JP2013092289A - Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them - Google Patents

Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them Download PDF

Info

Publication number
JP2013092289A
JP2013092289A JP2011233800A JP2011233800A JP2013092289A JP 2013092289 A JP2013092289 A JP 2013092289A JP 2011233800 A JP2011233800 A JP 2011233800A JP 2011233800 A JP2011233800 A JP 2011233800A JP 2013092289 A JP2013092289 A JP 2013092289A
Authority
JP
Japan
Prior art keywords
heat exchange
water
exchange member
oil
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011233800A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Yoshifumi Suzaki
嘉文 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2011233800A priority Critical patent/JP2013092289A/en
Publication of JP2013092289A publication Critical patent/JP2013092289A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a super-hydrophobic and oleophobic heat exchanger member which is improved in durability, such as wear resistance and weather resistance, waterdrop repellency, oleophobic, and antifouling properties, in addition to hydrophobic, oleophobic and antifouling functions, to provide a method for manufacturing the same, and to provide a heat exchanger manufactured by using them.SOLUTION: The super-hydrophobic and oleophobic heat exchanger member 10 includes a substrate 14 having a plurality of Kompeito-like projections 11 and a thin film 15a which has hydrophobic, oleophobic and antifouling properties and is bonded to at least part of the surface of the substrate 14 having the Kompeito-like projections 11, wherein each Kompeito-like projection 11 is composed of a first projection 12 having a nearly hemispherical shape and a plurality of second projections 13 each of which is formed in a cone or bamboo shoot shape on a surface of the first projection 12 and has a bottom face diameter smaller than that of the first projection 12.

Description

本発明は、超撥水撥油性熱交換部材とその製造方法ならびにそれらを用いた熱交換器に関し、より具体的には高耐久性で且つ撥水撥油防汚性の被膜が表面に形成された超撥水撥油性熱交換部材とその製造方法ならびにそれらを用いた熱交換器に関する。 The present invention relates to a super water / oil repellent heat exchange member, a method for producing the same, and a heat exchanger using the same, and more specifically, a highly durable, water / oil repellent and antifouling coating is formed on the surface. The present invention also relates to a super water / oil repellent heat exchange member, a method for producing the same, and a heat exchanger using them.

各種部材の表面に撥水性、撥油性および防汚性を付与するために、フッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる溶液を用い、液相で化学吸着して単分子膜状の撥水撥油防汚性の化学吸着膜単分子膜を形成できることが既によく知られている(例えば、特許文献1参照)。
このような溶液中での単分子膜の製造原理は、基材表面のヒドロキシル基等の活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
In order to impart water repellency, oil repellency and antifouling properties to the surfaces of various members, a solution comprising a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent is used for chemical adsorption in the liquid phase. It is already well known that a molecular film-like water- and oil-repellent antifouling chemical adsorption film monomolecular film can be formed (for example, see Patent Document 1).
The manufacturing principle of such a monomolecular film in a solution is to form a monomolecular film by using a dehydrochlorination reaction between active hydrogen such as hydroxyl group on the substrate surface and chlorosilyl group of chlorosilane-based adsorbent. is there.

ルームエアコン等の空調機用熱交換器は、空気との接触面積を大きくするため、厚みが約0.1mmのアルミのフィンを1〜2mmの間隔で重ね合わせた構造を有しているが、冷房運転時に結露した水がフィンの間でいわゆるブリッジを形成したり、その状態で凍結したりすると、通風抵抗が増大して空調性能が低下する。また、除湿器用の熱交換器において、冷却フィンの表面が結露水で濡れたままになると、結露性能が低下し除湿効率が低下する。そこで、例えば、特許文献2には、電子冷却素子の吸熱面に冷却フィンを、発熱面に放熱フィンをそれぞれ密着固定して構成された除湿部と、空気を循環させる送風部と、吸込口及び吐出口が形成され上記除湿部及び送風部を収納するハウジングとから成る吸湿器において、冷却フィンの表面に撥水性材料の皮膜を形成してなることを特徴とする吸湿器が提案されている。冷却フィンに付着する結露の水滴の接触角が大きくなって表面をスムーズに下方へ移動して落下しやすくなるため、冷却フィンの表面が結露水で濡れたままになることを防いで結露能力を高く保つことができる。 A heat exchanger for an air conditioner such as a room air conditioner has a structure in which aluminum fins having a thickness of about 0.1 mm are overlapped at intervals of 1 to 2 mm in order to increase the contact area with air. If the water condensed during the cooling operation forms a so-called bridge between the fins or freezes in that state, the ventilation resistance increases and the air conditioning performance decreases. Further, in the heat exchanger for the dehumidifier, when the surface of the cooling fin remains wet with the dew condensation water, the dew condensation performance is lowered and the dehumidification efficiency is lowered. Therefore, for example, in Patent Document 2, a dehumidifying unit configured by closely fixing a cooling fin to a heat absorbing surface of an electronic cooling element and a heat radiating fin to a heat generating surface, a blower unit that circulates air, a suction port, and In a hygroscopic device having a discharge port and a housing that houses the dehumidifying unit and the air blowing unit, a hygroscopic device is proposed in which a film of a water repellent material is formed on the surface of the cooling fin. Since the contact angle of water droplets of condensation that adheres to the cooling fins increases and the surface moves smoothly downward and is easy to drop, the surface of the cooling fins is prevented from getting wet with condensation water and the condensation capacity is increased. Can be kept high.

特開平4−132637号公報JP-A-4-132737 特開平6−74479号公報JP-A-6-74479

しかしながら、特許文献1記載の化学吸着膜を平坦な表面を有する部材に適用した場合において、水滴接触角は高々120度程度止まりであり、水滴や汚れが自然に除去されるようにするためには撥水撥油防汚性や離水性が不十分であるという課題があった。また、特許文献1記載の化学吸着膜単分子膜は、耐摩耗性や耐候性等の耐久性も乏しいという課題があった。 However, in the case where the chemical adsorption film described in Patent Document 1 is applied to a member having a flat surface, the water droplet contact angle is at most about 120 degrees, so that water droplets and dirt can be removed naturally. There was a problem that the water and oil repellency and antifouling property and water separation were insufficient. Further, the chemical adsorption film monomolecular film described in Patent Document 1 has a problem that durability such as wear resistance and weather resistance is poor.

また、特許文献2記載の吸湿器において冷却フィンの表面に形成される撥水性材料の皮膜は、フッ素樹脂等からなるものであるため、一般に高価であり、コスト高や熱伝導率の低下による基本性能の低下等が懸念される。 In addition, since the film of the water repellent material formed on the surface of the cooling fin in the hygroscopic device described in Patent Document 2 is made of a fluororesin or the like, it is generally expensive, and is fundamental due to high cost and a decrease in thermal conductivity. There is a concern about performance degradation.

本発明はかかる事情に鑑みてなされたもので、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した超撥水撥油性熱交換部材とその製造方法ならびにそれらを用いた熱交換器を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a super water / oil repellent heat exchange member with improved water-repellent (also referred to as water slidability), oil repellency, and antifouling properties, a method for producing the same, and heat using the same. The purpose is to provide an exchanger.

前記目的に沿う本発明の第1の態様は、表面に複数の金平糖状の突起を有する基材と、前記突起を有する基材の表面の少なくとも一部に結合した撥水撥油防汚性薄膜とを有し、前記金平糖状の突起が、中核となる略半球状の第1の突起と、前記第1の突起の表面に形成され、前記第1の突起の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起で構成されていることを特徴とする超撥水撥油性熱交換部材を提供することにより上記課題を解決するものである。
基材の表面に中核となる微粒子を結合固定して第1の突起を形成し、更にその表面に第2の突起を結合固定することにより、複雑な凹凸を有する表面構造を形成できる。そのため、平坦な表面を有する場合によりも撥水撥油防汚性を向上できる。また、少なくとも金平糖状の突起の表面に撥水撥油防汚性薄膜を形成することにより、一般に親水性を有する基材の表面に撥水性、撥油性及び防汚性を付与できる。
The first aspect of the present invention that meets the above-mentioned object is a substrate having a plurality of confetti-like protrusions on the surface, and a water- and oil-repellent and antifouling thin film bonded to at least a part of the surface of the substrate having the protrusions. The scallop-shaped projections are formed on the surface of the substantially hemispherical first projection as a core and the surface of the first projection, and the diameter of the bottom surface is smaller than the diameter of the first projection. The above-described problems are solved by providing a super water / oil repellent heat exchange member comprising a plurality of conical or bamboo shoot-like second protrusions.
A surface structure having complex irregularities can be formed by bonding and fixing fine particles as cores on the surface of the base material to form first protrusions, and further bonding and fixing the second protrusions on the surface. Therefore, the water / oil repellency / antifouling property can be improved as compared with the case of having a flat surface. In addition, by forming a water- and oil-repellent and antifouling thin film on at least the surface of the confetti-like protrusions, it is possible to impart water repellency, oil repellency and antifouling properties to the surface of a generally hydrophilic substrate.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、球状または略球状の中核となる微粒子を前記基材の表面に融着させ、あるいはバインダを介して結合させることにより前記第1の突起が形成されていてもよい。
中核となる第1の微粒子が融着又はバインダを介して基材の表面に結合固定されているため、超撥水撥油性熱交換部材の表面の耐摩耗性及び耐候性等を向上できる。
In the superhydrophobic / oil-repellent heat exchange member according to the first aspect of the present invention, the fine particles, which are spherical or substantially spherical cores, are fused to the surface of the base material or bonded via a binder. One protrusion may be formed.
Since the first fine particles as the core are bonded and fixed to the surface of the base material through fusion or binder, the wear resistance and weather resistance of the surface of the super water / oil repellent heat exchange member can be improved.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、前記中核となる微粒子の直径が30nm〜10μmであり、前記第2の突起の高さが10〜300nmであってもよい。
このようにすることで、撥水性、撥油性および防汚性に優れた超撥水撥油性熱交換部材を提供できる。
In the super water- and oil-repellent heat exchange member according to the first aspect of the present invention, the core fine particle may have a diameter of 30 nm to 10 μm, and the second protrusion may have a height of 10 to 300 nm. .
By doing in this way, the super water-repellent and oil-repellent heat exchange member excellent in water repellency, oil repellency, and antifouling property can be provided.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、前記第2の突起の高さが、前記第1の突起の高さの1/10以上1/2以下であってもよい。 In the super water- and oil-repellent heat exchange member according to the first aspect of the present invention, even if the height of the second protrusion is 1/10 or more and 1/2 or less of the height of the first protrusion. Good.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、前記第2の突起が、酸化亜鉛からなるものであってもよい。 In the super water / oil repellent heat exchange member according to the first aspect of the present invention, the second protrusion may be made of zinc oxide.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、前記微粒子が、ガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるものであってもよい。
中核となる微粒子がガラス、シリカ、アルミナ及びジルコニアからなる群より選択される材質からなるため、超撥水撥油性熱交換部材の表面の耐久性を向上できる。
In the super water / oil repellent heat exchange member according to the first aspect of the present invention, the fine particles may be made of a material selected from the group consisting of glass, silica, alumina, and zirconia.
Since the core fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia, the surface durability of the super water / oil repellent heat exchange member can be improved.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、前記撥水撥油防汚性薄膜が単分子膜であることが好ましい。
撥水撥油防汚性薄膜が単分子膜であるため、得られる超撥水撥油性熱交換部材の熱伝導性を損なうことがない。
In the super water / oil repellent heat exchange member according to the first aspect of the present invention, the water / oil repellent / antifouling thin film is preferably a monomolecular film.
Since the water / oil repellent / antifouling thin film is a monomolecular film, the thermal conductivity of the obtained super water / oil repellent heat exchange member is not impaired.

本発明の第1の態様に係る超撥水撥油性熱交換部材において、表面の臨界表面エネルギーは理想的には低いほど良いが、1mN/m以上3mN/m以下であることが好ましい。
表面の臨界表面エネルギーが上記範囲であるため、得られる超撥水撥油性熱交換部材の撥水性、撥油性及び防汚性の全てを向上できる。
In the super water / oil repellent heat exchange member according to the first aspect of the present invention, the lower the critical surface energy of the surface, the better, but it is preferably 1 mN / m or more and 3 mN / m or less.
Since the critical surface energy of the surface is in the above range, all of the water repellency, oil repellency and antifouling property of the obtained super water / oil repellency heat exchange member can be improved.

本発明の第2の態様は、溶媒に分散させた球状または略球状の中核となる微粒子を基材の表面に散布する工程Aと、前記中核となる微粒子が散布された前記基材を加熱して、前記基材の表面に前記中核となる微粒子を結合固定または融着させ、略半球状の第1の突起を形成する工程Bと、前記第1の突起の表面に、該第1の突起の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の第2の突起を形成する工程Cと、前記第1および第2の突起とから構成される金平糖状の突起が形成された前記基材の表面に撥水撥油防汚性薄膜を形成する工程Dとを有することを特徴とする超撥水撥油性熱交換部材の製造方法を提供することにより上記課題を解決するものである。
工程A〜Cにおいて、基材の表面に結合固定または融着した複数の金平糖状の突起を形成することにより、基材の表面に複雑な凹凸を形成できる。そのため、平坦な基材及び中核となる微粒子のみが表面に結合固定された基材よりも撥水性、撥油性及び防汚性を向上できる。また、工程Cにおいて、少なくとも金平糖状の突起の表面に撥水撥油防汚性薄膜を形成することにより、撥水性、撥油性及び防汚性を更に向上できる。
In the second aspect of the present invention, the step A in which spherical or substantially spherical core particles dispersed in a solvent are sprayed on the surface of the substrate, and the substrate on which the core particles are sprayed is heated. Then, the step B for bonding and fixing the core fine particles to the surface of the substrate to form a substantially hemispherical first protrusion, and the first protrusion on the surface of the first protrusion The step C for forming a plurality of conical or bamboo shoot-like second projections having a bottom diameter smaller than the diameter of the first and second projections is formed. The above-mentioned problem is solved by providing a method for producing a super water / oil / oil repellent heat exchange member characterized by comprising a step D of forming a water / oil / oil repellent / antifouling thin film on the surface of a substrate. .
In Steps A to C, complex irregularities can be formed on the surface of the base material by forming a plurality of confetti-like projections bonded or fused to the surface of the base material. Therefore, the water repellency, oil repellency and antifouling property can be improved as compared with a base material in which only a flat base material and core fine particles are bonded and fixed to the surface. Further, in step C, the water and oil repellency and antifouling properties can be further improved by forming a water and oil repellency and antifouling property thin film on at least the surface of the confetti-like protrusions.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記金平糖状の突起の高さが30〜300nmであってもよい。 In the method for manufacturing a super water / oil repellent heat exchange member according to the second aspect of the present invention, the height of the scallop-like protrusions may be 30 to 300 nm.

前記の場合において、前記中核となる微粒子の直径が30nm〜10μmであり、前記第2の突起の高さが10〜300nmであることが好ましい。 In the above case, it is preferable that the diameter of the core fine particle is 30 nm to 10 μm and the height of the second protrusion is 10 to 300 nm.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記工程Bにおいて、前記分散液を塗布後の前記基材を、該基材の軟化点以上で前記中核となる微粒子の融点以下で加熱し、前記基材の表面に前記中核となる微粒子を融着してもよい。 In the method for producing a super water- and oil-repellent heat exchange member according to the second aspect of the present invention, in the step B, the base material after the dispersion is applied is not less than the softening point of the base material and the core. The core fine particles may be fused to the surface of the substrate by heating at or below the melting point of the fine particles.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記分散液が、溶媒の蒸発および/またはその後の化学反応によりバインダを生成するバインダ前駆体を含み、前記工程Bにおいて、前記バインダを介して前記基材の表面に前記中核となる微粒子を結合固定または融着してもよい。
融着又はバインダを介して基材の表面に中核となる微粒子を結合固定または融着するため、超撥水撥油性熱交換部材の表面の耐摩耗性及び耐候性等を向上できる。
In the method for producing a super water / oil repellent heat exchange member according to the second aspect of the present invention, the dispersion contains a binder precursor that generates a binder by evaporation of a solvent and / or subsequent chemical reaction, In B, the core fine particles may be bonded and fixed or fused to the surface of the base material via the binder.
Since the core fine particles are bonded, fixed, or fused to the surface of the substrate via fusion or a binder, the wear resistance, weather resistance, and the like of the surface of the super water / oil repellent heat exchange member can be improved.

工程Bにおいてバインダを介して中核となる微粒子を結合固定する本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記バインダ前駆体が、ゾル−ゲル法により金属酸化物を形成する金属ゾル前駆体であってもよい。
ゾル−ゲル法により金属酸化物を形成する金属ゾル前駆体をバインダ前駆体として用いることにより、中核となる微粒子を基材の表面に強固に結合固定できる。
In the method for producing a super water- and oil-repellent heat exchange member according to the second aspect of the present invention in which fine particles serving as cores are bonded and fixed via a binder in Step B, the binder precursor is subjected to metal oxidation by a sol-gel method. The metal sol precursor which forms a thing may be sufficient.
By using a metal sol precursor that forms a metal oxide by a sol-gel method as a binder precursor, the core fine particles can be firmly bonded and fixed to the surface of the substrate.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記工程Bの後で、結合固定されなかった前記中核となる微粒子を洗浄除去してもよい。 In the method for manufacturing a super water / oil repellent heat exchange member according to the second aspect of the present invention, after the step B, the core fine particles that are not bonded and fixed may be washed away.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記工程Bにおいて、前記基材の表面に付着、結合固定または融着された前記中核となる微粒子の表面に、大気圧プラズマ法を用いて酸化亜鉛からなる前記突起を形成することが好ましい。 In the method for producing a super water- and oil-repellent heat exchange member according to the second aspect of the present invention, in the step B, the surface of the core fine particles adhered, bonded, or fused to the surface of the base material is used. Preferably, the protrusions made of zinc oxide are formed using an atmospheric pressure plasma method.

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記工程Dにおいて、前記基材および前記金平糖状の突起の表面官能基と反応して結合を形成する反応基とフッ化炭素基またはジメチルシリル基とを有する化合物を含む反応液を前記第1及び第2の微粒子が結合固定された前記基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成してもよい。
表面官能基と反応基との反応により形成された結合を介して撥水撥油防汚性薄膜を金平糖状の突起の表面に結合固定することにより、撥水撥油防汚性薄膜の耐久性を向上できる。
In the method for producing a super water- and oil-repellent heat exchange member according to the second aspect of the present invention, in the step D, a reactive group that forms a bond by reacting with a surface functional group of the base material and the confetti-like protrusion. And a reaction solution containing a compound having a fluorocarbon group or a dimethylsilyl group is brought into contact with the surface of the substrate on which the first and second fine particles are bonded and fixed, and the surface functional group and the reactive group You may form the film of the said compound fixed to this surface through the bond formed by reaction.
Durability of water- and oil-repellent antifouling thin film by bonding and fixing the water-repellent and oil-repellent antifouling thin film to the surface of confetti-like protrusions through a bond formed by the reaction between the surface functional group and the reactive group Can be improved.

この場合において、前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、及び/又は
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含んでいてもよい。
反応基としてアルコキシシリル基を用いることにより、反応時にハロゲン化水素等の有害な副生成物の生成を防ぐことができると共に、反応液が縮合触媒を含んでいるため、撥水撥油防汚性薄膜の形成に必要な処理時間を短縮できる。
In this case, the reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or two or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Alternatively, (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds may be included as a condensation catalyst.
By using an alkoxysilyl group as a reactive group, it is possible to prevent the formation of harmful by-products such as hydrogen halide during the reaction, and the reaction solution contains a condensation catalyst. The processing time required for forming the thin film can be shortened.

更に、前記工程Cの後で余分な前記反応液を洗浄除去してもよい。
余分な反応液を洗浄除去することにより、撥水撥油防汚性薄膜を単分子膜とすることができるため、製造される超撥水撥油性熱交換部材の熱伝導性を損なうことがない。
Further, after the step C, the excess reaction solution may be removed by washing.
By washing and removing excess reaction liquid, the water / oil / oil / repellency antifouling thin film can be made into a monomolecular film, so that the thermal conductivity of the manufactured super water / oil / oil repellent heat exchange member is not impaired. .

本発明の第2の態様に係る超撥水撥油性熱交換部材の製造方法において、前記工程Bの前に前記工程Cを行ってもよい。 In the method for producing a super water / oil repellent heat exchange member according to the second aspect of the present invention, the step C may be performed before the step B.

本発明の第3の態様は、本発明の第1の態様に係る超撥水撥油性熱交換部材を有する熱交換器を提供することにより上記課題を解決するものである。
撥水性、撥油性および防汚性に優れた熱交換器を提供できる。
The third aspect of the present invention solves the above problem by providing a heat exchanger having the super water / oil repellent heat exchange member according to the first aspect of the present invention.
A heat exchanger excellent in water repellency, oil repellency and antifouling property can be provided.

本発明の第3の態様に係る熱交換器が吸熱器である場合、結露水の付着や凍結による通風抵抗の低下や結露性能の低下等の問題を解決できる本発明の第1の態様に係る熱交換部材がより好適に適用できる。 When the heat exchanger according to the third aspect of the present invention is a heat absorber, the first aspect of the present invention can solve problems such as a decrease in ventilation resistance due to adhesion or freezing of condensed water and a decrease in condensation performance. A heat exchange member can be applied more suitably.

本発明によれば、撥水撥油防汚機能に加え、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、撥油性、防汚性が向上した超撥水撥油性熱交換部材とその製造方法が提供される。また、本発明によれば、撥水性、撥油性及び防汚性に加え、耐久性にも優れた熱交換器が提供される。 According to the present invention, in addition to the water / oil repellent / antifouling function, super water / oil repellent with improved durability, such as abrasion resistance and weather resistance, water-drop separation (also referred to as water slidability), oil repellency and antifouling properties. An oily heat exchange member and a method for manufacturing the same are provided. Moreover, according to this invention, in addition to water repellency, oil repellency, and antifouling property, the heat exchanger excellent in durability is provided.

本発明の一実施の形態に係る超撥水撥油性熱交換部材の断面構造を模式的に説明した説明図である。It is explanatory drawing which demonstrated typically the cross-section of the super water-oil-repellent heat exchange member which concerns on one embodiment of this invention. 同超撥水撥油性熱交換部材の製造方法において、基材の表面に中核となる微粒子を融着する工程の説明図である。It is explanatory drawing of the process of fuse | melting the microparticles | fine-particles used as a core on the surface of a base material in the manufacturing method of the same super water / oil repellency heat exchange member. 同超撥水撥油性熱交換部材の製造方法において、基材の表面に融着した中核となる微粒子の表面に複数の円錐状の突起を形成する工程の説明図である。In the manufacturing method of the super water-repellent and oil-repellent heat exchange member, it is an explanatory view of a step of forming a plurality of conical protrusions on the surface of the core fine particles fused to the surface of the substrate. 実施例1において製造した超撥水撥油性熱交換部材の表面の走査型電子顕微鏡(SEM)写真である。2 is a scanning electron microscope (SEM) photograph of the surface of a super water / oil repellent heat exchange member produced in Example 1. FIG.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図1〜3は単なる概略説明図であり、基材、第1及び第2の突起並びに撥水撥油防汚性薄膜を形成する化合物の大きさについては、必ずしも実際の大きさの比率を反映していない。
図1に示すように、本発明の第1の実施の形態に係る超撥水撥油性熱交換部材10は、複数の金平糖状の突起11が形成された基材14と、突起11を有する基材14aの表面の少なくとも一部に結合した撥水撥油防汚性薄膜15aとを有している。金平糖状の突起11は、中核となる略半球状の第1の突起12と、第1の突起12の表面に形成され、第1の突起12の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起13で構成されている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. 1 to 3 are merely schematic explanatory views, and the size of the compound forming the base material, the first and second protrusions, and the water / oil repellent / antifouling thin film is not necessarily a ratio of the actual size. Does not reflect.
As shown in FIG. 1, the super water / oil repellent heat exchange member 10 according to the first embodiment of the present invention includes a base material 14 on which a plurality of confetti-like protrusions 11 are formed, and a base having the protrusions 11. And a water / oil repellent / antifouling thin film 15a bonded to at least a part of the surface of the material 14a. The confetti-like projections 11 are formed on the surface of a substantially hemispherical first projection 12 as a core and the surface of the first projection 12, and a plurality of conical shapes having a bottom diameter smaller than the diameter of the first projection 12. Or it is comprised by the 2nd protrusion 13 of a bamboo shoot shape.

超撥水撥油性熱交換部材10は、溶媒に分散させた球状または略球状の中核となる微粒子16を基材14の表面に散布する工程Aと、中核となる微粒子16が散布された基材14を加熱して、基材14の表面に中核となる微粒子16を結合固定または融着させ、略半球状の第1の突起12を形成する工程Bと、基材14の表面に付着、結合固定または融着された第1の突起12の表面に、第1の突起12の直径よりも底面の直径の小さな複数のタケノコ状の突起13(円錐状またはタケノコ状の第2の突起の一例:以下、単に「突起」と略称する場合がある。)を形成する工程Cと、融着した中核となる微粒子16aの形成する半球状の突起(第1の突起の一例)12およびタケノコ状の突起13から構成される金平糖状の突起11が形成された基材14aの表面に撥水撥油防汚性薄膜15aを形成する工程Dとを有する方法により製造される。
以下、工程A〜Dについてより詳細に説明する。
The super water / oil repellent heat exchange member 10 includes a step A in which spherical or substantially spherical core particles 16 dispersed in a solvent are sprayed on the surface of the substrate 14, and a substrate on which the core particles 16 are sprayed. 14 is heated to bond and fix or fuse the core fine particles 16 to the surface of the base material 14 to form a first hemispherical first protrusion 12, and adhere to and bond to the surface of the base material 14. A plurality of bamboo shoot-like protrusions 13 (an example of a conical or bamboo shoot-like second protrusion: a second protrusion having a conical shape or a bamboo shoot shape) having a bottom surface diameter smaller than the diameter of the first protrusion 12 on the surface of the first protrusion 12 fixed or fused. Hereinafter, the process C is formed simply, and the hemispherical protrusion (an example of the first protrusion) 12 and the bamboo shoot-like protrusion formed by the fused fine particles 16a. A confetti-like protrusion 11 composed of 13 is formed. Produced by the process and a step D of the surface of the substrate 14a to form a water-repellent oil-repellent antifouling film 15a was.
Hereinafter, the processes A to D will be described in more detail.

(1)工程A
超撥水撥油性熱交換部材10の製造に用いられる基材14の形状については特に制限はなく、任意の形状のものを用いることができる。基材14の形状の具体例としては、例えば、熱交換部材に通常用いられる、シート状、波板状、テープ状、チューブ状、蛇腹状または剣山状等の任意の形状のものが挙げられる。また、基材14の大きさについても特に制限はなく、任意の大きさのものを用いることができる。更に、基材14の材質についても特に制限はなく、アルミニウム、銅あるいはそれらの合金等の金属材料、窒化ケイ素や窒化アルミニウム等の高熱伝導性セラミックス等の任意の材質のものを用いることができる。
(1) Process A
There is no restriction | limiting in particular about the shape of the base material 14 used for manufacture of the super water / oil repellent heat exchange member 10, The thing of arbitrary shapes can be used. Specific examples of the shape of the base material 14 include those having an arbitrary shape such as a sheet shape, a corrugated plate shape, a tape shape, a tube shape, a bellows shape, or a sword mountain shape, which are usually used for a heat exchange member. Moreover, there is no restriction | limiting in particular also about the magnitude | size of the base material 14, The thing of arbitrary magnitude | sizes can be used. Furthermore, there is no restriction | limiting in particular also about the material of the base material 14, The thing of arbitrary materials, such as metal materials, such as aluminum, copper, or those alloys, highly heat conductive ceramics, such as silicon nitride and aluminum nitride, can be used.

微粒子16を散布する前に、基材14の表面を洗浄し、表面に付着した汚れを除去しておくことが好ましい。洗浄には、洗浄液中への浸漬(加熱、撹拌および超音波照射等を併用してもよい。)、コロナ処理、酸素プラズマ処理、あるいはエキシマ光の照射等の任意の方法を用いることができる。 Before spraying the fine particles 16, it is preferable to clean the surface of the base material 14 and remove dirt adhering to the surface. For the cleaning, any method such as immersion in a cleaning solution (heating, stirring, ultrasonic irradiation or the like may be used in combination), corona treatment, oxygen plasma treatment, or excimer light irradiation can be used.

超撥水撥油性熱交換部材10の製造に用いられる中核となる微粒子16は、球状または略球状であり、直径は、10nm〜5mm、好ましくは20nm〜50μm、より好ましくは30nm〜10μmである。 The fine particles 16 serving as the core used for producing the super water / oil repellent heat exchange member 10 are spherical or substantially spherical, and have a diameter of 10 nm to 5 mm, preferably 20 nm to 50 μm, more preferably 30 nm to 10 μm.

中核となる微粒子16の材質について特に制限はなく、ソーダ石灰ガラス、クリスタルガラス、石英ガラス、ホウケイ酸ガラス、リンガラス、ボロンガラス、ガラスセラミックス、シリカ、アルミナ、ジルコニア等の任意の材質のものを用いることができ、ポリメタクリル酸メチル等からなるアクリルガラス(プレキシガラス)等の有機材料を用いることもできる。特に、シリカ、アルミナ、ジルコニア等の硬質の無機酸化物からなる中核となる微粒子を用いる場合には、得られる超撥水撥油性熱交換部材10の表面の硬度および耐摩耗性を向上できる。なお、基材14がアルミニウム等の融点の低い金属で、中核となる微粒子16をその表面に直接融着させる場合には、シリカ等では融点が高すぎるため、リンガラスやボロンガラス等の低融点ガラスを用いる必要がある。 There are no particular restrictions on the material of the fine particles 16 as the core, and any material such as soda lime glass, crystal glass, quartz glass, borosilicate glass, phosphorus glass, boron glass, glass ceramics, silica, alumina, zirconia, or the like is used. Organic materials such as acrylic glass (plexiglass) made of polymethyl methacrylate or the like can also be used. In particular, in the case of using fine particles as the core made of a hard inorganic oxide such as silica, alumina, zirconia, etc., the surface hardness and wear resistance of the resulting super water / oil repellent heat exchange member 10 can be improved. When the base material 14 is a metal having a low melting point such as aluminum and the core fine particles 16 are directly fused to the surface thereof, the melting point of silica or the like is too high, so that the low melting point of phosphorus glass or boron glass or the like is low. It is necessary to use glass.

中核となる微粒子16の散布は任意の方法を用いて行うことができるが、例えば、中核となる微粒子16を溶媒に分散させた分散液を基材14に塗布後、溶媒を蒸発させる方法が好ましく用いられる。
分散液の調製には、中核となる微粒子16を均一に分散でき、基材14および中核となる微粒子16と反応したり、膨潤や変形を起こしたりしない限りにおいて任意の溶媒を用いることができるが、揮発性、安全性、環境負荷および経済性等の観点から、水、エタノール、イソプロピルアルコール等の低級アルコール系溶媒およびこれらの混合溶媒が好ましい。溶媒の量は、中核となる微粒子16の大きさおよび比重等に依存するため一義的に決定することは困難であるが、例えば、中核となる微粒子16の重量の4〜200倍(第1の分散液に含まれる中核となる微粒子16の濃度が約0.5〜約20重量%)、好ましくは10〜100倍、より好ましくは10〜50倍である。溶媒の量が少なすぎると、得られる第1の分散液がスラリー状になり、中核となる微粒子16を基材14の表面に均一に分散することが困難になり、逆に多すぎると作業効率が低下する。
The dispersion of the fine particles 16 serving as the core can be performed by any method. For example, a method of evaporating the solvent after applying the dispersion liquid in which the fine particles 16 serving as the core are dispersed in the solvent is preferable. Used.
For the preparation of the dispersion, any solvent can be used as long as the fine particles 16 serving as the core can be uniformly dispersed and does not react with the base material 14 and the fine particles 16 serving as the core or cause swelling or deformation. From the viewpoints of volatility, safety, environmental burden, economy, and the like, water, lower alcohol solvents such as ethanol and isopropyl alcohol, and mixed solvents thereof are preferable. Although the amount of the solvent depends on the size and specific gravity of the fine particles 16 serving as the core, it is difficult to uniquely determine. For example, the amount of the solvent is 4 to 200 times the weight of the fine particles 16 serving as the core (first The concentration of the fine particles 16 serving as the core contained in the dispersion is about 0.5 to about 20% by weight), preferably 10 to 100 times, more preferably 10 to 50 times. If the amount of the solvent is too small, the resulting first dispersion becomes a slurry, making it difficult to uniformly disperse the fine particles 16 serving as the core on the surface of the base material 14. Decreases.

基材14の表面に分散液を塗布後、溶媒を蒸発させると、基材14の表面に中核となる微粒子16を均一に分散させることができる。第1の分散液の塗布には、ディップコート法、スピンコート法、スプレー法、スクリーン印刷法等の任意の方法を用いることができる。 When the solvent is evaporated after applying the dispersion on the surface of the base material 14, the fine particles 16 serving as the core can be uniformly dispersed on the surface of the base material 14. For the application of the first dispersion, any method such as a dip coating method, a spin coating method, a spray method, a screen printing method, or the like can be used.

(2)工程B
次いで、中核となる微粒子16を表面に散布した基材14の表面を、基材14の軟化点以上で中核となる微粒子16の融点以下の温度で加熱し、中核となる微粒子16が表面に融着した基材14aを得る。加熱温度および加熱時間は、用いられる基材14および中核となる微粒子16の材質等に依存するため一義的に決定することは困難であるが、例えば、例えば、基材14としてアルミニウム(後述するシリカ被膜が表面に形成されていてもよい。)、微粒子16としてシリカ微粒子を用いる場合には、650℃で30分〜1時間程度加熱することにより、中核となる微粒子16が表面に融着し、中核となる微粒子を融着させた基材14bが得られる。
(2) Process B
Next, the surface of the base material 14 on which the fine particles 16 serving as the core are dispersed is heated at a temperature equal to or higher than the softening point of the base material 14 and lower than the melting point of the fine particles 16 serving as the core, so that the fine particles 16 serving as the core melt on the surface. The attached base material 14a is obtained. Although the heating temperature and the heating time depend on the base material 14 used and the material of the fine particles 16 serving as the core, it is difficult to uniquely determine. For example, for example, aluminum (silica described later) is used as the base material 14. A coating may be formed on the surface.) When silica fine particles are used as the fine particles 16, the core fine particles 16 are fused to the surface by heating at 650 ° C. for about 30 minutes to 1 hour, The base material 14b in which the core fine particles are fused is obtained.

分散液は、溶媒の蒸発および/またはその後の化学反応により、基材14および中核となる微粒子16の表面に結合可能なバインダを生成するバインダ前駆体を含んでいてもよい。バインダ前駆体としては、例えば、化学反応により有機または無機高分子を生成する1または複数の化合物を用いることができ、その具体例としては、(1)熱硬化性樹脂またはその前駆体、(2)光硬化性樹脂またはその前駆体、(3)ゾル−ゲル法により金属酸化物の被膜を形成できる物質が挙げられる。熱硬化性樹脂の前駆体および光硬化性樹脂の前駆体の具体例としては、エポキシ系接着剤、シアノアクリレート系接着剤等が挙げられ、ゾル−ゲル法により金属酸化物の被膜を形成できる物質の具体例としては、テトラアルコキシシランSi(OR)(Rは、メチル基、エチル基、n−プロピル基、i−プロピル基等の低級アルキル基。以下同じ。)、ホウ酸トリアルコキシドB(OR)、アルミニウムトリアルコキシドAl(OR)、チタンテトラアルコキシドTi(OR)等の金属アルコキシド、およびこれらの混合物が挙げられる。 The dispersion may contain a binder precursor that generates a binder that can be bonded to the surface of the substrate 14 and the fine particles 16 serving as the core by evaporation of the solvent and / or subsequent chemical reaction. As the binder precursor, for example, one or a plurality of compounds that generate an organic or inorganic polymer by a chemical reaction can be used. Specific examples thereof include (1) a thermosetting resin or a precursor thereof, (2 ) A photocurable resin or a precursor thereof; and (3) a substance capable of forming a metal oxide film by a sol-gel method. Specific examples of the precursor of the thermosetting resin and the precursor of the photocurable resin include an epoxy adhesive, a cyanoacrylate adhesive, and the like, and a substance capable of forming a metal oxide film by a sol-gel method. As specific examples, tetraalkoxysilane Si (OR) 4 (R is a lower alkyl group such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, etc .; the same shall apply hereinafter), boric acid trialkoxide B ( OR) 3 , aluminum trialkoxide Al (OR) 3 , metal alkoxides such as titanium tetraalkoxide Ti (OR) 4 , and mixtures thereof.

基材14の表面に分散液を塗布後、溶媒を蒸発させると、基材14の表面に、ゾル−ゲル法により形成されたシリカ被膜(以下、「シリカ被膜」と略称する場合もある。)を介して中核となる微粒子16を均一に分散した状態で結合固定できる。なお、この場合において、中核となる微粒子16の形状を損なわず、かつその大きさが所望の範囲内である限りにおいて、中核となる微粒子16の表面にもシリカ被膜が形成されていてもよい。なお、バインダ前駆体を含む溶液を分散液とは別に調製し、バインダ前駆体溶液を塗布後、溶媒を蒸発させることによりあらかじめシリカ被膜を形成した基材14の表面にバインダ前駆体を含まない分散液を塗布してもよい。 When the solvent is evaporated after applying the dispersion on the surface of the base material 14, a silica film formed on the surface of the base material 14 by a sol-gel method (hereinafter sometimes referred to as “silica film”). Thus, the fine particles 16 serving as the core can be bonded and fixed in a uniformly dispersed state. In this case, a silica coating may also be formed on the surface of the fine particles 16 serving as the core as long as the shape of the fine particles 16 serving as the core is not impaired and the size is within a desired range. A solution containing a binder precursor is prepared separately from the dispersion, and after the binder precursor solution is applied, the solvent is evaporated to disperse the binder 14 without the binder precursor on the surface of the substrate 14 on which the silica film has been formed in advance. A liquid may be applied.

次いで、更に200〜500℃程度の熱処理を行い、シリカ被膜を焼結させると、より強固に中核となる微粒子16を基材14の表面に結合固定できる。基材ガラスが軟化する程度まで焼結温度を高くすると、シリカ被膜が融解または軟化し、中核となる微粒子16を融着させることもできる。このとき、分散液中に、金属アルコキシドの5%程度のリン酸またはホウ酸を添加しておくと、シリカ被膜の融点を500℃程度まで低下させることができるので、基材ガラスを軟化させることなく500〜600℃で30分程度の焼結により、基材14の表面に中核となる微粒子16を融着できる。 Next, when the heat treatment at about 200 to 500 ° C. is further performed to sinter the silica coating, the fine particles 16 serving as the core can be bonded and fixed to the surface of the base material 14 more firmly. When the sintering temperature is increased to such an extent that the base glass is softened, the silica coating is melted or softened, and the fine particles 16 serving as the core can be fused. At this time, if phosphoric acid or boric acid of about 5% of the metal alkoxide is added to the dispersion, the melting point of the silica coating can be lowered to about 500 ° C., so that the base glass is softened. The fine particles 16 serving as the core can be fused to the surface of the base material 14 by sintering at 500 to 600 ° C. for about 30 minutes.

基材14、中核となる微粒子16のいずれかが有機材料である場合でも、耐熱性が確保出来る範囲で融着による結合固定を行うこともできる。但し、有機材料は無機材料よりも融点および軟化温度が低く、熱分解を起こしやすいため、無機材料の場合よりも加熱温度を低くする必要がある。 Even when either the base material 14 or the core fine particle 16 is an organic material, it is possible to perform bonding and fixing by fusion within a range in which heat resistance can be ensured. However, since the organic material has a lower melting point and softening temperature than the inorganic material and easily undergoes thermal decomposition, the heating temperature needs to be lower than that of the inorganic material.

また、本実施の形態においては、工程A、Bにおいて基材14をそのまま中核となる微粒子を融着させた基材14bの製造に用いたが、工程Aの前に基材14よりも低い温度で中核となる微粒子16を融着する被膜を基材14の表面に形成してもよい。被膜としては、基材14よりも低い温度で中核となる微粒子16を融着することのできる任意の被膜を用いることができるが、ゾルゲル法により形成された酸化ケイ素、酸化アルミニウム等の金属酸化物の乾燥ゲル膜が好ましい。 In the present embodiment, the base material 14 is used as it is for the production of the base material 14b in which the core fine particles are fused in the steps A and B, but the temperature is lower than that of the base material 14 before the step A. Then, a film for fusing the fine particles 16 as the core may be formed on the surface of the substrate 14. As the coating, any coating capable of fusing the core fine particles 16 at a temperature lower than that of the substrate 14 can be used, but a metal oxide such as silicon oxide or aluminum oxide formed by a sol-gel method can be used. The dry gel film is preferred.

縮合触媒(詳細については後述する。)を含む金属アルコキシドの溶液を基材14の表面に塗布後溶媒を蒸発させると、空気中の水分によるアルコキシル基の加水分解により生成するヒドロキシル基とアルコキシル基との間で縮合反応が起こり、基材14の表面に金属酸化物の乾燥ゲル膜が形成される。未焼結の乾燥ゲル膜の表面および内部には、基材14よりも多くの遊離のヒドロキシル基が存在するため、基材14よりも低い温度で微粒子16と融着できる。 When a solution of a metal alkoxide containing a condensation catalyst (details will be described later) is applied to the surface of the substrate 14 and then the solvent is evaporated, hydroxyl groups and alkoxyl groups generated by hydrolysis of the alkoxyl groups by moisture in the air A condensation reaction takes place between them, and a dry gel film of metal oxide is formed on the surface of the substrate 14. Since there are more free hydroxyl groups than the base material 14 on the surface and inside of the unsintered dry gel film, it can be fused to the fine particles 16 at a temperature lower than that of the base material 14.

被膜の一例であるシリカの乾燥ゲル膜の形成は、テトラメトキシシラン(Si(OCH)等のテトラアルコキシシラン、縮合触媒および溶媒を混合して得られるゾル溶液を基材14の表面に塗布し、溶媒を蒸発させることにより行うことができる。
用いることのできる縮合触媒、助触媒、溶媒の種類、テトラアルコキシシランの濃度、触媒の添加量については後述する。
The formation of a dry gel film of silica, which is an example of the coating, is performed by applying a sol solution obtained by mixing a tetraalkoxysilane such as tetramethoxysilane (Si (OCH 3 ) 4 ), a condensation catalyst and a solvent to the surface of the substrate 14. It can be performed by applying and evaporating the solvent.
Condensation catalysts, cocatalysts, solvent types, tetraalkoxysilane concentrations, and catalyst addition amounts that can be used will be described later.

ゾル溶液の塗布は、ディップコート法、スピンコート法、スプレー法、インクジェット法、スクリーン印刷法等の任意の方法により行うことができる。また、乾燥ゲル膜の膜厚は、超撥水撥油性熱交換部材10の製造に用いる中核となる微粒子16の直径にもよるが、5〜50nmが好ましい。このようにして得られる、シリカの乾燥ゲル膜を表面に有する基材14を用いて超撥水撥油性熱交換部材10の製造を行うと、工程Aにおける加熱処理を300度以下の低温で行うことが可能となる。そのため、予め風冷強化された基材14を用いた場合にも、高温で加熱することにより強化度を劣化させることなく中核となる微粒子を融着させた基材14bを製造できる。 The sol solution can be applied by an arbitrary method such as a dip coating method, a spin coating method, a spray method, an ink jet method, or a screen printing method. Moreover, although the film thickness of a dry gel film is based also on the diameter of the microparticle 16 used as the core used for manufacture of the super water-repellent oil-repellent heat exchange member 10, 5-50 nm is preferable. When the super-water / oil-repellent heat exchange member 10 is manufactured using the base material 14 having a silica dry gel film on the surface thus obtained, the heat treatment in the step A is performed at a low temperature of 300 ° C. or less. It becomes possible. Therefore, even when the air-cooled and strengthened base material 14 is used, it is possible to produce the base material 14b in which the core fine particles are fused without deteriorating the strengthening degree by heating at a high temperature.

バインダとしては、化学反応により形成される有機または無機高分子以外に、例えば、溶射皮膜等を用いることもできる。この場合、例えば、中核となる微粒子16を分散させた基材14の表面に、皮膜原料のアトマイズ粉を噴射することにより溶射皮膜を形成する。 As the binder, in addition to an organic or inorganic polymer formed by a chemical reaction, for example, a sprayed coating can be used. In this case, for example, a sprayed coating is formed by spraying atomized powder of the coating material onto the surface of the base material 14 in which the fine particles 16 serving as the core are dispersed.

工程C
次いで、基材14の表面に付着、結合固定または融着された中核となる微粒子16(または16a)の表面に、中核となる微粒子16の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の突起13を形成する。突起13の形成には、生産性や大面積化の容易さ等の観点から、大気圧プラズマ法を用いた酸化亜鉛の化学気相成長(CVD)法が好ましく用いられる。プラズマCVD法を用いた酸化亜鉛からなる突起13の形成には、線状のプラズマトーチを用い、亜鉛源として亜鉛錯体または有機亜鉛化合物を、キャリアガスとしてヘリウム、アルゴン等を用いることができる。亜鉛錯体または金属亜鉛化合物の具体例としては、ジエチル亜鉛(Zn(C2H5)2)、ビスアセチルアセトナート亜鉛(Zn(acac)2)、ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナート)亜鉛(Zn(MOPD)2)等が挙げられる。
Process C
Next, a plurality of conical or bamboo shoots having a bottom diameter smaller than the diameter of the core fine particle 16 on the surface of the core fine particle 16 (or 16a) attached, bonded, fixed or fused to the surface of the substrate 14 A protrusion 13 is formed. For the formation of the protrusions 13, a chemical vapor deposition (CVD) method of zinc oxide using an atmospheric pressure plasma method is preferably used from the viewpoint of productivity, ease of enlargement, and the like. For forming the projections 13 made of zinc oxide using the plasma CVD method, a linear plasma torch can be used, a zinc complex or an organic zinc compound can be used as a zinc source, and helium, argon, or the like can be used as a carrier gas. Specific examples of the zinc complex or metal zinc compound include diethyl zinc (Zn (C 2 H 5 ) 2 ), bisacetylacetonate zinc (Zn (acac) 2 ), bis (2-methoxy-6-methyl-3, 5-heptanedionate) zinc (Zn (MOPD) 2 ) and the like.

このようにして形成される突起13は、円錐状またはタケノコ状の形状を有しており、底面の直径は、例えば、融着した中核となる微粒子16aの直径の1/100以上1/5以下であり、1nm〜50μm、好ましくは5nm〜80nm、より好ましくは10〜20nmである。突起13の底面の直径に対する突起13の高さの割合で定義される突起13のアスペクト比は、例えば1以上5以下である。アスペクト比が大きくなりすぎると第2の突起23が折損しやすくなり、アスペクト比が小さくなりすぎると、製造される超撥水撥油性熱交換部材10の表面形状のフラクタル性が低下し、十分な撥水撥油防汚性能が発揮されにくくなる。 The protrusion 13 formed in this way has a conical or bamboo shoot shape, and the diameter of the bottom surface is, for example, 1/100 or more and 1/5 or less of the diameter of the fused fine particles 16a. 1 nm to 50 μm, preferably 5 nm to 80 nm, more preferably 10 to 20 nm. The aspect ratio of the protrusion 13 defined by the ratio of the height of the protrusion 13 to the diameter of the bottom surface of the protrusion 13 is, for example, 1 or more and 5 or less. If the aspect ratio is too large, the second protrusions 23 are likely to break, and if the aspect ratio is too small, the surface shape of the manufactured super water / oil repellent heat exchange member 10 is reduced in fractal nature. Water repellent and oil repellent antifouling performance is less likely to be exhibited.

なお、図3に示すように、基材14の表面にもタケノコ状の突起13を形成してもよい。また、ここで、工程Bの前に工程Cを行っても、同様の表面形状が形成できる。 Note that, as shown in FIG. 3, bamboo shoot-like projections 13 may be formed on the surface of the base material 14. Here, even if the process C is performed before the process B, a similar surface shape can be formed.

工程D
金平糖状の突起(11)が形成された基材14aの表面の図示しない表面官能基と表面反応基との反応により形成された結合を介して、その表面に結合固定された撥水撥油防汚性薄膜15aを形成し、超撥水撥油性熱交換部材10を製造するのに用いる反応液は、フッ化炭素基を含むアルコキシシラン化合物(表面反応基とフッ化炭素基とを有する膜化合物15の一例)と、金平糖状の突起(11)が形成された基材14aの表面のヒドロキシル基(表面官能基の一例)とアルコキシシリル基との縮合反応を促進するための縮合触媒と、非水系の有機溶媒とを混合することにより調製される。
Process D
Water / oil / oil repellent and bonded to the surface of the substrate 14a on which the surface of the base 14a on which the gold-peel-like projections (11) are formed is bonded and fixed through a bond formed by a reaction between a surface functional group (not shown) and a surface reactive group. The reaction liquid used to form the dirty thin film 15a and produce the super water / oil repellent heat exchange member 10 is an alkoxysilane compound containing a fluorocarbon group (a film compound having a surface reactive group and a fluorocarbon group). 15), a condensation catalyst for accelerating the condensation reaction between a hydroxyl group (an example of a surface functional group) on the surface of the base material 14a on which the confetti-like protrusions (11) are formed and an alkoxysilyl group, It is prepared by mixing with an aqueous organic solvent.

フッ化炭素基を含むアルコキシシラン化合物としては、下記の一般式(I)で表されるアルコキシシラン化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group include alkoxysilane compounds represented by the following general formula (I).

(I)CF(CF−Y−Z−(CH−Si(OR) (I) CF 3 (CF 2 ) n -Y-Z- (CH 2) m -Si (OR) 3

上式において、mは0〜20の整数を、nは0〜9の整数を、Rは炭素数1〜4のアルキル基をそれぞれ表す。
また、Yは、(CH(kは1〜3の整数を表す)および単結合のいずれかを表し、Zは、O(エーテル酸素)、COO、Si(CH、および単結合のいずれかを表す。
In the above formula, m represents an integer of 0 to 20, n represents an integer of 0 to 9, and R represents an alkyl group having 1 to 4 carbon atoms.
Y represents (CH 2 ) k (k represents an integer of 1 to 3) and a single bond, and Z represents O (ether oxygen), COO, Si (CH 3 ) 2 , and a single bond. Represents one of the bonds.

式(I)で表されるフッ化炭素基を含むアルコキシシラン化合物としては、下記(1)〜(12)に示す化合物が挙げられる。 Examples of the alkoxysilane compound containing a fluorocarbon group represented by the formula (I) include compounds shown in the following (1) to (12).

(1)CFCHO(CH15Si(OCH
(2)CF(CHSi(CH(CH15Si(OCH
(3)CF(CF(CHSi(CH(CHSi(OCH
(4)CF(CF(CHSi(CH(CHSi(OCH
(5)CFCOO(CH15Si(OCH
(6)CF(CF(CHSi(OCH
(7)CFCHO(CH15Si(OC
(8)CF(CHSi(CH(CH15Si(OC
(9)CF(CF(CHSi(CH(CHSi(OC
(10)CF(CF(CHSi(CH(CHSi(OC
(11)CFCOO(CH15Si(OC
(12)CF(CF(CHSi(OC
(1) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(2) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(3) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(4) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(5) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(6) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(7) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(8) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(9) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(10) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(11) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(12) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3

縮合触媒としては、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレート等の金属塩が利用可能である。
縮合触媒の添加量は、好ましくはアルコキシシラン化合物の0.2〜5質量%であり、より好ましくは0.5〜1質量%である。
As the condensation catalyst, metal salts such as carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates can be used.
The addition amount of the condensation catalyst is preferably 0.2 to 5% by mass of the alkoxysilane compound, and more preferably 0.5 to 1% by mass.

カルボン酸金属塩の具体例としては、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄が挙げられる。 Specific examples of carboxylic acid metal salts include stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, naphthenic acid Lead, cobalt naphthenate, and iron 2-ethylhexenoate.

カルボン酸エステル金属塩の具体例としては、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩が挙げられる。
カルボン酸金属塩ポリマーの具体例としては、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマーが挙げられる。
カルボン酸金属塩キレートの具体例としては、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレートが挙げられる。
Specific examples of the carboxylic acid ester metal salt include dioctyltin bisoctylthioglycolate ester salt and dioctyltin maleate ester salt.
Specific examples of the carboxylic acid metal salt polymer include dibutyltin maleate polymer and dimethyltin mercaptopropionate polymer.
Specific examples of the carboxylic acid metal salt chelate include dibutyltin bisacetylacetate and dioctyltin bisacetyllaurate.

チタン酸エステルの具体例としては、テトラブチルチタネート、テトラノニルチタネートが挙げられる。
チタン酸エステルキレート類の具体例としては、ビス(アセチルアセトニル)ジ−プロピルチタネートが挙げられる。
Specific examples of the titanate ester include tetrabutyl titanate and tetranonyl titanate.
Specific examples of titanate chelates include bis (acetylacetonyl) dipropyl titanate.

金平糖状の突起(11)が形成された基材14aの表面に反応液を塗布し、室温の空気中で反応させると、アルコキシシリル基と金平糖状の突起(11)が形成された基材14aの表面のヒドロキシル基とが縮合反応を起こし、下記の化1で示されるような構造を有するフッ化炭素基を含む撥水撥油防汚性薄膜15aを生成する。なお、酸素原子から延びた3本の単結合は金平糖状の突起(11)が形成された基材14aの表面のヒドロキシル基または隣接するシラン化合物のケイ素(Si)原子と結合しており、そのうち少なくとも1本は金平糖状の突起(11)が形成された基材14aの表面のヒドロキシル基と結合している。 When a reaction solution is applied to the surface of the base material 14a on which the confetti protrusions (11) are formed and reacted in air at room temperature, the base material 14a on which the alkoxysilyl groups and the confetti protrusions (11) are formed. The surface hydroxyl group undergoes a condensation reaction to produce a water- and oil-repellent and antifouling thin film 15a containing a fluorocarbon group having a structure as shown in Chemical Formula 1 below. The three single bonds extending from the oxygen atom are bonded to the hydroxyl group on the surface of the base material 14a on which the confetti-like projections (11) are formed or to the silicon (Si) atom of the adjacent silane compound, At least one is bonded to the hydroxyl group on the surface of the base material 14a on which the confetti-like protrusions (11) are formed.

アルコキシシリル基は、水分の存在下で分解するので、反応は相対湿度45%以下の空気中で行うことが好ましい。なお、縮合反応は、金平糖状の突起(11)が形成された基材14aの表面に付着した油脂分や水分により阻害されるので、金平糖状の突起(11)が形成された基材14aをよく洗浄して乾燥することにより、これらの不純物を予め除去しておくことが好ましい。
縮合触媒として上述の金属塩のいずれかを用いた場合、縮合反応の完了までに要する時間は2時間程度である。
Since the alkoxysilyl group decomposes in the presence of moisture, the reaction is preferably performed in air with a relative humidity of 45% or less. The condensation reaction is inhibited by the oil and fat adhering to the surface of the base material 14a on which the confetti-like projections (11) are formed, so that the base material 14a on which the confetti-like projections (11) are formed is removed. It is preferable to remove these impurities in advance by thoroughly washing and drying.
When any of the above metal salts is used as the condensation catalyst, the time required for completion of the condensation reaction is about 2 hours.

上述の金属塩の代わりに、ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として用いた場合、反応時間を1/2〜2/3程度まで短縮できる。 When one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are used as the condensation catalyst instead of the above metal salts, Time can be shortened to about 1/2 to 2/3.

あるいは、これらの化合物を助触媒として、上述の金属塩と混合(質量比1:9〜9:1の範囲で使用可能だが、1:1前後が好ましい)して用いると、反応時間をさらに短縮できる。 Alternatively, when these compounds are used as a co-catalyst and mixed with the above-described metal salt (mass ratio 1: 9 to 9: 1 can be used, preferably around 1: 1), the reaction time is further shortened. it can.

例えば、縮合触媒として、ジブチルスズオキサイドの代わりにケチミン化合物であるジャパンエポキシレジン社のH3を用い、その他の条件は同一にして処理を行うと、反応時間を1時間程度にまで短縮できる。 For example, when H3 from Japan Epoxy Resin Co., which is a ketimine compound, is used as the condensation catalyst instead of dibutyltin oxide and the other conditions are the same, the reaction time can be reduced to about 1 hour.

さらに、縮合触媒として、ジャパンエポキシレジン社のH3とジブチルスズビスアセチルアセトネートとの混合物(混合比は1:1)を用いると、その他の条件は同一にした場合、反応時間を20分程度に短縮できる。 Furthermore, using a mixture of H3 and dibutyltin bisacetylacetonate from Japan Epoxy Resin (mixing ratio is 1: 1) as the condensation catalyst, the reaction time is shortened to about 20 minutes when the other conditions are the same. it can.

なお、ここで用いることができるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等が挙げられる。 The ketimine compound that can be used here is not particularly limited, and examples thereof include 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza- 3,10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-penta Decadiene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza -4,19-trieicosadiene and the like.

また、用いることができる有機酸も特に限定されるものではないが、例えば、ギ酸、酢酸、プロピオン酸、酪酸、マロン酸等が挙げられる。 The organic acid that can be used is not particularly limited, and examples thereof include formic acid, acetic acid, propionic acid, butyric acid, and malonic acid.

反応液の調製には、有機塩素系溶媒、炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒、およびこれらの混合溶媒を用いることができる。アルコキシシラン化合物の加水分解を防止するために、乾燥剤または蒸留により使用する溶媒から水分を除去しておくことが好ましい。また、溶媒の沸点は50〜250℃であることが好ましい。 For the preparation of the reaction solution, an organic chlorine solvent, a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, and a mixed solvent thereof can be used. In order to prevent hydrolysis of the alkoxysilane compound, it is preferable to remove water from the desiccant or the solvent used by distillation. Moreover, it is preferable that the boiling point of a solvent is 50-250 degreeC.

具体的に使用可能な溶媒としては、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれらの混合物を用いることもできる。
Specific usable solvents include non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, and alkyl-modified silicone. , Polyether silicone, dimethylformamide and the like.
Furthermore, alcohol solvents such as methanol, ethanol, propanol, or a mixture thereof can also be used.

また、用いることができるフッ化炭素系溶媒としては、フロン系溶媒、フロリナート(米国3M社製)、アフルード(旭硝子株式会社製)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、ジクロロメタン、クロロホルム等の有機塩素系溶媒を添加してもよい。 Fluorocarbon solvents that can be used include fluorocarbon solvents, Fluorinert (manufactured by 3M, USA), Afludo (manufactured by Asahi Glass Co., Ltd.), and the like. In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Furthermore, an organic chlorine solvent such as dichloromethane or chloroform may be added.

反応液におけるアルコキシシラン化合物の好ましい濃度は、0.5〜3質量%である。 The preferable density | concentration of the alkoxysilane compound in a reaction liquid is 0.5-3 mass%.

反応後、溶媒で洗浄し、未反応物として表面に残った過剰なアルコキシシラン化合物および縮合触媒を除去すると、撥水撥油防汚性薄膜15aで表面が覆われた超撥水撥油性熱交換部材10が得られる。 After the reaction, the substrate is washed with a solvent to remove excess alkoxysilane compound and condensation catalyst remaining on the surface as unreacted materials, and then the surface is covered with a water / oil / oil / oil repellent thin film 15a. The member 10 is obtained.

洗浄溶媒としては、アルコキシシラン化合物を溶解できる任意の溶媒を用いることができるが、安価であり、溶解性が高く、風乾により容易に除去することのできるジクロロメタン、クロロホルム、N−メチルピロリドン等が好ましい。 As the cleaning solvent, any solvent that can dissolve the alkoxysilane compound can be used, but dichloromethane, chloroform, N-methylpyrrolidone, etc. that are inexpensive, have high solubility, and can be easily removed by air drying are preferable. .

反応後、余分な反応液を溶媒で洗浄除去せずに空気中に放置すると、表面に残ったアルコキシシラン化合物の一部が空気中の水分により加水分解を受け、生成したシラノール基がアルコキシシリル基と縮合反応を起こす。その結果、超撥水撥油性熱交換部材10の表面にポリシロキサンよりなる極薄のポリマー膜が形成される。このポリマー膜は、超撥水撥油性熱交換部材10の表面に共有結合により固定されていないが、フッ化炭素基を有しているため撥水撥油防汚性を有している。そのため、多少耐久性に劣る点を除けば、このままの状態でも超撥水撥油性熱交換部材10として使用できる。 After the reaction, if the excess reaction solution is left in the air without being washed away with a solvent, a part of the alkoxysilane compound remaining on the surface is hydrolyzed by moisture in the air, and the generated silanol group becomes an alkoxysilyl group. Causes a condensation reaction. As a result, an ultrathin polymer film made of polysiloxane is formed on the surface of the super water / oil repellent heat exchange member 10. This polymer film is not fixed to the surface of the super water / oil repellent heat exchange member 10 by a covalent bond, but has water and oil repellent / antifouling properties because it has a fluorocarbon group. Therefore, it can be used as the super water / oil repellent heat exchange member 10 in this state as long as the durability is somewhat inferior.

本実施の形態においては、アルコキシシラン化合物を用いた場合について説明したが、フッ化炭素基を有するハロシラン化合物を用いてもよい。ハロシラン化合物を用いる場合には、縮合触媒および助触媒が不要であること、アルコール系溶媒が使用できないこと、アルコキシシラン化合物より加水分解を受けやすいので、乾燥溶媒を用い、乾燥空気中(相対湿度30%以下)で反応を行うことを除き、アルコキシシラン化合物と同様に反応液の調製および金平糖状の突起(11)が形成された基材14aとの反応を行うことができる。 Although the case where an alkoxysilane compound is used has been described in this embodiment mode, a halosilane compound having a fluorocarbon group may be used. When a halosilane compound is used, a condensation catalyst and a cocatalyst are not required, an alcohol solvent cannot be used, and it is more susceptible to hydrolysis than an alkoxysilane compound. The reaction solution can be prepared and the reaction with the base material 14a on which the confetti-like protrusions (11) are formed can be performed in the same manner as the alkoxysilane compound.

単分子膜状の撥水撥油防汚性薄膜15aの膜厚は高々1nm程度であるため、金平糖状の突起(11)が形成された基材14aの表面に形成された5〜50nm程度の凸凹はほとんど損なわれることがない。また、この凸凹の効果(いわゆる「蓮の葉効果」)により、超撥水撥油性熱交換部材10の見かけ上の表面エネルギーを小さくでき、水滴接触角は、140°以上(本実施の形態では150°程度)となり、超撥水が実現できる。 Since the film thickness of the monomolecular water-repellent / oil-repellent antifouling thin film 15a is about 1 nm at most, it is about 5 to 50 nm formed on the surface of the base material 14a on which the confetti-like projections (11) are formed. The unevenness is hardly damaged. In addition, due to this unevenness effect (so-called “lotus leaf effect”), the apparent surface energy of the super water / oil repellent heat exchange member 10 can be reduced, and the water droplet contact angle is 140 ° or more (in this embodiment). About 150 °) and super water-repellent properties can be realized.

また、工程Dにおいて用いることができるフッ化炭素基を含むハロシラン化合物としては、下記(21)〜(26)に示す化合物が挙げられる。また、下記(27)〜(32)に示すイソシアネートシラン化合物を用いることもできる。 Moreover, as a halosilane compound containing the fluorocarbon group which can be used in the process D, the compound shown to following (21)-(26) is mentioned. Moreover, the isocyanate silane compound shown to following (27)-(32) can also be used.

(21)CFCHO(CH15SiCl
(22)CF(CHSi(CH(CH15SiCl
(23)CF(CF(CHSi(CH(CHSiCl
(24)CF(CF(CHSi(CH(CHSiCl
(25)CFCOO(CH15SiCl
(26)CF(CF(CHSiCl
(27)CFCHO(CH15Si(NCO)
(28)CF(CHSi(CH(CH15Si(NCO)
(29)CF(CF(CHSi(CH(CHSi(NCO)
(30)CF(CF(CHSi(CH(CHSi(NCO)
(31)CFCOO(CH15Si(NCO)
(32)CF(CF(CHSi(NCO)
(21) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(25) CF 3 COO (CH 2 ) 15 SiCl 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
(27) CF 3 CH 2 O (CH 2 ) 15 Si (NCO) 3
(28) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (NCO) 3
(29) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(30) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (NCO) 3
(31) CF 3 COO (CH 2 ) 15 Si (NCO) 3
(32) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (NCO) 3

超撥水撥油性熱交換部材10は、150度程度の水滴接触角を有している。種々の体積の水滴(0.02〜0.08mL)を用いた検討結果より、水滴接触角が150度以上のとき、水滴の体積に関係なく転落角は15度以下となることを確認している。そのため、超撥水撥油性熱交換部材10を乗り物や建築物の窓ガラス板として用いた場合、ほとんどの水滴は表面にとどまることができずに転落する。 The super water / oil repellent heat exchange member 10 has a water droplet contact angle of about 150 degrees. From the study results using various volumes of water droplets (0.02 to 0.08 mL), it was confirmed that when the water droplet contact angle is 150 degrees or more, the falling angle is 15 degrees or less regardless of the volume of the water droplet. Yes. Therefore, when the super water / oil repellent heat exchange member 10 is used as a window glass plate for a vehicle or a building, most water droplets cannot fall on the surface and fall down.

超撥水撥油性熱交換部材10、100は、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性)、ならびに防汚性に優れており、撥水撥油防汚機能が要求される熱交換器の熱交換部材として用いることができる。超撥水撥油性熱交換部材10、100を用いることのできる熱交換器としては、自動車、鉄道車両、船舶、航空機等の空冷エンジン用冷却フィンまたは水冷エンジン用ラジエータ、ルームエアコン等の空調機器用熱交換器、家庭用または業務用冷蔵庫または冷凍庫用熱交換器、除湿器用熱交換器等が挙げられる。特に、埃等の汚染物質が付着しやすく、結露による通風抵抗の増大や結露性能の低下を起こしやすい冷房機器や冷蔵庫または冷凍庫等の吸熱器や除湿器用の吸熱器に超撥水撥油性熱交換部材10、100を適用すると、水滴接触角が大きいため、結露水が水滴となって表面から容易に脱落する。したがって、結露による通風抵抗の増大や、結露性能の低下による除湿効率の低下等を大幅に低減できる。 The super water and oil repellent heat exchange members 10 and 100 are excellent in durability such as abrasion resistance and weather resistance, water droplet water separation (slidability), and antifouling properties, and require water and oil repellent and antifouling functions. It can be used as a heat exchange member of a heat exchanger. Heat exchangers that can use the super water / oil repellent heat exchange members 10 and 100 include cooling fins for air-cooled engines such as automobiles, railway vehicles, ships, and airplanes, radiators for water-cooled engines, and air conditioners such as room air conditioners. Examples include heat exchangers, household or commercial refrigerators or freezer heat exchangers, and dehumidifier heat exchangers. In particular, super-water / oil-repellent heat exchange for heat sinks and dehumidifiers for air conditioners, refrigerators, and freezers, which are likely to be contaminated with contaminants such as dust, increase airflow resistance due to condensation, and reduce condensation performance. When the members 10 and 100 are applied, since the water droplet contact angle is large, the dew condensation water becomes water droplets and easily falls off the surface. Therefore, an increase in ventilation resistance due to condensation and a decrease in dehumidification efficiency due to a decrease in condensation performance can be greatly reduced.

次に、本発明の作用効果を確認するために行った実施例について説明する。これらの実施例は単なる例示であり、本発明の範囲を限定するものではない。
実施例1:超撥水撥油性熱交換部材の製造(1)
[1]基材表面への中核となるシリカ微粒子の融着
テトラメトキシシランのメタノール溶液に微量の水およびリン酸を加えて作製したゾル−ゲル溶液(シリカ濃度2%)を、アルミニウム板の表面に塗布後乾燥し、数ナノメートル程度の膜厚を有するシリカ被膜を形成した。平均直径が約130nmのシリカ微粒子をエタノールに分散後、シリカ被膜の全面に塗布後、エタノールを蒸発させ、更に600℃で30分焼結した、その後、表面に融着しなかったシリカ微粒子を洗浄除去した。
Next, examples carried out for confirming the effects of the present invention will be described. These examples are illustrative only and are not intended to limit the scope of the invention.
Example 1: Production of super water / oil repellent heat exchange member (1)
[1] Fusion of silica fine particles as a core to the substrate surface A sol-gel solution (silica concentration 2%) prepared by adding a trace amount of water and phosphoric acid to a methanolic solution of tetramethoxysilane is applied to the surface of the aluminum plate. After coating, the film was dried to form a silica film having a film thickness of about several nanometers. Silica fine particles having an average diameter of about 130 nm are dispersed in ethanol, applied to the entire surface of the silica coating, ethanol is evaporated, and further sintered at 600 ° C. for 30 minutes, and then the silica fine particles not fused to the surface are washed. Removed.

このとき、上記のゾル−ゲル溶液にリン酸またはホウ酸を固形分にして5%程度添加しておくと、シリカ被膜の融点を450℃程度まで低減できるので、500〜600℃で30分程度の焼結温度でシリカ微粒子を十分融着できた。また、この加熱条件では、融着複合微粒子に由来する凸凹を損なうことはなかった。 At this time, if phosphoric acid or boric acid is added to the above sol-gel solution in a solid content of about 5%, the melting point of the silica coating can be reduced to about 450 ° C., so about 500 minutes at 500 to 600 ° C. The silica fine particles could be sufficiently fused at the sintering temperature. Further, the unevenness derived from the fused composite fine particles was not impaired under these heating conditions.

[2]大気圧プラズマによる第2の突起形成
ビス(2−メトキシ−6−メチル−3,5−ヘプタンジオナート)亜鉛((Zn(MOPD)2(C18H30O6Zn)、宇部興産製)を亜鉛源とし、ヘリウムをプラズマガスとする大気圧プラズマ法(により、シリカ微粒子を融着したアルミニウム板の表面に酸化亜鉛からなるタケノコ状の突起を形成した(図4参照)。なお、ここで、大気圧プラズマ法の条件は下記のとおりであった。
気化器温度 100℃
基板温度 210℃
プラズマHeガス流量 1400ccm
キャリアHeガス流量 250ccm
全Heガス流量 1650ccm
酸素流量 50ccm
ギャップ(カソード電極と基板との隙間) 0.5mm
電源 高周波パルス電源
印加電圧 1kV
周波数 20kHz
ステージ移動速度 1mm/s(20mm間の往復運動)
成膜時間 180min
[2] Second protrusion-forming bis (2-methoxy-6-methyl-3,5-heptanedionate) zinc ((Zn (MOPD) 2 (C 18 H 30 O 6 Zn), Ube Industries) by atmospheric pressure plasma Bamboo-like protrusions made of zinc oxide were formed on the surface of an aluminum plate fused with silica fine particles (by means of atmospheric pressure plasma method using helium as a plasma gas) (see FIG. 4). Here, the conditions of the atmospheric pressure plasma method were as follows.
Vaporizer temperature 100 ° C
Substrate temperature 210 ° C
Plasma He gas flow rate 1400ccm
Carrier He gas flow rate 250ccm
Total He gas flow 1650ccm
Oxygen flow rate 50ccm
Gap (gap between cathode electrode and substrate) 0.5mm
Power supply High frequency pulse power supply Applied voltage 1kV
Frequency 20kHz
Stage moving speed 1mm / s (reciprocating motion between 20mm)
Deposition time 180min

[3]撥水撥油防汚性被膜の形成
99重量部のヘプタデカフルオロデシルトリメトキシシランCF(CF(CHSi(OCH、1重量部のジブチルスズジアセチルアセトナート(縮合触媒)をそれぞれ秤量後、ヘキサメチルジシロキサンに溶解し、濃度1重量%程度の反応液を作製した。融着複合微粒子が融着した基材の表面に反応液を塗布し、室温で反応させた。このとき、融着複合微粒子ならびにシリカ被膜の表面にはヒドロキシル基が多数含まれているので、ヘプタデカフルオロデシルトリメトキシシラン−Si(OCH)基とヒドロキシル基が、縮合触媒の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記化学式(化2)に示したような結合を形成し、フッ化炭素基を含む撥水撥油防汚性薄膜が表面と化学結合した状態で約1ナノメートル程度の膜厚で形成された。
[3] Formation of water / oil / oil repellent antifouling film 99 parts by weight of heptadecafluorodecyltrimethoxysilane CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 , 1 part by weight of dibutyltin diacetylacetate After each weighed the natto (condensation catalyst), it was dissolved in hexamethyldisiloxane to prepare a reaction solution having a concentration of about 1% by weight. The reaction solution was applied to the surface of the base material to which the fused composite fine particles were fused, and reacted at room temperature. At this time, since the surface of the fused composite fine particles and the silica coating contains a large number of hydroxyl groups, the heptadecafluorodecyltrimethoxysilane-Si (OCH 3 ) group and the hydroxyl group are removed in the presence of the condensation catalyst. Alcohol (in this case, de-CH 3 OH) reacts to form a bond as shown in the following chemical formula (Chemical Formula 2), and the water- and oil-repellent and antifouling thin film containing a fluorocarbon group is chemically bonded to the surface. The film was formed in a thickness of about 1 nanometer.

その後、ジクロロメタンで余分な反応液を洗浄除去すると、表面全面に亘り表面と化学結合したフッ化炭素基を含む撥水撥油防汚性薄膜(単分子膜)で被われた、撥水撥油防汚性を有する超撥水撥油性熱交換部材を製造できた。このようにして得られた超撥水撥油性熱交換部材の表面の走査型電子顕微鏡(SEM)写真を図4に示す。なお、図4中、「Sample A」および「Sample B」は、同一の超撥水撥油性熱交換部材について、それぞれ異なる撮影角度から撮影した写真である。融着複合微粒子がそれぞれ基材および第1のシリカ微粒子の表面に融着したことにより、表面に複雑な凹凸が形成されており、後述するように、平坦な基材の表面に撥水撥油防汚性薄膜を形成した場合の水滴接触角110度程度に比べて、撥水性、撥油性および防汚性に優れた水滴接触角160±4度を実現出来ることが確認された。 After that, the excess reaction solution is washed and removed with dichloromethane, and then the water and oil repellent, covered with a water and oil repellent and antifouling thin film (monomolecular film) containing fluorocarbon groups chemically bonded to the surface over the entire surface. A super-water / oil-repellent heat exchange member having antifouling properties could be produced. FIG. 4 shows a scanning electron microscope (SEM) photograph of the surface of the super water / oil repellent heat exchange member thus obtained. In FIG. 4, “Sample A” and “Sample B” are photographs taken from different photographing angles for the same super water / oil repellent heat exchange member. As the fused composite fine particles are fused to the surface of the base material and the first silica fine particles, respectively, complex irregularities are formed on the surface. As will be described later, the surface of the flat base material is water and oil repellent. It was confirmed that a water droplet contact angle of 160 ± 4 degrees excellent in water repellency, oil repellency and antifouling property can be realized as compared with a water droplet contact angle of about 110 degrees when the antifouling thin film is formed.

なお、シリカ微粒子の融着の際の焼成温度は、250℃以上かつ基材の軟化温度未満であれば高いほど微粒子を強固にガラス表面に融着できるが、あまり高すぎるとシリカ被膜中または基材の内部までシリカ微粒子が埋没してしまった。したがって、加熱温度は、基材の軟化度程度またはそれ以下でなくてはならない。 Note that the higher the firing temperature at the time of fusion of the silica fine particles is 250 ° C. or more and lower than the softening temperature of the substrate, the stronger the fine particles can be fused to the glass surface. Silica fine particles have been buried inside the material. Therefore, the heating temperature must be about the softening degree of the substrate or less.

一方、このとき、形成された微粒子表面の撥水撥油防汚性薄膜は、シリカ微粒子の表面エネルギーを小さくする作用があり、フラクタル構造を有する凸凹と併せて、基材表面の見かけ上の表面エネルギーを大きく低減できる作用がある。実際に水滴接触角を測定したところ、多少のバラツキは観測されたものの、接触角は160°程度であり、臨界表面エネルギーも1〜3mN/m程度であった。 On the other hand, at this time, the formed water- and oil-repellent and antifouling thin film on the surface of the fine particles has the effect of reducing the surface energy of the silica fine particles, and the apparent surface of the substrate surface along with the unevenness having a fractal structure. It has the effect of greatly reducing energy. When the water drop contact angle was actually measured, although some variation was observed, the contact angle was about 160 ° and the critical surface energy was about 1 to 3 mN / m.

[4]撥水性能の評価
このようにして得られた超撥水撥油性を有するアルミニウム板をペルチェ素子(12V用、4cm×4cm、3.82mm厚)に装着し、ペルチェ素子に通電してヒートシンクを冷却し、結露試験(室温の大気中、相対湿度55%)を行った。その結果、結露した水滴はシートシンクの表面になじむことなく、球状になり、ファンで通風したりヒートシンクを傾けることにより容易に表面から脱落した。
[4] Evaluation of water repellency performance The aluminum plate having super water and oil repellency obtained in this way is mounted on a Peltier element (for 12V, 4 cm x 4 cm, 3.82 mm thickness), and the Peltier element is energized. The heat sink was cooled, and a dew condensation test (in air at room temperature, relative humidity 55%) was performed. As a result, the condensed water droplets became spherical without conforming to the surface of the sheet sink, and easily dropped off the surface by ventilating with a fan or tilting the heat sink.

実施例2:超撥水撥油性熱交換部材の製造(2)
金平糖状の突起の中核となる微粒子として直径の異なる2種類のシリカ微粒子(平均直径50nmのシリカ微粒子と平均直径10nmのシリカ微粒子を1:10程度に混合して用いた。)を用いる以外は実施例1と同様に、アルミニウム板の表面に金平糖状の突起を形成した。その後、金平糖状の突起を形成した表面に、フッ化炭素基を含む撥水撥油防汚性薄膜を形成すると、表面近傍断面がフラクタル構造で、撥水撥油効果が高い(水滴接触角で158度)膜で覆われたアルミニウム板を製造できた。実施例1と同様にペルチェ素子による冷却試験を行い、実施例1の場合と同様の撥水性能を示すことを確認した。
Example 2: Production of super water / oil repellent heat exchange member (2)
Implementation was performed except that two types of silica fine particles having different diameters (silica fine particles having an average diameter of 50 nm and silica fine particles having an average diameter of 10 nm were mixed and used in a ratio of about 1:10) were used as the fine particles serving as the core of the confetti-like protrusions. In the same manner as in Example 1, confetti-like protrusions were formed on the surface of the aluminum plate. After that, when a water- and oil-repellent and antifouling thin film containing a fluorocarbon group is formed on the surface on which the confetti-like protrusions are formed, the cross section near the surface has a fractal structure and a high water and oil repellent effect (with a water droplet contact angle). An aluminum plate covered with a film (158 degrees) could be produced. A cooling test using a Peltier device was performed in the same manner as in Example 1, and it was confirmed that the same water repellency performance as in Example 1 was exhibited.

実施例3:超撥水撥油性熱交換部材の製造(3)
実施例1と同様の方法を用いて撥水撥油防汚性反射防止膜を形成した除湿器用吸熱フィンを製造し、除湿器に取り付けて試験を行った。長時間にわたり大気中の相対湿度の数値がほぼ一定に保たれることから、結露水の吸熱フィン表面への滞留による結露性能の顕著な低下は確認されなかった。
Example 3 Production of Super Water / Oil Repellent Heat Exchange Member (3)
Using the same method as in Example 1, a heat absorbing fin for a dehumidifier having a water / oil repellent / antifouling antireflective coating formed thereon was produced and attached to the dehumidifier for testing. Since the numerical value of the relative humidity in the atmosphere was kept almost constant for a long time, no significant decrease in the dew condensation performance due to the retention of the dew condensation water on the endothermic fin surface was confirmed.

10 超撥水撥油性熱交換部材
11 金平糖状の突起
12 半球状の突起
13 タケノコ状の突起
14 基材
14a 金平糖状の突起が形成された基材
14b 中核となる微粒子を融着させた基材
15 表面反応基とフッ化炭素基とを有する化合物
15a 撥水撥油防汚性薄膜
16 中核となる微粒子
16a 基材に融着した中核となる微粒子
DESCRIPTION OF SYMBOLS 10 Super water- and oil-repellent heat exchange member 11 Kinpe sugar-like protrusion 12 Hemispherical protrusion 13 Bamboo-like protrusion 14 Base material 14a Base material 14b with gold-peel-like protrusion formed Base material in which core fine particles are fused 15 Compound having surface reactive group and fluorocarbon group 15a Water- and oil-repellent and antifouling thin film 16 Core fine particle 16a Core fine particle fused to base material

Claims (22)

表面に複数の金平糖状の突起を有する基材と、
前記突起を有する基材の表面の少なくとも一部に結合した撥水撥油防汚性薄膜とを有し、
前記金平糖状の突起が、中核となる微粒子よりなる略半球状の第1の突起と、前記第1の突起の表面に形成され、前記第1の突起の直径よりも底面の直径が小さな複数の円錐状またはタケノコ状の第2の突起で構成されていることを特徴とする超撥水撥油性熱交換部材。
A substrate having a plurality of confetti-like protrusions on the surface;
A water- and oil-repellent and antifouling thin film bonded to at least a part of the surface of the substrate having the protrusions;
The confetti-shaped projections are formed on a substantially hemispherical first projection comprising fine particles as a core and on the surface of the first projection, and a plurality of bottom diameters smaller than the diameter of the first projection. A super-water / oil-repellent heat exchange member characterized by comprising a conical or bamboo shoot-like second protrusion.
球状または略球状の中核となる微粒子を前記基材の表面に融着させ、あるいはバインダを介して結合させることにより前記第1の突起が形成されていることを特徴とする請求項1記載の超撥水撥油性熱交換部材。 2. The ultrathin shape according to claim 1, wherein the first protrusion is formed by fusing a fine particle serving as a spherical or substantially spherical core to the surface of the base material or bonding the fine particle through a binder. Water / oil repellent heat exchange member. 前記中核となる微粒子の直径が30nm〜10μmであり、
前記第2の突起の高さが10〜300nmであることを特徴とする請求項2記載の超撥水撥油性熱交換部材。
The diameter of the core fine particles is 30 nm to 10 μm,
The super water / oil repellent heat exchange member according to claim 2, wherein the height of the second protrusion is 10 to 300 nm.
前記第2の突起の高さが、前記第1の突起の高さの1/10以上1/2以下であることを特徴とする請求項1から3記載の超撥水撥油性熱交換部材。 4. The super water / oil repellent heat exchange member according to claim 1, wherein the height of the second protrusion is 1/10 or more and 1/2 or less of the height of the first protrusion. 5. 前記第2の突起が、酸化亜鉛からなることを特徴とする請求項1から4のいずれか1項記載の超撥水撥油性熱交換部材。 The super water / oil repellent heat exchange member according to claim 1, wherein the second protrusion is made of zinc oxide. 前記中核となる微粒子が、ガラス、シリカ、アルミナおよびジルコニアからなる群より選択される材質からなるものであることを特徴とする請求項1から5のいずれか1項記載の超撥水撥油性熱交換部材。 The super-water / oil-repellent heat according to any one of claims 1 to 5, wherein the core fine particles are made of a material selected from the group consisting of glass, silica, alumina, and zirconia. Replacement member. 前記撥水撥油防汚性薄膜が単分子膜であることを特徴とする請求項1から6のいずれか1項記載の超撥水撥油性熱交換部材。 The super water / oil repellent heat exchange member according to any one of claims 1 to 6, wherein the water / oil repellent / antifouling thin film is a monomolecular film. 表面の臨界表面エネルギーが1mN/m以上3mN/m以下であることを特徴とする請求項1から7のいずれか1項記載の超撥水撥油性熱交換部材。 The super-water / oil-repellent heat exchange member according to any one of claims 1 to 7, wherein the surface has a critical surface energy of 1 mN / m or more and 3 mN / m or less. 溶媒に分散させた球状または略球状の中核となる中核となる微粒子を基材の表面に散布する工程Aと、
前記中核となる中核となる微粒子が散布された前記基材を加熱して、前記基材の表面に前記中核となる中核となる微粒子を結合固定または融着させ、略半球状の第1の突起を形成する工程Bと、
前記第1の突起の表面に、該第1の突起の直径よりも底面の直径の小さな複数の円錐状またはタケノコ状の第2の突起を形成する工程Cと、
前記第1および第2の突起とから構成される金平糖状の突起が形成された前記基材の表面に撥水撥油防汚性薄膜を形成する工程Dとを有することを特徴とする超撥水撥油性熱交換部材の製造方法。
A step A of dispersing fine particles, which are the cores of spherical or substantially spherical cores dispersed in a solvent, onto the surface of the substrate;
The base material on which the core particles serving as the core are dispersed is heated so that the core particles serving as the core are bonded and fixed or fused to the surface of the substrate to form a substantially hemispherical first protrusion. Forming step B;
Forming a plurality of conical or bamboo shoot-like second protrusions having a bottom diameter smaller than the diameter of the first protrusion on the surface of the first protrusion; and
And a step D of forming a water- and oil-repellent and antifouling thin film on the surface of the base material on which the confetti-like projections composed of the first and second projections are formed. A method for producing a water / oil repellent heat exchange member.
前記金平糖状の突起の高さが30〜300nmであることを特徴とする請求項9記載の超撥水撥油性熱交換部材の製造方法。 The method for producing a super-water / oil-repellent heat exchange member according to claim 9, wherein the height of the confetti-like protrusion is 30 to 300 nm. 前記中核となる微粒子の直径が30nm〜10μmであり、前記第2の突起の高さが10〜300nmであることを特徴とする請求項10記載の超撥水撥油性熱交換部材の製造方法。 11. The method for producing a super water / oil repellent heat exchange member according to claim 10, wherein the core fine particles have a diameter of 30 nm to 10 μm, and the second protrusions have a height of 10 to 300 nm. 前記工程Bにおいて、前記分散液を塗布後の前記基材を、該基材の軟化点以上で前記中核となる微粒子の融点以下で加熱し、前記基材の表面に前記中核となる微粒子を融着することを特徴とする請求項9から11のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 In the step B, the base material after the dispersion is applied is heated at a temperature equal to or higher than the softening point of the base material and below the melting point of the core fine particles, and the core fine particles are melted on the surface of the base material. The method for producing a super water / oil repellent heat exchange member according to claim 9, wherein the heat exchange member is worn. 前記分散液が、溶媒の蒸発および/またはその後の化学反応によりバインダを生成するバインダ前駆体を含み、前記工程Bにおいて、前記バインダを介して前記基材の表面に前記中核となる微粒子を結合固定または融着することを特徴とする請求項9から12のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 The dispersion contains a binder precursor that generates a binder by evaporation of the solvent and / or subsequent chemical reaction, and in the step B, the core fine particles are bonded and fixed to the surface of the base material via the binder. The method for producing a super water / oil repellent heat exchange member according to claim 9, wherein the heat exchange member is fused. 前記バインダ前駆体が、ゾル−ゲル法により金属酸化物を形成する金属ゾル前駆体であることを特徴とする請求項13記載の超撥水撥油性熱交換部材の製造方法。 The method for producing a super water / oil repellent heat exchange member according to claim 13, wherein the binder precursor is a metal sol precursor that forms a metal oxide by a sol-gel method. 前記工程Bの後で、結合固定または融着されなかった前記中核となる微粒子を洗浄除去することを特徴とする請求項9から14のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 The super water / oil repellent heat exchange member according to any one of claims 9 to 14, wherein after the step B, the core fine particles which have not been fixed or fused are washed and removed. Production method. 前記工程Bにおいて、前記基材の表面に付着、結合固定または融着された前記中核となる微粒子の表面に、大気圧プラズマ法を用いて酸化亜鉛からなる前記突起を形成することを特徴とする請求項9から15のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 In the step B, the projections made of zinc oxide are formed on the surface of the core fine particles adhered, bonded, or fused to the surface of the base material using an atmospheric pressure plasma method. The method for producing a super water / oil repellent heat exchange member according to any one of claims 9 to 15. 前記工程Dにおいて、前記基材および前記金平糖状の突起の表面官能基と反応して結合を形成する反応基とフッ化炭素基またはジメチルシリル基とを有する化合物を含む反応液を、前記第1および第2の突起が形成された前記基材の表面に接触させ、前記表面官能基と前記反応基との反応により形成された結合を介して該表面に結合固定された前記化合物の被膜を形成することを特徴とする請求項9から16のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 In the step D, a reaction solution containing a compound having a reactive group that reacts with a surface functional group of the base material and the confetti-like protrusion to form a bond and a fluorocarbon group or a dimethylsilyl group is used. And a surface of the base material on which the second protrusion is formed, and a film of the compound bonded and fixed to the surface is formed through a bond formed by a reaction between the surface functional group and the reactive group The method for producing a super water- and oil-repellent heat exchange member according to any one of claims 9 to 16. 前記反応基がアルコキシシリル基であり、前記反応液が、
(1)カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステルおよびチタン酸エステルキレートからなる群から選択される1または2以上の化合物、および/または
(2)ケチミン化合物、有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、およびアミノアルキルアルコキシシラン化合物からなる群より選択される1または2以上の化合物を縮合触媒として含むことを特徴とする請求項17記載の超撥水撥油性熱交換部材の製造方法。
The reactive group is an alkoxysilyl group, and the reaction solution is
(1) one or more compounds selected from the group consisting of carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters and titanate ester chelates, and / or Or (2) one or more compounds selected from the group consisting of ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds as a condensation catalyst. 18. A method for producing a super water / oil repellent heat exchange member according to item 17.
前記工程Cの後で、余分な前記反応液を洗浄除去することを特徴とする請求項17または18記載の超撥水撥油性熱交換部材の製造方法。 19. The method for producing a super water / oil / oil repellent heat exchange member according to claim 17 or 18, wherein after the step C, the excess reaction solution is washed away. 前記工程Bの前に前記工程Cを行うことを特徴とする請求項9から19のいずれか1項記載の超撥水撥油性熱交換部材の製造方法。 The method for producing a super water / oil repellent heat exchange member according to any one of claims 9 to 19, wherein the step C is performed before the step B. 請求項1から8のいずれか1項記載の超撥水撥油性熱交換部材を有する熱交換器。 A heat exchanger comprising the super water / oil repellent heat exchange member according to claim 1. 吸熱器であることを特徴とする請求項21記載の熱交換器。 The heat exchanger according to claim 21, wherein the heat exchanger is a heat absorber.
JP2011233800A 2011-10-25 2011-10-25 Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them Pending JP2013092289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011233800A JP2013092289A (en) 2011-10-25 2011-10-25 Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011233800A JP2013092289A (en) 2011-10-25 2011-10-25 Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them

Publications (1)

Publication Number Publication Date
JP2013092289A true JP2013092289A (en) 2013-05-16

Family

ID=48615554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011233800A Pending JP2013092289A (en) 2011-10-25 2011-10-25 Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them

Country Status (1)

Country Link
JP (1) JP2013092289A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182553A1 (en) * 2014-05-28 2015-12-03 京セラ株式会社 Flow channel member, and heat exchanger and semiconductor module each using same
JP2017001363A (en) * 2015-06-16 2017-01-05 日産自動車株式会社 Antifouling structure and method for producing the same
US20200088432A1 (en) * 2017-03-31 2020-03-19 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN110915689A (en) * 2018-09-19 2020-03-27 Lg电子株式会社 Liquid dispenser for animals
WO2021054247A1 (en) * 2019-09-20 2021-03-25 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner, and refrigerator
CN114543254A (en) * 2020-11-24 2022-05-27 广东美的制冷设备有限公司 Self-cleaning control method of air conditioner, air conditioner and storage medium
CN115109447A (en) * 2022-05-27 2022-09-27 北京信息科技大学 Preparation method of super-hydrophobic coating

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015182553A1 (en) * 2014-05-28 2017-04-20 京セラ株式会社 Channel member, heat exchanger using the same, and semiconductor module
WO2015182553A1 (en) * 2014-05-28 2015-12-03 京セラ株式会社 Flow channel member, and heat exchanger and semiconductor module each using same
JP2017001363A (en) * 2015-06-16 2017-01-05 日産自動車株式会社 Antifouling structure and method for producing the same
US20200088432A1 (en) * 2017-03-31 2020-03-19 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11828477B2 (en) * 2017-03-31 2023-11-28 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN110915689B (en) * 2018-09-19 2022-06-07 Lg电子株式会社 Liquid dispenser for animals
CN110915689A (en) * 2018-09-19 2020-03-27 Lg电子株式会社 Liquid dispenser for animals
JPWO2021054247A1 (en) * 2019-09-20 2021-03-25
JP7373227B2 (en) 2019-09-20 2023-11-02 株式会社 山一ハガネ Heat exchanger parts, heat exchangers, indoor units for air conditioners, outdoor units for air conditioners, and refrigerators
WO2021054247A1 (en) * 2019-09-20 2021-03-25 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner, and refrigerator
CN114543254A (en) * 2020-11-24 2022-05-27 广东美的制冷设备有限公司 Self-cleaning control method of air conditioner, air conditioner and storage medium
CN114543254B (en) * 2020-11-24 2023-11-28 广东美的制冷设备有限公司 Self-cleaning control method of air conditioner, air conditioner and storage medium
CN115109447A (en) * 2022-05-27 2022-09-27 北京信息科技大学 Preparation method of super-hydrophobic coating

Similar Documents

Publication Publication Date Title
JP2013092289A (en) Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them
JP5347124B2 (en) Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5716679B2 (en) Water-repellent substrate and method for producing the same
JP4670057B2 (en) Method for producing water and oil repellent antifouling glass plate
JP4385052B2 (en) Organic thin film formation method
JP5572803B2 (en) Water repellent and oil repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization apparatus and optical instrument
TWI664077B (en) Hydrophobic article
JP5677144B2 (en) Water repellent member, manufacturing method thereof, and air conditioner outdoor unit
JPWO2010007956A1 (en) Water-repellent substrate and method for producing the same
WO2016051750A1 (en) Low reflection coating, glass plate, glass substrate and photoelectric conversion device
EP1484105B1 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film for use therein
JP2017160117A (en) Silica particle and method for producing the same, photocatalyst forming composition, photocatalyst, and structure
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
US9160053B2 (en) Icing and snow accretion preventive insulator, electric wire, and antenna, method for manufacturing them, and transmission line tower using them
JP5347123B2 (en) Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same
WO2016010080A1 (en) Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
JP2013133264A (en) Water-repellent substrate, method for producing the same, and transportation apparatus
JP2013092288A (en) Super-hydrophobic and oleophobic heat exchanger member, method for manufacturing the same, and heat exchanger manufactured by using them
JP2012220898A (en) Wear-resistant, ultra-water-repellent, oil-repellent, antifouling, and light-transmissive film, method for manufacturing the same, and glass window, solar energy utilization device, optical device, and display device using the same
JP5821567B2 (en) Surface treatment method
JPWO2005030664A1 (en) Functional glass article and manufacturing method thereof
JP2008246959A (en) Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate
JP2012219003A (en) Wear-resistant water-ultrarepellent, oil-repellent antifouling glass, method for manufacturing the same, glass window using the same, solar energy utilization device, optical equipment and display device
WO2009107191A1 (en) Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate