JP2012210599A - Regeneration method of used denitration catalyst - Google Patents

Regeneration method of used denitration catalyst Download PDF

Info

Publication number
JP2012210599A
JP2012210599A JP2011078157A JP2011078157A JP2012210599A JP 2012210599 A JP2012210599 A JP 2012210599A JP 2011078157 A JP2011078157 A JP 2011078157A JP 2011078157 A JP2011078157 A JP 2011078157A JP 2012210599 A JP2012210599 A JP 2012210599A
Authority
JP
Japan
Prior art keywords
catalyst
denitration catalyst
solution
washing
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011078157A
Other languages
Japanese (ja)
Other versions
JP5681989B2 (en
Inventor
Keiichiro Kai
啓一郎 甲斐
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011078157A priority Critical patent/JP5681989B2/en
Publication of JP2012210599A publication Critical patent/JP2012210599A/en
Application granted granted Critical
Publication of JP5681989B2 publication Critical patent/JP5681989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote the regeneration use of a used denitration catalyst in which the transportation of a washing liquid, the waste liquid treatment after the use, and the handling of the washing liquid are easy, the decrease of the mechanical strength by the elution and washing of an active constituent is not caused, and a catalyst poison component that adsorbs to the used catalyst is efficiently removed by a few treatment steps.SOLUTION: The regeneration method of a used denitration catalyst includes: a washing step in which a used denitration catalyst including titanium oxide (TiO) is immersed in a washing liquid, and a catalyst poison component in the catalyst is removed; or a step in which the used denitration catalyst after the washing step is impregnated into a solution including at least one of a catalytically active component compound chosen from vanadium (V), molybdenum (Mo), and tungsten (W), and the regeneration method of a used denitration catalyst uses an aqueous solution of aluminum sulfate as the washing liquid.

Description

本発明は、酸化チタンを主成分とする使用済脱硝触媒の再生方法に係り、特に薬液による洗浄において、触媒中の活性成分を溶出させることなく、触媒中に蓄積したリン、アルカリ金属、アルカリ土類金属等の触媒毒成分のみを効率よく除去可能な前記再生方法に関する。   The present invention relates to a method for regenerating a spent denitration catalyst containing titanium oxide as a main component, and in particular, in cleaning with a chemical solution, phosphorus, alkali metal, alkaline earth accumulated in the catalyst without eluting active components in the catalyst. The present invention relates to the above regeneration method capable of efficiently removing only catalyst poison components such as metals.

還元剤にアンモニアや尿素を用い、酸化チタン系触媒で排ガス中の窒素酸化物を浄化する、いわゆる排煙脱硝装置は、ボイラ排ガスの処理を中心に世界中で広く用いられているが、この装置に用いられる酸化チタン系触媒も開発されてから30余年が経過し、その使用済の触媒の再生も徐々に増加する傾向にある。   A so-called flue gas denitration device that uses ammonia or urea as a reducing agent and purifies nitrogen oxides in exhaust gas with a titanium oxide catalyst is widely used around the world, mainly in the treatment of boiler exhaust gas. More than 30 years have passed since the development of the titanium oxide-based catalyst used in Japan, and the regeneration of the used catalyst tends to gradually increase.

一方、資源の有効利用が製造者の責任であるという意識が定着し、使用済脱硝触媒の再生あるいは有価物の回収技術を持つことが触媒メーカの責務となっている。このため使用済触媒の各種再生方法、有価物の回収について研究が進められ、多くの発明がなされている(例えば特許文献1〜3)。しかしながら、再生処理費あるいは廃液の処理費が予想以上に高く、経済的に成立する方法は極めて少ないのが実情である。   On the other hand, the consciousness that the manufacturer is responsible for the effective use of resources has become established, and it is the responsibility of the catalyst manufacturer to have a technique for regenerating used denitration catalysts or recovering valuable materials. For this reason, research on various regeneration methods of spent catalysts and recovery of valuable materials has been advanced, and many inventions have been made (for example, Patent Documents 1 to 3). However, the actual situation is that there are very few methods that are economically feasible because the cost of regeneration treatment or waste liquid treatment is higher than expected.

現在、実用化されているものの多くは、鉱酸や有機酸による薬液洗浄と活性成分の追加処理とを組み合わせた方法であり、これら酸溶液の輸送や廃液処理に膨大な費用を必要とするため、触媒の再生処理工程は必要最小限に留めたものに限られている。   Many of the methods that are currently in practical use are methods that combine chemical cleaning with mineral acids and organic acids and additional treatment of active ingredients, and enormous costs are required for transporting these acid solutions and processing waste liquids. The catalyst regeneration process is limited to the minimum necessary.

特開昭55-145532号公報JP 55-145532 A 特開2000-24520号公報Japanese Unexamined Patent Publication No. 2000-24520 特開2004-267897号公報JP 2004-267897 A

上記の触媒再生法は、操作行程が比較的少なく経済的には成り立つ方法であるが、次のような大きな欠点がある。即ち、触媒成分であるTiO2が各種金属(Na、Kなどのアルカリ金属、Ca、Srなどのアルカリ土類金属、Fe、Crなど第VI族から第VII族の遷移金属など)の金属イオンに加え、特にリン酸、亜ヒ酸、ヒ酸などの第VB族元素のオキソ酸イオンを強く吸着しており、その除去には極めて大量の酸や薬液が必要になることである。このため、これら洗浄溶液の輸送や使用後の廃液処理に膨大な費用が発生する上に、これら強酸溶液のハンドリングには極めて注意が必要である。 The above catalyst regeneration method is an economical method with relatively few operation steps, but has the following major drawbacks. That is, TiO 2 as a catalyst component is converted into metal ions of various metals (alkali metals such as Na and K, alkaline earth metals such as Ca and Sr, Group VI to Group VII transition metals such as Fe and Cr). In addition, the oxoacid ions of Group VB elements such as phosphoric acid, arsenous acid, and arsenic acid are strongly adsorbed, and a very large amount of acid or chemical solution is required for their removal. For this reason, enormous costs are incurred for transportation of these cleaning solutions and waste liquid treatment after use, and handling of these strong acid solutions requires great care.

さらに、これらのイオンは一回の酸洗浄で液相に取り除かれる量がわずかである。このため、除去率を上げようとすると強酸性溶液中で繰り返し洗浄することが必要となるが、下記のような弊害を生じ、経済的に成り立ち難くなる。それ故、上記成分が多量に付着した使用済触媒は、低い性能回復率で我慢するか、または再生処理を諦めるしか道がなかった。
(1)洗浄を繰り返す度に触媒中のバナジウム、タングステン、モリブデン等の活性成分が溶出してしまうため、洗浄後の賦活処理工程で大量の活性成分が必要になる。
(2)シリカやアルミナなどのバインダ成分までも溶出してしまうため、触媒の機械的強度の低下が避けられず、バインダの追加工程が新たに必要となる。
In addition, these ions are negligibly removed to the liquid phase by a single acid wash. For this reason, when it is attempted to increase the removal rate, it is necessary to repeatedly wash in a strongly acidic solution. However, the following adverse effects are caused and it is difficult to achieve economically. Therefore, a spent catalyst having a large amount of the above components can only be put up with a low performance recovery rate or give up the regeneration treatment.
(1) Since active components such as vanadium, tungsten, and molybdenum in the catalyst are eluted every time the cleaning is repeated, a large amount of active components are required in the activation treatment step after the cleaning.
(2) Since binder components such as silica and alumina are also eluted, a decrease in the mechanical strength of the catalyst is inevitable, and an additional step of adding a binder is necessary.

本発明の解決しようとする課題は、上記従来技術の有する問題点を無くし、洗浄液の輸送や使用後の廃液処理、洗浄液のハンドリングが容易であり、且つ、活性成分の溶出及び洗浄による機械的強度の低下を招くことなく、少ない処理工程で使用済触媒に吸着した触媒毒成分を効率よく除去し、使用済脱硝触媒の再生利用を促進することである。   The problem to be solved by the present invention is to eliminate the above-mentioned problems of the prior art, facilitate the transport of the cleaning liquid, the waste liquid treatment after use, the handling of the cleaning liquid, and the mechanical strength due to the elution and cleaning of the active ingredients. In other words, the catalyst poison component adsorbed on the used catalyst is efficiently removed with a small number of processing steps, and the recycling of the used denitration catalyst is promoted.

上記課題を達成するため、本願で特許請求される発明は以下の通りである。
(1)酸化チタン(TiO2)を含む使用済脱硝触媒を洗浄液中に浸漬して該触媒中の触媒毒成分を除去する洗浄工程、または該洗浄工程後にバナジウム(V)、モリブデン(Mo)およびタングステン(W)から選ばれる1種以上の触媒活性成分化合物を含む溶液に含浸する工程を有する使用済脱硝触媒の再生方法であって、前記洗浄液として硫酸アルミニウムの水溶液を用いることを特徴とする使用済脱硝触媒の再生方法。
(2)前記洗浄液中の硫酸アルミニウム濃度がAl2(SO4)3として0を超えて5wt%である(1)記載の使用済脱硝触媒の再生方法。
In order to achieve the above object, the invention claimed in the present application is as follows.
(1) A cleaning step in which a used denitration catalyst containing titanium oxide (TiO 2 ) is immersed in a cleaning solution to remove catalyst poison components in the catalyst, or vanadium (V), molybdenum (Mo) and A method for regenerating a spent denitration catalyst comprising a step of impregnating a solution containing one or more catalytically active component compounds selected from tungsten (W), wherein the cleaning liquid is an aqueous solution of aluminum sulfate. A method for regenerating spent denitration catalyst.
(2) The method for regenerating a used denitration catalyst according to (1), wherein the concentration of aluminum sulfate in the cleaning liquid exceeds 0 as Al 2 (SO 4 ) 3 and is 5 wt%.

本発明によれば、従来技術では困難であった触媒毒成分のみの除去を安価、且つ簡易に達成することができる。これにより、脱硝触媒の再生市場の活発化が図られ、資源のリサイクルに大きく貢献できる。   According to the present invention, it is possible to easily and inexpensively remove only the catalyst poison component, which has been difficult with the prior art. As a result, the regeneration market of the denitration catalyst is activated, which can greatly contribute to resource recycling.

[原理・作用]
使用済の脱硝触媒を鉱酸や有機酸で洗浄し、触媒中に蓄積したPやK、砒素などの触媒毒成分を除去する従来の触媒再生方法は、洗浄度を上げるためには、洗浄液の酸性度を上げるか、繰返し洗浄を行うことによって成されている。しかしながら、このような条件下で触媒を処理すると、触媒中の活性成分であるタングステン(W)やモリブデン(Mo)、バナジウム(V)といった脱硝反応に寄与する活性成分の溶出を促進してしまうため、洗浄処理だけでの脱硝性能の回復は見込めず、さらに活性成分を付与する賦活処理工程が必要である。さらに、触媒の主成分であるチタニア(TiO2)粒子間の結合剤として働くアルミナ(Al2O3)やシリカ(SiO2)までも溶出して触媒の機械的強度を低下させてしまうため、場合によっては賦活処理のみならず、強度を付与する処理を要する。このように、従来の触媒再生技術では、触媒中の活性成分や結合剤を保持しつつ、触媒毒成分のみを除去することが困難であった。
[Principle / Action]
The conventional catalyst regeneration method of cleaning spent denitration catalyst with mineral acid or organic acid and removing catalyst poison components such as P, K, and arsenic accumulated in the catalyst is This is done by increasing the acidity or repeatedly washing. However, if the catalyst is treated under such conditions, elution of active components contributing to the denitration reaction such as tungsten (W), molybdenum (Mo), and vanadium (V), which are active components in the catalyst, is promoted. In addition, recovery of denitration performance cannot be expected only by washing treatment, and an activation treatment step for adding an active ingredient is necessary. In addition, alumina (Al 2 O 3 ) and silica (SiO 2 ), which act as a binder between titania (TiO 2 ) particles, which are the main components of the catalyst, are also eluted, reducing the mechanical strength of the catalyst, In some cases, not only activation processing but also processing for imparting strength is required. Thus, with the conventional catalyst regeneration technology, it is difficult to remove only the catalyst poison component while retaining the active component and the binder in the catalyst.

本願発明者らは、上記従来技術の問題点を鑑み、活性成分の溶出及び洗浄による機械的強度の低下を招くことなく、少ない処理工程でTiO2に吸着した触媒毒成分を効率よく除去できる方法を検討した結果、使用済みの脱硝触媒を硫酸アルミニウムの水溶液中で一定時間洗浄することにより、触媒中の触媒毒成分のみを効率良く除去できることを見出した。 In view of the above-mentioned problems of the prior art, the inventors of the present application can efficiently remove the catalytic poison component adsorbed on TiO 2 with a small number of processing steps without causing a decrease in mechanical strength due to elution and washing of the active component. As a result, it was found that by washing a used denitration catalyst in an aqueous solution of aluminum sulfate for a certain period of time, only the catalyst poison component in the catalyst can be efficiently removed.

本発明方法では、0を越えて5wt%以下のAl2(SO4)3を含む硫酸アルミニウム水溶液で触媒を洗浄処理すること、特に洗浄液のPHが2〜3程度であることが望ましい。このPHは、従来の洗浄処理で使用される洗浄液のPHよりもやや高めである。このようなPHでは、触媒中の活性成分を溶出させることなく、触媒毒成分のみを除去することができる。さらに、洗浄液中にAlイオンが存在するため、共存イオン効果によって触媒中のAlの溶出が抑制されると同時に、触媒細孔内に洗浄液中のAlイオンが吸着され、触媒の強度低下を抑制する作用を有する。すなわち、1回の洗浄処理で触媒毒成分の除去と触媒の強度補強を同時に行うことができる。 In the method of the present invention, it is desirable that the catalyst is washed with an aqueous aluminum sulfate solution containing Al 2 (SO 4 ) 3 of more than 0 and not more than 5 wt%, and in particular, the pH of the washing solution is preferably about 2 to 3. This PH is slightly higher than the PH of the cleaning liquid used in the conventional cleaning process. With such a PH, only the catalyst poison component can be removed without eluting the active component in the catalyst. In addition, since Al ions are present in the cleaning liquid, the elution of Al in the catalyst is suppressed by the coexisting ion effect, and at the same time, Al ions in the cleaning liquid are adsorbed in the catalyst pores, thereby suppressing a decrease in catalyst strength Has an effect. That is, it is possible to simultaneously remove the catalyst poison component and reinforce the strength of the catalyst by a single washing process.

さらに、洗浄液中の硫酸イオンは触媒中のTiO2に吸着することにより、脱硝反応に寄与するアンモニアの吸着点を活性化する効果がある。通常、脱硝触媒は、350〜400℃の排ガス中で使用すると、触媒中に含まれる余剰な硫酸根は、熱でTiO2上から容易に脱離してしまうが、本発明の方法で処理した触媒は、触媒中にAlイオンが担持されるため、このAlイオンがTiO2上の硫酸根を固定化して、熱による脱離を抑制する効果を発揮する。これにより、触媒の脱硝性能の回復度をより高めることが可能となる。 Further, the sulfate ions in the cleaning solution are adsorbed on TiO 2 in the catalyst, thereby activating the adsorption point of ammonia contributing to the denitration reaction. Normally, when a denitration catalyst is used in an exhaust gas at 350 to 400 ° C., excess sulfate radicals contained in the catalyst are easily detached from TiO 2 by heat, but the catalyst treated by the method of the present invention. Since Al ions are supported in the catalyst, the Al ions fix the sulfate radicals on TiO 2 and exhibit the effect of suppressing desorption due to heat. As a result, the degree of recovery of the denitration performance of the catalyst can be further increased.

以下、具体例を示し、本発明の効果について詳細に説明する。
[実施例1]
石炭排ガス脱硝触媒としてSUS430製メタルラス基板にチタン、タングステン、及びバナジウムの酸化物を主成分とする脱硝触媒成分(Ti/W/V原子比=93/5/2)が塗布された板状触媒を10,000時間使用後、100mm角に切り出し、被処理触媒とした。
一方、純水95gに硫酸アルミニウム(キシダ化学社製)をAl2(SO4)3として5g溶解し、5wt%の硫酸アルミニウム水溶液を調製した。
この水溶液をシャーレに移し、被処理触媒100mm角を1枚投入後、液を揺り動かしながら60℃で30分間保持した。その後、触媒を取り出して十分に液切りし、次いで150℃で1時間さらに350℃で1時間乾燥した。
Hereinafter, a specific example is shown and the effect of this invention is demonstrated in detail.
[Example 1]
As a coal exhaust gas denitration catalyst, a SUS430 metal lath substrate coated with a denitration catalyst component (Ti / W / V atomic ratio = 93/5/2) mainly composed of oxides of titanium, tungsten and vanadium is used. After 10,000 hours of use, it was cut into 100 mm squares and used as a catalyst to be treated.
On the other hand, 5 g of aluminum sulfate (manufactured by Kishida Chemical Co.) as Al 2 (SO 4 ) 3 was dissolved in 95 g of pure water to prepare a 5 wt% aluminum sulfate aqueous solution.
This aqueous solution was transferred to a petri dish, and after adding one 100 mm square of catalyst to be treated, the solution was kept at 60 ° C. for 30 minutes while shaking the solution. Thereafter, the catalyst was taken out and thoroughly drained, and then dried at 150 ° C. for 1 hour and further at 350 ° C. for 1 hour.

[実施例2]
硫酸アルミニウム水溶液の濃度を2wt%に変更する以外は、実施例1と同様にして触媒を処理した。
[比較例1]
硫酸アルミニウム水溶液の濃度を10wt%に変更する以外は、実施例1と同様にして触媒を処理した。
[比較例2]
実施例1における硫酸アルミニウム水溶液を1Nの硫酸溶液に変更する以外は、実施例1と同様にして触媒を処理した。
[Example 2]
The catalyst was treated in the same manner as in Example 1 except that the concentration of the aluminum sulfate aqueous solution was changed to 2 wt%.
[Comparative Example 1]
The catalyst was treated in the same manner as in Example 1 except that the concentration of the aluminum sulfate aqueous solution was changed to 10 wt%.
[Comparative Example 2]
The catalyst was treated in the same manner as in Example 1 except that the aluminum sulfate aqueous solution in Example 1 was changed to a 1N sulfuric acid solution.

[比較例3]
実施例1における硫酸アルミニウム水溶液を1Nのシュウ酸溶液に変更する以外は、実施例1と同様にして触媒を処理した。
[比較例4]
実施例1において、硫酸アルミニウム水溶液を加温せず、20℃の溶液温度条件下で同様に触媒を処理した。
[実施例3及び4]
純水180mlにメタバナジン酸アンモニウム(NH4VO3)5gと三酸化モリブデン(MoO3)5gとを溶解し、黄褐色で透明なMo-V溶液を調製した。この洗浄液は、示性式(NH4)3Mo2V3O15なる化合物を主成分とするMoとVの複合オキソ酸塩の水溶液である。
[Comparative Example 3]
The catalyst was treated in the same manner as in Example 1 except that the aluminum sulfate aqueous solution in Example 1 was changed to a 1N oxalic acid solution.
[Comparative Example 4]
In Example 1, the catalyst was similarly treated under the solution temperature condition of 20 ° C. without heating the aqueous aluminum sulfate solution.
[Examples 3 and 4]
In 180 ml of pure water, 5 g of ammonium metavanadate (NH 4 VO 3 ) and 5 g of molybdenum trioxide (MoO 3 ) were dissolved to prepare a yellow-brown transparent Mo-V solution. This cleaning liquid is an aqueous solution of a complex oxoacid salt of Mo and V, which mainly contains a compound represented by the formula (NH 4 ) 3 Mo 2 V 3 O 15 .

本洗浄液の中に実施例1及び2で処理した触媒をそれぞれ30秒間浸漬してMo及びV成分を含浸後、液から触媒を取り出し、液切り後120℃で1時間、さらに350℃で乾燥処理した。
実施例1〜4及び比較例1〜3の被再生処理触媒について、触媒成分中の触媒毒成分であるリン(P)とカリウム(K)の含有量及び活性成分であるバナジウム(V)を蛍光X線分析により定量した。また、触媒の機械的強度の指標として、触媒中のアルミナ(Al2O3)含有量を同様に定量した。
The catalyst treated in Examples 1 and 2 was immersed in this cleaning solution for 30 seconds, impregnated with Mo and V components, and the catalyst was removed from the solution. After draining, the catalyst was dried at 120 ° C for 1 hour and further dried at 350 ° C. did.
For the regenerated catalyst of Examples 1 to 4 and Comparative Examples 1 to 3, the contents of phosphorus (P) and potassium (K) as catalyst poison components in the catalyst component and vanadium (V) as the active component are fluorescent. Quantified by X-ray analysis. Further, as an index of the mechanical strength of the catalyst, the content of alumina (Al 2 O 3 ) in the catalyst was similarly quantified.

これとは別に、上記触媒について、表1に示す条件で触媒の脱硝率を測定した。
得られた結果を纏めて表2に示す。まず、従来法の一例として挙げた比較例2の結果を見ると、触媒中のP及びKが7〜8割除去されており、脱硝率も回復していることが分かる。しかしながら、触媒中のAl2O3量が約1割、V量が約半分まで減少している。このため、Al2O3の持つバインダ効果の低下やV活性成分の絶対量不足により、排ガス中で再度使用した際に、ダストによる摩耗が生じたり、触媒の劣化速度が速くなる可能性が高い。また、洗浄処理後に賦活処理をする場合には、大量のVを担持する必要があり経済的でない。
Separately from this, the denitration rate of the catalyst was measured under the conditions shown in Table 1.
The obtained results are summarized in Table 2. First, looking at the results of Comparative Example 2 cited as an example of the conventional method, it can be seen that 70 to 80% of P and K in the catalyst have been removed, and the denitration rate has also recovered. However, the Al 2 O 3 amount in the catalyst is reduced to about 10% and the V amount is reduced to about half. For this reason, due to a decrease in the binder effect of Al 2 O 3 and a lack of the absolute amount of V active components, there is a high possibility that wear due to dust will occur or the catalyst deterioration rate will increase when used again in exhaust gas. . In addition, when the activation process is performed after the cleaning process, it is necessary to carry a large amount of V, which is not economical.

これに対し、本発明では、実施例1及び2に示すように、触媒中のVの減少は僅少でありながら、PやKといった触媒毒成分のみが減少し、脱硝率の回復も大きいことが分かる。さらに、触媒中のAl2O3量も十分確保されている。したがって、本法を用いれば、使用済触媒を洗浄処理のみの容易な操作で、機械的強度を減ずることなく再生することが可能である。さらに、本発明で使用する洗浄液は、従来再生処理に供される鉱酸や有機酸に比べて、硫酸アルミニウムの固体粉末を現地で水に溶解して用いることができるため輸送が容易である。また、使用後の硫酸アルミニウム廃液を中和すれば、洗浄液中に溶出したリンやカリウム、砒素等をアルミニウムと共に沈殿して除去可能であり、廃液中の有害成分を除去してから廃棄することができる。また、洗浄処理後に賦活処理して脱硝性能の向上を図る場合でも、少量の活性成分量で脱硝性能を向上できるため、経済性に優れた触媒再生方法と言える。 In contrast, in the present invention, as shown in Examples 1 and 2, the decrease in V in the catalyst is small, but only the catalyst poison components such as P and K are decreased, and the denitration rate is greatly recovered. I understand. Furthermore, the amount of Al 2 O 3 in the catalyst is sufficiently secured. Therefore, if this method is used, it is possible to regenerate the spent catalyst by an easy operation of only the washing treatment without reducing the mechanical strength. Furthermore, the cleaning liquid used in the present invention can be easily transported since a solid powder of aluminum sulfate can be dissolved in water on site in comparison with a mineral acid or an organic acid that has been conventionally subjected to regeneration treatment. Moreover, if the used aluminum sulfate waste liquid is neutralized, phosphorus, potassium, arsenic, etc. eluted in the cleaning liquid can be precipitated and removed together with aluminum, and can be discarded after removing harmful components in the waste liquid. it can. In addition, even when the activation treatment is performed after the cleaning treatment to improve the denitration performance, the denitration performance can be improved with a small amount of the active component, so that it can be said to be an excellent catalyst regeneration method.

Figure 2012210599
Figure 2012210599

Figure 2012210599
Figure 2012210599

Claims (2)

酸化チタン(TiO2)を含む使用済脱硝触媒を洗浄液中に浸漬して該触媒中の触媒毒成分を除去する洗浄工程、または該洗浄工程後にバナジウム(V)、モリブデン(Mo)およびタングステン(W)から選ばれる1種以上の触媒活性成分化合物を含む溶液に含浸する工程を有する使用済脱硝触媒の再生方法であって、前記洗浄液として硫酸アルミニウムの水溶液を用いることを特徴とする使用済脱硝触媒の再生方法。 A cleaning step of immersing a used denitration catalyst containing titanium oxide (TiO 2 ) in a cleaning solution to remove catalyst poison components in the catalyst, or vanadium (V), molybdenum (Mo) and tungsten (W after the cleaning step) A method for regenerating a spent denitration catalyst comprising a step of impregnating a solution containing at least one catalytically active component compound selected from the group consisting of an aqueous solution of aluminum sulfate as the cleaning liquid How to play. 前記洗浄液中の硫酸アルミニウム濃度がAl2(SO4)3として0を超えて5wt%である請求項1記載の使用済脱硝触媒の再生方法。 The method for regenerating a spent denitration catalyst according to claim 1, wherein the concentration of aluminum sulfate in the cleaning liquid is more than 0 and 5 wt% as Al 2 (SO 4 ) 3 .
JP2011078157A 2011-03-31 2011-03-31 Regeneration method of used denitration catalyst Active JP5681989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078157A JP5681989B2 (en) 2011-03-31 2011-03-31 Regeneration method of used denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078157A JP5681989B2 (en) 2011-03-31 2011-03-31 Regeneration method of used denitration catalyst

Publications (2)

Publication Number Publication Date
JP2012210599A true JP2012210599A (en) 2012-11-01
JP5681989B2 JP5681989B2 (en) 2015-03-11

Family

ID=47265038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078157A Active JP5681989B2 (en) 2011-03-31 2011-03-31 Regeneration method of used denitration catalyst

Country Status (1)

Country Link
JP (1) JP5681989B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034743A (en) * 1983-08-08 1985-02-22 Babcock Hitachi Kk Regeneration of used denitration catalyst
JPH1157410A (en) * 1997-08-19 1999-03-02 Babcock Hitachi Kk Device and method for regenerating alkali-deteriorated denitrification catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2000037634A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2004267968A (en) * 2003-03-11 2004-09-30 Babcock Hitachi Kk Method for regenerating denitration catalyst
JP2009101300A (en) * 2007-10-24 2009-05-14 Babcock Hitachi Kk Regeneration method for used denitration catalyst
JP2009142734A (en) * 2007-12-13 2009-07-02 Babcock Hitachi Kk Method for regenerating used denitrification catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034743A (en) * 1983-08-08 1985-02-22 Babcock Hitachi Kk Regeneration of used denitration catalyst
JPH1157410A (en) * 1997-08-19 1999-03-02 Babcock Hitachi Kk Device and method for regenerating alkali-deteriorated denitrification catalyst
JP2000037635A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2000037634A (en) * 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2004267968A (en) * 2003-03-11 2004-09-30 Babcock Hitachi Kk Method for regenerating denitration catalyst
JP2009101300A (en) * 2007-10-24 2009-05-14 Babcock Hitachi Kk Regeneration method for used denitration catalyst
JP2009142734A (en) * 2007-12-13 2009-07-02 Babcock Hitachi Kk Method for regenerating used denitrification catalyst

Also Published As

Publication number Publication date
JP5681989B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5495001B2 (en) Catalyst regeneration method
JP6619948B2 (en) Regeneration method of used denitration catalyst
JP2013056319A5 (en)
JP2013056319A (en) Method of suppressing increase in so2 oxidation rate of denitration catalyst
JP5643905B2 (en) Method for treating an SCR catalyst with accumulated iron compounds
JP3059137B2 (en) Reprocessing method for denitration catalyst
JP5526369B2 (en) Denitration catalyst regeneration method
JP5615228B2 (en) Regeneration method of used denitration catalyst
JP5681989B2 (en) Regeneration method of used denitration catalyst
EP2969139B1 (en) Method for removing iron material from a catalytic converter using an aqueous alkaline solution and an antioxidant
JP4905985B2 (en) Recycling of used denitration catalyst
JP2012179543A (en) Method for regenerating denitration catalyst
JP4264642B2 (en) Method for regenerating thermally deteriorated catalyst
JP2016007554A (en) Method for regenerating used denitration catalyst
CN105797790A (en) Acid pickling solution and method for recycling waste denitration catalysts
JP2012152672A (en) Regeneration method for denitration catalyst
JP2015116512A (en) Adsorbent for removing arsenic or phosphorus from flue gas and flue gas purification method using the same
JP2014213293A (en) Regeneration method of used denitration catalyst
JP3150519B2 (en) Regeneration method of denitration catalyst
TWI585211B (en) Method for recycling metal composition from discarded denitrification catalyst
JP4511915B2 (en) Regeneration catalyst for denitration catalyst and regeneration method using the same
JP2004066101A (en) Method of regenerating denitration catalyst
JP2012139665A (en) NOx REMOVAL CATALYST AND METHOD OF REGENERATING THE SAME
JP2004195401A (en) Regeneration method for deteriorated catalyst
JPH0411257B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141217

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5681989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350