピル基等の低級アルキル基。以下同じ。)、ホウ酸トリアルコキシドB(OR)、アルミニウムトリアルコキシドAl(OR)、チタンテトラアルコキシドTi(OR)等の金属アルコキシド、およびこれらの混合物が挙げられる。 The dispersion may contain a binder precursor that generates a binder that can be bonded to the surfaces of the glass substrate 14 and the core fine particles 16 by evaporation of the solvent and / or subsequent chemical reaction. As the binder precursor, a substance capable of forming a transparent metal oxide film by a sol-gel method, more specifically, tetraalkoxysilane Si (OR) 4 (R is methyl group, ethyl group, n-propyl). Group, lower alkyl group such as i-propyl group, etc.), metal alkoxide such as boric acid trialkoxide B (OR) 3 , aluminum trialkoxide Al (OR) 3 , titanium tetraalkoxide Ti (OR) 4 , and These mixtures are mentioned.

ガラス基材14の表面に分散液を塗布後、溶媒を蒸発させると、ガラス基材14の表面に、ゾル−ゲル法により形成されたシリカ被膜(以下、「シリカ被膜」と略称する場合もある。)を介して中核となる微粒子16を均一に分散した状態で結合固定できる。なお、この場合において、中核となる微粒子16の形状を損なわず、かつその大きさが所望の範囲内である限りにおいて、中核となる微粒子16の表面にもシリカ被膜が形成されていてもよい。なお、バインダ前駆体を含む溶液を分散液とは別に調製し、バインダ前駆体溶液を塗布後、溶媒を蒸発させることによりあらかじめシリカ被膜を形成したガラス基材14の表面にバインダ前駆体を含まない分散液を塗布してもよい。 When the dispersion is applied to the surface of the glass substrate 14 and then the solvent is evaporated, a silica coating (hereinafter referred to as “silica coating”) formed on the surface of the glass substrate 14 by a sol-gel method may be used. )), The fine particles 16 as the core can be bonded and fixed in a uniformly dispersed state. In this case, a silica coating may also be formed on the surface of the fine particles 16 serving as the core as long as the shape of the fine particles 16 serving as the core is not impaired and the size is within a desired range. In addition, the solution containing a binder precursor is prepared separately from the dispersion, and after applying the binder precursor solution, the solvent is evaporated, and the surface of the glass substrate 14 on which the silica coating has been formed in advance is not included. A dispersion may be applied.

次いで、更に200〜500℃程度の熱処理を行い、シリカ被膜を焼結させると、より強固に中核となる微粒子16をガラス基材14の表面に結合固定できる。基材ガラスが軟化する程度まで焼結温度を高くすると、シリカ被膜が融解または軟化し、中核となる微粒子16を融着させることもできる。このとき、分散液中に、金属アルコキシドの5%程度のリン酸またはホウ酸を添加しておくと、シリカ被膜の融点を500℃程度まで低下させることができるので、基材ガラスを軟化させることなく500〜600℃で30分程度の焼結により、ガラス基材14の表面に中核となる微粒子16を融着できる。 Subsequently, when a heat treatment at about 200 to 500 ° C. is further performed to sinter the silica coating, the fine particles 16 serving as the core can be bonded and fixed to the surface of the glass substrate 14 more firmly. When the sintering temperature is increased to such an extent that the base glass is softened, the silica coating is melted or softened, and the fine particles 16 serving as the core can be fused. At this time, if phosphoric acid or boric acid of about 5% of the metal alkoxide is added to the dispersion, the melting point of the silica coating can be lowered to about 500 ° C., so that the base glass is softened. The fine particles 16 serving as the core can be fused to the surface of the glass substrate 14 by sintering at 500 to 600 ° C. for about 30 minutes.

ガラス基材14、中核となる微粒子16のいずれかが有機材料である場合でも、耐熱性が確保出来る範囲で融着による結合固定を行うこともできる。但し、有機材料は無機材料よりも融点および軟化温度が低く、熱分解を起こしやすいため、無機材料の場合よりも加熱温度を低くする必要がある。更に、バインダとして光硬化性樹脂や接着剤(エポキシ系接着剤、シアノアクリレート系接着剤)を用いてもよい。 Even when either the glass substrate 14 or the fine particles 16 serving as the core is an organic material, bonding and fixing by fusion can be performed as long as heat resistance can be ensured. However, since the organic material has a lower melting point and softening temperature than the inorganic material and easily undergoes thermal decomposition, the heating temperature needs to be lower than that of the inorganic material. Furthermore, a photocurable resin or an adhesive (epoxy adhesive or cyanoacrylate adhesive) may be used as the binder.

また、本実施の形態においては、工程A、Bにおいてガラス基材14をそのまま中核となる微粒子を融着させたガラス基材14bの製造に用いたが、工程Aの前にガラス基材14よりも低い温度で中核となる微粒子16を融着する被膜をガラス基材14の表面に形成してもよい。被膜としては、透明性を有しガラス基材14よりも低い温度で中核となる微粒子16を融着することのできる任意の被膜(透明被膜)を用いることができるが、ゾルゲル法により形成された酸化ケイ素、酸化アルミニウム等の金属酸化物の乾燥ゲル膜が好ましい。 In the present embodiment, the glass substrate 14 is used as it is for the production of the glass substrate 14b in which the core fine particles are fused in the steps A and B, but before the step A, the glass substrate 14 is used. Alternatively, a film for fusing the fine particles 16 serving as the core at a low temperature may be formed on the surface of the glass substrate 14. As the coating, any coating (transparent coating) having transparency and capable of fusing the fine particles 16 serving as the core at a temperature lower than that of the glass substrate 14 can be used. However, the coating was formed by a sol-gel method. A dry gel film of a metal oxide such as silicon oxide or aluminum oxide is preferred.

縮合触媒(詳細については後述する。)を含む金属アルコキシドの溶液をガラス基材14の表面に塗布後溶媒を蒸発させると、空気中の水分によるアルコキシル基の加水分解により生成するヒドロキシル基とアルコキシル基との間で縮合反応が起こり、ガラス基材14の表面に金属酸化物の透明な乾燥ゲル膜が形成される。未焼結の乾燥ゲル膜の表面および内部には、ガラス基材14よりも多くの遊離のヒドロキシル基が存在するため、ガラス基材14よりも低い温度で微粒子16と融着できる。 When a metal alkoxide solution containing a condensation catalyst (details will be described later) is applied to the surface of the glass substrate 14 and then the solvent is evaporated, hydroxyl groups and alkoxyl groups generated by hydrolysis of the alkoxyl groups by moisture in the air. A condensation reaction takes place between the glass substrate 14 and a transparent dry gel film of metal oxide is formed on the surface of the glass substrate 14. Since there are more free hydroxyl groups than the glass substrate 14 on the surface and inside of the unsintered dry gel film, it can be fused to the fine particles 16 at a lower temperature than the glass substrate 14.

透明被膜の一例であるシリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液をガラス基材14の表面に塗布し、溶媒を蒸発させることにより行うことができる。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については後述する。
The formation of a dry gel film of silica, which is an example of a transparent film, is obtained by mixing a sol solution obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent with the glass substrate 14. It can be performed by applying to the surface and evaporating the solvent.
Condensation catalysts, cocatalysts, solvent types, tetraalkoxysilane concentrations, and catalyst addition amounts that can be used will be described later.

ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、インクジェット法、スクリーン印刷法等の任意の方法により行うことができる。また、乾燥ゲル膜の膜厚は、耐摩耗性超撥水撥油防汚性ガラス10の製造に用いる中核となる微粒子16の直径にもよるが、5〜50nmが好ましい。このようにして得られる、シリカの乾燥ゲル膜を表面に有するガラス基材14を用いて耐摩耗性超撥水撥油防汚性ガラス10の製造を行うと、工程Aにおける加熱処理を300度以下の低温で行うことが可能となる。そのため、予め風冷強化されたガラス基材14を用いた場合にも、高温で加熱することにより強化度を劣化させることなく中核となる微粒子を融着させたガラス基材14bを製造できる。 The sol solution can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, an ink jet method, or a screen printing method. Moreover, although the film thickness of a dry gel film is based also on the diameter of the fine particle 16 used as the core used for manufacture of abrasion-resistant super water-repellent oil-repellent antifouling glass 10, 5-50 nm is preferable. When the glass substrate 14 having a silica dry gel film thus obtained is used to produce the wear-resistant super water / oil / oil repellent glass 10, the heat treatment in the step A is performed at 300 ° C. It becomes possible to carry out at the following low temperature. Therefore, even when a glass substrate 14 that has been tempered in advance with air cooling is used, it is possible to produce a glass substrate 14b in which fine particles as cores are fused without degrading the degree of strengthening by heating at a high temperature.

工程C
次いで、ガラス基材14の表面に付着、結合固定または融着された中核となる微粒子16(または16a)の表面に、中核となる微粒子16の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の突起13を形成する。突起13の形成には、生産性や大面積化の容易さ等の観点から、大気圧プラズマ法を用いた酸化亜鉛の化学気相成長(CVD)法が好ましく用いられる。プラズマCVD法を用いた酸化亜鉛からなる突起13の形成には、線状のプラズマトーチを用い、亜鉛源として亜鉛錯体または有機亜鉛化合物を、キャリアガスとしてヘリウム、アルゴン等を用いることができる。亜鉛錯体または金属亜鉛化合物の具体例としては、ジエチル亜鉛(Zn(C2H5)2)、ジアセチルアセトナート亜鉛(Zn(acac)2)、ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナート)亜鉛(Zn(MOPD)2)等が挙げられる。
Process C
Next, a plurality of conical shapes having a bottom diameter smaller than the diameter of the core fine particles 16 on the surface of the core fine particles 16 (or 16a) attached, fixed, or fused to the surface of the glass substrate 14 or A bamboo shoot-like projection 13 is formed. For the formation of the protrusions 13, a chemical vapor deposition (CVD) method of zinc oxide using an atmospheric pressure plasma method is preferably used from the viewpoint of productivity, ease of enlargement, and the like. For forming the projections 13 made of zinc oxide using the plasma CVD method, a linear plasma torch can be used, a zinc complex or an organic zinc compound can be used as a zinc source, and helium, argon, or the like can be used as a carrier gas. Specific examples of the zinc complex or metal zinc compound include diethyl zinc (Zn (C 2 H 5 ) 2 ), diacetylacetonate zinc (Zn (acac) 2 ), bis (2-methoxy-6-methyl-3,5). -Heptane dionate) zinc (Zn (MOPD) 2 ) and the like.

このようにして形成される突起13は、円錐状またはタケノコ状の形状を有しており、底面の直径は、例えば、融着した中核となる微粒子16aの直径の1/100以上1/5以下であり、1nm〜50μm、好ましくは5nm〜80nm、より好ましくは10〜20nmである。突起13の底面の直径に対する突起13の高さの割合で定義される突起13のアスペクト比は、例えば1以上5以下である。アスペクト比が大きくなりすぎると第2の突起23が折損しやすくなり、アスペクト比が小さくなりすぎると、製造される耐摩耗性超撥水撥油防汚性ガラス10の表面形状のフラクタル性が低下し、十分な撥水撥油防汚性能が発揮されにくくなる。 The protrusion 13 formed in this way has a conical or bamboo shoot shape, and the diameter of the bottom surface is, for example, 1/100 or more and 1/5 or less of the diameter of the fused fine particles 16a. 1 nm to 50 μm, preferably 5 nm to 80 nm, more preferably 10 to 20 nm. The aspect ratio of the protrusion 13 defined by the ratio of the height of the protrusion 13 to the diameter of the bottom surface of the protrusion 13 is, for example, 1 or more and 5 or less. If the aspect ratio is too large, the second protrusions 23 are easily broken, and if the aspect ratio is too small, the fractal property of the surface shape of the wear-resistant super water / oil repellent / antifouling glass 10 is reduced. However, sufficient water / oil repellent and antifouling performance is hardly exhibited.

特に、ガラス窓、太陽エネルギー利用装置、光学機器、タッチパネル等の表示装置等に用いるために透明度が必要とされる耐摩耗性超撥水撥油防汚性ガラス10の製造のためには、入射光の散乱や乱反射による透明度の低下を抑制するために、突起13の高さは、10〜30nmであることが好ましい。 In particular, for the production of the abrasion-resistant super water- and oil-repellent antifouling glass 10 that requires transparency for use in display devices such as glass windows, solar energy utilization devices, optical devices, touch panels, etc. In order to suppress a decrease in transparency due to light scattering or irregular reflection, the height of the protrusion 13 is preferably 10 to 30 nm.

なお、図3に示すように、ガラス基材14の表面にもタケノコ状の突起13を形成してもよい。また、ここで、工程Bの前に工程Cを行っても、同様の表面形状が形成できる。 Note that, as shown in FIG. 3, bamboo shoot-like protrusions 13 may be formed on the surface of the glass substrate 14. Here, even if the process C is performed before the process B, a similar surface shape can be formed.

工程D
金平糖状の突起(11)が形成されたガラス基材14aの表面の図示しない表面官能基と表面反応基との反応により形成された結合を介して、その表面に結合固定された撥水撥油防汚性薄膜15aを形成し、耐摩耗性超撥水撥油防汚性ガラス10を製造するのに用いる反応液は、フッ化炭素基を含むアルコキシシラン化合物(表面反応基とフッ化炭素基とを有する膜化合物15の一例)と、金平糖状の突起(11)が形成されたガラス基材14aの表面のヒドロキシル基(表面官能基の一例)とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。
Process D
A water- and oil-repellent and oil-repellent material that is bonded and fixed to the surface of the glass substrate 14a on which the gold-peel-like protrusions (11) are formed through a bond formed by a reaction between a surface functional group (not shown) and a surface reactive group. The reaction liquid used for forming the antifouling thin film 15a and producing the abrasion-resistant super water / oil repellent antifouling glass 10 is an alkoxysilane compound containing a fluorocarbon group (surface reactive group and fluorocarbon group). In order to promote the condensation reaction between the hydroxyl group (an example of the surface functional group) and the alkoxysilyl group on the surface of the glass base material 14a on which the gold-peeled projection (11) is formed. It is prepared by mixing a condensation catalyst of the above and a non-aqueous organic solvent.

フッ化炭素基を含むアルコキシシラン化合物としては、下記の一般式(I)で表されるアルコキシシラン化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group include alkoxysilane compounds represented by the following general formula (I).

(I)CF(CF−Y−Z−(CH−Si(OR) (I) CF 3 (CF 2 ) n -Y-Z- (CH 2) m -Si (OR) 3

上式において、mは0〜20の整数を、nは0〜9の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。
また、Yは、(CH(kは1〜3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH、および単結合のいずれかを表す。
In the above formula, m represents an integer of 0 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and a single bond. Represents one of the bonds.

式(I)で表されるフッ化炭素基を含むアルコキシシラン化合物としては、下記(1)〜(12)に示す化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group represented by the formula (I) include compounds shown in the following (1) to (12).

(1)CFCHO(CH15Si(OCH
(2)CF(CHSi(CH(CH15Si(OCH
(3)CF(CF(CHSi(CH(CHSi(OCH
(4)CF(CF(CHSi(CH(CHSi(OCH
(5)CFCOO(CH15Si(OCH
(6)CF(CF(CHSi(OCH
(7)CFCHO(CH15Si(OC
(8)CF(CHSi(CH(CH15Si(OC
(9)CF(CF(CHSi(CH(CHSi(OC
(10)CF(CF(CHSi(CH(CHSi(OC
(11)CFCOO(CH15Si(OC
(12)CF(CF(CHSi(OC
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

金平糖状の突起(11)が形成されたガラス基材14aの表面に反応液を塗布し、室温の空気中で反応させると、アルコキシシリル基と金平糖状の突起(11)が形成されたガラス基材14aの表面のヒドロキシル基とが縮合反応を起こし、下記の化1で示されるような構造を有するフッ化炭素基を含む撥水撥油防汚性薄膜15aを生成する。なお、酸素原子から延びた3本の単結合は金平糖状の突起(11)が形成されたガラス基材14aの表面または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本はガラス基材1の表面のケイ素原子と結合している。 When the reaction solution is applied to the surface of the glass substrate 14a on which the confetti protrusions (11) are formed and reacted in air at room temperature, the glass substrate on which the alkoxysilyl groups and the confetti protrusions (11) are formed. The hydroxyl group on the surface of the material 14a undergoes a condensation reaction to produce a water / oil repellent / antifouling thin film 15a containing a fluorocarbon group having a structure as shown in Chemical Formula 1 below. The three single bonds extending from the oxygen atoms are bonded to the surface of the glass substrate 14a on which the confetti-like protrusions (11) are formed or to the silicon (Si) atoms of the adjacent silane compound, and at least one of them is bonded. The book is bonded to silicon atoms on the surface of the glass substrate 1.

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、金平糖状の突起(11)が形成されたガラス基材14aの表面に付着した油脂分や水分により阻害されるので、金平糖状の突起(11)が形成されたガラス基材14aをよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is inhibited by oils and fats or moisture adhering to the surface of the glass base material 14a on which the confetti-like projections (11) are formed, so that the glass base material on which the confetti-like projections (11) are formed. It is preferable to remove these impurities in advance by thoroughly washing and drying 14a.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして処理を行うと、反応時間を1時間程度にまで短縮できる。 For example, when H3 from Japan Epoxy Resin Co., which is a ketimine compound, is used as the condensation catalyst instead of dibutyltin oxide and the other conditions are the same, the reaction time can be reduced to about 1 hour.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用い、その他の条件は同一にして反応性ガラス基材4の製造を行うと、反応時間を20分程度に短縮できる。 Furthermore, when the reactive glass substrate 4 is produced by using a mixture of H3 and dibutyltin bisacetylacetonate (mixing ratio is 1: 1) of Japan Epoxy Resin Co., Ltd. as the condensation catalyst, and other conditions are the same. The reaction time can be shortened to about 20 minutes.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸も特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 The organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and malonic acid.

反応液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the reaction solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

反応液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 The preferable density | concentration of the alkoxysilane compound in a reaction liquid is 0.5-3 mass%.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、撥水撥油防汚性薄膜15aで表面が覆われた耐摩耗性超撥水撥油防汚性ガラス10が得られる。 After the reaction, the surface is washed with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted substances, and then the surface is covered with a water and oil repellent and antifouling thin film 15a. Oil-stain-resistant glass 10 is obtained.

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、余分な反応液を溶媒で洗浄除去せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、耐摩耗性超撥水撥油防汚性ガラス10の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、耐摩耗性超撥水撥油防汚性ガラス10の表面に共有結合により固定されていないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも耐摩耗性超撥水撥油防汚性ガラス10として使用できる。 After the reaction, if the excess reaction solution is left in the air without being washed away with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol group becomes an alkoxysilyl group. Causes a condensation reaction. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the wear-resistant super water / oil / oil repellent glass 10. This polymer film is not fixed to the surface of the wear-resistant super water / oil / oil repellent antifouling glass 10 by covalent bonds, but has water and oil / oil repellent / antifouling properties because it has a fluorocarbon group. ing. Therefore, it can be used as the wear-resistant super water / oil repellent / antifouling glass 10 even in this state, except that the durability is somewhat inferior.

本実施の形態においては、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に反応液の調製および金平糖状の突起(11)が形成されたガラス基材14aとの反応を行うことができる。 Although the case where an alkoxysilane compound is used has been described in this embodiment mode, a halosilane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. %) Or less), the reaction with the glass substrate 14a on which the preparation of the reaction solution and the confetti-like protrusions (11) are formed can be carried out similarly to the alkoxysilane compound.

単分子膜状の撥水撥油防汚性薄膜15aの膜厚は高々1nm程度であるため、金平糖状の突起(11)が形成されたガラス基材14aの表面に形成された5〜50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、耐摩耗性超撥水撥油防汚性ガラス10の見かけ上の表面エネルギーを小さくでき、水滴接触角は、140°以上(本実施の形態では150°程度)となり、超撥水が実現できる。 Since the film thickness of the monomolecular water- and oil-repellent antifouling thin film 15a is at most about 1 nm, it is about 5 to 50 nm formed on the surface of the glass substrate 14a on which the confetti-like projections (11) are formed. The unevenness of is almost unaffected. In addition, this uneven effect (the so-called “lotus leaf effect”) can reduce the apparent surface energy of the wear-resistant super water- and oil-repellent and antifouling glass 10, and the water droplet contact angle is 140 ° or more (present) In the embodiment, it is about 150 °), and super water repellency can be realized.

また、工程Dにおいて用いることができるフッ化炭素基を含むハロシラン化合物としては、下記(21)〜(26)に示す化合物が挙げられる。また、下記(27)〜(32)に示すイソシアネートシラン化合物を用いることもできる。 Moreover, as a halosilane compound containing the fluorocarbon group which can be used in the process D, the compound shown to following (21)-(26) is mentioned. Moreover, the isocyanate silane compound shown to following (27)-(32) can also be used.

(21)CFCHO(CH15SiCl
(22)CF(CHSi(CH(CH15SiCl
(23)CF(CF(CHSi(CH(CHSiCl
(24)CF(CF(CHSi(CH(CHSiCl
(25)CFCOO(CH15SiCl
(26)CF(CF(CHSiCl
(27)CFCHO(CH15Si(NCO)
(28)CF(CHSi(CH(CH15Si(NCO)
(29)CF(CF(CHSi(CH(CHSi(NCO)
(30)CF(CF(CHSi(CH(CHSi(NCO)
(31)CFCOO(CH15Si(NCO)
(32)CF(CF(CHSi(NCO)
(21) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(25) CF 3 COO (CH 2 ) 15 SiCl 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(27) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(28) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(29) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(30) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(31) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(32) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3

耐摩耗性超撥水撥油防汚性ガラス10は、150度程度の水滴接触角を有している。種々の体積の水滴(0.02〜0.08mL)を用いた検討結果より、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となることを確認している。そのため、耐摩耗性超撥水撥油防汚性ガラス10を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落する。 The abrasion resistant super water / oil repellent / antifouling glass 10 has a water droplet contact angle of about 150 degrees. From the study results using various volumes of water droplets (0.02 to 0.08 mL), it was confirmed that when the water droplet contact angle is 150 degrees or more, the falling angle is 15 degrees or less regardless of the volume of the water droplet. Yes. Therefore, when the wear-resistant super water / oil / oil repellent glass 10 is used as a window glass plate for a vehicle or a building, most of the water droplets cannot fall on the surface and fall down.

耐摩耗性超撥水撥油防汚性ガラス10は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求される乗り物や建築物のガラス窓に用いることができる。耐摩耗性超撥水撥油防汚性ガラス10を用いることのできる乗り物としては、自動車、鉄道車両、船舶等が挙げられ、運転席、客室等の別を問わずあらゆる窓の窓用ガラス板として用いることができる。特に、運転席用のガラス窓に用いた場合には、運転席からの視認性を向上できる効果も有している。また、耐摩耗性超撥水撥油防汚性ガラス10を用いることのできる建築物としては、一戸建て住宅、集合住宅、オフィスビル等の任意の建築物が挙げられる。 The wear-resistant super water- and oil-repellent antifouling glass 10 is excellent in durability, such as abrasion resistance and weather resistance, water-dropping property (water slidability), and antifouling properties, and has a water and oil repellent and antifouling function. Can be used for glass windows for vehicles and buildings that require high speed. Vehicles that can use the abrasion-resistant super water / oil repellent antifouling glass 10 include automobiles, railway vehicles, ships, etc., and glass plates for windows of any windows, regardless of driver seats, cabins, etc. Can be used as In particular, when used for a glass window for a driver's seat, it also has an effect of improving visibility from the driver's seat. Moreover, as a building which can use abrasion-resistant super water-repellent oil-repellent antifouling glass 10, arbitrary buildings, such as a detached house, an apartment house, and an office building, are mentioned.

また、耐摩耗性超撥水撥油防汚性ガラス10を太陽エネルギー利用装置に道いると、汚れの付着、入射光の散乱および乱反射等による太陽光エネルギーの利用効率の低下を抑制できると共に、耐久性および耐候性に優れ、屋外の過酷な環境下でも長期間にわたって使用可能な太陽エネルギー利用装置が提供される。太陽エネルギー利用装置の具体例としては、太陽熱温水器、太陽電池、温室等が挙げられる。 Further, when the wear-resistant super water / oil repellent antifouling glass 10 is passed to the solar energy utilization device, it is possible to suppress a decrease in the utilization efficiency of solar energy due to adhesion of dirt, scattering of incident light, irregular reflection, etc. Provided is a solar energy utilization device that is excellent in durability and weather resistance and can be used for a long period of time even under harsh outdoor environments. Specific examples of the solar energy utilization device include a solar water heater, a solar battery, and a greenhouse.

また、耐摩耗性超撥水撥油防汚性ガラス10は、撥水撥油防汚機能が要求される光学機器用の部材にも適用できる。光学機器用の部材としては、カメラ、分光計等のレンズ、プリズム、ミラー、PDP等の表示装置のフェイスプレート等が挙げられ、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水撥油防汚性反射防止膜を形成でき、光学性能に優れた光学装置や、表面反射の少ないPDPディスプレイ等を提供できる。 Further, the wear-resistant super water / oil repellent / antifouling glass 10 can also be applied to members for optical devices that require water / oil repellent / antifouling functions. Examples of members for optical equipment include lenses for cameras, spectrometers, etc., prisms, mirrors, faceplates of display devices such as PDPs, etc., durability such as wear resistance and weather resistance, water droplet separation (water sliding properties) It is also possible to form a water / oil repellent antifouling antireflection film excellent in antifouling property, and to provide an optical device excellent in optical performance, a PDP display with less surface reflection, and the like.

次に、本発明の作用効果を確認するために行った実施例について説明する。これらの実施例は単なる例示であり、本発明の範囲を限定するものではない。
実施例1:耐摩耗性超撥水撥油防汚性ガラスの製造(1)
[1]ガラス基材表面への中核となるシリカ微粒子の融着
テトラメトキシシランのメタノール溶液に微量の水およびリン酸を加えて作製したゾル−ゲル溶液(シリカ濃度2%)を、ガラス基材の表面に塗布後乾燥し、数ナノメートル程度の膜厚を有するシリカ被膜を形成した。平均直径が約130nmのシリカ微粒子をエタノールに分散後、シリカ被膜の全面に塗布後、エタノールを蒸発させ、更に600℃で30分焼結した、その後、表面に融着しなかったシリカ微粒子を洗浄除去した。
Next, examples carried out for confirming the effects of the present invention will be described. These examples are illustrative only and are not intended to limit the scope of the invention.
Example 1 Production of Abrasion Resistant Super Water / Oil Repellent Antifouling Glass (1)
[1] Fusion of silica fine particles as a core to the glass substrate surface A sol-gel solution (silica concentration 2%) prepared by adding a trace amount of water and phosphoric acid to a methanol solution of tetramethoxysilane is used as a glass substrate. The silica film having a film thickness of about several nanometers was formed by drying after coating on the surface. Silica fine particles having an average diameter of about 130 nm are dispersed in ethanol, applied to the entire surface of the silica coating, ethanol is evaporated, and further sintered at 600 ° C. for 30 minutes, and then the silica fine particles not fused to the surface are washed. Removed.

このとき、上記のゾル−ゲル溶液にリン酸またはホウ酸を固形分にして5%程度添加しておくと、シリカ被膜の融点を500℃程度まで低減できるので、550〜600℃で30分程度の焼結温度でシリカ微粒子を十分融着できた。また、この加熱条件では、融着複合微粒子に由来する凸凹を損なうことはなかった。 At this time, if phosphoric acid or boric acid is added to the above sol-gel solution in a solid content of about 5%, the melting point of the silica coating can be reduced to about 500 ° C., so it is about 550-600 ° C. for about 30 minutes. The silica fine particles could be sufficiently fused at the sintering temperature. Further, the unevenness derived from the fused composite fine particles was not impaired under these heating conditions.

ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナート)亜鉛((Zn(MOPD)2(C18H30O6Zn)、宇部興産製)を亜鉛源とし、ヘリウムをプラズマガスとする大気圧プラズマ法(により、シリカ微粒子を融着したガラス基材の表面に酸化亜鉛からなるタケノコ状の突起を形成した(図4参照)。なお、ここで、大気圧プラズマ法の条件は下記のとおりであった。
気化器温度 100℃
基板温度 210℃
プラズマHeガス流量 1400ccm
キャリアHeガス流量 250ccm
全Heガス流量 1650ccm
酸素流量 50ccm
ギャップ(カソード電極と基板との隙間) 0.5mm
電源 高周波パルス電源
印加電圧 1kV
周波数 20kHz
ステージ移動速度 1mm/s(20mm間の往復運動)
成膜時間 180min
Bis (2-methoxy-6-methyl-3,5-heptanedionate) zinc ((Zn (MOPD) 2 (C 18 H 30 O 6 Zn), manufactured by Ube Industries)) is used as a zinc source, and helium is used as a plasma gas. The bamboo shoot-like protrusions made of zinc oxide were formed on the surface of the glass substrate on which silica fine particles were fused (see FIG. 4). Here, the conditions of the atmospheric pressure plasma method are as follows: It was as follows.
Vaporizer temperature 100 ° C
Substrate temperature 210 ° C
Plasma He gas flow rate 1400ccm
Carrier He gas flow rate 250ccm
Total He gas flow 1650ccm
Oxygen flow rate 50ccm
Gap (gap between cathode electrode and substrate) 0.5mm
Power supply High frequency pulse power supply Applied voltage 1kV
Frequency 20kHz
Stage moving speed 1mm / s (reciprocating motion between 20mm)
Deposition time 180min

99重量部のヘプタデカフルオロデシルトリメトキシシランCF(CF(CHSi(OCH、1重量部のジブチルスズジアセチルアセトナート(縮合触媒)をそれぞれ秤量後、ヘキサメチルジシロキサンに溶解し、濃度1重量%程度の反応液を作製した。融着複合微粒子が融着したガラス基材の表面に反応液を塗布し、室温で反応させた。このとき、融着複合微粒子ならびにシリカ被膜の表面にはヒドロキシル基が多数含まれているので、ヘプタデカフルオロデシルトリメトキシシラン−Si(OCH)基とヒドロキシル基が、縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記化学式(化8)に示したような結合を形成し、フッ化炭素基を含む撥水撥油防汚性薄膜が表面と化学結合した状態で約1ナノメートル程度の膜厚で形成された。 After weighing 99 parts by weight of heptadecafluorodecyltrimethoxysilane CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , 1 part by weight of dibutyltin diacetylacetonate (condensation catalyst), A reaction solution having a concentration of about 1% by weight was dissolved in siloxane. The reaction solution was applied to the surface of the glass substrate on which the fused composite fine particles were fused, and reacted at room temperature. At this time, since the surface of the fused composite fine particles and the silica coating contains a large number of hydroxyl groups, the heptadecafluorodecyltrimethoxysilane-Si (OCH 3 ) group and the hydroxyl group are removed in the presence of the condensation catalyst. Alcohol (in this case, de-CH 3 OH) was reacted to form a bond as shown in the following chemical formula (Chemical Formula 8), and the water- and oil-repellent and antifouling thin film containing a fluorocarbon group was chemically bonded to the surface. The film was formed in a thickness of about 1 nanometer.

その後、ジクロロメタンで余分な反応液を洗浄除去すると、表面全面に亘り表面と化学結合したフッ化炭素基を含む撥水撥油防汚性薄膜(単分子膜)で被われた、撥水撥油防汚性および反射防止機能を有する太陽熱温水器用の耐摩耗性超撥水撥油防汚性ガラスを製造できた。このようにして得られた耐摩耗性超撥水撥油防汚性ガラスの表面の走査型電子顕微鏡(SEM)写真を図4に示す。融着複合微粒子がそれぞれガラス基材および第1のシリカ微粒子の表面に融着したことにより、表面に複雑な凹凸が形成されており、後述するように、平坦なガラス基材の表面に撥水撥油防汚性薄膜を形成した場合の水滴接触角110度程度に比べて、撥水性、撥油性および防汚性に優れた水滴接触角160±4度を実現出来ることが確認された。しかも、製造に使用した融着複合微粒子の大きさがいずれも可視光の波長よりも短かったため、透明度はほとんど劣化しなかった。 After that, the excess reaction solution is washed and removed with dichloromethane, and then the water and oil repellent, covered with a water and oil repellent and antifouling thin film (monomolecular film) containing fluorocarbon groups chemically bonded to the surface over the entire surface. A wear-resistant super water- and oil-repellent antifouling glass for solar water heaters having antifouling and antireflection functions could be produced. FIG. 4 shows a scanning electron microscope (SEM) photograph of the surface of the abrasion-resistant super water / oil / oil repellent glass thus obtained. The fused composite fine particles are fused to the surfaces of the glass substrate and the first silica fine particles, respectively, thereby forming complex irregularities on the surface. As will be described later, the surface of the flat glass substrate is water repellent. It was confirmed that a water droplet contact angle of 160 ± 4 degrees excellent in water repellency, oil repellency and antifouling property can be realized as compared with a water droplet contact angle of about 110 degrees when the oil-repellent antifouling thin film is formed. Moreover, since the size of the fused composite fine particles used for the production was all shorter than the wavelength of visible light, the transparency was hardly deteriorated.

なお、シリカ微粒子の融着の際の焼成温度は、250℃以上かつ基材の軟化温度未満であれば高いほど微粒子を強固にガラス表面に融着できるが、あまり高すぎるとシリカ被膜中またはガラス基材の内部までシリカ微粒子が埋没してしまった。したがって、加熱温度は、基材の軟化度程度またはそれ以下でなくてはならない。 The higher the firing temperature at the time of fusing silica fine particles is 250 ° C. or higher and lower than the softening temperature of the substrate, the stronger the fine particles can be fused to the glass surface. Silica fine particles have been buried inside the substrate. Therefore, the heating temperature must be about the softening degree of the substrate or less.

一方、このとき、形成された微粒子表面の撥水撥油防汚性薄膜は、シリカ微粒子の表面エネルギーを小さくする作用があり、フラクタル構造を有する凸凹と併せて、基材表面の見かけ上の表面エネルギーを大きく低減できる作用がある。実際に水滴接触角を測定したところ、多少のバラツキは観測されたものの、接触角は160°程度であり、臨界表面エネルギーも1〜3mN/m程度であった。 On the other hand, at this time, the formed water- and oil-repellent and antifouling thin film on the surface of the fine particles has the effect of reducing the surface energy of the silica fine particles, and the apparent surface of the substrate surface along with the unevenness having a fractal structure. It has the effect of greatly reducing energy. When the water drop contact angle was actually measured, although some variation was observed, the contact angle was about 160 ° and the critical surface energy was about 1 to 3 mN / m.

このようにして得られた耐摩耗性超撥水撥油防汚性ガラスを太陽熱温水器に装着し実用化試験を行うと、空気中の粉塵や黄砂による汚れもほとんど付着せず、雨が降れば、セルフクリーニングされ、さらに、微細な表面凸凹によりガラスの表面反射を低減出来て、普通のガラスを装着した場合に比べて初期値で平均3%程度集熱効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽熱温水器では、1年後でも汚れによる効率低下は5%以下であった。 When the wear-resistant super water-repellent oil-repellent antifouling glass obtained in this way is installed in a solar water heater and tested for practical use, dirt from air dust and yellow sand hardly adheres and it rains. For example, self-cleaning and surface reflection of the glass can be reduced by fine surface irregularities, and the heat collection efficiency can be improved by about 3% on average as compared with the case where normal glass is mounted. In addition, in the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar water heater, the efficiency reduction due to the dirt is 5% or less even after one year. .

実施例2:耐摩耗性超撥水撥油防汚性ガラスの製造(2)
直径の異なる2種類のシリカ微粒子(平均直径50nmのシリカ微粒子と平均直径10nmのシリカ微粒子を1:10程度に混合して用いた。)を用いる以外は実施例1と同様に、太陽電池セル用のガラス板の表面に金平糖状の突起を形成した。これを太陽電池セルを形成した後にフッ化炭素基を含む撥水撥油防汚性薄膜を形成すると、太陽電池の表面近傍断面がフラクタル構造で、撥水撥油効果が高く(水滴接触角で158度)、かつ高い光透過性(500nm近傍の光の透過率が約98%であった。)を有する反射防止機能を有する膜で覆われた太陽電池を製造できた。さらにまた、このセルで実用化試験を行った結果では、半年経過後でも空気中の粉塵や黄砂による汚れもほとんど付着せず、雨が降れば、セルフクリーニングされ、さらに、微細な表面凸凹によりガラスの表面反射を低減出来て、普通のガラスを装着した場合に比べて平均6%程度光利用効率を向上できた。また、普通のガラスの場合、1年も使用すると表面が汚れ、光利用効率が30%程度も低下したが、この太陽電池では、1年後でも汚れによる効率低下はほとんどみられなかった。なお、このときの水滴接触角は158°程度であったが、水滴接触角が140°以上であれば、実用上ほぼ同様の効果が得られた。
Example 2 Production of Abrasion Resistant Super Water / Oil Repellent Antifouling Glass (2)
Similar to Example 1 except that two types of silica fine particles having different diameters (silica fine particles having an average diameter of 50 nm and silica fine particles having an average diameter of 10 nm were used in a mixture of about 1:10) were used. On the surface of the glass plate, confetti-like protrusions were formed. When a water-repellent / oil-repellent / anti-fouling thin film containing a fluorocarbon group is formed after forming this solar cell, the cross section near the surface of the solar cell has a fractal structure and a high water / oil repellent effect (with a water droplet contact angle). 158 °) and a solar cell covered with a film having an antireflection function having high light transmittance (the transmittance of light near 500 nm was about 98%). Furthermore, as a result of conducting a practical use test with this cell, even after half a year, dirt in the air and dirt due to yellow sand hardly adhere, and if it rains, it is self-cleaned, and furthermore, the glass is formed by fine surface irregularities. The surface reflection can be reduced, and the light utilization efficiency can be improved by about 6% on average as compared with the case of mounting ordinary glass. Further, in the case of ordinary glass, the surface becomes dirty and the light utilization efficiency is reduced by about 30% when used for one year. However, in this solar cell, the efficiency is hardly reduced even after one year. Although the water droplet contact angle at this time was about 158 °, practically similar effects were obtained when the water droplet contact angle was 140 ° or more.

実施例3:耐摩耗性超撥水撥油防汚性ガラスの製造(3)
実施例1と同様の方法を用いて撥水撥油防汚性反射防止膜を形成したレンズを製作し、光学機器に装着しテスト使用してみたが、雨滴は全く付着せず、また指紋の付着はほとんど無く、しかも光透過率は反射防止マルチコート膜と同等であり、光学特性に遜色がなく、防汚性に優れたレンズを製作できた。
Example 3 Production of Abrasion Resistant Super Water / Oil Repellent Antifouling Glass (3)
Using the same method as in Example 1, a lens having a water / oil repellent antifouling antireflective coating was fabricated and mounted on an optical device for testing purposes. There was almost no adhesion, and the light transmittance was the same as that of the anti-reflection multi-coated film, and the lens was excellent in antifouling property without being inferior in optical characteristics.

実施例4:耐摩耗性超撥水撥油防汚性ガラスの製造(4)
実施例1と同様の方法を用いて表面に撥水撥油防汚性反射防止膜を形成したPDP(プラズマディスプレイパネル)のフェイスプレートを製作し、テスト使用してみたが、指紋の付着がほとんど無く、さらに室内の蛍光灯等がフェイスプレート表面へ写り込むのを効率よく低減でき、視認性を大幅に向上できた。透過率は、可視光の全波長領域にわたって92%以上であった。
Example 4 Production of Abrasion Resistant Super Water / Oil Repellent Antifouling Glass (4)
A PDP (Plasma Display Panel) face plate with a water / oil / oil repellent / anti-fouling anti-reflective coating formed on the surface using the same method as in Example 1 was tested and used. In addition, it was possible to efficiently reduce the reflection of indoor fluorescent lamps and the like onto the face plate surface, and the visibility was greatly improved. The transmittance was 92% or more over the entire wavelength region of visible light.

本発明は、撥水性、撥油性および防汚性に加え、耐久性や耐候性が要求される建物や乗り物のガラス窓、太陽熱温水器、太陽電池および温室等の太陽エネルギー利用装置の集光部材、および光学機器および表示装置の光透過性部材等に好適に適用できる。 The present invention relates to a condensing member for solar energy utilization devices such as glass windows of buildings and vehicles, solar water heaters, solar cells and greenhouses that require durability and weather resistance in addition to water repellency, oil repellency and antifouling properties. And can be suitably applied to light transmissive members and the like of optical devices and display devices.

10 耐摩耗性超撥水撥油防汚性ガラス
11 金平糖状の突起
12 半球状の突起
13 タケノコ状の突起
14 ガラス基材
14a 金平糖状の突起が形成されたガラス基材
14b 中核となる微粒子を融着させたガラス基材
15 表面反応基とフッ化炭素基とを有する化合物
15a 撥水撥油防汚性薄膜
16 中核となる微粒子
16a ガラス基材に融着した中核となる微粒子
DESCRIPTION OF SYMBOLS 10 Abrasion resistant super water-repellent oil-repellent antifouling glass 11 Gold flat sugar-like protrusion 12 Semi-spherical protrusion 13 Bamboo-like protrusion 14 Glass base material 14a Glass base material 14b with gold flat sugar-like protrusion Fused glass substrate 15 Compound having surface reactive group and fluorocarbon group 15a Water- and oil-repellent antifouling thin film 16 Fine particle 16a serving as the core Fine particle serving as the core fused to the glass substrate

Claims (24)

複数の金平糖状の突起を有するガラス基材と、
前記突起を有するガラス基材の表面の少なくとも一部に結合した撥水撥油防汚性薄膜とを有し、
前記金平糖状の突起が、中核となる微粒子よりなる略半球状の第1の突起と、前記第1の突起の表面に形成され、前記第1の突起の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起で構成されていることを特徴とする耐摩耗性超撥水撥油防汚性ガラス。
A glass substrate having a plurality of confetti-like protrusions;
A water- and oil-repellent and antifouling thin film bonded to at least part of the surface of the glass substrate having the protrusions,
The confetti-shaped projections are formed on a substantially hemispherical first projection comprising fine particles as a core and on the surface of the first projection, and a plurality of bottom diameters smaller than the diameter of the first projection. A wear-resistant super-water- and oil-repellent and antifouling glass comprising a conical or bamboo shoot-like second protrusion.
前記第1の突起が、球状または略球状の中核となる微粒子を前記ガラス基材の表面に融着させ、あるいはバインダを介して結合させることにより形成されていることを特徴とする請求項1記載の耐摩耗性超撥水撥油防汚性ガラス。 2. The first protrusion is formed by fusing a fine particle, which is a spherical or substantially spherical core, to the surface of the glass base material or by bonding it through a binder. Wear resistant super water and oil repellent antifouling glass. 前記ガラス基材、前記金平糖状の突起および前記バインダがいずれも透明であり、
前記中核となる微粒子の直径が30〜100nmであり、
前記第2の突起の高さが10〜30nmであることを特徴とする請求項2記載の耐摩耗性超撥水撥油防汚性ガラス。
The glass substrate, the confetti protrusions and the binder are all transparent,
The diameter of the core fine particles is 30 to 100 nm,
The wear-resistant super water- and oil-repellent and antifouling glass according to claim 2, wherein the height of the second protrusion is 10 to 30 nm.
前記第2の突起の高さが、前記第1の突起の高さの1/10以上1/2以下であることを特徴とする請求項1から3記載の耐摩耗性超撥水撥油防汚性ガラス。 4. The wear-resistant super water / oil / oil repellent according to claim 1, wherein a height of the second protrusion is 1/10 or more and 1/2 or less of a height of the first protrusion. Dirty glass. 前記第2の突起が、酸化亜鉛からなることを特徴とする請求項1から4のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラス。 The wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 1 to 4, wherein the second protrusion is made of zinc oxide. 前記中核となる微粒子が、ガラス、シリカ、アルミナおよびジルコニアからなる群より選択される材質からなるものであることを特徴とする請求項1から5のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラス。 The wear-resistant super water-repellent material according to any one of claims 1 to 5, wherein the core fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia. Oil repellent antifouling glass. 前記撥水撥油防汚性薄膜が単分子膜であることを特徴とする請求項1から6のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラス。 The wear-resistant super water / oil / oil repellent and antifouling glass according to any one of claims 1 to 6, wherein the water / oil / oil repellent / antifouling thin film is a monomolecular film. 表面の臨界表面エネルギーが1mN/m以上3mN/m以下であることを特徴とする請求項1から7のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラス。 The wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 1 to 7, wherein the surface has a critical surface energy of 1 mN / m or more and 3 mN / m or less. 溶媒に分散させた球状または略球状の中核となる中核となる微粒子をガラス基材の表面に散布する工程Aと、
前記中核となる中核となる微粒子が散布された前記ガラス基材を加熱して、前記ガラス基材の表面に前記中核となる中核となる微粒子を結合固定または融着させ、略半球状の第1の突起を形成する工程Bと、
前記第1の突起の表面に、該第1の突起の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の第2の突起を形成する工程Cと、
前記第1および第2の突起とから構成される金平糖状の突起が形成された前記ガラス基材の表面に撥水撥油防汚性薄膜を形成する工程Dとを有することを特徴とする耐摩耗性超撥水撥油防汚性ガラスの製造方法。
A step A of dispersing fine particles, which are the cores of a spherical or substantially spherical core dispersed in a solvent, onto the surface of the glass substrate;
The glass base material on which the core microparticles serving as the core are dispersed is heated to bond and fix or fuse the core microparticles on the surface of the glass base, so that the first hemispherical first A step B of forming a protrusion of
Forming a plurality of conical or bamboo shoot-like second protrusions having a bottom diameter smaller than the diameter of the first protrusion on the surface of the first protrusion; and
And a step D of forming a water- and oil-repellent and antifouling thin film on the surface of the glass substrate on which the confetti-like projections composed of the first and second projections are formed. A method for producing a wearable super water- and oil-repellent antifouling glass.
前記ガラス基材、前記第1および第2の突起がいずれも透明であり、前記金平糖状の突起の高さが30〜300nmであることを特徴とする請求項9記載の透明性の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 The transparent wear resistance according to claim 9, wherein the glass substrate and the first and second protrusions are both transparent, and the height of the scallop-like protrusions is 30 to 300 nm. A method for producing super water and oil repellent antifouling glass. 前記中核となる微粒子の直径が30〜100nmであり、前記第2の突起の高さが10〜30nmであることを特徴とする請求項10記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 11. The wear-resistant super water / oil / oil repellent glass according to claim 10, wherein the core fine particles have a diameter of 30 to 100 nm and the second protrusions have a height of 10 to 30 nm. Manufacturing method. 前記工程Bにおいて、前記分散液を塗布後の前記ガラス基材を、ガラス基板の軟化点以上で中核となる微粒子の融点以下で加熱し、前記ガラス基材の表面に前記中核となる微粒子を融着することを特徴とする請求項9から11のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 In the step B, the glass substrate after application of the dispersion is heated at a temperature equal to or higher than the softening point of the glass substrate and below the melting point of the core fine particles, and the core fine particles are melted on the surface of the glass substrate. The method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 9 to 11, wherein the glass is worn. 前記分散液が、溶媒の蒸発および/またはその後の化学反応によりバインダを生成するバインダ前駆体を含み、前記工程Bにおいて、前記バインダを介して前記ガラス基材の表面に前記中核となる微粒子を結合固定または融着することを特徴とする請求項9から12のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 The dispersion includes a binder precursor that generates a binder by evaporation of a solvent and / or a subsequent chemical reaction, and in the step B, the fine particles serving as the core are bonded to the surface of the glass substrate through the binder. The method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 9 to 12, wherein the glass is fixed or fused. 前記バインダ前駆体が、ゾル−ゲル法により透明な金属酸化物を形成する金属ゾル前駆体であることを特徴とする請求項13記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 14. The method for producing a wear-resistant super water / oil repellent / antifouling glass according to claim 13, wherein the binder precursor is a metal sol precursor that forms a transparent metal oxide by a sol-gel method. . 前記工程Bの後で、結合固定または融着されなかった前記中核となる微粒子を洗浄除去することを特徴とする請求項9から14のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 15. The wear-resistant super-water / oil-repellent / anti-repellent agent according to any one of claims 9 to 14, wherein after the step B, the core fine particles that have not been fixed or fused are washed and removed. A method for producing dirty glass. 前記工程Bにおいて、前記ガラス基材の表面に付着、結合固定または融着された前記中核となる微粒子の表面に、大気圧プラズマ法を用いて酸化亜鉛からなる前記突起を形成することを特徴とする請求項9から15のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 In the step B, the protrusions made of zinc oxide are formed on the surface of the core fine particles adhered, bonded, or fused to the surface of the glass substrate using an atmospheric pressure plasma method. The method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 9 to 15. 前記工程Dにおいて、前記ガラス基材および前記金平糖状の突起の表面官能基と反応して結合を形成する反応基とフッ化炭素基またはジメチルシリル基とを有する化合物を含む反応液を、前記第1および第2の突起が形成された前記ガラス基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成することを特徴とする請求項9から16のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 In the step D, a reaction solution containing a compound having a reactive group that reacts with a surface functional group of the glass substrate and the saccharoid-like protrusion to form a bond, and a fluorocarbon group or a dimethylsilyl group, A film of the compound that is brought into contact with the surface of the glass substrate on which the first and second protrusions are formed, and is bonded and fixed to the surface via a bond formed by a reaction between the surface functional group and the reactive group The method for producing a wear-resistant super water- and oil-repellent and antifouling glass according to any one of claims 9 to 16, wherein 前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、および/または
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含むことを特徴とする請求項17記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。
The reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Or (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds as a condensation catalyst. 18. A process for producing a wear-resistant super water- and oil-repellent antifouling glass according to 17.
前記工程Cの後で、余分な前記反応液を洗浄除去することを特徴とする請求項17または18記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 19. The method for producing a wear-resistant super water / oil repellent / antifouling glass according to claim 17 or 18, wherein the excess reaction solution is washed away after the step C. 前記工程Bの前に前記工程Cを行うことを特徴とする請求項9から19のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスの製造方法。 The method for producing a wear-resistant super water / oil repellent / antifouling glass according to any one of claims 9 to 19, wherein the step C is performed before the step B. 請求項3から8のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスを有するガラス窓。 A glass window comprising the abrasion-resistant super water- and oil-repellent antifouling glass according to any one of claims 3 to 8. 請求項3から8のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスを有する太陽エネルギー利用装置。 The solar energy utilization apparatus which has the abrasion-resistant super water-repellent oil-repellent antifouling glass of any one of Claim 3 to 8. 請求項3から8のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスを有する光学機器。 An optical device comprising the abrasion-resistant super water- and oil-repellent antifouling glass according to any one of claims 3 to 8. 請求項3から8のいずれか1項記載の耐摩耗性超撥水撥油防汚性ガラスを有する表示装置。 A display device comprising the abrasion-resistant super water- and oil-repellent and antifouling glass according to claim 3.
JP2011089651A 2011-04-14 2011-04-14 Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device Expired - Fee Related JP5660500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089651A JP5660500B2 (en) 2011-04-14 2011-04-14 Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089651A JP5660500B2 (en) 2011-04-14 2011-04-14 Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device

Publications (2)

Publication Number Publication Date
JP2012219004A true JP2012219004A (en) 2012-11-12
JP5660500B2 JP5660500B2 (en) 2015-01-28

Family

ID=47270911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089651A Expired - Fee Related JP5660500B2 (en) 2011-04-14 2011-04-14 Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device

Country Status (1)

Country Link
JP (1) JP5660500B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293665B1 (en) 2013-01-03 2013-08-13 이준 Z n O-NANO STRUCTURE GLASS AND SOLAR CELLS MODULE USING THE SAME AND METHOD OF MANUFACTURING THEREOF
JP2014152389A (en) * 2013-02-13 2014-08-25 Nagoya Univ Manufacturing method of super water repellent material, and super water repellent material
JP2015102666A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Anti-reflection film-forming coating liquid, base material with anti-reflection film, manufacturing method and application thereof
KR101859837B1 (en) * 2016-09-20 2018-05-18 고려대학교 산학협력단 Solar cell module
WO2018221556A1 (en) 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
CN109111124A (en) * 2018-09-12 2019-01-01 江苏世泰实验器材有限公司 One kind prevents adhesion coverslip and preparation method thereof
US10961147B2 (en) 2012-11-30 2021-03-30 Corning Incorporated Reduced reflection glass articles and methods for making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109748237B (en) * 2019-01-18 2021-01-19 南京航空航天大学 Microstructure with anti-icing and anti-drag integrated functions and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169761A (en) * 2003-12-10 2005-06-30 Nippon Sheet Glass Co Ltd Base material with oxide film and its manufacturing method
JP2010222199A (en) * 2009-03-25 2010-10-07 Kagawa Univ Water-repelling and oil-repelling antifouling glass, process of production thereof and glass window, solar energy utilization device, and optical equipment using the glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169761A (en) * 2003-12-10 2005-06-30 Nippon Sheet Glass Co Ltd Base material with oxide film and its manufacturing method
JP2010222199A (en) * 2009-03-25 2010-10-07 Kagawa Univ Water-repelling and oil-repelling antifouling glass, process of production thereof and glass window, solar energy utilization device, and optical equipment using the glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961147B2 (en) 2012-11-30 2021-03-30 Corning Incorporated Reduced reflection glass articles and methods for making and using same
KR101293665B1 (en) 2013-01-03 2013-08-13 이준 Z n O-NANO STRUCTURE GLASS AND SOLAR CELLS MODULE USING THE SAME AND METHOD OF MANUFACTURING THEREOF
JP2014152389A (en) * 2013-02-13 2014-08-25 Nagoya Univ Manufacturing method of super water repellent material, and super water repellent material
JP2015102666A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Anti-reflection film-forming coating liquid, base material with anti-reflection film, manufacturing method and application thereof
KR101859837B1 (en) * 2016-09-20 2018-05-18 고려대학교 산학협력단 Solar cell module
WO2018221556A1 (en) 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
CN109111124A (en) * 2018-09-12 2019-01-01 江苏世泰实验器材有限公司 One kind prevents adhesion coverslip and preparation method thereof

Also Published As

Publication number Publication date
JP5660500B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP3348613B2 (en) Photocatalytic hydrophilic coating composition
JP4654443B2 (en) Manufacturing method of solar energy utilization device
JPWO2008072707A1 (en) Articles having a water repellent surface
EP2764060A2 (en) Coating composition and antireflective coating prepared therefrom
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
EP1484105B1 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film for use therein
JP2016001200A (en) Antifouling antireflection film, article and production method thereof
JPH08211202A (en) Light-transmitting plate containing water-repellent and oil-repellent superfine particle and its production
JP5804548B2 (en) Super water- and oil-repellent antifouling translucent film, production method thereof, glass window using them, solar energy utilization device, optical device, and display device
JP2013092289A (en) Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them
JP2010280147A (en) Water-repellent oil-repellent antifouling transparent member and method for producing the same, and article using them
WO2017073726A1 (en) Stain-proof article and production method for stain-proof article
JP2007333291A (en) Solar energy using device and method of manufacturing the same
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
JP2012220898A (en) Wear-resistant, ultra-water-repellent, oil-repellent, antifouling, and light-transmissive film, method for manufacturing the same, and glass window, solar energy utilization device, optical device, and display device using the same
JP2013133264A (en) Water-repellent substrate, method for producing the same, and transportation apparatus
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
JP7480780B2 (en) Transparent substrate with anti-fouling layer
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
JP5967604B2 (en) Water-repellent alumina sol, water-repellent alumina film and method for producing the same
WO2018051958A1 (en) Antifouling article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140401

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141121

R150 Certificate of patent or registration of utility model

Ref document number: 5660500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees