JP2012212850A - Lead frame for led and manufacturing method therefor - Google Patents

Lead frame for led and manufacturing method therefor Download PDF

Info

Publication number
JP2012212850A
JP2012212850A JP2011245984A JP2011245984A JP2012212850A JP 2012212850 A JP2012212850 A JP 2012212850A JP 2011245984 A JP2011245984 A JP 2011245984A JP 2011245984 A JP2011245984 A JP 2011245984A JP 2012212850 A JP2012212850 A JP 2012212850A
Authority
JP
Japan
Prior art keywords
film
lead frame
substrate
noble metal
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011245984A
Other languages
Japanese (ja)
Other versions
JP5771124B2 (en
Inventor
Shoo Katsura
翔生 桂
Jun Suzuki
順 鈴木
Toshiki Sato
俊樹 佐藤
Toshiyuki Mitsui
俊幸 三井
Masayasu Nishimura
昌秦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Leadmikk Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2011245984A priority Critical patent/JP5771124B2/en
Publication of JP2012212850A publication Critical patent/JP2012212850A/en
Application granted granted Critical
Publication of JP5771124B2 publication Critical patent/JP5771124B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

PROBLEM TO BE SOLVED: To provide a lead frame for LED including a reflection film that can accommodate wire bonding of an LED chip, can maintain high reflectance for a long term by applying a material of low cost in place of silver, and can be formed stably and easily.SOLUTION: The lead frame 1 includes a reflection film 13 having a thickness of 50 nm or more composed of aluminum or an aluminum alloy and formed on a substrate 11 composed of copper or a copper alloy, and a noble metal film 14 having a thickness of 5-50 nm consisting of one kind or more selected from Pd, Au, Pt and formed on the reflection film 13.

Description

本発明は、液晶ディスプレイのバックライト、照明器具、自動車のヘッドランプやリアランプ等に用いられる発光装置を構成し、光源として発光ダイオード(LED:Light Emitting Diode)のチップ(ダイ)を搭載してワイヤボンディングにより接続されるLED用リードフレームおよびその製造方法に関する。   The present invention constitutes a light emitting device used for a backlight of a liquid crystal display, a lighting fixture, an automobile headlamp, a rear lamp, and the like, and is mounted with a light emitting diode (LED) chip (die) as a light source. The present invention relates to an LED lead frame connected by bonding and a manufacturing method thereof.

近年、LEDを光源とする発光装置が、省エネルギかつ長寿命である利点を活かして、広範囲の分野に普及し、各種機器に適用されている。LEDを光源とする発光装置の一例として、表面実装型の発光装置の構造および動作について、図2を参照して説明する。図2はLEDチップを光源とする表面実装型の発光装置の外観図であり、(a)は斜視図、(b)は平面図(上面図)である。   2. Description of the Related Art In recent years, light emitting devices using LEDs as light sources have spread in a wide range of fields and applied to various devices by taking advantage of energy saving and long life. As an example of a light-emitting device using an LED as a light source, the structure and operation of a surface-mounted light-emitting device will be described with reference to FIG. 2A and 2B are external views of a surface-mounted light-emitting device using an LED chip as a light source, where FIG. 2A is a perspective view and FIG. 2B is a plan view (top view).

図2(a)、(b)に示すように、発光装置は、LEDチップと、LEDチップに電気的に接続して当該LEDチップに駆動電流を供給するための導体である正極・負極の一対のリード部材1a,1cと、これらを支持する支持部材2と、を備える。詳しくは、支持部材2は、絶縁材料である樹脂成形体21からなり、LEDチップが収容される凹状のLEDチップ搭載部22が形成されて、LEDチップ搭載部22の上方が広がって開口したカップ状である。リード部材1a,1cは、帯状に形成され、それぞれが支持部材2の外側からLEDチップ搭載部22内側へ貫通している。   As shown in FIGS. 2A and 2B, the light emitting device includes an LED chip and a pair of a positive electrode and a negative electrode that are electrically connected to the LED chip and supply a driving current to the LED chip. Lead members 1a and 1c and a support member 2 for supporting them. Specifically, the support member 2 is made of a resin molded body 21 that is an insulating material, and is formed with a concave LED chip mounting portion 22 in which the LED chip is accommodated. Is. The lead members 1 a and 1 c are formed in a band shape, and each penetrates from the outside of the support member 2 to the inside of the LED chip mounting portion 22.

LEDチップは、LEDチップ搭載部22の底面の略中央に載置され、この位置に配設されている一方のリード部材1aの上面に、図示しない接着剤によって固定される。さらにLEDチップは、その電極(図示省略)が一対のリード部材1a,1cにボンディングワイヤ(ワイヤ)で接続されている。また、LEDチップ搭載部22内は、エポキシ樹脂等の透明な封止樹脂(図示省略)が充填されて封止されている。すなわち、この発光装置は、LEDチップを封入したいわゆるパッケージである。なお、本明細書における「上」とは、原則として、リードフレームのLEDチップが搭載される側を指す。   The LED chip is placed at substantially the center of the bottom surface of the LED chip mounting portion 22, and is fixed to the upper surface of one lead member 1a disposed at this position by an adhesive (not shown). Further, the electrodes (not shown) of the LED chip are connected to the pair of lead members 1a and 1c by bonding wires (wires). Further, the LED chip mounting portion 22 is sealed by being filled with a transparent sealing resin (not shown) such as an epoxy resin. That is, this light emitting device is a so-called package in which an LED chip is enclosed. In addition, “upper” in this specification indicates the side on which the LED chip of the lead frame is mounted in principle.

このような発光装置は、リード部材1a,1cの支持部材2の外側に延出されたそれぞれの部分(アウターリード部と称する(図2(b)参照)。)を外部端子の電極として、図示しない外部の電源を接続して使用される。具体的には、発光装置はプリント配線基板等に実装され、その配線にリード部材1a,1cのアウターリード部がはんだ等で電気的に接続される。配線基板の配線およびリード部材1a,1cを介してLEDチップに駆動電流が供給されて、LEDチップが発光し、この光がLEDチップ搭載部22の開口部から発光装置の外部へ照射される。詳しくは、駆動電流によりLEDの発光部(発光層)が発光して、この発光部を中心に光を放射してLEDチップから全方位へ照射される。   Such a light emitting device is illustrated with the respective portions (referred to as outer lead portions (see FIG. 2B)) extending outside the support member 2 of the lead members 1a and 1c as electrodes of external terminals. Not used with an external power supply connected. Specifically, the light emitting device is mounted on a printed wiring board or the like, and the outer lead portions of the lead members 1a and 1c are electrically connected to the wiring by solder or the like. A drive current is supplied to the LED chip via the wiring of the wiring board and the lead members 1a and 1c, the LED chip emits light, and this light is emitted from the opening of the LED chip mounting portion 22 to the outside of the light emitting device. Specifically, the light emitting portion (light emitting layer) of the LED emits light by the drive current, and light is emitted around the light emitting portion to be irradiated from the LED chip in all directions.

LEDチップから照射された光のうち、上方へ照射された光は直接、LEDチップ搭載部22の開口部から発光装置の外部へ出射して照明光等として利用される。しかし、それ以外の、側方や下方へ照射された光は、LEDチップ搭載部22の側面および底面ならびにこの底面上のリード部材1a,1c表面に入射する。そこで、これらの面がLEDチップから入射した光をよく反射させるように、支持部材2やリード部材1a,1cは表面の光反射率(以下、反射率という)を高くすることが求められている。例えば支持部材2は白色樹脂で形成された樹脂成形体21からなり、あるいはLEDチップ搭載部22の各面に反射膜を形成する(図示省略)。一方、リード部材1a,1cは、導電性に優れてリードフレーム材料として一般的な銅(Cu)または銅合金を基板としてその表面に反射膜を形成したものが知られている。このような反射膜の材料としては、銀(Ag)が金属の中で最も高い反射率を示して多くの光を反射させるために最適であり、さらにLEDチップを接続するためのワイヤボンディング性が良好で、また外部の電源に接続するためのはんだ付け性が銅基板と同様に良好であるために適用されている。   Of the light emitted from the LED chip, the light emitted upward is directly emitted from the opening of the LED chip mounting portion 22 to the outside of the light emitting device and used as illumination light or the like. However, the other light irradiated to the side and the lower side is incident on the side and bottom surfaces of the LED chip mounting portion 22 and the surfaces of the lead members 1a and 1c on the bottom surfaces. Therefore, the support member 2 and the lead members 1a and 1c are required to have high light reflectance (hereinafter referred to as reflectance) so that these surfaces reflect light incident from the LED chip well. . For example, the support member 2 is made of a resin molded body 21 made of a white resin, or a reflective film is formed on each surface of the LED chip mounting portion 22 (not shown). On the other hand, the lead members 1a and 1c are known to have excellent conductivity and have a reflective film formed on the surface of a common copper (Cu) or copper alloy as a lead frame material. As a material for such a reflective film, silver (Ag) is the most suitable for reflecting a lot of light with the highest reflectance among metals, and further has a wire bonding property for connecting LED chips. It is applied because it is good and the solderability for connecting to an external power source is as good as that of a copper substrate.

しかし、Agは、発光装置の使用時間の経過と共に、大気や封止樹脂に含まれるハロゲンイオンや硫黄と反応して表面に塩化物(AgCl)等のハロゲン化物や硫化物(Ag2S)を形成するため、これらの生成物により反射膜の表面が黒褐色に変色したり凝集して表面が荒れたりして、またAgはLEDチップから発生する熱によっても凝集するため、反射率が劣化するという問題がある。また、封止樹脂にエポキシ樹脂を用いた場合には、この透明なエポキシ樹脂に反射膜中のAgが拡散してAgのナノ粒子として析出し、褐色に変色して光透過性を劣化させる。 However, Ag reacts with the halogen ions and sulfur contained in the atmosphere and the sealing resin with the lapse of the usage time of the light emitting device, and thereby a halide or sulfide (Ag 2 S) such as chloride (AgCl) is formed on the surface. Because of the formation, the surface of the reflective film is changed to blackish brown or aggregates due to these products, the surface is roughened, and Ag is also aggregated by the heat generated from the LED chip, so that the reflectance is deteriorated. There's a problem. In addition, when an epoxy resin is used as the sealing resin, Ag in the reflective film diffuses into the transparent epoxy resin and precipitates as Ag nanoparticles, and turns brown to deteriorate the light transmittance.

この問題を解決するために、例えば、特許文献1,2には、純Agめっき層に、塩化物や硫化物を形成し難いAg−Au合金めっき層をさらに被覆して、塩化白金酸のような金属塩化物を硬化触媒として含有するシリコーン樹脂を封止樹脂に適用したリードフレームが記載されている。また、特許文献3〜5には、Ge,Biを添加して、耐ハロゲン化性、耐硫化性、および耐熱性に優れたAg合金膜を適用したリードフレームが記載されている。   In order to solve this problem, for example, in Patent Documents 1 and 2, a pure Ag plating layer is further coated with an Ag—Au alloy plating layer that is difficult to form chloride or sulfide, and chloroplatinic acid is used. A lead frame in which a silicone resin containing a metal chloride as a curing catalyst is applied to a sealing resin is described. Patent Documents 3 to 5 describe lead frames to which Ge and Bi are added and an Ag alloy film excellent in halogenation resistance, sulfidation resistance, and heat resistance is applied.

特開2008−91818号公報JP 2008-91818 A 特開2009−76948号公報JP 2009-76948 A 特開2008−192635号公報JP 2008-192635 A 特開2011−9707号公報JP 2011-9707 A 特開2011−23704号公報JP 2011-23704 A

これらの特許文献に記載されたように、特定の元素を添加することによりAgに耐久性を付与することが可能であるが、このような元素を反射率が損なわれない範囲で添加する等、反射膜の成分を緻密に制御する必要がある。さらに、ワイヤボンディング性を十分なものとし、また熱による基板からのCuの拡散による表面の変色を防止するためには、ある程度の厚さのAg膜を必要とし、数百nm程度以上の膜厚が推奨される。したがって、Ag膜を設けたリードフレームは、低コスト化に限界がある。   As described in these patent documents, it is possible to impart durability to Ag by adding a specific element, but such an element is added within a range where the reflectance is not impaired, etc. It is necessary to precisely control the components of the reflective film. Furthermore, in order to ensure sufficient wire bonding and to prevent discoloration of the surface due to diffusion of Cu from the substrate due to heat, an Ag film having a certain thickness is required, and a film thickness of about several hundred nm or more. Is recommended. Therefore, the lead frame provided with the Ag film has a limit in cost reduction.

本発明の課題は、前記問題点に鑑みてなされたものであり、LEDチップのワイヤボンディングに対応でき、銀に代えて低コストの材料を適用して、高い反射率を長期間維持でき、またはんだ付け性が良好で、さらに安定してかつ容易に形成できる反射膜を備えたLED用リードフレームおよびその製造方法を提供することにある。   The object of the present invention has been made in view of the above-mentioned problems, can cope with wire bonding of LED chips, can apply a low-cost material instead of silver, and can maintain high reflectivity for a long period of time. An object of the present invention is to provide a lead frame for an LED including a reflective film that has good solderability and can be formed stably and easily, and a method for manufacturing the LED lead frame.

本発明者らは、非貴金属の中でも反射率の比較的高いアルミニウム(Al)を反射膜に適用することに想到した。Alは熱による凝集が生じ難く、またCuが熱拡散し難いため、熱による変色等の劣化が生じ難い。また、Alは、表面に自然酸化膜(不働態皮膜)を形成することでAgよりも耐硫化性および耐ハロゲン性に優れるが、一方で自然酸化膜(酸化アルミニウム)はワイヤボンディング性やはんだ付け性に劣る。そこで、Al膜の高反射率を阻害しないような薄膜で十分なワイヤボンディング性およびはんだ付け性を付与する貴金属膜を表面に設けることを見出した。   The present inventors have conceived that aluminum (Al) having a relatively high reflectance among non-noble metals is applied to the reflective film. Al hardly aggregates due to heat, and Cu hardly diffuses by heat, so that deterioration such as discoloration due to heat hardly occurs. In addition, Al forms a natural oxide film (passive film) on the surface, so it has better resistance to sulfidation and halogen than Ag. On the other hand, natural oxide film (aluminum oxide) uses wire bonding and soldering. Inferior to sex. Thus, it has been found that a noble metal film that provides sufficient wire bonding and soldering properties with a thin film that does not hinder the high reflectivity of the Al film is provided on the surface.

すなわち本発明に係るLED用リードフレームは、銅または銅合金からなる基板と、この基板上の少なくとも片面側に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜と、この反射膜上に形成されたPd,Au,Ptから選択される1種以上からなる膜厚5nm以上50nm以下の貴金属膜と、を備えることを特徴とする。   That is, an LED lead frame according to the present invention includes a substrate made of copper or a copper alloy, a reflective film made of aluminum or an aluminum alloy formed on at least one surface of the substrate and having a thickness of 50 nm or more, and the reflective film on the reflective film. And a noble metal film having a thickness of 5 nm or more and 50 nm or less composed of one or more selected from Pd, Au, and Pt.

また、本発明に係る別のLED用リードフレームは、LEDチップが収容されるための上方に開口した凹部が形成された支持部材と、この支持部材に支持された一対のリード部材とを備え、前記一対のリード部材が、互いに離間領域を隔てて前記凹部の底面に配設されて、それぞれが当該凹部から前記支持部材の外側に延出している支持部材付きのLED用リードフレームである。そして、前記支持部材は、絶縁材料からなる基体と、前記凹部の表面において前記離間領域を除く領域に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜とを備え、前記リード部材は、銅または銅合金からなる基板と、前記凹部の内側において前記基板上に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜と、この反射膜上に形成されたPd,Au,Ptから選択される1種以上からなる膜厚5nm以上50nm以下の貴金属膜とを備えることを特徴とする。   In addition, another LED lead frame according to the present invention includes a support member in which a concave portion opened upward for accommodating an LED chip is formed, and a pair of lead members supported by the support member, The pair of lead members is an LED lead frame with a support member that is disposed on the bottom surface of the concave portion with a separation area therebetween and each extends from the concave portion to the outside of the support member. The support member includes a base made of an insulating material, and a reflective film having a thickness of 50 nm or more made of aluminum or an aluminum alloy formed in a region excluding the separation region on the surface of the recess, A substrate made of copper or a copper alloy, a reflective film made of aluminum or an aluminum alloy formed on the substrate inside the concave portion and having a thickness of 50 nm or more, and Pd, Au, Pt formed on the reflective film And a noble metal film having a film thickness of 5 nm or more and 50 nm or less selected from one or more selected from the above.

このようなLED用リードフレームは、反射膜がアルミニウムで形成されることで、高い反射率を有すると共に、十分な耐熱性、耐硫化性、および耐ハロゲン性を有し、さらに表面に所定の貴金属からなる薄膜を備えることで、十分なワイヤボンディング性およびはんだ付け性が付与される。さらに、LED用リードフレームは、アルミニウムからなる反射膜上に酸化膜が形成されずに直接に貴金属膜が形成されることで、反射膜と貴金属膜との密着性がよくなり、表面の貴金属膜が剥離すること等がなく好ましい。   Such a lead frame for LED has a high reflectivity because the reflective film is formed of aluminum, and has sufficient heat resistance, sulfidation resistance, and halogen resistance, and a predetermined noble metal on the surface. By providing the thin film made of, sufficient wire bonding property and solderability are imparted. Further, the lead frame for LED has a noble metal film directly formed on the reflective film made of aluminum without forming an oxide film, thereby improving the adhesion between the reflective film and the noble metal film. Is preferable because it does not peel off.

前記それぞれの本発明に係るLED用リードフレームにおいて、基板と反射膜との間に、さらに膜厚0.5μm以上のNiめっき膜または膜厚0.1μm以上のAgめっき膜を形成してもよい。   In each of the LED lead frames according to the present invention, an Ni plating film having a thickness of 0.5 μm or more or an Ag plating film having a thickness of 0.1 μm or more may be further formed between the substrate and the reflective film. .

このようなLED用リードフレームは、基板上にめっきにて形成された表面の平滑なNi膜またはAg膜を下地とすることで、反射膜、さらに貴金属膜の表面が平滑となるため、正反射率が向上する。   Such an LED lead frame has a smooth surface such as a Ni film or an Ag film formed by plating on the substrate, and the surface of the reflective film and the noble metal film becomes smooth. The rate is improved.

前記の本発明に係るLED用リードフレームに設けられた反射膜および貴金属膜は、それぞれの膜材料からなる蒸発源を用いて、物理蒸着法により成膜することができる。すなわち本発明に係るLED用リードフレームの製造方法は、銅または銅合金からなる基板上に、物理蒸着法により、アルミニウムまたはアルミニウム合金からなる蒸発源を用いて反射膜を成膜するアルミニウム成膜工程と、物理蒸着法により、Pd,Au,Ptから選択される1種以上からなる蒸発源を用いて貴金属膜を成膜する貴金属成膜工程と、を行うことを特徴とする。アルミニウム成膜工程および貴金属成膜工程においては、前記2つの蒸発源を順番に用いて、反射膜および貴金属膜を連続して成膜することができる。あるいは、アルミニウム成膜工程を行った後、貴金属成膜工程において、反射膜表面に形成された自然酸化膜を除去した後に貴金属膜を成膜することができる。   The reflective film and the noble metal film provided on the LED lead frame according to the present invention can be formed by physical vapor deposition using an evaporation source made of each film material. That is, the LED lead frame manufacturing method according to the present invention includes an aluminum film forming step of forming a reflective film on a substrate made of copper or a copper alloy by a physical vapor deposition method using an evaporation source made of aluminum or an aluminum alloy. And a noble metal film forming step of forming a noble metal film using an evaporation source composed of one or more selected from Pd, Au, and Pt by physical vapor deposition. In the aluminum film forming step and the noble metal film forming step, the reflection film and the noble metal film can be formed in succession using the two evaporation sources in order. Alternatively, after the aluminum film forming step, the noble metal film can be formed after removing the natural oxide film formed on the reflective film surface in the noble metal film forming step.

このような手順によるLED用リードフレームの製造方法では、反射膜と貴金属膜とを安定した成分および膜厚で備え、また反射膜表面に自然酸化膜のない状態で貴金属膜を成膜できるので、反射膜と貴金属膜との密着性のよいLED用リードフレームを容易に製造することができる。また、前記製造方法では、反射膜および貴金属膜の両方の蒸発源を設けることのできる成膜装置を用いて効率的に連続成膜してもよいし、貴金属膜の成膜前に自然酸化膜の除去を行うことで、反射膜または貴金属膜の一方の蒸発源のみを設けた成膜装置を用いて製造することもできる。   In the LED lead frame manufacturing method according to such a procedure, the reflective film and the noble metal film are provided with stable components and film thicknesses, and the noble metal film can be formed without a natural oxide film on the reflective film surface. An LED lead frame having good adhesion between the reflective film and the noble metal film can be easily manufactured. In the manufacturing method, the film may be continuously formed efficiently using a film forming apparatus capable of providing both the reflection film and the noble metal film, or the natural oxide film may be formed before the noble metal film is formed. It is also possible to manufacture using a film forming apparatus provided with only one evaporation source of the reflective film or the noble metal film.

また、支持部材付きのLED用リードフレームを製造するための本発明に係るLED用リードフレームの製造方法は、前記のLED用リードフレームの製造方法において、反射膜を成膜する前に、絶縁材料で、上方に開口した凹部を有する形状の支持部材の基体を成形する基体成形工程をさらに行えばよい。この基体成形工程は、前記基体を、前記基板が一対のリード部材として互いに離間領域を隔てて前記凹部の底面に配設されるように一体的に成形する。そして、前記反射膜を、前記基板上と同時に、前記凹部の表面において前記離間領域を除く領域に形成することを特徴とする。   Further, the manufacturing method of the LED lead frame according to the present invention for manufacturing the LED lead frame with the supporting member is the insulating material before the reflective film is formed in the manufacturing method of the LED lead frame. Then, a substrate forming step for forming a substrate of a support member having a shape having a recess opened upward may be further performed. In the base body forming step, the base body is integrally formed so that the substrate is disposed as a pair of lead members on the bottom surface of the concave portion with a separation area therebetween. The reflective film is formed in a region excluding the separation region on the surface of the concave portion simultaneously with the substrate.

このような手順によるLED用リードフレームの製造方法では、基板上と支持部材の表面(基体上)との両方に、同時に反射膜を形成することができる。   In the LED lead frame manufacturing method according to such a procedure, a reflective film can be simultaneously formed on both the substrate and the surface of the support member (on the substrate).

前記の本発明に係るLED用リードフレームの製造方法において、アルミニウム成膜工程の前に、基板上にめっき処理によりNiめっき膜またはAgめっき膜を成膜するめっき工程をさらに行ってもよい。   In the LED lead frame manufacturing method according to the present invention, a plating step of forming a Ni plating film or an Ag plating film on the substrate by plating may be further performed before the aluminum film forming step.

このような手順によるLED用リードフレームの製造方法では、反射膜の下地に表面が平滑なNiめっき膜またはAgめっき膜が形成されるので、正反射率の高いLED用リードフレームを製造することができる。   In the LED lead frame manufacturing method according to such a procedure, since a Ni plating film or an Ag plating film having a smooth surface is formed on the base of the reflection film, it is possible to manufacture an LED lead frame having a high regular reflectance. it can.

本発明に係るLED用リードフレームは、LEDチップを搭載してワイヤボンディングにより接続することができて、その発光した光を高効率で利用して照明光の明るさを向上させ、使用時間の経過による照明光の減衰等の劣化を抑え、さらに配線基板等へのはんだ付けによる実装が可能で、安価な発光装置とすることができる。また、本発明に係るLED用リードフレームの製造方法によれば、前記LED用リードフレームを容易に製造することができる。   The LED lead frame according to the present invention can be connected by wire bonding by mounting an LED chip, and the emitted light is used with high efficiency to improve the brightness of illumination light, and the elapsed time of use. It is possible to suppress the deterioration such as attenuation of illumination light due to the light, and to be mounted by soldering on a wiring board or the like, and to obtain an inexpensive light emitting device. In addition, according to the LED lead frame manufacturing method of the present invention, the LED lead frame can be easily manufactured.

(a)、(b)は本発明の第1実施形態に係るLED用リードフレームの構成を示す断面図である。(A), (b) is sectional drawing which shows the structure of the lead frame for LED which concerns on 1st Embodiment of this invention. LEDチップを光源とする表面実装型の発光装置の構造を示す外観図であり、(a)は斜視図、(b)は平面図である。It is an external view which shows the structure of the surface mount type light-emitting device which uses a LED chip as a light source, (a) is a perspective view, (b) is a top view. 本発明の第1実施形態に係るLED用リードフレームを使用した発光装置の構造を示す断面図であり、図2のA−A線矢視断面図に対応する図である。It is sectional drawing which shows the structure of the light-emitting device using the LED lead frame which concerns on 1st Embodiment of this invention, and is a figure corresponding to the AA arrow sectional drawing of FIG. 本発明の第1実施形態の変形例に係るLED用リードフレームの模式図であり、(a)は基板の平面図、(b)はLED用リードフレームに支持部材を設けた平面図で(a)の部分拡大図に対応する図、(c)は(b)のB−B線矢視断面図である。It is a schematic diagram of the lead frame for LED which concerns on the modification of 1st Embodiment of this invention, (a) is a top view of a board | substrate, (b) is a top view which provided the supporting member in the lead frame for LED (a The figure corresponding to the partial enlarged view of (), (c) is a BB arrow directional cross-sectional view of (b). 本発明の第2実施形態に係るLED用リードフレームの構造を示す外観図であり、(a)は平面図、(b)は(a)のC−C線矢視断面図、(c)は反射膜の形成前を示し、(a)のD−D線矢視断面図に対応する図である。It is an external view which shows the structure of the lead frame for LED which concerns on 2nd Embodiment of this invention, (a) is a top view, (b) is CC sectional view taken on the line of (a), (c) is It is the figure before the formation of a reflecting film, and is a figure corresponding to DD sectional view taken on the line of (a). 本発明の第2実施形態の変形例に係るLED用リードフレームの構造を示す断面図であり、図4(b)のB−B線矢視断面図に対応する図である。It is sectional drawing which shows the structure of the lead frame for LED which concerns on the modification of 2nd Embodiment of this invention, and is a figure corresponding to the BB arrow sectional drawing of FIG.4 (b). 実施例におけるはんだ付け性の評価方法を説明する模式図である。It is a schematic diagram explaining the evaluation method of the solderability in an Example.

本発明に係るLED用リードフレームは、光源としてLEDチップを搭載してワイヤボンディングにより接続される発光装置を構成するための部品であり、発光装置の形状および形態、ならびにLEDチップの搭載形態、製品としてユーザに提供する形態等に応じて、所要の形状および形態に構成される。以下、本発明のLED用リードフレームについて、図面を参照して詳細に説明する。   The LED lead frame according to the present invention is a component for constituting a light emitting device in which an LED chip is mounted as a light source and connected by wire bonding, and the shape and form of the light emitting device, as well as the LED chip mounting form and product. According to the form etc. provided to the user, it is configured in a required shape and form. Hereinafter, the LED lead frame of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
本発明の第1実施形態に係るLED用リードフレーム(以下、リードフレーム)について、図1を主に参照して説明する。本発明に係るリードフレーム1は、発光装置の光源であるLEDチップ(図2、図3参照)を発光させる駆動電流を供給するための配線であり、かつ、前記LEDチップの発光した光を反射させる反射板である。リードフレーム1は、ここでは図2および図3に示すように、発光装置の正極・負極の一対のリード部材1a,1cとして組み立てられて使用される。
[First Embodiment]
An LED lead frame (hereinafter referred to as a lead frame) according to a first embodiment of the present invention will be described with reference mainly to FIG. The lead frame 1 according to the present invention is a wiring for supplying a driving current for causing a LED chip (see FIGS. 2 and 3), which is a light source of a light emitting device, to emit light, and reflects light emitted from the LED chip. It is a reflecting plate. As shown in FIGS. 2 and 3, the lead frame 1 is assembled and used as a pair of positive and negative lead members 1a and 1c of a light emitting device.

図1(a)に示す第1実施形態に係るリードフレーム1は、基板11と、基板11の少なくとも一方の面に形成された反射膜13と、さらにその上に形成された貴金属膜14と、を備える。反射膜13および貴金属膜14は、基板11のLEDチップが搭載される側の面になる上面(以下、適宜表面という)のみに形成されていてもよいし、基板11の下面(裏面)を含めた両面に形成されていてもよく、さらには、基板11の表面の一部の領域、例えば発光装置に組み立てられたときにLEDチップの発光した光が入射する領域のみに形成されていてもよい。例えば、図3に示すように発光装置のリード部材1a,1cとして使用される場合は、リードフレーム1は、帯状に成形され、LEDチップ搭載部22の底面に配設される領域(インナーリード部、図2(b)参照)の上面側に反射膜13および貴金属膜14が形成されていればよい。また、リードフレーム1において、発光装置に組み立てられたときにリード部材1a,1cの外側に延出される領域(アウターリード部、図2(b)参照)のような、外部の配線基板等にはんだで接続される領域においては、反射膜13および貴金属膜14は形成されていてもよいし、形成されずに基板11が露出していてもよいが、反射膜13が表面に露出しないように、すなわち反射膜13のみが形成されることがないようにする。リードフレーム1は、これら以外の領域においては、基板11が露出していてもよいし、反射膜13、貴金属膜14の2層またはいずれか1層のみが形成されていてもよい。次に、第1実施形態に係るリードフレームを構成する要素について、詳細に説明する。   A lead frame 1 according to the first embodiment shown in FIG. 1A includes a substrate 11, a reflective film 13 formed on at least one surface of the substrate 11, and a noble metal film 14 formed thereon, Is provided. The reflective film 13 and the noble metal film 14 may be formed only on the upper surface (hereinafter referred to as the “front surface” as appropriate) of the substrate 11 on which the LED chip is mounted, or the lower surface (back surface) of the substrate 11 is included. Further, it may be formed on both surfaces, or may be formed only on a part of the surface of the substrate 11, for example, only on a region where light emitted from the LED chip is incident when assembled in the light emitting device. . For example, when used as the lead members 1a and 1c of the light emitting device as shown in FIG. 3, the lead frame 1 is formed in a strip shape and is disposed on the bottom surface of the LED chip mounting portion 22 (inner lead portion). The reflection film 13 and the noble metal film 14 may be formed on the upper surface side of FIG. Further, in the lead frame 1, solder is applied to an external wiring board or the like such as a region (outer lead portion, see FIG. 2B) extending outside the lead members 1 a and 1 c when assembled in the light emitting device. In the region connected at, the reflective film 13 and the noble metal film 14 may be formed, or the substrate 11 may be exposed without being formed, but the reflective film 13 is not exposed on the surface. That is, only the reflective film 13 is not formed. In regions other than these, the lead frame 1 may have the substrate 11 exposed, or may be formed with two layers or only one of the reflective film 13 and the noble metal film 14. Next, elements constituting the lead frame according to the first embodiment will be described in detail.

(基板)
基板11は、銅(Cu)またはCu合金からなり、リードフレーム1の形状に成形される。Cu合金としては、Cuを主成分とし、Ni,Si,Fe,Zn,Sn,Mg,P,Cr,Mn,Zr,Ti,Sb等の元素の1種または2種以上を含有する合金、例えばCu−Fe−P系銅合金を用いることができる。基板11は、その板厚について特に限定されないが、形状と同様に、発光装置の形状および形態等に応じて決定され、圧延等により、この所要の厚さの素板(圧延板)とし、これをプレス加工やエッチング加工等により所要の形状に成形することによって製造することができる。
(substrate)
The substrate 11 is made of copper (Cu) or a Cu alloy and is formed into the shape of the lead frame 1. Examples of Cu alloys include alloys containing Cu as a main component and containing one or more elements such as Ni, Si, Fe, Zn, Sn, Mg, P, Cr, Mn, Zr, Ti, and Sb. A Cu—Fe—P-based copper alloy can be used. The substrate thickness of the substrate 11 is not particularly limited, but is determined according to the shape and form of the light emitting device as well as the shape, and is formed into a base plate (rolled plate) of this required thickness by rolling or the like. Can be manufactured into a required shape by pressing or etching.

さらに、基板11は、硝酸を主成分とする強酸の混合液(キリンス酸)等の酸による表面のエッチングを行ったり、コイニングにより基板11の表面の凹凸を潰しておくことにより、表面が平滑化されていることが好ましい。前記したように、基板11はCuまたはCu合金からなる圧延板を成形加工して製造されるが、圧延面に形成された酸化皮膜や、この酸化皮膜が脱落して圧延により埋め込まれた酸化物を除去するために、圧延後の研磨工程が必須である。この工程により研磨痕が表面に残るため、研磨工程後においては基板11表面が粗くなる。ここで、リードフレーム1の表面の凹凸が激しい(高い突起や深い谷が多い)と、そのような表面に入射した光は拡散反射による反射が多くなって正反射率が減少する。リードフレーム1において、表面の正反射率が低く、拡散反射による反射が多いと、発光装置としたときに光の取出し効率が低下する。反射膜13の表面性状はその下地の表面形状が保持され易く、さらに最表面の貴金属膜14は極めて薄いため、基板11の表面粗さがリードフレーム1の表面粗さと略一致する。そのため、反射膜13の形成前において、基板11はできるだけ表面を平滑化しておくことが好ましい。   Furthermore, the surface of the substrate 11 is smoothed by etching the surface with an acid such as a mixed solution of strong acid containing nitric acid (chirinic acid) or by crushing the unevenness of the surface of the substrate 11 by coining. It is preferable that As described above, the substrate 11 is manufactured by forming a rolled plate made of Cu or a Cu alloy. The oxide film formed on the rolled surface or the oxide embedded by rolling after the oxide film is dropped. In order to remove this, a polishing process after rolling is essential. Since the polishing marks remain on the surface by this step, the surface of the substrate 11 becomes rough after the polishing step. Here, if the surface of the lead frame 1 has severe irregularities (there are many high protrusions and deep valleys), the light incident on such a surface is reflected by diffuse reflection, and the regular reflectance decreases. In the lead frame 1, if the regular reflectance of the surface is low and the reflection due to diffuse reflection is large, the light extraction efficiency is lowered when the light emitting device is used. As for the surface properties of the reflective film 13, the surface shape of the base is easily maintained, and the noble metal film 14 on the outermost surface is extremely thin, so that the surface roughness of the substrate 11 substantially matches the surface roughness of the lead frame 1. Therefore, it is preferable to smooth the surface of the substrate 11 as much as possible before the reflective film 13 is formed.

(反射膜)
本発明に係るリードフレーム1において、反射膜13は、発光装置としたときにLEDチップから照射される光を反射する役割を有し、反射率の高いアルミニウム(Al)で形成される。Alは、熱による凝集が生じ難く、またCuが熱拡散し難いため、基板11からCuが拡散して変色することがない。さらにAlは、大気中等の酸化雰囲気で表面に自然酸化膜(不働態皮膜)を形成することで、発光装置として十分な耐硫化性および耐ハロゲン性を有する。反射膜13の成分はAl単体に限定されず、工業上の純Al(1000系Al)、さらにAlの高反射率が保持されればAl合金で形成されてもよい。例えば、Al−Gd合金であれば耐アルカリ性の高い反射膜となる。このような反射膜13は、当該反射膜13の成分すなわちAlまたはAl合金で形成された蒸発源を用いて物理蒸着法にて成膜することができる(後記の製造方法にて詳細に説明する)。
(Reflective film)
In the lead frame 1 according to the present invention, the reflective film 13 has a role of reflecting light emitted from the LED chip when used as a light emitting device, and is formed of aluminum (Al) having a high reflectance. Since Al hardly aggregates due to heat and Cu hardly diffuses by heat, Cu does not diffuse from the substrate 11 and discolor. Furthermore, Al has sufficient sulfur resistance and halogen resistance as a light emitting device by forming a natural oxide film (passive film) on the surface in an oxidizing atmosphere such as air. The component of the reflective film 13 is not limited to Al alone, but may be formed of industrially pure Al (1000 series Al), or an Al alloy as long as the high reflectance of Al is maintained. For example, an Al—Gd alloy provides a reflective film with high alkali resistance. Such a reflective film 13 can be formed by physical vapor deposition using an evaporation source formed of a component of the reflective film 13, that is, Al or an Al alloy (described in detail in a manufacturing method described later). ).

反射膜13は、発光装置としたときにLEDチップから照射される光を透過させずに反射させるために、膜厚は50nm以上とする。一方、反射膜13は、膜厚が500nmを超えて厚く設けられても、反射率のさらなる向上の効果が飽和し、また、成膜時間が長くなって生産上好ましくないため、膜厚は500nm以下とすることが好ましい。   The reflection film 13 has a film thickness of 50 nm or more in order to reflect the light emitted from the LED chip without transmitting when the light-emitting device is used. On the other hand, even if the reflective film 13 is provided thicker than 500 nm, the effect of further improving the reflectance is saturated, and the film formation time becomes longer, which is not preferable for production. The following is preferable.

ここで、反射膜13は、AlまたはAl合金で形成されているため、前記したように大気等に曝されると、表面に膜厚10nm程度、少なくとも5nm程度の自然酸化膜が形成される。酸化アルミニウムはワイヤボンディングにおけるワイヤとの圧着性やはんだ付け性が低いため、反射膜13が最表面に設けられたリードフレームでは、LEDチップとの間や外部の配線基板等との間で接続不良を生じる虞がある。さらに、酸化アルミニウム膜は、Cuの酸化膜等と異なり、一般的なはんだに添加されるフラックスでは除去され難い。なお、はんだ付け性が高いとは、はんだの溶滴に接触した部分で溶融してはんだと合金化することと、はんだの溶滴の濡れ性が高いことを指し、酸化アルミニウムははんだと合金化せず濡れ性も低い。そこでリードフレーム1は、反射膜13上すなわち最表面に、ワイヤとの圧着性およびはんだ付け性に優れた貴金属膜14を備えることにより、ワイヤボンディング性およびはんだ付け性が付与される。また、反射膜13は、表面に酸化膜が形成された状態では貴金属膜14との密着性が低く、貴金属膜14が剥離して圧着したワイヤごと離脱する虞がある。さらに、貴金属膜14は薄いので、リードフレームのはんだ付けにおいて、はんだの溶滴に接触して表面が溶融すると、その下の酸化膜が露出することになり、貴金属膜14が設けられない場合と同様に、はんだの濡れ性が低下する。そのため、反射膜13と貴金属膜14の界面における酸化膜(貴金属膜14が形成される前の反射膜13表面の酸化膜)は、膜厚5nm未満とする。詳しくは後記の製造方法にて説明するが、貴金属膜14の形成前において、反射膜13表面に酸化膜が形成されていない(除去されている)ようにする。   Here, since the reflective film 13 is formed of Al or an Al alloy, when exposed to the atmosphere or the like as described above, a natural oxide film having a film thickness of about 10 nm and at least about 5 nm is formed on the surface. Since aluminum oxide has low crimpability and solderability with wire in wire bonding, in the lead frame having the reflective film 13 provided on the outermost surface, connection failure between the LED chip and an external wiring board or the like May occur. Furthermore, unlike an oxide film of Cu or the like, an aluminum oxide film is difficult to be removed by a flux added to a general solder. Note that high solderability means melting at the part in contact with the solder droplet and alloying with the solder and high wettability of the solder droplet. Aluminum oxide is alloyed with the solder. No wettability. Therefore, the lead frame 1 is provided with the noble metal film 14 excellent in the press-bonding property and the soldering property with respect to the wire on the reflective film 13, that is, the outermost surface, thereby providing the wire bonding property and the soldering property. In addition, the reflective film 13 has low adhesion to the noble metal film 14 in the state where the oxide film is formed on the surface, and there is a possibility that the noble metal film 14 is peeled off and detached together with the crimped wire. Furthermore, since the noble metal film 14 is thin, when the surface melts in contact with the solder droplets in the lead frame soldering, the underlying oxide film is exposed, and the noble metal film 14 is not provided. Similarly, solder wettability decreases. Therefore, the oxide film at the interface between the reflective film 13 and the noble metal film 14 (the oxide film on the surface of the reflective film 13 before the noble metal film 14 is formed) is less than 5 nm. Although details will be described later in the manufacturing method, before the noble metal film 14 is formed, the oxide film is not formed (removed) on the surface of the reflective film 13.

(貴金属膜)
貴金属膜14は、反射膜13上の、リードフレーム1の最表面に設けられ、パラジウム(Pd)、金(Au)、白金(Pt)から選択される1種以上からなる金属または合金で形成される。貴金属膜14は、リードフレーム1がLEDチップを搭載されて発光装置に組み立てられる際のワイヤボンディング性、および組み立てられた発光装置を配線基板等に実装する際のはんだ付け性を付与する。すなわちPd,Au,Ptは、Au等からなるワイヤの圧着性がよく、またはんだ付け性(はんだとの合金化容易性、はんだの濡れ性)も十分有し、極めて薄い膜であっても十分なワイヤボンディング性およびはんだ付け性が得られる。また、Pd,Au,Ptは、その表面に不動態皮膜を形成しないにも関わらず耐食性に優れているので、リードフレーム1の配線としての導電性を低下させることがなく、また反射率が比較的高いので、リードフレーム1の反射率が反射膜13のAlが有する高反射率から大きく低下することがない。
(Precious metal film)
The noble metal film 14 is provided on the outermost surface of the lead frame 1 on the reflective film 13 and is formed of a metal or alloy made of one or more selected from palladium (Pd), gold (Au), and platinum (Pt). The The noble metal film 14 provides wire bondability when the lead frame 1 is mounted on a light emitting device with an LED chip mounted thereon, and solderability when the assembled light emitting device is mounted on a wiring board or the like. That is, Pd, Au, and Pt have good crimpability of a wire made of Au or the like, or have sufficient solderability (easiness of alloying with solder, wettability of solder), and even a very thin film is sufficient. Wire bondability and solderability can be obtained. In addition, Pd, Au, and Pt are excellent in corrosion resistance despite the fact that no passive film is formed on the surface thereof, so that the conductivity as the wiring of the lead frame 1 is not lowered and the reflectance is compared. Therefore, the reflectivity of the lead frame 1 is not greatly lowered from the high reflectivity of Al of the reflective film 13.

貴金属膜14は、リードフレーム1に十分なワイヤボンディング性およびはんだ付け性を付与するために、膜厚は5nm以上とする。一方、貴金属膜14は、反射率がAl(反射膜13)よりは低いために、膜厚が厚過ぎるとリードフレーム1の反射率が低下する。また、貴金属膜14は材料のコストが高いため、厚くするとリードフレーム1のコストが高くなる。したがって、貴金属膜14の膜厚は50nm以下とする。このように、貴金属膜14は膜厚が比較的薄くかつ均一に形成されることから、スパッタリング法のような膜厚の制御の容易な物理蒸着法にて、当該貴金属膜14の成分すなわちPd,Au,Ptから選択される1種以上で形成された蒸発源を用いて成膜することが好ましい(後記の製造方法にて詳細に説明する)。なお、スパッタリング法でPd,Au,Ptがこのような薄い膜に成膜された場合、貴金属膜14はピンホールを有する膜になり易いが、ワイヤボンディング性やはんだ付け性への影響はなく、またピンホールを介して反射膜13の表面(界面)における間隙に不働態皮膜が形成されても、貴金属膜14の密着性が劣化することはない。   The noble metal film 14 has a film thickness of 5 nm or more in order to impart sufficient wire bonding property and solderability to the lead frame 1. On the other hand, since the reflectance of the noble metal film 14 is lower than that of Al (reflection film 13), if the film thickness is too thick, the reflectance of the lead frame 1 is lowered. Moreover, since the cost of the material of the noble metal film 14 is high, the thickness of the lead frame 1 is increased when the thickness is increased. Therefore, the noble metal film 14 has a thickness of 50 nm or less. Thus, since the noble metal film 14 is relatively thin and uniformly formed, the components of the noble metal film 14, that is, Pd, It is preferable to form a film using an evaporation source formed of at least one selected from Au and Pt (described in detail in the manufacturing method described later). In addition, when Pd, Au, and Pt are formed into such a thin film by a sputtering method, the noble metal film 14 tends to be a film having a pinhole, but there is no influence on wire bonding property and solderability, Further, even if a passive film is formed in the gap on the surface (interface) of the reflective film 13 through the pinhole, the adhesion of the noble metal film 14 does not deteriorate.

本発明の別の実施形態として、反射膜の下にNiめっき膜またはAgめっき膜をさらに形成してもよい。すなわち、図1(b)に示す第1実施形態の変形例に係るリードフレーム1Bは、基板11と、基板11の少なくとも一方の面に形成された下地めっき膜(Niめっき膜、Agめっき膜)12と、その上に形成された反射膜13と、さらにその上に形成された貴金属膜14と、を備える。下地めっき膜12についても、反射膜13および貴金属膜14と同様に、少なくとも発光装置に組み立てられたときにLEDチップの発光した光が入射する領域のみに形成されていればよく、上面や両面の全体に形成されていてもよい。また、Ni膜やAg膜ははんだ付け性がよく、すなわち下地めっき膜12ははんだ付け性が良好であるため、アウターリード部に形成された場合に、その上に反射膜13および貴金属膜14を形成せずに露出させてもよい。したがって、リードフレーム1Bは、例えば図4(c)に示すように、基板11の全面(表面、裏面、端面)に下地めっき膜12が形成され、上面(表面)にのみ反射膜13および貴金属膜14(図中、13/14として1層で表す)が形成されていてもよい。基板11、反射膜13、および貴金属膜14は、それぞれ図1(a)に示すリードフレーム1と同じであるため、同じ符号を付し説明を省略する。以下、下地めっき膜12について説明する。   As another embodiment of the present invention, a Ni plating film or an Ag plating film may be further formed under the reflective film. That is, the lead frame 1B according to the modification of the first embodiment shown in FIG. 1B includes a substrate 11 and a base plating film (Ni plating film, Ag plating film) formed on at least one surface of the substrate 11. 12, a reflective film 13 formed thereon, and a noble metal film 14 formed thereon. Similarly to the reflective film 13 and the noble metal film 14, the base plating film 12 may be formed only at least in a region where light emitted from the LED chip is incident when assembled in the light emitting device. It may be formed entirely. Further, since the Ni film and the Ag film have good solderability, that is, the base plating film 12 has good solderability, when formed on the outer lead portion, the reflective film 13 and the noble metal film 14 are formed thereon. You may expose without forming. Therefore, in the lead frame 1B, as shown in FIG. 4C, for example, the base plating film 12 is formed on the entire surface (front surface, back surface, end surface) of the substrate 11, and the reflective film 13 and the noble metal film are formed only on the top surface (front surface). 14 (represented by one layer as 13/14 in the figure) may be formed. The substrate 11, the reflective film 13 and the noble metal film 14 are the same as the lead frame 1 shown in FIG. Hereinafter, the base plating film 12 will be described.

(下地めっき膜)
リードフレーム1Bにおいて、下地めっき膜12は基板11の表面に形成されて反射膜13の下地として設けられる。前記した通り、物理蒸着法にて成膜された反射膜13はその下地の表面性状が保持され易く、すなわち基板11に直接に反射膜13が設けられると基板11の表面形状が保持され、そのままリードフレーム1の表面性状となる。そこで、本変形例においては、当該基板11の表面の凹凸を埋めて平滑な表面を形成するめっき膜を、CuまたはCu合金からなる基板11表面への成膜が容易で比較的反射率の高い金属で形成して、反射膜13の下地とする。このような金属として、ニッケル(Ni)、Ag、Cu、クロム(Cr)、すず(Sn)を適用することができ、特にNi,Agが好ましい。基板11の表面粗さにも影響されるが、当該下地めっき膜12の表面を十分に平滑にするために、膜厚は、Niめっき膜の場合は0.5μm以上、Agめっき膜の場合は0.1μm以上とすることが好ましい。下地めっき膜12の膜厚の上限は規定しないが、膜厚が過剰に厚くても表面の平滑化の効果が飽和し、また不必要に厚く形成されると生産性が低下し、さらにAgめっき膜についてはコストが増大するため、Niめっき膜、Agめっき膜のいずれの場合も8μm以下とすることが好ましい。
(Under plating film)
In the lead frame 1 </ b> B, the base plating film 12 is formed on the surface of the substrate 11 and is provided as the base of the reflective film 13. As described above, the reflective film 13 formed by physical vapor deposition is easy to maintain the surface property of the base, that is, when the reflective film 13 is provided directly on the substrate 11, the surface shape of the substrate 11 is maintained and remains as it is. The surface properties of the lead frame 1 are obtained. Therefore, in this modification, a plating film that fills the unevenness of the surface of the substrate 11 and forms a smooth surface can be easily formed on the surface of the substrate 11 made of Cu or Cu alloy and has a relatively high reflectance. It is made of metal and used as the base of the reflective film 13. As such a metal, nickel (Ni), Ag, Cu, chromium (Cr), and tin (Sn) can be applied, and Ni and Ag are particularly preferable. Although affected by the surface roughness of the substrate 11, the film thickness is 0.5 μm or more in the case of the Ni plating film and in the case of the Ag plating film in order to sufficiently smooth the surface of the base plating film 12. The thickness is preferably 0.1 μm or more. Although the upper limit of the film thickness of the base plating film 12 is not specified, the effect of smoothing the surface is saturated even if the film thickness is excessively thick, and if it is formed unnecessarily thick, the productivity is lowered, and further Ag plating is performed. Since the cost of the film increases, the thickness is preferably 8 μm or less in both cases of the Ni plating film and the Ag plating film.

Niめっき膜は、平滑な表面を形成するめっき膜であれば、成分はNi単体に限定されず、例えば、Ni−Co合金、Ni−P合金、Ni−Fe合金等のNi合金で形成されるめっき膜であってもよく、また、電気めっき等の公知のめっき方法で形成することができる。さらに、光沢Niめっき膜であれば、基板11の表面粗さに対していっそう平滑な表面を形成することができるため、好ましい。   As long as the Ni plating film is a plating film that forms a smooth surface, the component is not limited to Ni alone, and is formed of, for example, a Ni alloy such as a Ni—Co alloy, a Ni—P alloy, or a Ni—Fe alloy. It may be a plating film, and can be formed by a known plating method such as electroplating. Further, a bright Ni plating film is preferable because a smoother surface can be formed with respect to the surface roughness of the substrate 11.

Agめっき膜は、平滑な表面を形成するめっき膜であれば、成分はAg単体(純Ag)に限定されず、例えば、Ag−Au合金やAg−Pd合金のような貴金属との合金、あるいはAg−Bi合金等のAg合金で形成されるめっき膜であってもよい。また、Agめっき膜は、公知のめっき方法で形成される無光沢Agめっき、半光沢Agめっき、光沢Agめっきのいずれであってもよいが、発光装置としたときにLEDチップから照射された光を高効率で外部へ出射するためには光沢Agめっきが最も好ましい。   As long as the Ag plating film is a plating film that forms a smooth surface, the component is not limited to Ag alone (pure Ag). For example, an alloy with a noble metal such as an Ag—Au alloy or an Ag—Pd alloy, or A plating film formed of an Ag alloy such as an Ag—Bi alloy may be used. In addition, the Ag plating film may be any one of matte Ag plating, semi-gloss Ag plating, and glossy Ag plating formed by a known plating method, but light emitted from the LED chip when used as a light emitting device. In order to emit light to the outside with high efficiency, glossy Ag plating is most preferable.

Cu,Cr,Snで下地めっき膜12を形成する場合も、平滑な表面を形成するめっき膜であれば公知のめっき方法で形成されるめっき膜であってよい。一般的には、光沢銅めっき、光沢クロムめっき、リフロー処理を施した光沢すずめっき等が挙げられる。   Even when the base plating film 12 is formed of Cu, Cr, or Sn, it may be a plating film formed by a known plating method as long as the plating film forms a smooth surface. In general, bright copper plating, bright chrome plating, bright tin plating with reflow treatment, and the like.

このように、反射膜13の下地として下地めっき膜12が設けられることで、発光装置に組み立てられたときに光の取出し効率に優れたリードフレーム1Bが容易に得られる。   Thus, by providing the base plating film 12 as the base of the reflective film 13, the lead frame 1B having excellent light extraction efficiency when assembled in the light emitting device can be easily obtained.

リードフレーム1,1B(以下、適宜まとめてリードフレーム1という)の平面視形状は特に限定されず、発光装置の形状および形態等に応じて設計され、例えば、後記の発光装置の基板11A(図4(a)参照)のように、リードフレーム1が複数個連結された構成としてもよい。また、リードフレーム1はコイル状の条材等でもよく、この場合は、発光装置の製造時に当該発光装置の形状等に応じて切断、成形等加工される。   The plan view shape of the lead frames 1 and 1B (hereinafter collectively referred to as the lead frame 1 as appropriate) is not particularly limited, and is designed according to the shape and form of the light emitting device. For example, the substrate 11A (see FIG. 4 (a)), a plurality of lead frames 1 may be connected. Further, the lead frame 1 may be a coiled strip or the like. In this case, the lead frame 1 is processed by cutting, molding, or the like according to the shape or the like of the light emitting device when the light emitting device is manufactured.

(リードフレームの製造方法)
本発明の第1実施形態に係るリードフレームは、前記の構成を形成できる方法であれば特に制限されず、いずれの方法により製造してもよい。例えば、図1(a)に示すリードフレーム1は、基板11を作製する基板作製工程S1、基板11に反射膜13を形成するアルミニウム成膜工程S5、そして、反射膜13表面に貴金属膜14を形成する貴金属成膜工程S6を行う方法によって製造することができる(図示省略)。なお、各工程には説明のために符号を付す。以下に、リードフレーム1の製造方法の一例を説明する。
(Lead frame manufacturing method)
The lead frame according to the first embodiment of the present invention is not particularly limited as long as it is a method capable of forming the above configuration, and may be manufactured by any method. For example, in the lead frame 1 shown in FIG. 1A, a substrate manufacturing step S1 for manufacturing a substrate 11, an aluminum film forming step S5 for forming a reflective film 13 on the substrate 11, and a noble metal film 14 on the surface of the reflective film 13 are provided. It can manufacture by the method of performing the noble metal film-forming process S6 to form (illustration omitted). In addition, a code | symbol is attached | subjected for description to each process. Below, an example of the manufacturing method of the lead frame 1 is demonstrated.

基板作製工程S1は、材料のCuまたはCu合金を連続鋳造して鋳造板(例えば、薄板鋳塊)を製造し、次に、焼鈍、冷間圧延、中間焼鈍および時効処理、さらに、仕上げ圧延、研磨等の工程を経て、所要の厚さの素板を製造する。この素板を切断やプレス加工等によりリードフレーム1の形状に成形して基板11を得ることができる。   In the substrate manufacturing step S1, a Cu or Cu alloy as a material is continuously cast to produce a cast plate (for example, a thin plate ingot), and then annealing, cold rolling, intermediate annealing and aging treatment, and finish rolling, A base plate having a required thickness is manufactured through a process such as polishing. The base plate 11 can be obtained by forming this base plate into the shape of the lead frame 1 by cutting or pressing.

反射膜13および貴金属膜14は、それぞれスパッタリング法のような物理蒸着法にて、当該反射膜13、貴金属膜14の各組成に合わせた、すなわちAl(またはAl合金)、貴金属でそれぞれ形成された蒸発源(ターゲット)を用いて成膜することができる。例えば、ターゲットを設置する複数の電極を備えて、電圧を印加する電極の切換えの可能なスパッタリング装置を用いることで、アルミニウム成膜工程S5および貴金属成膜工程S6を連続して行うことができる。   The reflective film 13 and the noble metal film 14 are formed by physical vapor deposition such as sputtering, respectively, in accordance with the composition of the reflective film 13 and the noble metal film 14, that is, Al (or Al alloy) and noble metal, respectively. A film can be formed using an evaporation source (target). For example, the aluminum film forming step S5 and the noble metal film forming step S6 can be performed continuously by using a sputtering apparatus that includes a plurality of electrodes on which a target is provided and can switch the electrode to which a voltage is applied.

反射膜13と基板11との密着性をよくするために、アルミニウム成膜工程S5においては、成膜前に表面にArイオンビームを照射したり、Ar雰囲気中で高周波を印加することにより、基板11表面に存在する汚れを除去することが好ましい。まず、Al(またはAl合金)ターゲットおよび貴金属ターゲットを別の電極に設置し、基板11をスパッタリング装置のチャンバー内に載置する。次に、チャンバー内を1.3×10-3Pa以下の圧力まで真空排気した後、チャンバー内にArガスを導入して、チャンバー内圧力を所定の圧力、例えば2×10-2Pa程度に調整する。そして、イオンガンに所定の放電電圧を印加してArイオンを発生させ、さらに所定の加速電圧とビーム電圧を印加することにより、Arイオンビームを基板11表面に照射する。その後、チャンバー内にArガスを導入しながら、チャンバー内の圧力を0.27Pa程度に調整し、Alターゲットに直流電圧(出力100W)を印加することによりスパッタリングを行って、反射膜13を成膜する。反射膜13の形成が完了したら、Alターゲットへの電圧印加を停止して当該工程S5を完了し、引き続いて貴金属成膜工程S6として、貴金属ターゲットに直流電圧(出力100W)を印加することによりスパッタリングを行って、貴金属膜14を成膜することでリードフレーム1を製造できる。それぞれのターゲットへの電圧印加時間を制御して、反射膜13および貴金属膜14を所望の膜厚に形成することができる。 In order to improve the adhesion between the reflective film 13 and the substrate 11, in the aluminum film forming step S5, the surface is irradiated with an Ar ion beam or a high frequency is applied in an Ar atmosphere before the film formation. 11 It is preferable to remove dirt present on the surface. First, an Al (or Al alloy) target and a noble metal target are placed on separate electrodes, and the substrate 11 is placed in a chamber of a sputtering apparatus. Next, after evacuating the chamber to a pressure of 1.3 × 10 −3 Pa or less, Ar gas is introduced into the chamber, and the pressure in the chamber is set to a predetermined pressure, for example, about 2 × 10 −2 Pa. adjust. Then, a predetermined discharge voltage is applied to the ion gun to generate Ar ions, and a predetermined acceleration voltage and beam voltage are further applied to irradiate the surface of the substrate 11 with the Ar ion beam. Thereafter, while introducing Ar gas into the chamber, the pressure in the chamber is adjusted to about 0.27 Pa, and sputtering is performed by applying a DC voltage (output 100 W) to the Al target to form the reflective film 13. To do. When the formation of the reflective film 13 is completed, the voltage application to the Al target is stopped to complete the step S5. Subsequently, as a noble metal film forming step S6, a DC voltage (output 100 W) is applied to the noble metal target for sputtering. The lead frame 1 can be manufactured by forming the noble metal film 14. The reflective film 13 and the noble metal film 14 can be formed in desired film thicknesses by controlling the voltage application time to each target.

このように、同一のスパッタリング装置を用いてチャンバー内をAr等により低酸素雰囲気として反射膜13および貴金属膜14を連続して成膜すると、反射膜13表面が大気に曝されることがないため、自然酸化膜が形成されることなく、貴金属膜14が反射膜13上に密着性よく形成される。一方、反射膜13、貴金属膜14を異なる成膜装置で形成したり、反射膜13の形成後にチャンバーを開放して蒸発源を交換する等により、反射膜13表面が大気に曝された場合は、貴金属成膜工程S6において、貴金属膜14の成膜前に、反射膜13表面に形成された自然酸化膜を除去する。具体的には、反射膜13にArイオンビームを照射したり、Ar雰囲気中で高周波を印加することにより、反射膜13表面に形成された自然酸化膜を除去することができる。すなわち、アルミニウム成膜工程S5における反射膜13の成膜前の基板11表面の汚れの除去と同様の処理を行えばよい。チャンバー内の真空排気やArガスによる圧力調整等の一連の作業は、アルミニウム成膜工程S5と同様であるので、説明は省略する。   As described above, when the reflective film 13 and the noble metal film 14 are continuously formed in the same sputtering apparatus in a low oxygen atmosphere with Ar or the like, the surface of the reflective film 13 is not exposed to the atmosphere. The noble metal film 14 is formed on the reflective film 13 with good adhesion without forming a natural oxide film. On the other hand, when the reflective film 13 and the noble metal film 14 are formed by different film forming apparatuses, or after the reflective film 13 is formed, the chamber is opened and the evaporation source is exchanged. In the noble metal film forming step S6, the natural oxide film formed on the surface of the reflective film 13 is removed before the noble metal film 14 is formed. Specifically, the natural oxide film formed on the surface of the reflective film 13 can be removed by irradiating the reflective film 13 with an Ar ion beam or applying a high frequency in an Ar atmosphere. That is, the same process as the removal of dirt on the surface of the substrate 11 before the formation of the reflective film 13 in the aluminum film forming step S5 may be performed. A series of operations such as vacuum evacuation in the chamber and pressure adjustment with Ar gas are the same as in the aluminum film forming step S5, and thus description thereof is omitted.

図1(b)に示すリードフレーム1Bは、前記リードフレーム1の製造におけるアルミニウム成膜工程S5の前に、基板11に下地めっき膜(Niめっき膜、Agめっき膜)12を形成する下地めっき工程(めっき工程)S2をさらに行う方法によって製造することができる(図示省略)。工程S1,S5,S6はリードフレーム1の製造の製造方法にて説明したので省略し、以下に、下地めっき工程S2について説明する。   A lead frame 1B shown in FIG. 1B is a base plating step for forming a base plating film (Ni plating film, Ag plating film) 12 on the substrate 11 before the aluminum film forming step S5 in the manufacture of the lead frame 1. (Plating step) It can be manufactured by a method of further performing S2 (not shown). Steps S1, S5, and S6 have been described in the manufacturing method for manufacturing the lead frame 1, and will be omitted. Hereinafter, the base plating step S2 will be described.

下地めっき膜12としてNiめっき膜を形成する場合、その成膜に際して、予め基板11を脱脂液による脱脂、電解脱脂、および酸溶液によって前処理を行うことが好ましい。前処理は、例えば、基板11を、脱脂液に浸漬して脱脂した後、対極をステンレス304として、リードフレーム側がマイナスとなるようにして直流電圧を印加して30秒間程度電解脱脂を行い、さらに、10%硫酸水溶液に10秒程度浸漬することによって行うことができる。   When a Ni plating film is formed as the base plating film 12, it is preferable to pre-treat the substrate 11 with a degreasing solution, electrolytic degreasing, and an acid solution in advance. For example, after the substrate 11 is immersed in a degreasing solution and degreased, the counter electrode is made of stainless steel 304, and a DC voltage is applied so that the lead frame side is negative, and electrolytic degreasing is performed for about 30 seconds. It can be performed by immersing in a 10% sulfuric acid aqueous solution for about 10 seconds.

Niめっき膜は、例えば、ワット浴、ウッド浴、スルファミン酸浴等の公知のめっき浴を用い、Ni板を対極とし、電流密度5A/dm2、めっき浴温度50℃等の条件で電気めっきを行うことによって成膜することができる。また、光沢剤を添加しためっき浴を用いて光沢Niめっき膜とすることもできる。この電気めっきにおいては、電流密度やめっき通板速度(めっき時間)等を調整することによって、所望の膜厚のNiめっき膜を得ることができる。 Ni plating film, for example, a Watts bath, wood bath, using known plating bath such as sulfamic acid bath, a Ni plate as the counter electrode, the current density 5A / dm 2, the electroplating conditions such as the plating bath temperature 50 ° C. By performing, it can form into a film. Moreover, it can also be set as a gloss Ni plating film using the plating bath which added the brightener. In this electroplating, a Ni plating film having a desired film thickness can be obtained by adjusting the current density, plating plate speed (plating time), and the like.

下地めっき膜12としてAgめっき膜を形成する場合も、その成膜に際して、Niめっき膜の形成と同様に、予め基板11に前処理を行うことが好ましい。Agめっき膜は、純Agで形成する場合、例えば、シアン浴、チオ硫酸塩浴等の公知のめっき液を用い、Ag(純度99.99%)板を対極とし、電流密度5A/dm2、めっき浴温度15℃等の条件で電気めっきを行うことによって成膜することができる。また、光沢剤を添加しためっき浴を用いて光沢Agめっき膜とすることもできる。この電気めっきにおいては、Niめっきと同様に、電流密度やめっき通板速度(めっき時間)等を調整することによって、所望の膜厚のAgめっき膜を得ることができる。 Even when an Ag plating film is formed as the base plating film 12, it is preferable to pre-treat the substrate 11 in advance in the same manner as the formation of the Ni plating film. When the Ag plating film is formed of pure Ag, for example, a known plating solution such as a cyan bath or a thiosulfate bath is used, with an Ag (purity 99.99%) plate as a counter electrode, and a current density of 5 A / dm 2 , A film can be formed by performing electroplating under conditions such as a plating bath temperature of 15 ° C. Moreover, it can also be set as a gloss Ag plating film using the plating bath which added the brightener. In this electroplating, an Ag plating film having a desired film thickness can be obtained by adjusting the current density, plating plate speed (plating time), and the like, similarly to Ni plating.

なお、基板11の片面(上面)のみ、あるいはさらに一部の領域のみに下地めっき膜(Niめっき膜、Agめっき膜)12を形成する場合は、下面や前記領域以外にマスキングテープ等でマスキングした後、めっき浴で電気めっきを行うことによって、基板11の所望の部位のみに下地めっき膜12を形成することができる。   In the case where the base plating film (Ni plating film, Ag plating film) 12 is formed only on one surface (upper surface) of the substrate 11 or only in a part of the region, the substrate 11 is masked with a masking tape or the like other than the lower surface and the region. Thereafter, by performing electroplating in a plating bath, the base plating film 12 can be formed only on a desired portion of the substrate 11.

リードフレーム1Bの製造においては、アルミニウム成膜工程S5および貴金属成膜工程S6では、下地めっき膜12を形成した基板11をスパッタリング装置のチャンバー内に載置する。さらにアルミニウム成膜工程S5では、反射膜13と下地めっき膜12との密着性をよくするために、成膜前に下地めっき膜12表面にArイオンビームを照射したり、Ar雰囲気中で高周波を印加することにより、下地めっき膜12表面に存在する汚れを除去してもよい。   In manufacturing the lead frame 1B, in the aluminum film forming step S5 and the noble metal film forming step S6, the substrate 11 on which the base plating film 12 is formed is placed in the chamber of the sputtering apparatus. Further, in the aluminum film forming step S5, in order to improve the adhesion between the reflective film 13 and the base plating film 12, the surface of the base plating film 12 is irradiated with an Ar ion beam before film formation, or a high frequency is generated in an Ar atmosphere. By applying, dirt existing on the surface of the underlying plating film 12 may be removed.

以上のように、前記工程S1,S5,S6をこの順に行うことによりリードフレーム1を製造することができる。また、工程S1,S2,S5,S6をこの順に行うことによりリードフレーム1Bを製造することができる。また、下地めっき工程S2において、基板11(11A)をマスキングせず全面に下地めっき膜12を形成し、アルミニウム成膜工程S5、貴金属成膜工程S6にて、片面(表面)にのみ反射膜13および貴金属膜14を形成すると、図4(c)に示すリードフレーム1Bを製造することができる。また、基板作製工程S1における基板11の成形前に、下地めっき工程S2を、あるいはさらにアルミニウム成膜工程S5および貴金属成膜工程S6を行ってから、リードフレーム1(1B)の形状に加工して製造することもできる。   As described above, the lead frame 1 can be manufactured by performing the steps S1, S5, and S6 in this order. Further, the lead frame 1B can be manufactured by performing the steps S1, S2, S5 and S6 in this order. Further, in the base plating step S2, the base plating film 12 is formed on the entire surface without masking the substrate 11 (11A), and in the aluminum film forming step S5 and the noble metal film forming step S6, the reflective film 13 is formed only on one side (front surface). When the noble metal film 14 is formed, the lead frame 1B shown in FIG. 4C can be manufactured. Further, before forming the substrate 11 in the substrate manufacturing step S1, the base plating step S2, or further the aluminum film forming step S5 and the noble metal film forming step S6, are processed into the shape of the lead frame 1 (1B). It can also be manufactured.

〔第2実施形態〕
次に、第2実施形態に係るLED用リードフレームについて、図5を参照して説明する。第1実施形態に係るLED用リードフレームと同じ要素については、同じ符号を付し、説明を省略する。第2実施形態に係るLED用リードフレームは、LEDチップを光源として搭載される表面実装型の発光装置(図2参照)を構成するための部品である。
[Second Embodiment]
Next, an LED lead frame according to a second embodiment will be described with reference to FIG. The same elements as those of the LED lead frame according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The LED lead frame according to the second embodiment is a component for constituting a surface-mounted light-emitting device (see FIG. 2) mounted with an LED chip as a light source.

図5(a)、(b)に示すように、第2実施形態に係る支持部材付リードフレーム(LED用リードフレーム)10Bは、上方に開口した凹状のLEDチップ搭載部(凹部)22が形成された支持部材2Bと、この支持部材2Bに支持された正極・負極の一対のリード部材1a,1cと、を備える。リード部材1a,1cは、LEDチップ搭載部22の底面に、互いに離間して配設されて、それぞれが当該LEDチップ搭載部22から支持部材2Bの外側に延出、すなわち支持部材2Bの内側(LEDチップ搭載部22)から外側へ突き抜けた構成となる。支持部材付リードフレーム10Bが発光装置に組み立てられたとき、支持部材2BはLEDチップ搭載部22内に光源であるLEDチップを収容するための器および台座であり、リード部材1a,1cはこのLEDチップに駆動電流を供給するための配線になる。第2実施形態に係るLED用リードフレームは、前記の第1実施形態に係るLED用リードフレーム1を一対のリード部材とし、これを、LEDチップが収容されるための凹部が形成された支持部材で支持する構造であることから、以下、支持部材付リードフレームと称する。次に、第2実施形態に係る支持部材付リードフレームを構成する要素について、詳細に説明する。   As shown in FIGS. 5A and 5B, a lead frame with a support member (LED lead frame) 10B according to the second embodiment is formed with a concave LED chip mounting portion (concave portion) 22 opened upward. And a pair of positive / negative lead members 1a and 1c supported by the support member 2B. The lead members 1a and 1c are arranged on the bottom surface of the LED chip mounting portion 22 so as to be separated from each other, and each extends from the LED chip mounting portion 22 to the outside of the support member 2B, that is, inside the support member 2B ( The LED chip mounting portion 22) penetrates outward. When the lead frame with support member 10B is assembled to the light emitting device, the support member 2B is a container and a base for accommodating the LED chip as the light source in the LED chip mounting portion 22, and the lead members 1a and 1c are the LEDs. Wiring for supplying drive current to the chip. The LED lead frame according to the second embodiment uses the LED lead frame 1 according to the first embodiment as a pair of lead members, and this is a support member formed with a recess for accommodating the LED chip. In the following, it is referred to as a lead frame with a support member. Next, elements constituting the lead frame with a support member according to the second embodiment will be described in detail.

(リード部材)
図5(a)に示すように、リード部材1a,1cは帯状で、その長手方向に沿って並設され、LEDチップ搭載部22の底面にて長手方向中心に対して右寄りの位置で間隔を空けて対向し、それぞれが支持部材2Bの外側(図5における左右両側)へ貫通している。したがって、LEDチップ搭載部22において、左側のリード部材1aが、右側のリード部材1cよりも長く、底面の中央まで配設されている。リード部材1a,1cの、LEDチップ搭載部22の底面に配置された領域をインナーリード部、支持部材2Bの外側に延出された領域をアウターリード部と称する(図2(b)参照)。このように、リード部材の一方(リード部材1a)がLEDチップ搭載部22の底面中央に配設されることで、支持部材付リードフレーム10Bに搭載されるLEDチップが安定して載置されて、このリード部材1aがLEDチップから下方へ照射された光を好適に反射することができる。詳しくは、リード部材1aのインナーリード部の、LEDチップ搭載部22の底面の略中央(図5(a)に太破線の枠で示す領域)にLEDチップが載置される。さらにリード部材1a,1cのインナーリード部におけるLEDチップの両側(図における左右)における領域が、ワイヤボンディングのための領域となる。すなわちインナーリード部は、搭載されるLEDチップを電気的に接続するための領域であり、同時に、このLEDチップの発光した光を反射させる反射板を構成する。そして、アウターリード部は、外部の電源または配線に電気的に接続するための領域、すなわちはんだ付けのための領域である。
(Lead material)
As shown in FIG. 5 (a), the lead members 1a and 1c are belt-shaped and are juxtaposed along the longitudinal direction, and spaced apart at the right side of the center in the longitudinal direction on the bottom surface of the LED chip mounting portion 22. They are opposed to each other, and each penetrates to the outside (both left and right sides in FIG. 5) of the support member 2B. Therefore, in the LED chip mounting part 22, the left lead member 1a is longer than the right lead member 1c and is arranged to the center of the bottom surface. The area | region arrange | positioned on the bottom face of the LED chip mounting part 22 of the lead members 1a and 1c is called an inner lead part, and the area | region extended outside the support member 2B is called an outer lead part (refer FIG.2 (b)). Thus, one of the lead members (lead member 1a) is disposed at the center of the bottom surface of the LED chip mounting portion 22, so that the LED chip mounted on the lead frame with support member 10B is stably mounted. The lead member 1a can suitably reflect the light irradiated downward from the LED chip. Specifically, the LED chip is placed at the approximate center of the inner lead portion of the lead member 1a on the bottom surface of the LED chip mounting portion 22 (the region indicated by the thick dashed frame in FIG. 5A). Further, regions on both sides (left and right in the drawing) of the LED chip in the inner lead portions of the lead members 1a and 1c are regions for wire bonding. That is, the inner lead portion is a region for electrically connecting the mounted LED chip, and at the same time, constitutes a reflector that reflects the light emitted by the LED chip. The outer lead portion is a region for electrical connection to an external power source or wiring, that is, a region for soldering.

リード部材1a,1cは、第1実施形態に係るリードフレーム1(図1(a)参照)からなり、すなわち基板11と、基板11の少なくとも一方の面に形成された反射膜13と、さらにその上に形成された貴金属膜14と、を備える。図5(b)に示すように、リード部材1a,1cは、反射膜13および貴金属膜14を備える面を上に向けて、支持部材2BのLEDチップ搭載部22の底面に配置される。また、図5(b)においては、リード部材1a,1cはリードフレーム1からなるが、図3に示す第1実施形態と異なり、反射膜13および貴金属膜14はインナーリード部にのみ設けられ、アウターリード部および支持部材2Bに埋設された領域は、基板11のみを備える。かかる構造については、後記の製造方法にて説明する。また、リード部材1a,1cは、図6に示す変形例に係る支持部材付リードフレーム10Cのように、基板11と反射膜13との間に下地めっき膜(Niめっき膜、Agめっき膜)12を備えたリードフレーム1B(図1(b)参照)と同様の構成としてもよい(図6においては、反射膜13は貴金属膜14と共に13/14として1層で表す)。リード部材1a,1cを構成する基板11等の各要素は、第1実施形態に係るリードフレーム1,1Bと同様であるので、説明を省略する。   The lead members 1a and 1c are composed of the lead frame 1 (see FIG. 1A) according to the first embodiment, that is, the substrate 11, the reflective film 13 formed on at least one surface of the substrate 11, and the And a noble metal film 14 formed thereon. As shown in FIG. 5B, the lead members 1a and 1c are arranged on the bottom surface of the LED chip mounting portion 22 of the support member 2B with the surface including the reflective film 13 and the noble metal film 14 facing upward. 5B, the lead members 1a and 1c are composed of the lead frame 1. Unlike the first embodiment shown in FIG. 3, the reflective film 13 and the noble metal film 14 are provided only on the inner lead portion. The area embedded in the outer lead portion and the support member 2 </ b> B includes only the substrate 11. Such a structure will be described later in the manufacturing method. Further, the lead members 1a and 1c are formed of a base plating film (Ni plating film, Ag plating film) 12 between the substrate 11 and the reflective film 13 as in the lead frame with support member 10C according to the modification shown in FIG. (Refer FIG. 6 shows the reflection film 13 as one layer as 13/14 together with the noble metal film 14). Since the elements such as the substrate 11 constituting the lead members 1a and 1c are the same as those of the lead frames 1 and 1B according to the first embodiment, the description thereof is omitted.

(支持部材)
支持部材2Bは、図2に示す発光装置の支持部材2と同様に、凹状のLEDチップ搭載部(凹部)22が形成されたカップ状の樹脂成形体(基体)21を備え、さらにLEDチップ搭載部22の表面に形成された反射膜23を備える。LEDチップ搭載部22は上方に広がって開口し、底面とこれを囲む4面の側面とから構成される平面視で長方形の四角錐台である。LEDチップ搭載部22の形状はこれに限定されず、例えば平面視で正方形であったり、上方に広がって開口した円錐台でもよい。また、LEDチップ搭載部22におけるリード部材1a,1cに挟まれた領域(空間)を、底面および側面を含めて、離間領域28と称する。支持部材2Bは、支持部材付リードフレーム10Bが使用される発光装置の形状および形態、ならびにLEDチップの実装形態、製品としてユーザに提供する形態等に応じて所望の形状に成形される。
(Support member)
The support member 2B, like the support member 2 of the light emitting device shown in FIG. 2, includes a cup-shaped resin molded body (base) 21 in which a concave LED chip mounting portion (recess) 22 is formed, and further includes an LED chip mounting. A reflective film 23 formed on the surface of the portion 22 is provided. The LED chip mounting part 22 is an open quadrilateral frustum that is rectangular in a plan view and includes a bottom surface and four side surfaces surrounding it. The shape of the LED chip mounting portion 22 is not limited to this, and may be, for example, a square in a plan view, or a truncated cone that opens upward. Further, a region (space) sandwiched between the lead members 1a and 1c in the LED chip mounting portion 22 is referred to as a separation region 28 including a bottom surface and a side surface. The support member 2B is formed into a desired shape according to the shape and form of the light emitting device in which the lead frame with support member 10B is used, the LED chip mounting form, the form provided to the user as a product, and the like.

樹脂成形体21は支持部材2Bの基体であり、絶縁材料である樹脂を支持部材2Bの形状に成形してなる。したがって、樹脂成形体21は、その外側から内側(LEDチップ搭載部22)へリード部材1a,1cがそれぞれ貫通するように、射出成形(インサート成形)等によって、リード部材1a,1cと一体的に成形されることが好ましい。樹脂は、耐熱性が200℃以上のものであればよく、ポリアミド(PA)樹脂等のエンジニアリングプラスチック、ポリフェニレンサルファイド(PPS)樹脂等のスーパーエンジニアリングプラスチック等を用いることができる。また、樹脂成形体21の、LEDチップ搭載部22を形成する面(底面および側面)は、表面に反射膜23を形成されて発光装置としたときの反射面となるので、基板11と同様に、正反射率を高くするために平滑な表面にすることが好ましい。   The resin molded body 21 is a base of the support member 2B, and is formed by molding a resin that is an insulating material into the shape of the support member 2B. Therefore, the resin molded body 21 is integrated with the lead members 1a and 1c by injection molding (insert molding) or the like so that the lead members 1a and 1c penetrate from the outer side to the inner side (LED chip mounting portion 22). It is preferable to be molded. The resin has only to have heat resistance of 200 ° C. or higher, and engineering plastics such as polyamide (PA) resin, super engineering plastics such as polyphenylene sulfide (PPS) resin, and the like can be used. Moreover, since the surface (bottom surface and side surface) which forms the LED chip mounting part 22 of the resin molding 21 becomes a reflective surface when the reflective film 23 is formed on the surface to form a light emitting device, similarly to the substrate 11 In order to increase the regular reflectance, a smooth surface is preferable.

支持部材2Bは、その内面すなわちLEDチップ搭載部22の表面(底面および側面)における離間領域28を除く領域に、反射膜23を備える。反射膜23は、リード部材1a,1c(リードフレーム1)に設けられた反射膜13と同様に、アルミニウム(Al)またはAl合金で形成され、リード部材1a,1cにおける反射膜13と組成や膜厚が同一であっても異なっていてもよいが、膜厚は反射膜13と同様に50nm以上とする。このような反射膜23が形成されることにより、LEDチップ搭載部22の表面の反射率が高くなり、発光装置としたときに光の取出し効率がいっそう向上する。なお、LEDチップ搭載部22の各表面(底面および側面)に形成される反射膜23は、同じ膜厚でなくてよい。また、LEDチップ搭載部22の底面におけるリード部材1a,1cの配置される領域(インナーリード部の下)には反射膜23が形成されなくてよい。   The support member 2 </ b> B includes a reflective film 23 on the inner surface thereof, that is, on a region excluding the separation region 28 on the surface (bottom surface and side surface) of the LED chip mounting portion 22. The reflective film 23 is formed of aluminum (Al) or an Al alloy, similarly to the reflective film 13 provided on the lead members 1a and 1c (lead frame 1), and the reflective film 13 and the composition and film of the lead members 1a and 1c. Although the thickness may be the same or different, the thickness is set to 50 nm or more like the reflective film 13. By forming such a reflective film 23, the reflectance of the surface of the LED chip mounting portion 22 is increased, and the light extraction efficiency is further improved when the light emitting device is formed. In addition, the reflective film 23 formed on each surface (bottom surface and side surface) of the LED chip mounting part 22 may not have the same film thickness. Further, the reflective film 23 does not have to be formed in the area where the lead members 1a and 1c are disposed on the bottom surface of the LED chip mounting portion 22 (under the inner lead portion).

これらのことから、リード部材1a,1cと一体的に射出成形された樹脂成形体21に対して、反射膜23を成膜することができる。さらに後記するように、樹脂成形体21を、反射膜13を形成する前のリード部材1a,1c(基材11または下地めっき膜12を形成した基材11)と一体的に射出成形し、インナーリード部(基材11または下地めっき膜12)およびLEDチップ搭載部22(樹脂成形体21)の表面に、反射膜13,23を一体に成膜することができる。さらに、LEDチップ搭載部22を上方に広がって開口した形状とすることで、当該LEDチップ搭載部22の開口部(上方)から底面に向けて反射膜13,23を物理蒸着法で成膜すれば、底面上のリード部材1a,1cのインナーリード部および底面だけでなく、傾斜した側面にも反射膜23が同時に成膜される。   For these reasons, the reflective film 23 can be formed on the resin molded body 21 that is integrally injection molded with the lead members 1a and 1c. Further, as will be described later, the resin molded body 21 is injection-molded integrally with the lead members 1a and 1c (the base material 11 or the base material 11 on which the base plating film 12 is formed) before the reflection film 13 is formed. The reflective films 13 and 23 can be integrally formed on the surface of the lead part (base material 11 or base plating film 12) and the LED chip mounting part 22 (resin molded body 21). Furthermore, by forming the LED chip mounting portion 22 in an open shape that opens upward, the reflective films 13 and 23 are formed by physical vapor deposition from the opening (upper) of the LED chip mounting portion 22 toward the bottom surface. For example, the reflective film 23 is simultaneously formed on the inclined side surfaces as well as the inner lead portions and the bottom surfaces of the lead members 1a and 1c on the bottom surfaces.

さらに、反射膜13,23と同様に、樹脂成形体21(支持部材2B)に支持されてLEDチップ搭載部22の底面上に配されたリード部材1a,1cに、物理蒸着法で貴金属膜14を成膜すると、LEDチップ搭載部22の各面にも同じ組成の貴金属膜が成膜される(図5(b)および図6においては省略する)。このような貴金属膜は、リード部材1a,1cにおける貴金属膜14と同様に、膜厚50nm以下であれば反射膜23の高反射率を阻害しないので形成されてもよい。なお、支持部材付リードフレーム10Bが発光装置に組み立てられる際に、支持部材2BのLEDチップ搭載部22の表面にはワイヤボンディングされないので、リード部材1a,1c(リードフレーム1)のように貴金属膜を反射膜23上に設ける必要はなく、反射膜23は露出していてもよい。また、図5(b)において、LEDチップ搭載部22の表面に、リード部材1a,1c表面を含めて一体に反射膜を示しているが、樹脂成形体21上に形成されたものは反射膜23、基板11上すなわちリード部材1a,1c表面に形成されたものは反射膜13とする。   Further, similarly to the reflective films 13 and 23, the noble metal film 14 is applied to the lead members 1a and 1c supported on the resin molded body 21 (support member 2B) and disposed on the bottom surface of the LED chip mounting portion 22 by physical vapor deposition. When the film is formed, a noble metal film having the same composition is also formed on each surface of the LED chip mounting portion 22 (omitted in FIGS. 5B and 6). Similar to the noble metal film 14 in the lead members 1a and 1c, such a noble metal film may be formed because the high reflectivity of the reflective film 23 is not inhibited as long as the film thickness is 50 nm or less. Note that when the lead frame with support member 10B is assembled to the light emitting device, no wire bonding is performed on the surface of the LED chip mounting portion 22 of the support member 2B, so that the noble metal film like the lead members 1a and 1c (lead frame 1) is used. Need not be provided on the reflective film 23, and the reflective film 23 may be exposed. Further, in FIG. 5B, a reflective film is integrally shown on the surface of the LED chip mounting portion 22 including the surfaces of the lead members 1a and 1c. However, what is formed on the resin molded body 21 is a reflective film. 23, what is formed on the substrate 11, that is, on the surfaces of the lead members 1a and 1c, is the reflective film 13.

ここで、LEDチップ搭載部22の表面(底面および側面)の全領域にAlまたはAl合金からなる反射膜、あるいはさらに貴金属膜が形成されていると、この反射膜等を介してリード部材1a,1c間が短絡する。したがって、LEDチップ搭載部22の底面および側面(長手方向に沿った側面)の離間領域28における領域には、反射膜23および貴金属膜は形成されない。また、反射膜23等は、LEDチップ搭載部22の表面以外、すなわち支持部材2Bの上面(側壁の上端面)や外側の側面等にも形成されてもよいが、離間領域28の延長上で、リード部材1a,1cの各インナーリード部から連続して形成されないようにする。すなわち、反射膜23は、LEDチップ搭載部22の底面の、リード部材1aの配置される領域に連続する領域と、リード部材1cの配置される領域に連続する領域とで、離間領域28を隔てて完全に分離される。このような反射膜23の形成方法は、後記の製造方法で詳細に説明する。   Here, when a reflection film made of Al or an Al alloy or further a noble metal film is formed on the entire surface (bottom surface and side surface) of the LED chip mounting portion 22, the lead member 1a, 1c is short-circuited. Therefore, the reflective film 23 and the noble metal film are not formed in the region in the separation region 28 on the bottom surface and the side surface (side surface along the longitudinal direction) of the LED chip mounting portion 22. Further, the reflection film 23 and the like may be formed on the surface other than the surface of the LED chip mounting portion 22, that is, on the upper surface (upper end surface of the side wall) or the outer side surface of the support member 2B. The lead members 1a and 1c are not formed continuously from the inner lead portions. That is, the reflective film 23 separates the separation region 28 between a region on the bottom surface of the LED chip mounting portion 22 that is continuous with the region where the lead member 1a is disposed and a region that is continuous with the region where the lead member 1c is disposed. And completely separated. A method for forming such a reflective film 23 will be described in detail in a manufacturing method described later.

(支持部材付リードフレームの製造方法)
第2実施形態に係る支持部材付リードフレーム10Bは、前記の構成を形成できる方法であれば特に制限されず、いずれの方法により製造してもよい。例えば、図5(a)、(b)に示す支持部材付リードフレーム10Bは、第1実施形態に係るリードフレーム1の製造方法における基板作製工程S1、アルミニウム成膜工程S5、貴金属成膜工程S6に、さらに樹脂成形工程S3およびマスク工程S4を行う方法によって製造することができる(図示省略)。以下に、第2実施形態に係る支持部材付リードフレームの製造方法の一例を説明する。
(Manufacturing method of lead frame with support member)
The lead frame with support member 10B according to the second embodiment is not particularly limited as long as it can form the above-described configuration, and may be manufactured by any method. For example, the lead frame with support member 10B shown in FIGS. 5A and 5B includes a substrate manufacturing step S1, an aluminum film forming step S5, and a noble metal film forming step S6 in the method for manufacturing the lead frame 1 according to the first embodiment. Furthermore, it can manufacture by the method of performing resin molding process S3 and mask process S4 (illustration omitted). Below, an example of the manufacturing method of the lead frame with a supporting member which concerns on 2nd Embodiment is demonstrated.

基板作製工程S1は、前記第1実施形態と同様であるので、説明を省略する。この工程で、リード部材1a,1cの形状に成形された基板11を得る。   Since the substrate manufacturing step S1 is the same as that of the first embodiment, description thereof is omitted. In this step, the substrate 11 molded into the shape of the lead members 1a and 1c is obtained.

樹脂成形工程S3は、射出成形(インサート成形)等によって、樹脂成形体21をリード部材1a,1cと一体的に成形する。詳しくは、樹脂成形体21の外側から内側(LEDチップ搭載部22)へ、基板11が貫通するように、樹脂を前記基板11と一体的に成形する。なお、樹脂成形体21のLEDチップ搭載部22の底面となる面は、リード部材1a,1cの上面(基板11の上面)と面一であることが好ましいが、例えば基板11の下面と面一に成形されてもよい。   In the resin molding step S3, the resin molded body 21 is molded integrally with the lead members 1a and 1c by injection molding (insert molding) or the like. Specifically, the resin is molded integrally with the substrate 11 so that the substrate 11 penetrates from the outside of the resin molded body 21 to the inside (LED chip mounting portion 22). In addition, although it is preferable that the surface used as the bottom face of the LED chip mounting part 22 of the resin molding 21 is the same as the upper surface (upper surface of the board | substrate 11) of the lead members 1a and 1c, for example, it is flush with the lower surface of the board | substrate 11. May be formed.

次に、リード部材1a,1cのインナーリード部における基板11表面に反射膜13を、樹脂成形体21のLEDチップ搭載部22における表面に反射膜23を、それぞれ形成する(アルミニウム成膜工程S5)。しかしながら、LEDチップ搭載部22の開口部から底面に向けて、そのまま、すなわちLEDチップ搭載部22表面の全領域に反射膜13,23を成膜すると、前記したように、LEDチップ搭載部22表面の反射膜(アルミニウム膜)を介してリード部材1a,1c間が短絡することになる。そこで、この短絡を防止するために、アルミニウム成膜工程S5の前にマスク工程S4を行う。以下、マスク工程S4について説明する。   Next, the reflective film 13 is formed on the surface of the substrate 11 in the inner lead portions of the lead members 1a and 1c, and the reflective film 23 is formed on the surface of the LED chip mounting portion 22 of the resin molded body 21 (aluminum film forming step S5). . However, if the reflective films 13 and 23 are formed directly from the opening of the LED chip mounting portion 22 toward the bottom surface, that is, in the entire area of the surface of the LED chip mounting portion 22, as described above, the surface of the LED chip mounting portion 22 is formed. The lead members 1a and 1c are short-circuited via the reflective film (aluminum film). Therefore, in order to prevent this short circuit, a mask process S4 is performed before the aluminum film forming process S5. Hereinafter, the mask process S4 will be described.

マスク工程S4はアルミニウム成膜工程S5および貴金属成膜工程S6の準備工程であり、LEDチップ搭載部22の離間領域28をマスクすることにより、後続の工程S5,S6でこの離間領域28に反射膜13,23および貴金属膜14が形成されないようにする。マスク方法は特に規定されず、公知の方法を適用できるが、一例としては、図5(c)に示すように、LEDチップ搭載部22(内部空間)のC−C線矢視断面形状と同じ逆台形の上に樹脂成形体21の側方へ張り出す耳部を有する平面視形状で、LEDチップ搭載部22の底面上におけるリード部材1a,1c間距離と同じ厚さの板状のマスク(マスク板)を用いる。そして、このマスク板を樹脂成形体21のLEDチップ搭載部22に、離間領域28の位置に合わせて、開口部から底面に向けて嵌装する。マスク板の構成は特に制限されず、例えば、銅、アルミニウム、チタン、SUS等の金属材料をエッチングやプレス加工等で作製されたものを用いることができる。このマスク板をLEDチップ搭載部22に嵌装した状態で、アルミニウム成膜工程S5および貴金属成膜工程S6を行う。また、このとき、支持部材2B(樹脂成形体21)におけるLEDチップ搭載部22の表面以外(外側表面)、あるいはさらにリード部材1a,1cのアウターリード部を覆うマスク(図示せず)も設けてもよい。   The mask process S4 is a preparation process for the aluminum film forming process S5 and the noble metal film forming process S6. By masking the separation region 28 of the LED chip mounting portion 22, the reflective film is applied to the separation region 28 in the subsequent steps S5 and S6. 13 and 23 and the noble metal film 14 are not formed. The mask method is not particularly defined, and a known method can be applied. As an example, as shown in FIG. 5C, the same as the cross-sectional shape taken along the line CC of the LED chip mounting portion 22 (internal space). A plate-like mask having an inverted trapezoidal shape with an ear portion projecting to the side of the resin molded body 21 and having the same thickness as the distance between the lead members 1a and 1c on the bottom surface of the LED chip mounting portion 22 ( Mask plate). Then, this mask plate is fitted to the LED chip mounting portion 22 of the resin molded body 21 in accordance with the position of the separation region 28 from the opening portion toward the bottom surface. The structure of the mask plate is not particularly limited, and for example, a metal material such as copper, aluminum, titanium, SUS, or the like produced by etching or pressing can be used. With this mask plate fitted to the LED chip mounting portion 22, an aluminum film forming step S5 and a noble metal film forming step S6 are performed. At this time, a mask (not shown) is also provided to cover the outer lead portion of the lead members 1a and 1c other than the surface (outer surface) of the LED chip mounting portion 22 in the support member 2B (resin molded body 21). Also good.

アルミニウム成膜工程S5および貴金属成膜工程S6は、それぞれ前記第1実施形態における工程S5,S6と同様であり、所定の組成および膜厚の反射膜13,23および貴金属膜14を、リード部材1a,1cのインナーリード部も含めてLEDチップ搭載部22に、一体に成膜する。第1実施形態と同様に、工程S5,S6を連続して行ってもよいし、アルミニウム成膜工程S5の後、反射膜13,23の表面が大気等に曝された状態で、貴金属成膜工程S6にて自然酸化膜を除去してから貴金属膜14を成膜してもよい。   The aluminum film forming step S5 and the noble metal film forming step S6 are the same as the steps S5 and S6 in the first embodiment, respectively, and the reflective films 13 and 23 and the noble metal film 14 having a predetermined composition and film thickness are formed on the lead member 1a. , 1c and the LED chip mounting portion 22 including the inner lead portion. As in the first embodiment, the steps S5 and S6 may be performed continuously, or after the aluminum film forming step S5, the surface of the reflective films 13 and 23 is exposed to the atmosphere and the noble metal film is formed. The noble metal film 14 may be formed after removing the natural oxide film in step S6.

ここで、基板11を貫通させた樹脂成形体21は、スパッタリング装置のチャンバー内において、LEDチップ搭載部22の底面およびリード部材1a,1c上面をAlターゲットおよび貴金属ターゲットに対向する向きに載置されることが好ましい。このように載置されることで、LEDチップ搭載部22の側面の傾斜角度にもよるが、この側面への成膜の方が、底面やリード部材1a,1c上面への成膜よりも成膜速度が遅くなる。したがって、アルミニウム成膜工程S5においては、樹脂成形体21のLEDチップ搭載部22の側面に形成される反射膜23の必要な膜厚に合わせて成膜すればよい。一方、貴金属成膜工程S6においては、貴金属膜はリード部材1a,1c表面にのみ必要なので、かかる面における貴金属膜14の膜厚に合わせて成膜すればよく、貴金属膜が樹脂成形体21上(反射膜23上)にも形成されてもリード部材1a,1cにおける貴金属膜14の膜厚以下であれば、何ら問題はない。   Here, the resin molded body 21 that has penetrated the substrate 11 is placed in the chamber of the sputtering apparatus so that the bottom surface of the LED chip mounting portion 22 and the top surfaces of the lead members 1a and 1c face the Al target and the noble metal target. It is preferable. By being placed in this way, depending on the inclination angle of the side surface of the LED chip mounting portion 22, film formation on this side surface is formed more than film formation on the bottom surface and the top surfaces of the lead members 1a and 1c. The film speed becomes slow. Therefore, in the aluminum film forming step S5, the reflective film 23 formed on the side surface of the LED chip mounting portion 22 of the resin molded body 21 may be formed in accordance with the required film thickness. On the other hand, in the noble metal film forming step S6, since the noble metal film is necessary only on the surfaces of the lead members 1a and 1c, the noble metal film may be formed according to the film thickness of the noble metal film 14 on the surface. Even if it is formed on the reflective film 23, there is no problem as long as it is equal to or less than the thickness of the noble metal film 14 in the lead members 1a and 1c.

反射膜13,23および貴金属膜14を成膜した後、LEDチップ搭載部22からマスク板を外すと、図5(a)、(b)に示すように、LEDチップ搭載部22の表面において、底面および側面にわたって、反射膜23等が形成されず樹脂成形体21が露出した領域が、離間領域28に沿って帯状に存在する支持部材2Bとなり、支持部材付リードフレーム10Bが製造される。このように離間領域28に反射膜23等の金属膜が形成されないようにすることによって、反射膜23等を介してリード部材1a,1c間で短絡することを防止して絶縁性を確保することができる。また、リード部材1a,1cの各インナーリード部間(離間領域28)には、樹脂成形体21を構成する樹脂、あるいは発光装置に組み立てられたときに封止樹脂が充填されるので、リード部材1a,1c間の絶縁性は保持される。なお、マスク板の板厚はリード部材1a,1c間距離(離間領域28の幅)と一致していなくてもよく、リード部材1a,1c間の短絡を防止できれば、反射膜23の形成されない領域はこれに限られず、離間領域28より広くても狭くてもよい。   After the reflective films 13 and 23 and the noble metal film 14 are formed, when the mask plate is removed from the LED chip mounting portion 22, as shown in FIGS. 5 (a) and 5 (b), on the surface of the LED chip mounting portion 22, A region where the reflection film 23 and the like are not formed over the bottom surface and the side surface and the resin molded body 21 is exposed becomes the support member 2B existing in a band shape along the separation region 28, and the lead frame 10B with the support member is manufactured. Thus, by preventing the metal film such as the reflective film 23 from being formed in the separation region 28, it is possible to prevent short-circuit between the lead members 1 a and 1 c via the reflective film 23 or the like and to ensure insulation. Can do. Further, since the space between the inner lead portions (the separation region 28) of the lead members 1a and 1c is filled with the resin constituting the resin molded body 21 or the sealing resin when assembled in the light emitting device, the lead member The insulation between 1a and 1c is maintained. Note that the thickness of the mask plate does not have to coincide with the distance between the lead members 1a and 1c (the width of the separation region 28), and if the short circuit between the lead members 1a and 1c can be prevented, the region where the reflective film 23 is not formed. Is not limited to this, and may be wider or narrower than the separation region 28.

以上のように、前記の工程S1,S3,S4,S5,S6をこの順に行うことにより、第2実施形態に係る支持部材付リードフレーム10Bを製造することができる。   As described above, the support member-equipped lead frame 10B according to the second embodiment can be manufactured by performing the steps S1, S3, S4, S5, and S6 in this order.

図6に示す支持部材付リードフレーム10Cのように、リード部材1a,1cにリードフレーム1B(図1(b)参照)を適用する場合は、第1実施形態と同様に、基板11に下地めっき膜12を形成する下地めっき工程(めっき工程)S2をさらに行う。すなわち、支持部材付リードフレーム10Bの製造方法と同様の工程S1,S3,S4,S5,S6に、さらに下地めっき工程(めっき工程)S2をアルミニウム成膜工程S5の前までに行う方法によって製造することができる。下地めっき工程S2は、前記第1実施形態における工程S2と同様であるので、説明を省略する。なお、第1実施形態に係るリードフレーム1Bの製造方法と同様に、基板作製工程S1における成形前に、下地めっき工程S2を行ってからリード部材1a,1cの形状に加工してもよい。また、支持部材付リードフレーム10Cにおいては、下地めっき工程S2で基板11(11A)の下面にマスキングを施して、上面にのみ下地めっき膜12を形成しているが、図4(c)に示す支持部材付リードフレーム10Aのリード部材1a,1c(リードフレーム1B)のように、基板11Aの両面さらに端面にも下地めっき膜12を形成してもよい。このようにして得られた下地めっき膜12が形成された基板11Aについて、樹脂成形工程S3を行って支持部材2Cを形成すればよく、以降は、工程S4,S5,S6をこの順に行って支持部材付リードフレーム10Cが製造される。   When the lead frame 1B (see FIG. 1B) is applied to the lead members 1a and 1c as in the lead frame with support member 10C shown in FIG. 6, the substrate 11 is plated on the base as in the first embodiment. A base plating step (plating step) S2 for forming the film 12 is further performed. That is, it is manufactured by a method of performing the same steps S1, S3, S4, S5 and S6 as the manufacturing method of the lead frame with support member 10B, and further performing a base plating step (plating step) S2 before the aluminum film forming step S5. be able to. Since the base plating step S2 is the same as the step S2 in the first embodiment, description thereof is omitted. Similar to the manufacturing method of the lead frame 1B according to the first embodiment, the base plating step S2 may be performed before forming in the substrate manufacturing step S1, and then processed into the shape of the lead members 1a and 1c. In the lead frame with support member 10C, the lower surface of the substrate 11 (11A) is masked in the base plating step S2 to form the base plating film 12 only on the upper surface, as shown in FIG. As in the lead members 1a and 1c (lead frame 1B) of the lead frame with support member 10A, the base plating film 12 may be formed on both surfaces and end surfaces of the substrate 11A. The support member 2C may be formed by performing the resin molding step S3 on the substrate 11A on which the base plating film 12 thus obtained is formed. Thereafter, the steps S4, S5, and S6 are performed in this order to support the substrate 11A. The lead frame with member 10C is manufactured.

以上のように、前記の工程S1,S2,S3,S4,S5,S6をこの順に行うことにより、第2実施形態の変形例に係る支持部材付リードフレーム10Cを製造することができる。しかし、本変形例においては、リード部材1a,1cの下地めっき膜12が形成される部位に応じて、下地めっき工程S2を行う順序を変更して製造することができる。例えば、基板11を作製してリード部材1a,1cの形状に成形し(工程S1)、下地めっき膜12の形成前に、この基板11と一体的に樹脂成形体21を成形する(工程S3)。次に、樹脂成形体21を貫通した基板11に、電気めっきにより下地めっき膜12を形成する(工程S2)。電気めっきによれば、絶縁材料からなる樹脂成形体21の表面にはめっき膜は形成されない。そして、前記と同様に、樹脂成形体21のLEDチップ搭載部22にマスク板を嵌装して(工程S4)から、下地めっき膜12および樹脂成形体21の表面に反射膜13,23および貴金属膜14を形成する(工程S5,S6)。このような工程S2と工程S3の順序を入れ替えて製造された支持部材付リードフレームにおいては、リード部材1a,1cの支持部材2Cに埋設された領域(インナーリード部−アウターリード部間)は基板11のみで構成され、下地めっき工程S2において基板11の下面にマスクを設けなくてもインナーリード部の下面(裏面)には下地めっき膜12が形成されない。   As described above, the lead frame with support member 10C according to the modified example of the second embodiment can be manufactured by performing the steps S1, S2, S3, S4, S5, and S6 in this order. However, in this modification, it can be manufactured by changing the order in which the base plating step S2 is performed in accordance with the portion where the base plating film 12 of the lead members 1a and 1c is formed. For example, the substrate 11 is manufactured and formed into the shape of the lead members 1a and 1c (step S1), and the resin molded body 21 is formed integrally with the substrate 11 before forming the base plating film 12 (step S3). . Next, the base plating film 12 is formed by electroplating on the substrate 11 penetrating the resin molded body 21 (step S2). According to electroplating, no plating film is formed on the surface of the resin molded body 21 made of an insulating material. In the same manner as described above, a mask plate is fitted to the LED chip mounting portion 22 of the resin molded body 21 (step S4), and then the reflective films 13 and 23 and the noble metal are formed on the surface of the base plating film 12 and the resin molded body 21. The film 14 is formed (steps S5 and S6). In the lead frame with a support member manufactured by changing the order of the step S2 and the step S3, the region (between the inner lead portion and the outer lead portion) embedded in the support member 2C of the lead members 1a and 1c is a substrate. 11, the base plating film 12 is not formed on the lower surface (back surface) of the inner lead portion without providing a mask on the lower surface of the substrate 11 in the base plating step S2.

なお、支持部材付リードフレーム10Cは、マスク工程S4において図5(c)に示すマスク板のみを用いたため、支持部材2Cの上面やリード部材1a,1cのアウターリード部にも、反射膜23,13および貴金属膜14が形成されるが、マスク板の耳部により支持部材2Cの外側表面における離間領域28の延長上には、反射膜23等は形成されず、リード部材1a,1c間の短絡は生じない。   Since the lead frame with support member 10C uses only the mask plate shown in FIG. 5C in the mask process S4, the reflective film 23, the upper surface of the support member 2C and the outer lead portions of the lead members 1a and 1c are also formed. 13 and the noble metal film 14 are formed, but the reflection film 23 and the like are not formed on the extension of the separation region 28 on the outer surface of the support member 2C by the ears of the mask plate, and the short circuit between the lead members 1a and 1c. Does not occur.

〔発光装置〕
次に、本発明の第1、第2実施形態に係るLED用リードフレーム(リードフレームおよび支持部材付リードフレーム)を用いた発光装置についてその一例を説明する。
第2実施形態およびその変形例に係る支持部材付リードフレーム10B,10Cを用いて発光装置に組み立てる方法の一例は、次の通りである。まず、リード部材1aのインナーリード部表面のLEDチップ搭載部22の略中央(図5(a)に示すLEDチップ載置領域)にシリコーンダイボンド材等からなる接着剤を塗布して、その上にLEDチップを接着して固定する。次に、ワイヤボンディングにより、金ワイヤでLEDチップの電極をリード部材1a,1cの各インナーリード部に接続する。そして、LEDチップ搭載部22にエポキシ樹脂等の封止樹脂を充填することにより封止して、LEDチップを光源として搭載した表面実装型の発光装置(図2参照)となる。なお、LED用リードフレーム10Cにおいては、基板11Aで複数個を連結された状態で発光装置に製造されてから図6に示す太破線で切り離されて使用される。また、一対の電極が上下両面にそれぞれ設けられたLEDチップを搭載した発光装置を組み立てることもできる。下面にn電極が設けられたLEDチップの場合は、負極のリード電極1cがLEDチップ搭載部22の略中央まで配設された支持部材付リードフレームとし、LEDチップを、導電性の接着剤を用いてn電極をリード電極1cに電気的に接続しつつ搭載し、ワイヤボンディングにより上面のp電極をリード部材1aに接続すればよい。
[Light emitting device]
Next, an example of the light emitting device using the LED lead frame (lead frame and lead frame with a supporting member) according to the first and second embodiments of the present invention will be described.
An example of a method of assembling a light emitting device using the lead frames with supporting members 10B and 10C according to the second embodiment and the modifications thereof is as follows. First, an adhesive made of a silicone die bonding material or the like is applied to the approximate center of the LED chip mounting portion 22 on the surface of the inner lead portion of the lead member 1a (the LED chip mounting region shown in FIG. Adhere and fix the LED chip. Next, the electrodes of the LED chip are connected to the inner lead portions of the lead members 1a and 1c with gold wires by wire bonding. And it seals by filling sealing resin, such as an epoxy resin, into the LED chip mounting part 22, and becomes a surface mount type light-emitting device (refer FIG. 2) which mounted the LED chip as a light source. In addition, in LED lead frame 10C, after being manufactured in a light emitting device in a state of being connected by a substrate 11A, the LED lead frame 10C is used after being separated by a thick broken line shown in FIG. In addition, a light-emitting device on which LED chips each having a pair of electrodes provided on both upper and lower surfaces can be assembled. In the case of an LED chip having an n-electrode on the lower surface, the negative lead electrode 1c is a lead frame with a support member disposed up to the approximate center of the LED chip mounting portion 22, and the LED chip is made of a conductive adhesive. The n electrode is mounted while being electrically connected to the lead electrode 1c, and the p electrode on the upper surface is connected to the lead member 1a by wire bonding.

第1実施形態およびその変形例に係るリードフレーム1,1Bも、所定の平面視形状に成形したものが貫通するように、前記の第2実施形態等と同様に樹脂成形体21(支持部材2,2A)を成形することで、支持部材付リードフレーム10,10Aを製造して、表面実装型の発光装置の部品とすることができる。したがって、第2実施形態に係る支持部材リードフレームの製造方法における樹脂成形工程S3のように、樹脂をリードフレーム1,1Bと一体的に射出成形すればよく、すなわち支持部材リードフレームの製造方法における工程S1,S2,S5,S6,S3をこの順に行うことになる。例えば、図4(a)に示す第1実施形態の変形例における基板11Aを適用してリードフレーム1Bを製造し、図4(b)に破線で示すように一体的に支持部材2Aを形成することで、図4(c)に示す支持部材付リードフレーム10Aが得られる。このようにして得られる支持部材付リードフレーム10,10Aは、図3および図4(c)に示すように、支持部材2,2A(樹脂成形体21)のLEDチップ搭載部22表面に反射膜23等の金属膜が形成されていないこと以外は、それぞれ第2実施形態に係る支持部材付リードフレーム10B,10C(図5(b)、図6)と同様の構造となる。したがって、樹脂成形体21に白色樹脂を適用する等、表面の反射率が高くなるようにすることが好ましい。あるいは射出成形によらずに、例えばLEDチップを囲む枠を樹脂で成形してリードフレーム1に取り付けてもよい(図示せず)。この枠の取付けは、LEDチップの搭載の前でも後でもよい。   The lead frame 1, 1 </ b> B according to the first embodiment and its modified example is also resin molded body 21 (support member 2) in the same manner as in the second embodiment so that the one molded in a predetermined plan view shape penetrates. , 2A), the lead frame with support member 10, 10A can be manufactured and used as a component of a surface mount type light emitting device. Accordingly, the resin may be injection-molded integrally with the lead frames 1 and 1B as in the resin molding step S3 in the supporting member lead frame manufacturing method according to the second embodiment, that is, in the supporting member lead frame manufacturing method. Steps S1, S2, S5, S6 and S3 are performed in this order. For example, the lead frame 1B is manufactured by applying the substrate 11A in the modification of the first embodiment shown in FIG. 4A, and the support member 2A is integrally formed as shown by a broken line in FIG. 4B. Thus, the lead frame with support member 10A shown in FIG. 4C is obtained. As shown in FIGS. 3 and 4C, the lead frames 10 and 10A with support member thus obtained have a reflective film on the surface of the LED chip mounting portion 22 of the support members 2 and 2A (resin molded body 21). Except that the metal film such as 23 is not formed, the structure is the same as that of the lead frames with support members 10B and 10C (FIGS. 5B and 6) according to the second embodiment. Therefore, it is preferable to increase the reflectance of the surface, such as applying a white resin to the resin molded body 21. Alternatively, for example, a frame surrounding the LED chip may be molded with resin and attached to the lead frame 1 (not shown) without using injection molding. This frame may be attached before or after the LED chip is mounted.

第1実施形態およびその変形例に係るリードフレーム1,1Bは、支持部材2等を形成せずに、例えば砲弾型の発光装置に製造されてもよい(図示せず)。この場合は、基板11を、異形条材(圧延幅方向に板厚の異なる圧延板)の板厚の厚い部位をプレス鍛造でカップ形状に成型して、このカップ形状の外側に板厚の薄い部位が帯状に延出された形状に作製する。そして、この基板11のカップ形状の内側表面に下地めっき膜12、反射膜13、および貴金属膜14を形成してリードフレームとする。カップ形状の内面がリード部材1aのインナーリード部とLEDチップ搭載部22とを兼ね、帯状の部位がアウターリード部となる。これに、別部材で作製したリードフレーム1(基板11のみで構成されてもよい)をリード部材1cとして合わせて一組のリードフレームとする。このようなリードフレームでは、LEDチップはカップ形状の内底面に搭載されてワイヤボンディングされ、カップ形状の内部に封止樹脂を充填して封止される。このような構造とすることで、リードフレーム1をLEDチップの下方のみならず側方の反射面に構成することもできる。   The lead frames 1 and 1B according to the first embodiment and the modification thereof may be manufactured, for example, in a bullet-type light emitting device (not shown) without forming the support member 2 and the like. In this case, the substrate 11 is formed into a cup shape by press forging a thick portion of a deformed strip (rolled plate having a different thickness in the rolling width direction), and the plate thickness is thin outside the cup shape. The part is made into a shape extending in a strip shape. Then, a base plating film 12, a reflection film 13, and a noble metal film 14 are formed on the cup-shaped inner surface of the substrate 11 to form a lead frame. The cup-shaped inner surface serves as the inner lead portion of the lead member 1a and the LED chip mounting portion 22, and the band-shaped portion serves as the outer lead portion. This is combined with a lead frame 1 (which may be composed of only the substrate 11) made of another member as a lead member 1c to form a set of lead frames. In such a lead frame, the LED chip is mounted on the inner bottom surface of the cup shape and wire bonded, and the cup shape is filled with a sealing resin and sealed. By adopting such a structure, the lead frame 1 can be formed not only under the LED chip but also on the side reflection surface.

以上のようなリードフレーム1,1Bまたは支持部材リードフレーム10〜10Cを用いて得られる発光装置において、反射膜13はAg膜と異なり、熱による凝集や変色が生じ難く、耐硫化性および耐ハロゲン性に優れ、さらにリードフレーム1等は少なくとも表面近傍にAgを含有する膜を備えないため、Agのナノ粒子の析出を引き起こし難く、エポキシ樹脂等の封止樹脂を変色させることがないため、LEDチップが発光した光を安定して反射させて、長期に高効率で取り出すことができる。さらに、このような発光装置は、リードフレーム1等の表面に設けられた貴金属膜14によって、はんだ付けにより配線基板等に実装することが可能であり、また当該発光装置が組み立てられた際のワイヤボンディング性が良好なため、接合不良が生じない。   In the light emitting device obtained by using the lead frames 1 and 1B or the support member lead frames 10 to 10C as described above, unlike the Ag film, the reflective film 13 hardly causes aggregation and discoloration due to heat, and is resistant to sulfur and halogen. Since the lead frame 1 and the like do not have a film containing Ag at least near the surface, it is difficult to cause precipitation of Ag nanoparticles and the sealing resin such as epoxy resin is not discolored. The light emitted from the chip can be stably reflected and extracted with high efficiency over a long period of time. Furthermore, such a light-emitting device can be mounted on a wiring board or the like by soldering with a noble metal film 14 provided on the surface of the lead frame 1 or the like, and a wire when the light-emitting device is assembled. Due to good bonding properties, no bonding failure occurs.

以下、本発明の実施例によって、本発明をより具体的に説明するが、本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of examples of the present invention, but the present invention is not limited to the following examples.

〔試料作製〕
下記のようにして、図1(a)に示す積層構造のリードフレーム1の試料を、反射膜および貴金属膜のそれぞれの成分および膜厚を変化させて作製し、図1(b)に示す積層構造のリードフレーム1Bの試料を、下地めっき膜の成分および膜厚を変化させて作製した。
[Sample preparation]
A sample of the lead frame 1 having the laminated structure shown in FIG. 1A is prepared by changing the components and film thicknesses of the reflective film and the noble metal film as described below, and the laminated film shown in FIG. A sample of the lead frame 1B having a structure was produced by changing the components and film thickness of the base plating film.

(基板の作製)
厚さ0.1mmのCu−Fe−P系銅合金板(KLF194H、(株)神戸製鋼所製)を、プレス加工して、図4(a)に示す形状の基板(基板11A)を作製した。
(Production of substrate)
A Cu-Fe-P copper alloy plate (KLF194H, manufactured by Kobe Steel, Ltd.) having a thickness of 0.1 mm was pressed to produce a substrate (substrate 11A) having the shape shown in FIG. .

(Niめっき膜の形成)
試料No.9〜13,21について、前記基板に下地めっき膜としてNiめっき膜を形成した。めっき前処理として、基板を脱脂液に浸漬して、対極をステンレス304として、基板側がマイナスとなるようにして直流電圧を印加して30秒間電解脱脂を行った後、10%硫酸水溶液に10秒浸漬した。前処理後の基板の表面(全面)に、下記成分、液温50℃のワット浴で、対極をNi板とし、電流密度:5A/dm2で、光沢Niめっきを施して、表1に示す膜厚のNiめっき膜を形成し、めっき浴から引き上げて水洗した。
Niめっき浴成分
硫酸Ni:250g/L
塩化Ni: 40g/L
硼酸 : 35g/L
添加剤A: 3ml/L
添加剤B:10ml/L
(Formation of Ni plating film)
Sample No. About 9-13, 21, Ni plating film was formed as a base plating film on the substrate. As a pretreatment for plating, the substrate was immersed in a degreasing solution, the counter electrode was stainless steel 304, a DC voltage was applied so that the substrate side was negative, and electrolytic degreasing was performed for 30 seconds. Soaked. The surface (entire surface) of the substrate after the pretreatment was subjected to bright Ni plating at a current density of 5 A / dm 2 with a watt bath with the following components and a liquid temperature of 50 ° C., with a current density of 5 A / dm 2 , and shown in Table 1. A Ni plating film having a film thickness was formed, pulled up from the plating bath, and washed with water.
Ni plating bath component Ni sulfate: 250 g / L
Ni chloride: 40 g / L
Boric acid: 35 g / L
Additive A: 3 ml / L
Additive B: 10 ml / L

(Agめっき膜の形成)
試料No.14〜18について、前記基板に下地めっき膜としてAgめっき膜を形成した。前記Niめっき膜の形成と同様のめっき前処理を基板に行った。そして、試料No.14,15,18について、前処理後の基板の表面(全面)に、下記成分、液温15℃のシアン浴で、対極をAg(純度99.99%)板とし、電流密度:5A/dm2で、光沢Agめっきを施して、表1に示す膜厚のAgめっき膜を形成し、めっき浴から引き上げて水洗した。
Agめっき浴成分
シアン化銀カリウム(I):50g/L
シアン化カリウム :40g/L
炭酸カリウム :35g/L
添加剤C :3ml/L
(Formation of Ag plating film)
Sample No. About 14-18, the Ag plating film was formed as a base plating film in the said board | substrate. The same plating pretreatment as that for forming the Ni plating film was performed on the substrate. And sample no. For 14, 15 and 18, the surface of the substrate after pretreatment (entire surface) was a cyan bath with the following components and a liquid temperature of 15 ° C., and the counter electrode was an Ag (purity 99.99%) plate, and the current density was 5 A / dm. In step 2 , bright Ag plating was performed to form an Ag plating film having a film thickness shown in Table 1, which was pulled up from the plating bath and washed with water.
Ag plating bath component Silver potassium cyanide (I): 50 g / L
Potassium cyanide: 40 g / L
Potassium carbonate: 35 g / L
Additive C: 3 ml / L

試料No.16,17について、前処理後の基板の表面(全面)に、液温25℃の、Bi濃度:100mg/LのAg−Bi合金めっき浴で、対極をPt板とし、電流密度:3A/dm2で、Ag−Bi合金めっきを施して、表1に示す膜厚のAg−Bi合金めっき膜を形成し、めっき浴から引き上げて水洗した。また、Ag(Ag−Bi合金)めっき膜の組成を分析するために、ステンレス304をダミー基板として同じ条件でめっき膜を形成した。このめっき膜をダミー基板から剥離させて硝酸で溶解後、溶解した硝酸の液を、ICP(誘導結合プラズマ)発光分光分析装置(ICPS−8000、島津製作所製)を用いて分析することにより、組成を求めた。 Sample No. 16 and 17, the surface of the substrate after pretreatment (entire surface) was an Ag-Bi alloy plating bath with a liquid temperature of 25 ° C and a Bi concentration of 100 mg / L, the counter electrode was a Pt plate, and the current density was 3 A / dm. In Step 2 , Ag—Bi alloy plating was performed to form an Ag—Bi alloy plating film having a thickness shown in Table 1, which was pulled up from the plating bath and washed with water. Moreover, in order to analyze the composition of the Ag (Ag—Bi alloy) plating film, the plating film was formed under the same conditions using stainless steel 304 as a dummy substrate. The plating film is peeled off from the dummy substrate and dissolved in nitric acid, and then the dissolved nitric acid solution is analyzed using an ICP (inductively coupled plasma) emission spectroscopic analyzer (ICPS-8000, manufactured by Shimadzu Corporation) to obtain a composition. Asked.

Niめっき膜およびAgめっき膜の各膜厚は、めっき速度に基づいてめっき通電時間を調整することで制御した。具体的には、ダミー基板に前記それぞれのめっきと同じ条件で一定時間めっきを施した。そして、Niめっき膜およびAg(純Ag)めっき膜については、ダミー基板のめっき前との重量差を測定することによりNi,Agの付着量を求め、この付着量をめっき面積、Ni,Agの理論密度、およびめっき時間で割ることにより単位時間に析出するNiめっき膜厚(めっき速度)を算出した。Ag(Ag−Bi合金)めっき膜については、ダミー基板のめっき膜の厚さを断面SEM観察により測定してめっき速度を算出した。それぞれの下地めっき膜について、めっき速度から所望の膜厚を形成するめっき時間を算出した。   The thicknesses of the Ni plating film and the Ag plating film were controlled by adjusting the plating energization time based on the plating speed. Specifically, the dummy substrate was plated for a certain period of time under the same conditions as those of the respective plating. And about Ni plating film and Ag (pure Ag) plating film, the adhesion amount of Ni and Ag was calculated | required by measuring the weight difference with before plating of a dummy board | substrate, and this adhesion amount was calculated for plating area, Ni, Ag. The Ni plating film thickness (plating speed) deposited per unit time was calculated by dividing by theoretical density and plating time. For the Ag (Ag—Bi alloy) plating film, the plating rate was calculated by measuring the thickness of the plating film of the dummy substrate by cross-sectional SEM observation. For each base plating film, the plating time for forming a desired film thickness was calculated from the plating rate.

(反射膜、貴金属膜の成膜)
基板または下地めっき膜を形成した基板に、下記の方法で反射膜および貴金属膜を形成した。基板を、表1に示す反射膜および貴金属膜の組成に合わせた金属ターゲット(直径10.16cm(4インチφ)×厚さ5mm)を設けたスパッタリング装置のチャンバー内に載置した。次に、真空ポンプでチャンバー内圧力が1.3×10-3Pa以下となるように真空排気した後、Arガスをチャンバー内に導入してチャンバー内圧力を0.27Paに調整した。この状態で、反射膜用の金属ターゲット、貴金属膜用の金属ターゲットに順次、直流電圧(出力100W)を印加してスパッタリングを行い、表1に示す膜厚の反射膜および貴金属膜の2層の金属膜を成膜し、リードフレーム1,1Bの試料を作製した。なお、試料No.19,22は、反射膜のみを形成した。
(Reflection film, noble metal film)
A reflective film and a noble metal film were formed by the following method on the substrate or the substrate on which the base plating film was formed. The substrate was placed in a chamber of a sputtering apparatus provided with a metal target (diameter 10.16 cm (4 inches φ) × thickness 5 mm) matched to the composition of the reflective film and the noble metal film shown in Table 1. Next, the chamber was evacuated with a vacuum pump so that the pressure in the chamber was 1.3 × 10 −3 Pa or less, and Ar gas was introduced into the chamber to adjust the pressure in the chamber to 0.27 Pa. In this state, sputtering is performed by sequentially applying a DC voltage (output 100 W) to the metal target for the reflective film and the metal target for the noble metal film, and the two layers of the reflective film and the noble metal film shown in Table 1 are formed. A metal film was formed to prepare a sample of lead frames 1 and 1B. Sample No. 19 and 22 formed only the reflective film.

(反射膜および貴金属膜の膜厚の測定)
反射膜および貴金属膜の各膜厚は、X線光電子分光分析(XPS)を行って測定した。試料の表面について、全自動走行型X線光電子分光分析装置(Physical Electronics社製Quantera SXM)を用いて、表1に示す貴金属膜に含有される金属元素、反射膜に含有されるAl、および基板のCuまたは下地めっき膜のNi,Agの各濃度を、表面から深さ方向へ測定した。試料表面から、貴金属膜に含まれる金属元素の濃度が最高濃度の1/2まで減少した深さまでを貴金属膜の膜厚とし、さらに前記深さから、Alの濃度が最高濃度の1/2まで減少した深さまでを反射膜の膜厚とした。測定条件は、X線源:単色化Al−Kα、X線出力:43.7W、X線ビーム径:200μm、光電子取出し角:45°、Ar+スパッタ速度:SiO2換算で約0.6nm/分とした。
(Measurement of film thickness of reflective film and noble metal film)
Each film thickness of the reflective film and the noble metal film was measured by performing X-ray photoelectron spectroscopy (XPS). Using the fully automated X-ray photoelectron spectrometer (Physical Electronics Quantera SXM) for the surface of the sample, the metal elements contained in the noble metal film shown in Table 1, Al contained in the reflective film, and the substrate Each concentration of Cu or Ni and Ag of the underlying plating film was measured from the surface in the depth direction. The thickness from the sample surface to the depth at which the concentration of the metal element contained in the noble metal film is reduced to ½ of the maximum concentration is defined as the film thickness of the noble metal film, and from the depth, the concentration of Al is halved to the maximum concentration. The thickness up to the reduced depth was taken as the thickness of the reflective film. Measurement conditions were as follows: X-ray source: monochromatic Al—Kα, X-ray output: 43.7 W, X-ray beam diameter: 200 μm, photoelectron extraction angle: 45 °, Ar + sputtering rate: about 0.6 nm / in terms of SiO 2 Minutes.

〔評価〕
得られたリードフレームの試料について、下記の方法で、表面の反射率、耐硫化性、ワイヤボンディング性、およびはんだ付け性を評価した。結果を表1に示す。
[Evaluation]
The obtained lead frame samples were evaluated for surface reflectance, resistance to sulfidation, wire bonding, and solderability by the following methods. The results are shown in Table 1.

(反射率評価)
自動絶対反射率測定システム(日本分光株式会社製)を用いて、入射角5°、反射角5°の条件で、波長250〜850nmにおける分光反射率を測定して正反射率を求めた。正反射率50%以上を合格とした。
(Reflectance evaluation)
Using an automatic absolute reflectance measurement system (manufactured by JASCO Corporation), the spectral reflectance at a wavelength of 250 to 850 nm was measured under the conditions of an incident angle of 5 ° and a reflection angle of 5 ° to obtain a regular reflectance. A regular reflectance of 50% or more was considered acceptable.

(耐硫化性評価)
耐硫化試験として、硫化水素濃度3ppm、温度40℃、湿度80%に調整したチャンバー内に、試料を96時間暴露した。試験後、前記と同様に正反射率を測定し、耐硫化試験による正反射率の低下が10ポイント未満のものを合格とした。
(Sulfuration resistance evaluation)
As a sulfidation resistance test, a sample was exposed for 96 hours in a chamber adjusted to a hydrogen sulfide concentration of 3 ppm, a temperature of 40 ° C., and a humidity of 80%. After the test, the regular reflectance was measured in the same manner as described above, and a test piece in which the decrease in regular reflectance by the sulfidation resistance test was less than 10 points was accepted.

(ワイヤボンディング試験)
試料の図4(b)に示すリード部材1a,1c間(インナーリード部、図2(b)参照)を、マニュアルボンダ(KULICKE and SOFFA INDUSTRIES社製、Model 4127)を用いて、線径φ25μmの金(純Au)線(田中貴金属工業製)をボンディングワイヤとしてワイヤボンディングした。そして、光学顕微鏡で観察しながら金線の中央をピンセットで掴んで引っ張ることにより試験を行った。その結果、金線が試料のボンディング箇所から剥離することなく金線を切ることができた場合をワイヤボンディング性が良好であるとして「○」、少なくとも一方のボンディング箇所から金線が剥離した場合を不良であるとして「×」で評価した。また、金線が試料の表面に圧着せず、ワイヤボンディングできなかったものも不良であるとして「××」で評価した。
(Wire bonding test)
Using a manual bonder (Model 4127, manufactured by KULICKE and SOFFA INDUSTRIES) between the lead members 1a and 1c shown in FIG. 4B (inner lead part, see FIG. 2B) Gold (pure Au) wire (manufactured by Tanaka Kikinzoku Kogyo) was wire bonded as a bonding wire. Then, the test was conducted by grasping and pulling the center of the gold wire with tweezers while observing with an optical microscope. As a result, when the gold wire can be cut without peeling from the bonding portion of the sample, “○” is given as the wire bonding property being good, and when the gold wire is peeled from at least one bonding portion. It was evaluated as “x” as being defective. In addition, the gold wire was not crimped to the surface of the sample, and the case where wire bonding could not be performed was evaluated as “XX” as being defective.

(はんだ付け性評価)
試料をホットプレートで250℃に加熱し、直径約5mmのはんだボール(Sn−3.0at%Ag−0.5at%Cu)を溶融させて、試料の表面に垂らした後、試料をホットプレートから外して冷却してはんだを凝固させた。そして、凝固したはんだ溶滴の試料表面における濡れ接触角を測定した。図7に示すように、試料を側面視で(試料の表面に水平な方向から見て)観察し、はんだ溶滴の端点と頂点とを結ぶ線分(図中に破線で示す)が試料表面となす角θを測定し、2θをはんだ溶滴の濡れ接触角であるとした。はんだ溶滴の濡れ接触角2θが小さいほどはんだの濡れ性がよいことを示し(図7(a)参照)、濡れ接触角2θが大きくなるとはんだの濡れ性が低下する(図7(b)参照)。濡れ接触角2θが80°以下であれば、はんだの濡れ性を十分に有してはんだ付けによる実装が可能であるので、はんだ付け性合格とし、特に2θ<45°をはんだ付け性優良として「◎」、45°≦2θ≦80°をはんだ付け性良好として「○」で評価した。一方、濡れ接触角2θが80°を超えて大きいとはんだ付けによる実装が困難になり、80°<2θ≦90°を「△」、2θ>90°を「×」で評価した。
(Solderability evaluation)
The sample was heated to 250 ° C. with a hot plate, and a solder ball (Sn-3.0 at% Ag-0.5 at% Cu) having a diameter of about 5 mm was melted and dropped on the surface of the sample. It was removed and cooled to solidify the solder. And the wet contact angle in the sample surface of the solidified solder droplet was measured. As shown in FIG. 7, the sample is observed in a side view (viewed from a direction horizontal to the surface of the sample), and a line segment (indicated by a broken line in the figure) connecting the end point and the apex of the solder droplet is the sample surface. The angle θ was measured, and 2θ was assumed to be the wet contact angle of the solder droplets. The smaller the wet contact angle 2θ of the solder droplet is, the better the wettability of the solder is (see FIG. 7A). As the wet contact angle 2θ is increased, the wettability of the solder is lowered (see FIG. 7B). ). If the wetting contact angle 2θ is 80 ° or less, solder wettability is sufficient and mounting by soldering is possible. Therefore, the solderability is acceptable, and in particular, 2θ <45 ° is defined as excellent solderability. “◎” and 45 ° ≦ 2θ ≦ 80 ° were evaluated as “◯” as good solderability. On the other hand, when the wet contact angle 2θ exceeds 80 °, mounting by soldering becomes difficult, and 80 ° <2θ ≦ 90 ° is evaluated as “Δ”, and 2θ> 90 ° is evaluated as “×”.

Figure 2012212850
Figure 2012212850

表1に示すように、試料No.1〜18は、AlまたはAl合金からなる反射膜に貴金属膜を被覆した本発明に係るリードフレームの実施例であるため、優れた耐硫化性、ならびに良好なワイヤボンディング性およびはんだ付け性を示した。特に、反射膜の下地にNiめっき膜またはAgめっき膜を設けた試料No.9〜18は、初期反射率も高く、光の取出し効率に優れていた。   As shown in Table 1, sample no. Examples 1 to 18 are examples of the lead frame according to the present invention in which a noble metal film is coated on a reflective film made of Al or an Al alloy, and thus show excellent sulfidation resistance and good wire bonding and solderability. It was. In particular, sample No. 1 in which a Ni plating film or an Ag plating film was provided on the base of the reflective film. Nos. 9 to 18 also had high initial reflectivity and excellent light extraction efficiency.

これに対して、試料No.19は反射膜としてAg膜のみを設けたため、初期反射率は高かったが、耐硫化試験によるAg膜の劣化が著しく、反射率が低下した。同様にAg膜を反射膜として、その上に貴金属膜を設けた試料No.20は、耐硫化試験において貴金属膜のピンホールから硫化水素雰囲気が浸入し、Ag膜が劣化した。また、試料No.21は反射膜の膜厚が不足し、下地にNiめっき膜を設けていても十分な初期反射率が得られなかった。   In contrast, sample no. Since No. 19 was provided with only an Ag film as a reflective film, the initial reflectivity was high, but the Ag film was significantly deteriorated by the sulfidation resistance test, and the reflectivity was lowered. Similarly, sample No. 1 in which an Ag film is used as a reflection film and a noble metal film is provided thereon. In No. 20, the hydrogen sulfide atmosphere entered from the pinhole of the noble metal film in the sulfidation resistance test, and the Ag film deteriorated. Sample No. No. 21 was insufficient in the thickness of the reflection film, and even when a Ni plating film was provided on the base, a sufficient initial reflectance could not be obtained.

試料No.22,23は、反射膜は本発明の範囲であるため良好な初期反射率および耐硫化性が得られたが、試料No.22は貴金属膜を設けていないために反射膜表面に自然酸化膜が形成され、試料No.23は貴金属膜の膜厚が不足したため、それぞれ金線が圧着されずワイヤボンディングすることができず、またはんだ付け性が低下した。反対に、試料No.24は貴金属膜の膜厚が過剰であるために、初期反射率が低下した。試料No.25は、表面に貴金属膜ではなくCu膜を設けたために、耐硫化試験によりCu膜が劣化して反射率が低下した。   Sample No. In Nos. 22 and 23, since the reflective film was within the scope of the present invention, good initial reflectivity and sulfidation resistance were obtained. No. 22 is not provided with a noble metal film, so that a natural oxide film is formed on the reflection film surface. In No. 23, since the film thickness of the noble metal film was insufficient, the gold wire was not crimped and wire bonding could not be performed, or the solderability was lowered. On the contrary, sample No. In No. 24, since the noble metal film was excessive, the initial reflectivity was lowered. Sample No. In No. 25, since a Cu film was provided on the surface instead of the noble metal film, the Cu film was deteriorated by a sulfidation resistance test, and the reflectance was lowered.

〔試料作製〕
実施例1と製造方法の一部を変えて、図1(a)、(b)に示す積層構造のリードフレーム1,1Bの試料を作製した。
[Sample preparation]
By changing a part of the manufacturing method from Example 1, samples of lead frames 1 and 1B having a laminated structure shown in FIGS. 1A and 1B were manufactured.

基板の作製および試料No.28の膜厚0.5μmのNiめっき膜の形成は、実施例1と同様に行った。さらに反射膜として膜厚150nmのAl膜を実施例1の試料No.1と同じ条件でスパッタリング装置にて成膜した後、一旦チャンバーを開放した。次に、前記反射膜の成膜と同様に、再びチャンバー内を真空排気した後、Arガスを導入してチャンバー内圧力を0.27Paに調整してから、貴金属膜として膜厚20nmのPd膜を実施例1の試料No.1と同じ条件で成膜して、リードフレーム1,1Bの試料を作製した。なお、試料No.26については、チャンバー内圧力調整後、貴金属膜(Pd膜)の成膜前に、基板に直流電圧(出力100W)を3分間印加して、反射膜の表層を除去した。   Preparation of substrate and sample No. The Ni plating film 28 having a thickness of 0.5 μm was formed in the same manner as in Example 1. Further, an Al film having a film thickness of 150 nm was used as the reflective film. After forming a film with a sputtering apparatus under the same conditions as in No. 1, the chamber was once opened. Next, similarly to the formation of the reflection film, the inside of the chamber is evacuated again, Ar gas is introduced to adjust the pressure in the chamber to 0.27 Pa, and a Pd film having a thickness of 20 nm as a noble metal film is then formed. Sample No. 1 of Example 1. Films were formed under the same conditions as in Example 1, and samples of lead frames 1 and 1B were produced. Sample No. For No. 26, after adjusting the pressure in the chamber and before forming the noble metal film (Pd film), a DC voltage (output 100 W) was applied to the substrate for 3 minutes to remove the surface layer of the reflective film.

〔測定、評価〕
得られたリードフレームの試料について、実施例1と同様の方法で、表面の反射率、耐硫化性、ワイヤボンディング性、およびはんだ付け性を評価した。結果を表2に示す。また、表2に実施例1の試料No.1,10の結果を併記する。
[Measurement and evaluation]
With respect to the obtained lead frame sample, the surface reflectance, sulfuration resistance, wire bonding property, and solderability were evaluated in the same manner as in Example 1. The results are shown in Table 2. Table 2 shows the sample No. 1 of Example 1. The results of 1 and 10 are also shown.

Figure 2012212850
Figure 2012212850

表2に示すように、試料No.26は、反射膜と貴金属膜を連続で成膜することなく、同じ積層構造の試料No.1と同程度の初期反射率および耐硫化性が得られた。さらに、試料No.26は、貴金属膜の成膜前に反射膜の表層の除去を行うことで反射膜表面に形成された自然酸化膜が除去されたために、貴金属膜が反射膜(Al膜)上に密着性よく形成されて、試料No.1と同様に良好なワイヤボンディング性およびはんだ付け性が得られ、本発明に係るリードフレームを製造できることが確認できた。これに対して、試料No.27,28は、それぞれ同じ積層構造の試料No.1,10と同程度の初期反射率および耐硫化性が得られたが、貴金属膜が反射膜表面に形成された自然酸化膜上に成膜されたために密着性に劣った。その結果、ワイヤボンディングすることはできたが、引張試験にて金線が試料から剥離し、ボンディング箇所を走査型電子顕微鏡(SEM)で観察すると、貴金属膜と反射膜との界面で剥離を生じたことが確認された。さらに、試料No.27,28は、はんだ溶滴に接触して表面の貴金属膜が溶融して酸化膜が露出したために、はんだの濡れ性が低下した。これらのことから、貴金属膜と反射膜との間に酸化膜のないことが望ましいことがわかる。   As shown in Table 2, sample no. No. 26 is a sample No. 26 having the same laminated structure without continuously forming a reflective film and a noble metal film. The initial reflectivity and sulfidation resistance comparable to 1 were obtained. Furthermore, sample no. 26, since the natural oxide film formed on the surface of the reflection film is removed by removing the surface layer of the reflection film before the noble metal film is formed, the noble metal film has good adhesion on the reflection film (Al film). Sample No. As in the case of No. 1, good wire bonding and solderability were obtained, and it was confirmed that the lead frame according to the present invention could be manufactured. In contrast, sample no. Sample Nos. 27 and 28 each have the same laminated structure. The initial reflectivity and sulfidation resistance comparable to those of 1 and 10 were obtained, but the adhesion was inferior because the noble metal film was formed on the natural oxide film formed on the surface of the reflective film. As a result, although wire bonding was possible, the gold wire peeled off from the sample in the tensile test, and when the bonding site was observed with a scanning electron microscope (SEM), peeling occurred at the interface between the noble metal film and the reflective film. It was confirmed that Furthermore, sample no. In Nos. 27 and 28, the wettability of the solder decreased because the noble metal film on the surface was melted by contact with the solder droplets and the oxide film was exposed. From these, it can be seen that it is desirable that there is no oxide film between the noble metal film and the reflective film.

10,10A 支持部材付リードフレーム
10B,10C 支持部材付リードフレーム(LED用リードフレーム)
1a,1c リード部材
1,1B リードフレーム(LED用リードフレーム)
11,11A 基板
12 下地めっき膜(Niめっき膜、Agめっき膜)
13 反射膜
14 貴金属膜
2,2A,2B,2C 支持部材
21 樹脂成形体(基体)
22 LEDチップ搭載部(凹部)
23 反射膜
28 離間領域
10, 10A Lead frame with support member 10B, 10C Lead frame with support member (LED lead frame)
1a, 1c Lead member 1, 1B Lead frame (LED lead frame)
11, 11A Substrate 12 Base plating film (Ni plating film, Ag plating film)
13 Reflective film 14 Noble metal film 2, 2A, 2B, 2C Support member 21 Resin molded body (base)
22 LED chip mounting part (recess)
23 Reflecting film 28 Spacing region

Claims (7)

銅または銅合金からなる基板と、この基板上の少なくとも片面側に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜と、この反射膜上に形成されたPd,Au,Ptから選択される1種以上からなる膜厚5nm以上50nm以下の貴金属膜と、を備えることを特徴とするLED用リードフレーム。   Select from a substrate made of copper or a copper alloy, a reflective film made of aluminum or an aluminum alloy formed on at least one side of the substrate and having a film thickness of 50 nm or more, and Pd, Au, Pt formed on the reflective film And a noble metal film having a film thickness of 5 nm or more and 50 nm or less made of one or more kinds. LEDチップが収容されるための上方に開口した凹部が形成された支持部材と、この支持部材に支持された一対のリード部材と、を備え、前記一対のリード部材が、互いに離間領域を隔てて前記凹部の底面に配設されて、それぞれが当該凹部から前記支持部材の外側に延出している支持部材付きのLED用リードフレームであって、
前記支持部材は、絶縁材料からなる基体と、前記凹部の表面において前記離間領域を除く領域に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜と、を備え、
前記リード部材は、銅または銅合金からなる基板と、前記凹部の内側において前記基板上に形成されたアルミニウムまたはアルミニウム合金からなる膜厚50nm以上の反射膜と、この反射膜上に形成されたPd,Au,Ptから選択される1種以上からなる膜厚5nm以上50nm以下の貴金属膜と、を備えることを特徴とするLED用リードフレーム。
A support member having a recessed portion opened upward for accommodating the LED chip; and a pair of lead members supported by the support member, the pair of lead members being spaced apart from each other. An LED lead frame with a support member disposed on the bottom surface of the recess, each extending from the recess to the outside of the support member,
The support member includes a base made of an insulating material, and a reflective film having a thickness of 50 nm or more made of aluminum or an aluminum alloy formed in a region excluding the separation region on the surface of the recess,
The lead member includes a substrate made of copper or a copper alloy, a reflective film made of aluminum or an aluminum alloy formed on the substrate inside the recess, and a Pd formed on the reflective film. , Au, Pt, and a noble metal film having a film thickness of 5 nm to 50 nm.
前記基板と前記反射膜との間に、膜厚0.5μm以上のNiめっき膜または膜厚0.1μm以上のAgめっき膜をさらに備えることを特徴とする請求項1または請求項2に記載されたLED用リードフレーム。   The Ni plating film with a film thickness of 0.5 micrometer or more or the Ag plating film with a film thickness of 0.1 micrometer or more is further provided between the said board | substrate and the said reflecting film, The Claim 1 or Claim 2 characterized by the above-mentioned. LED lead frame. 銅または銅合金からなる基板上に、物理蒸着法により、アルミニウムまたはアルミニウム合金からなる蒸発源とPd,Au,Ptから選択される1種以上からなる蒸発源とを順番に用いて、反射膜および貴金属膜を連続して成膜することを特徴とするLED用リードフレームの製造方法。   On a substrate made of copper or a copper alloy, an evaporation source made of aluminum or an aluminum alloy and an evaporation source made of one or more selected from Pd, Au, and Pt are sequentially used by a physical vapor deposition method, A method of manufacturing a lead frame for LED, wherein a noble metal film is continuously formed. 銅または銅合金からなる基板上に、物理蒸着法により、アルミニウムまたはアルミニウム合金からなる蒸発源を用いて反射膜を成膜するアルミニウム成膜工程と、
前記反射膜表面に形成された自然酸化膜を除去した後、物理蒸着法により、Pd,Au,Ptから選択される1種以上からなる蒸発源を用いて貴金属膜を成膜する貴金属成膜工程と、を行うことを特徴とするLED用リードフレームの製造方法。
An aluminum film forming step of forming a reflective film on a substrate made of copper or a copper alloy by a physical vapor deposition method using an evaporation source made of aluminum or an aluminum alloy;
After removing the natural oxide film formed on the surface of the reflective film, a noble metal film forming step of forming a noble metal film using an evaporation source composed of one or more selected from Pd, Au, and Pt by physical vapor deposition And a method for manufacturing an LED lead frame.
前記反射膜を成膜する前に、絶縁材料で、上方に開口した凹部を有する形状の支持部材の基体を成形する基体成形工程をさらに行い、
前記基体成形工程は、前記基体を、前記基板が一対のリード部材として互いに離間領域を隔てて前記凹部の底面に配設されるように一体的に成形し、
前記反射膜を、前記基板上と同時に、前記凹部の表面において前記離間領域を除く領域に形成することを特徴とする請求項4または請求項5に記載されたLED用リードフレームの製造方法。
Before forming the reflective film, an insulating material is further used to form a base of the support member having a concave portion opened upward, and a base molding step is performed.
In the base body molding step, the base body is integrally molded so that the substrate is disposed as a pair of lead members on the bottom surface of the concave portion with a separation region therebetween,
6. The method for manufacturing an LED lead frame according to claim 4, wherein the reflective film is formed on the substrate at the same time as a region excluding the separation region on the surface of the recess.
前記反射膜を成膜する前に、前記基板上に、めっき処理によりNiめっき膜またはAgめっき膜を成膜するめっき工程をさらに行うことを特徴とする請求項4ないし請求項6のいずれか一項に記載されたLED用リードフレームの製造方法。   7. The plating process of further forming a Ni plating film or an Ag plating film on the substrate by plating before forming the reflective film. The manufacturing method of the lead frame for LED described in the term.
JP2011245984A 2011-03-18 2011-11-09 LED lead frame and manufacturing method thereof Expired - Fee Related JP5771124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011245984A JP5771124B2 (en) 2011-03-18 2011-11-09 LED lead frame and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011061602 2011-03-18
JP2011061602 2011-03-18
JP2011245984A JP5771124B2 (en) 2011-03-18 2011-11-09 LED lead frame and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012212850A true JP2012212850A (en) 2012-11-01
JP5771124B2 JP5771124B2 (en) 2015-08-26

Family

ID=47266563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011245984A Expired - Fee Related JP5771124B2 (en) 2011-03-18 2011-11-09 LED lead frame and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5771124B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099496A (en) * 2012-11-14 2014-05-29 Mitsui High Tec Inc Method for manufacturing lead frame
JP2015162623A (en) * 2014-02-28 2015-09-07 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
WO2016071456A1 (en) * 2014-11-07 2016-05-12 Osram Opto Semiconductors Gmbh Optoelectronic component and a method for producing the optoelectronic component
JP2016119466A (en) * 2014-12-22 2016-06-30 日亜化学工業株式会社 Light emitting device
JPWO2015020205A1 (en) * 2013-08-09 2017-03-02 株式会社タムラ製作所 Light emitting device
JP2018056457A (en) * 2016-09-30 2018-04-05 日亜化学工業株式会社 Light-emitting device, package for the light-emitting device, and method of manufacturing light-emitting device
US10121948B2 (en) 2015-12-22 2018-11-06 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210677A (en) * 2005-01-28 2006-08-10 Hitachi Aic Inc Heat block for led and led device using the same
JP2007103689A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2008053564A (en) * 2006-08-25 2008-03-06 Matsushita Electric Ind Co Ltd Optical semiconductor device and method for manufacturing the same
JP2009260316A (en) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and illuminating apparatus using the same
JP2009541989A (en) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド Vertical light emitting device and manufacturing method thereof
JP2010074182A (en) * 2009-12-17 2010-04-02 Mitsubishi Chemicals Corp Nitride semiconductor light-emitting device
JP2011009707A (en) * 2009-05-25 2011-01-13 Kobe Steel Ltd Lead frame for led
JP2011023704A (en) * 2009-06-16 2011-02-03 Kobe Steel Ltd Lead frame for led

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210677A (en) * 2005-01-28 2006-08-10 Hitachi Aic Inc Heat block for led and led device using the same
JP2007103689A (en) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
JP2009541989A (en) * 2006-06-23 2009-11-26 エルジー エレクトロニクス インコーポレイティド Vertical light emitting device and manufacturing method thereof
JP2008053564A (en) * 2006-08-25 2008-03-06 Matsushita Electric Ind Co Ltd Optical semiconductor device and method for manufacturing the same
JP2009260316A (en) * 2008-03-26 2009-11-05 Panasonic Electric Works Co Ltd Semiconductor light-emitting element and illuminating apparatus using the same
JP2011009707A (en) * 2009-05-25 2011-01-13 Kobe Steel Ltd Lead frame for led
JP2011023704A (en) * 2009-06-16 2011-02-03 Kobe Steel Ltd Lead frame for led
JP2010074182A (en) * 2009-12-17 2010-04-02 Mitsubishi Chemicals Corp Nitride semiconductor light-emitting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099496A (en) * 2012-11-14 2014-05-29 Mitsui High Tec Inc Method for manufacturing lead frame
JPWO2015020205A1 (en) * 2013-08-09 2017-03-02 株式会社タムラ製作所 Light emitting device
US10340429B2 (en) 2013-08-09 2019-07-02 Koha Co., Ltd. Light emitting device
JP2015162623A (en) * 2014-02-28 2015-09-07 日亜化学工業株式会社 Method of manufacturing light-emitting device and light-emitting device
WO2016071456A1 (en) * 2014-11-07 2016-05-12 Osram Opto Semiconductors Gmbh Optoelectronic component and a method for producing the optoelectronic component
JP2016119466A (en) * 2014-12-22 2016-06-30 日亜化学工業株式会社 Light emitting device
US10121948B2 (en) 2015-12-22 2018-11-06 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
US10431725B2 (en) 2015-12-22 2019-10-01 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
JP2018056457A (en) * 2016-09-30 2018-04-05 日亜化学工業株式会社 Light-emitting device, package for the light-emitting device, and method of manufacturing light-emitting device
CN107887493A (en) * 2016-09-30 2018-04-06 日亚化学工业株式会社 The manufacture method of light-emitting device, light-emitting device packaging body and light-emitting device
JP7011142B2 (en) 2016-09-30 2022-01-26 日亜化学工業株式会社 Manufacturing method of light emitting device, package for light emitting device and light emitting device

Also Published As

Publication number Publication date
JP5771124B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5503388B2 (en) LED lead frame
JP5771124B2 (en) LED lead frame and manufacturing method thereof
JP5602578B2 (en) LED lead frame
JP5695841B2 (en) LED lead frame
TWI479704B (en) A lead frame for an optical semiconductor device, a method for manufacturing the same, and an optical semiconductor device
TWI514629B (en) A semiconductor light-emitting element mounting substrate, and a semiconductor light-emitting device using the same
CN102257647B (en) Optical semiconductor device lead frame and manufacturing method thereof
TWI536616B (en) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
TWI496325B (en) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
JP5089795B2 (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP5767577B2 (en) LED lead frame and manufacturing method thereof
JP5578960B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP5525315B2 (en) LED lead frame
JP2010199166A (en) Lead frame for optical semiconductor apparatus, and method of manufacturing the same
JP2004241766A (en) Device
KR20200026195A (en) Reflective composite materials, in particular for surface mount components (SMD), and light emitting devices comprising such composite materials
JP5767521B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP2014049594A (en) Lead frame for optical semiconductor device and optical semiconductor device using the same
JP2012151289A (en) Optical semiconductor mounting board, manufacturing method of the same and optical semiconductor device
JP2012227327A (en) Lead frame for optical semiconductor devices, and method for manufacturing the same
JP2018022835A (en) Member for electronic component, led package, and led module
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device
JP2012033919A (en) Lead frame for optical semiconductor device, method of manufacturing the same, and optical semiconductor device
JP2011129658A (en) Lead frame for optical semiconductor device, method for manufacturing the same, and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150626

R150 Certificate of patent or registration of utility model

Ref document number: 5771124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees