JP2012210083A - Battery controller - Google Patents

Battery controller Download PDF

Info

Publication number
JP2012210083A
JP2012210083A JP2011074207A JP2011074207A JP2012210083A JP 2012210083 A JP2012210083 A JP 2012210083A JP 2011074207 A JP2011074207 A JP 2011074207A JP 2011074207 A JP2011074207 A JP 2011074207A JP 2012210083 A JP2012210083 A JP 2012210083A
Authority
JP
Japan
Prior art keywords
battery
vehicle
temperature
air
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011074207A
Other languages
Japanese (ja)
Inventor
Makoto Mizuguchi
真 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011074207A priority Critical patent/JP2012210083A/en
Publication of JP2012210083A publication Critical patent/JP2012210083A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To take a measure not to give a crew member unwell feeling of heat of wind exhausted from a battery cooling device in a vehicle equipped with the battery cooling device which makes air inhaled from a crew member room pass inside a battery case and exhausts the air into the inside of the vehicle.SOLUTION: The vehicle has the battery cooling device which makes the air inhaled from the crew member room pass inside the battery case and exhausts the air into the inside of the vehicle. In a case that a cooling fan of the battery cooling device is being driven (YES in S10) and the battery cooling device is in an internal air circulation mode (YES in S11), an ECU measures a mean square value of a battery current Ib (S12) and calculates a battery saturation temperature T3 from an intake air temperature T1 and the mean square value of the battery current Ib (S13). Furthermore, in a case that a difference between the battery saturation temperature T3 and a room temperature T2 exceeds a predetermined value ▵T (YES in S14), the ECU controls heat generation of a battery 11 by performing input restriction (S15) or output restriction (S17) of the battery 11.

Description

本発明は、車両に搭載される電池の制御に関する。   The present invention relates to control of a battery mounted on a vehicle.

特開2010−193602号公報(特許文献1)には、バッテリを備えた車両において、バッテリの温度が乗員室内の温度未満でかつしきい温度以下のときに、冷却ファンを作動させて乗員室内の空気をバッテリに供給することによって、低温化によるバッテリ電力の入出力制限がかからないようにバッテリの温度を制御する技術が開示されている。   Japanese Patent Laying-Open No. 2010-193602 (Patent Document 1) discloses that in a vehicle equipped with a battery, when the temperature of the battery is lower than the temperature in the passenger compartment and below the threshold temperature, the cooling fan is operated to A technique is disclosed in which the temperature of a battery is controlled by supplying air to the battery so that input / output of battery power is not limited due to low temperature.

特開2010−193602号公報JP 2010-193602 A 特開2010−163095号公報JP 2010-163095 A 特開2008−132855号公報JP 2008-132855 A

ところで、電池を冷却した後の温かい排風が車内に排出される構成を有する車両においては、その排風が乗員室へ逆流すると、排風の温かさによる不快感(もやつき感)を乗員に与えてしまうという問題がある。   By the way, in a vehicle having a configuration in which the warm exhaust air after cooling the battery is discharged into the vehicle, if the exhaust air flows back to the passenger compartment, the discomfort (feeling of haze) due to the warmness of the exhaust air is caused to the passenger. There is a problem of giving.

本発明は、上述の課題を解決するためになされたものであって、その目的は、乗員室内から吸入した空気を電池ケース内を通過させて車内に排出する電池冷却装置を備えた車両において、電池冷却装置からの排風の温かさによる不快感を乗員に与えないようにすることである。   The present invention has been made in order to solve the above-described problems, and its purpose is to provide a vehicle including a battery cooling device that allows air sucked from the passenger compartment to pass through the battery case and be discharged into the vehicle. It is to prevent the passenger from feeling uncomfortable due to the warmth of the exhaust air from the battery cooling device.

この発明に係る制御装置は、車両に搭載される電池を制御する。車両は、乗員室から吸入した空気を電池ケース内を通過させて車内に排出する電池冷却装置を備える。制御装置は、乗員室内温度を検出する検出部と、電池冷却装置の吸気温と電池を流れる電流とに基づいて電池飽和温度を推定する推定部と、電池飽和温度と乗員室内温度との温度差が電池冷却装置の排気の暖かさを乗員が感じる温度差を越える場合、電池の充放電電力を制限することによって電池の発熱を抑制する発熱抑制部とを備える。   A control device according to the present invention controls a battery mounted on a vehicle. The vehicle includes a battery cooling device that discharges air sucked from the passenger compartment through the battery case and discharged into the vehicle. The control device includes a detection unit that detects a passenger cabin temperature, an estimation unit that estimates a battery saturation temperature based on an intake air temperature of the battery cooling device and a current flowing through the battery, and a temperature difference between the battery saturation temperature and the passenger cabin temperature. Includes a heat generation suppression unit that suppresses the heat generation of the battery by limiting the charge / discharge power of the battery when the temperature difference between which the occupant feels the warmth of the exhaust of the battery cooling device is exceeded.

本発明によれば、乗員室内から吸入した空気を電池ケース内を通過させて車内に排出する電池冷却装置を備えた車両において、電池冷却装置からの排風の温かさによる不快感を乗員に与えないようにすることができる。   According to the present invention, in a vehicle equipped with a battery cooling device that discharges air sucked from the passenger compartment through the battery case and exhausts the air into the vehicle, the passenger does not feel uncomfortable due to the temperature of the exhaust air from the battery cooling device. Can be.

車両を模式的に表わす側面図である。It is a side view showing a vehicle typically. ECUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of ECU.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、本実施の形態に従う制御装置を備えた車両1を模式的に表わす側面図である。車両1は、モータの駆動力で走行可能な電動車両(代表的には電気自動車、ハイブリッド自動車、燃料電池自動車など)である。車両1の室内には、乗員室53と、荷室54とが設けられる。   FIG. 1 is a side view schematically showing a vehicle 1 provided with a control device according to the present embodiment. The vehicle 1 is an electric vehicle (typically, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, etc.) that can run with a driving force of a motor. A passenger compartment 53 and a cargo compartment 54 are provided in the vehicle 1.

乗員室53には、乗員(ユーザ)が座るためのフロントシート51およびリヤシート52が、車両進行方向の前後に並んで設けられている。荷室54は、リヤシート52の後方に形成されている。乗員室53と荷室54とは、リヤシート52の上方で連通されている。   In the passenger compartment 53, a front seat 51 and a rear seat 52 for an occupant (user) to sit are provided side by side in the vehicle traveling direction. The luggage compartment 54 is formed behind the rear seat 52. The passenger compartment 53 and the cargo compartment 54 communicate with each other above the rear seat 52.

乗員室53の空調は、乗員室53よりも車両前側に設けられた空調ユニット20によって行なわれる。空調ユニット20は、車外から空気を取り入れる外気導入モードと車室内の空気を循環させる内気循環モードとを切り替えるための内外気切り替ドアを含む。外気導入モードのときには、車外の空気が空調ユニット20に吸入され、空調ユニット20で冷却された後、乗員室53に排出される。内気循環モードのときには、乗員室53の空気が空調ユニット20に吸入され、空調ユニット20で冷却された後、再び乗員室53に戻される。   Air conditioning of the passenger compartment 53 is performed by the air conditioning unit 20 provided on the vehicle front side of the passenger compartment 53. The air conditioning unit 20 includes an inside / outside air switching door for switching between an outside air introduction mode for taking air from the outside of the vehicle and an inside air circulation mode for circulating the air inside the vehicle interior. In the outside air introduction mode, air outside the vehicle is drawn into the air conditioning unit 20, cooled by the air conditioning unit 20, and then discharged into the passenger compartment 53. In the inside air circulation mode, air in the passenger compartment 53 is sucked into the air conditioning unit 20, cooled by the air conditioning unit 20, and then returned to the passenger compartment 53 again.

荷室54には、電池ユニット10が設けられる。電池ユニット10は、車両駆動用のモータに供給する電力を蓄える電池11Aと、電池11Aを内部に収容する電池ケース11とで構成される。この電池11Aは充放電によって発熱する。   In the cargo compartment 54, the battery unit 10 is provided. The battery unit 10 includes a battery 11A that stores electric power supplied to a vehicle driving motor and a battery case 11 that houses the battery 11A. This battery 11A generates heat by charging and discharging.

電池11Aは、吸気ダクト12、冷却ファン13、排気ダクト14で構成される電池冷却装置で冷却される。吸気ダクト12は、乗員室53と電池ケース11の内部とを連通するように配置される。冷却ファン13は、吸気ダクト12と電池ケース11との間に設けられる。排気ダクト14は、電池ケース11の内部と荷室54とを連通するように配置される。図1の矢印αは、冷却風の流れを示す。冷却ファン13が駆動されると、乗員室53内の空気が冷却風として吸気ダクト12を通って電池ケース11の内部に取り込まれる。電池ケース11の内部に取り込まれた冷却風は、電池11Aと熱交換を行ない、電池11Aを冷却した後、排気ダクト14を通って荷室54内に排出される。このように、車両1には、乗員室53内から吸気して荷室54(乗員室53以外の車内)に排出する電池冷却装置(吸気ダクト12、冷却ファン13、排気ダクト14)を備える。   The battery 11 </ b> A is cooled by a battery cooling device including an intake duct 12, a cooling fan 13, and an exhaust duct 14. The intake duct 12 is disposed so as to communicate between the passenger compartment 53 and the inside of the battery case 11. The cooling fan 13 is provided between the intake duct 12 and the battery case 11. The exhaust duct 14 is disposed so as to communicate the inside of the battery case 11 and the cargo compartment 54. An arrow α in FIG. 1 indicates the flow of cooling air. When the cooling fan 13 is driven, the air in the passenger compartment 53 is taken into the battery case 11 through the intake duct 12 as cooling air. The cooling air taken into the battery case 11 exchanges heat with the battery 11 </ b> A, cools the battery 11 </ b> A, and then is discharged into the cargo compartment 54 through the exhaust duct 14. As described above, the vehicle 1 includes the battery cooling device (the intake duct 12, the cooling fan 13, and the exhaust duct 14) that sucks air from the passenger compartment 53 and discharges it to the cargo compartment 54 (inside the passenger compartment 53).

さらに、車両1は、吸気ダクト12内を流れる空気の温度(以下「吸気温T1」という)、乗員室53内の温度(以下「室内温度T2」という)、電池11Aを流れる電流(以下「電池電流Ib」という)、電池11Aの温度など、車両1の状態を検出するさまざまなセンサ(いずれも図示せず)と、これらのセンサの検出結果が入力される電子制御装置(以下、「ECU」という)100を備える。   Further, the vehicle 1 has a temperature of air flowing through the intake duct 12 (hereinafter referred to as “intake air temperature T1”), a temperature within the passenger compartment 53 (hereinafter referred to as “indoor temperature T2”), and a current flowing through the battery 11A (hereinafter referred to as “battery”). Various sensors (none of which are shown) for detecting the state of the vehicle 1 such as the current Ib ”and the temperature of the battery 11A, and an electronic control device (hereinafter referred to as“ ECU ”) to which detection results of these sensors are input. 100).

ECU100は、図示しないCPU(Central Processing Unit)およびメモリを内蔵し、当該メモリに記憶された情報と各センサの検出結果とに基づいて、所定の演算処理を実行し、その結果に応じて車両1に搭載される各機器を制御する。   The ECU 100 includes a CPU (Central Processing Unit) and a memory (not shown), executes predetermined arithmetic processing based on information stored in the memory and detection results of each sensor, and the vehicle 1 according to the result. Control each device installed in the.

ECU100は、電池11Aの保護を図るために、電池11Aの状態に応じて入力可能電力値Winおよび出力可能電力値Woutを設定し、電池11Aの実際の入力電力および出力電力をそれぞれ入力可能電力値Winおよび出力可能電力値Woutを超えないように制御する。   In order to protect the battery 11A, the ECU 100 sets the input possible power value Win and the output possible power value Wout according to the state of the battery 11A, and the actual input power and output power of the battery 11A are respectively inputable power values. Control is performed so as not to exceed Win and the output power value Wout.

以上のような構成を有する車両1において、電池ユニット10を冷却するために電池冷却装置の冷却ファン13を作動させると、乗員室53の空気が電池ユニット10の内部を通過して荷室54内に排気される。この際、外気導入モードでは、乗員室53内と荷室54内との圧力差は生じ難い。一方、内気循環モードでは、乗員室53内よりも荷室54内のほうが圧力が高くなり、電池11Aとの熱交換によって暖められた温かい排風が荷室54から乗員室53へと逆流する場合がある(矢印β参照)。この逆流する排風の温度と室内温度T2との差が大きいと、逆流する排風の温かさによる不快感(以下、「もやつき感」ともいう)を乗員に与えてしまうことになる。   In the vehicle 1 having the above-described configuration, when the cooling fan 13 of the battery cooling device is operated to cool the battery unit 10, the air in the passenger compartment 53 passes through the inside of the battery unit 10 and enters the cargo compartment 54. Exhausted. At this time, in the outside air introduction mode, a pressure difference between the passenger compartment 53 and the cargo compartment 54 hardly occurs. On the other hand, in the inside air circulation mode, the pressure in the cargo compartment 54 is higher than that in the passenger compartment 53, and the warm exhaust air warmed by heat exchange with the battery 11 </ b> A flows backward from the cargo compartment 54 to the passenger compartment 53. (See arrow β). If the difference between the temperature of the exhaust air flowing backward and the room temperature T2 is large, the passenger feels uncomfortable feeling (hereinafter also referred to as “moist feeling”) due to the warmness of the exhaust air flowing backward.

そこで、本実施の形態に従うECU100は、吸気温T1および電池電流Ibに基づいて電池飽和温度T3を予測し、電池飽和温度T3と室内温度T2との差(=T3−T2)を乗員が感じるもやつき感想のレベルを示す指標として算出する。そして、ECU100は、その差(=T3−T2)が所定値ΔTを超える場合は、将来的に乗員にもやつき感を与える可能性があるとして、電池11Aの入出力を制限することによって電池11Aの発熱を抑制する。なお、所定値ΔTは、乗員がもやつき感を感じる温度差であって、実験等によって予め決定される値である。   Therefore, ECU 100 according to the present embodiment predicts battery saturation temperature T3 based on intake air temperature T1 and battery current Ib, and the occupant feels the difference (= T3-T2) between battery saturation temperature T3 and room temperature T2. Calculated as an index indicating the level of bad feelings. Then, if the difference (= T3−T2) exceeds the predetermined value ΔT, the ECU 100 determines that there is a possibility of giving the passenger an ill feeling in the future, and restricts the input / output of the battery 11A. 11A heat generation is suppressed. The predetermined value ΔT is a temperature difference at which the occupant feels hungry, and is a value determined in advance by experiments or the like.

図2は、ECU100の処理手順を示すフローチャートである。以下に示すフローチャートの各ステップ(以下、ステップを「S」と略す)は、ハードウェアによって実現してもよいしソフトウェアによって実現してもよい。   FIG. 2 is a flowchart showing a processing procedure of the ECU 100. Each step of the flowchart shown below (hereinafter, step is abbreviated as “S”) may be realized by hardware or software.

S10にて、ECU100は、冷却ファン13の駆動中であるか否かを判断する。冷却ファン13の駆動中でない場合(S10にてNO)、この処理は終了される。   In S10, ECU 100 determines whether or not cooling fan 13 is being driven. If cooling fan 13 is not being driven (NO in S10), this process ends.

冷却ファン13の駆動中である場合(S10にてYES)、ECU100は、S11にて、内気循環モードであるか否かを判断する。内気循環モードでない場合(S11にてNO)、この処理は終了される。   When cooling fan 13 is being driven (YES in S10), ECU 100 determines in S11 whether or not the internal air circulation mode is set. If it is not the inside air circulation mode (NO in S11), this process ends.

内気循環モードである場合(S11にてYES)、ECU100は、S12にて一定時間A[sec]の電池電流Ibの2乗平均値を計測し、S13にて吸気温度T1および電池電流Ibの2乗平均値から電池飽和温度T3を算出(予測)する。ここで、電池飽和温度T3とは、現在の一定時間Aの充放電状態が継続されたと仮定した場合に電池11Aの温度が飽和状態になるときの電池11Aの予測温度であって、逆流する排風の最大温度に対応する温度である。電池飽和温度T3の算出手法としては、たとえば吸気温度T1および電池電流Ibの2乗平均値をパラメータとして電池飽和温度T3をマップ化したデータを予め記憶しておき、このマップデータを用いて現在の吸気温度T1および電池電流Ibの2乗平均値に対応する電池飽和温度T3を算出するようにすればよい。   When the internal air circulation mode is set (YES in S11), ECU 100 measures the mean square value of battery current Ib for a predetermined time A [sec] in S12, and in S13, 2 of intake air temperature T1 and battery current Ib. The battery saturation temperature T3 is calculated (predicted) from the multiplier average value. Here, the battery saturation temperature T3 is the predicted temperature of the battery 11A when the temperature of the battery 11A becomes saturated when it is assumed that the current charge / discharge state for a certain period of time A has been continued, The temperature corresponds to the maximum wind temperature. As a method for calculating the battery saturation temperature T3, for example, data obtained by mapping the battery saturation temperature T3 using the mean square value of the intake air temperature T1 and the battery current Ib as parameters is stored in advance, and this map data is used to present the current value. The battery saturation temperature T3 corresponding to the mean square value of the intake air temperature T1 and the battery current Ib may be calculated.

S14にて、ECU100は、電池飽和温度T3と室内温度T2との差(=T3−T2)が上述した所定値ΔT(乗員がもやつき感を感じる温度差)を越えているか否かを判断する。   In S14, ECU 100 determines whether or not the difference between battery saturation temperature T3 and room temperature T2 (= T3−T2) exceeds the above-described predetermined value ΔT (temperature difference at which the occupant feels irritated). To do.

T3−T2>ΔTである場合(S14にてYES)、ECU100は、S15にて、電池11Aの入力制限を行なう。具体的には、入力可能電力値Winを所定レート(たとえばB[kW]/A[sec])で低下させる。これにより、電池11Aの実際の入力電力が制限前よりも小さくなるため、電池11Aの発熱が抑制される。   If T3-T2> ΔT (YES in S14), ECU 100 limits the input of battery 11A in S15. Specifically, the input allowable power value Win is decreased at a predetermined rate (for example, B [kW] / A [sec]). As a result, the actual input power of the battery 11A becomes smaller than that before the restriction, so that the heat generation of the battery 11A is suppressed.

S16にて、ECU100は、電池11Aの入力制限が上限レベルであるか否か(いれ以上入力制限できないレベルであるか否か)を判断する。   In S16, ECU 100 determines whether or not the input limit of battery 11A is at the upper limit level (whether or not the input limit is at a level where input cannot be limited any more).

電池11Aの入力制限が上限レベルである場合(S16にてYES)、ECU100は、S17にて電池11Aの出力制限を行なう。具体的には、出力可能電力値Woutを所定レート(たとえばB[kW]/A[sec])で低下させる。これにより、電池11Aの実際の入力電力に加えて出力電力も小さくなるため、電池11Aの発熱がさらに抑制される。また、このように入力制限(S15の処理)よりも出力制限(S17の処理)を後に行なうことによって、出力制限による車両走行性能への影響を最小限に抑えることができる。   If the input limit of battery 11A is at the upper limit level (YES in S16), ECU 100 limits the output of battery 11A in S17. Specifically, outputable power value Wout is reduced at a predetermined rate (for example, B [kW] / A [sec]). Thereby, in addition to the actual input power of the battery 11A, the output power is also reduced, so that the heat generation of the battery 11A is further suppressed. Further, by performing the output restriction (the process of S17) after the input restriction (the process of S15) in this way, it is possible to minimize the influence on the vehicle running performance due to the output restriction.

一方、T3−T2<ΔTである場合(S14にてNO)、ECU100は、出力制限中であるか否かを判断し(S18)、出力制限中である場合(S18にてYES)、低下されていた出力可能電力値Woutを所定レート(たとえばB[kW]/A[sec])で増加させて出力制限を解除する(S19)。   On the other hand, if T3-T2 <ΔT (NO in S14), ECU 100 determines whether or not output is being restricted (S18), and if output is being restricted (YES in S18), the ECU 100 decreases. The output possible power value Wout is increased at a predetermined rate (for example, B [kW] / A [sec]) to release the output restriction (S19).

出力制限中でない場合(S18にてNO)、ECU100は、入力制限中であるか否かを判断し(S20)、入力制限中である場合(S20にてYES)、低下されていた入力可能電力値Winを所定レート(たとえばB[kW]/A[sec])で増加させて入力制限を解除する(S21)。このように、制限解除の際には、出力制限解除(S19の処理)を入力制限解除(S21の処理)よりも優先させることによって、出力制限による車両走行性能への影響を最小限に抑えることができる。   If the output is not being restricted (NO in S18), ECU 100 determines whether or not the input is being restricted (S20). If the input is being restricted (YES in S20), the input power that has been reduced is reduced. The value Win is increased at a predetermined rate (for example, B [kW] / A [sec]) to cancel the input restriction (S21). As described above, when the restriction is released, priority is given to the output restriction release (the process of S19) over the input restriction release (the process of S21), thereby minimizing the influence on the vehicle running performance due to the output restriction. Can do.

以上のように、本実施の形態によるECU100は、乗員室53内から吸入した空気を電池ケース11内を通過させて荷室54(乗員室53以外の車内)に排出する電池冷却装置を備えた車両1において、吸気温T1および電池電流Ibに基づいて電池飽和温度T3を予測し、電池飽和温度T3と室内温度T2との差(=T3−T2)が乗員が感じるもを感じる温度差ΔTを超える場合は、将来的に乗員にもやつき感を与える可能性があるとして、電池11Aの入出力を制限する。これにより、電池11Aの発熱が抑制され、乗員にもやつき感を与えないようにすることができる。   As described above, the ECU 100 according to the present embodiment includes the battery cooling device that passes the air sucked from the passenger compartment 53 through the battery case 11 and discharges the air into the cargo compartment 54 (inside the passenger compartment 53). In the vehicle 1, the battery saturation temperature T3 is predicted based on the intake air temperature T1 and the battery current Ib, and the difference (= T3-T2) between the battery saturation temperature T3 and the room temperature T2 is a temperature difference ΔT that the passenger feels. If it exceeds the limit, the input / output of the battery 11A is restricted because there is a possibility of giving the passenger a feeling of dying in the future. Thereby, the heat generation of the battery 11 </ b> A is suppressed, and it is possible to prevent the passenger from feeling light.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 車両、10 電池ユニット、11 電池ケース、11A 電池、12 吸気ダクト、13 冷却ファン、14 排気ダクト、20 空調ユニット、51 フロントシート、52 リヤシート、53 乗員室、54 荷室、100 ECU。   1 vehicle, 10 battery unit, 11 battery case, 11A battery, 12 intake duct, 13 cooling fan, 14 exhaust duct, 20 air conditioning unit, 51 front seat, 52 rear seat, 53 passenger compartment, 54 cargo compartment, 100 ECU.

Claims (1)

車両に搭載される電池の制御装置であって、前記車両は、乗員室から吸入した空気を電池ケース内を通過させて車内に排出する電池冷却装置を備え、
前記制御装置は、
乗員室内温度を検出する検出部と、
前記電池冷却装置の吸気温と前記電池を流れる電流とに基づいて電池飽和温度を推定する推定部と、
前記電池飽和温度と前記乗員室内温度との温度差が前記電池冷却装置の排気の暖かさを乗員が感じる温度差を越える場合、前記電池の充放電電力を制限することによって前記電池の発熱を抑制する発熱抑制部とを備える、電池の制御装置。
A battery control device mounted on a vehicle, the vehicle including a battery cooling device that allows air taken from a passenger compartment to pass through a battery case and be discharged into the vehicle,
The controller is
A detection unit for detecting the passenger cabin temperature;
An estimation unit that estimates a battery saturation temperature based on an intake air temperature of the battery cooling device and a current flowing through the battery;
When the temperature difference between the battery saturation temperature and the passenger cabin temperature exceeds the temperature difference where the passenger feels the warmth of the exhaust of the battery cooling device, the heat generation of the battery is suppressed by limiting the charge / discharge power of the battery A battery control device comprising:
JP2011074207A 2011-03-30 2011-03-30 Battery controller Withdrawn JP2012210083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011074207A JP2012210083A (en) 2011-03-30 2011-03-30 Battery controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074207A JP2012210083A (en) 2011-03-30 2011-03-30 Battery controller

Publications (1)

Publication Number Publication Date
JP2012210083A true JP2012210083A (en) 2012-10-25

Family

ID=47189382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074207A Withdrawn JP2012210083A (en) 2011-03-30 2011-03-30 Battery controller

Country Status (1)

Country Link
JP (1) JP2012210083A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042544A (en) * 2013-07-24 2015-03-05 トヨタ自動車株式会社 Vehicle
CN107845843A (en) * 2017-09-15 2018-03-27 宝沃汽车(中国)有限公司 Electrokinetic cell system and vehicle
RU2696610C2 (en) * 2015-01-29 2019-08-05 Ман Трак Унд Бас Аг Method and device for electric energy accumulator current limitation depending on temperature
JP2019149300A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Cell charge/discharge control method and cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042544A (en) * 2013-07-24 2015-03-05 トヨタ自動車株式会社 Vehicle
US10843522B2 (en) 2013-07-24 2020-11-24 Toyota Jidosha Kabushiki Kaisha Vehicle comprising an electrical storage device cooled by a fan
RU2696610C2 (en) * 2015-01-29 2019-08-05 Ман Трак Унд Бас Аг Method and device for electric energy accumulator current limitation depending on temperature
CN107845843A (en) * 2017-09-15 2018-03-27 宝沃汽车(中国)有限公司 Electrokinetic cell system and vehicle
JP2019149300A (en) * 2018-02-27 2019-09-05 トヨタ自動車株式会社 Cell charge/discharge control method and cell system
US10992153B2 (en) * 2018-02-27 2021-04-27 Toyota Jidosha Kabushiki Kaisha Method for correcting a control map defining a limiting value of the charge/discharge electric power of a battery and battery system

Similar Documents

Publication Publication Date Title
WO2015050226A1 (en) Battery temperature adjustment device
JP5943028B2 (en) vehicle
US20090257190A1 (en) Cooling Structure for Electricity Storage Device
EP2426023A1 (en) Control device for vehicle
WO2005092650A1 (en) Temperature control system for a vehicle battery
US20150306936A1 (en) Vehicle
JP2012210083A (en) Battery controller
JP2021093493A (en) Cooling structure for electronic control apparatus, and cooling control system therefor
JP4525577B2 (en) Storage device control device
CN111542982B (en) Control unit and method for adjusting an energy store of a vehicle
JP6455408B2 (en) Control device for fuel cell system
JP2003300419A (en) Battery mounting structure for vehicle
JP2007153053A (en) Cooling device of electric equipment mounted on vehicle
JP2016117366A (en) Battery pack cooling apparatus
JP2010089531A (en) Vehicle
JP4670797B2 (en) Vehicle battery cooling system
JP5754385B2 (en) Battery cooling system for vehicles
JP2013119355A (en) Vehicle
JP4626161B2 (en) Cooling device for electric equipment mounted on vehicle
JP2021051915A (en) Battery pack blower system and vehicle
JP6705387B2 (en) Power storage device cooling system
JP2006151270A (en) Battery cooling device
JP4626506B2 (en) Cooling control device for electric equipment mounted on vehicle
JP6778056B2 (en) Air conditioner for electric vehicles
JP2016134322A (en) Cooling device for battery pack

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603