JP2012210004A - Energy management system - Google Patents

Energy management system Download PDF

Info

Publication number
JP2012210004A
JP2012210004A JP2011071791A JP2011071791A JP2012210004A JP 2012210004 A JP2012210004 A JP 2012210004A JP 2011071791 A JP2011071791 A JP 2011071791A JP 2011071791 A JP2011071791 A JP 2011071791A JP 2012210004 A JP2012210004 A JP 2012210004A
Authority
JP
Japan
Prior art keywords
vehicle
air conditioner
power supply
power
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071791A
Other languages
Japanese (ja)
Other versions
JP5312504B2 (en
Inventor
Ryo Shinohara
亮 篠原
Akinobu Sugiyama
昭暢 杉山
Koji Fujioka
宏司 藤岡
Takanori Matsunaga
隆徳 松永
Kohei Mori
考平 森
Toshihide Satake
敏英 佐竹
Kazuo Hitosugi
和夫 一杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011071791A priority Critical patent/JP5312504B2/en
Publication of JP2012210004A publication Critical patent/JP2012210004A/en
Application granted granted Critical
Publication of JP5312504B2 publication Critical patent/JP5312504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide an energy management system (EMS) capable of making efficient a pre-air conditioner and preventing destabilization of a system power supply by controlling an in-vehicle air conditioner.SOLUTION: An in-vehicle air conditioner 33 of an electric vehicle 30 can be controlled from an EMS 11 of a dwelling house 10. The EMS 11 acquires the current situation of power demand, and based on utilization schedule of a domestic load 14 and a learned result of utilization history, the future situation of power demand is predicted. Based on these information, the EMS 11 performs the pre-air conditioning operation using the in-vehicle air conditioner 33 during a period of time for an inexpensive power cost and allows the in-vehicle air conditioner 33 to consume excess power due to temporary oversupply.

Description

本発明は、電動車両と住宅との間の電力需給を管理下に含むエネルギーマネジメントシステムに関するものである。   The present invention relates to an energy management system that includes power supply and demand between an electric vehicle and a house under management.

電力網に電力の需要・供給の自動制御手段を組み込んだ「スマートグリッド」と呼ばれる次世代電力網の開発が、近年注目を浴びている。スマートグリッドでは、電力網における電力の流れを供給側だけでなく需要側からも制御することによって、電力の需要と供給の最適化が図られる。   In recent years, the development of a next-generation power network called “smart grid” that incorporates automatic control of power supply and demand in the power network has attracted attention. In the smart grid, power demand and supply can be optimized by controlling the flow of power in the power network not only from the supply side but also from the demand side.

例えばバッテリ(蓄電池)は、電力需要のピークを低減して平滑化を図るためのバッファとして利用できる。すなわち電力需要の少ない時間帯に系統電源から充電したバッテリの電力を、電力需要のピーク時に使用することによって、電力需要のピークが低減される。これにより電力会社からの購入電力量が削減される上、電力コストが安価な時間帯の電力を蓄積して利用できるため、各家庭の電気料金の節約にもつながる。   For example, a battery (storage battery) can be used as a buffer for reducing the peak of power demand and smoothing. That is, the peak of power demand is reduced by using the power of the battery charged from the system power supply at the time of low power demand at the peak time of power demand. As a result, the amount of power purchased from the electric power company can be reduced, and since electric power can be accumulated and used in a time zone where the power cost is low, it also leads to saving of electricity charges in each household.

また、太陽光発電など自然エネルギーを利用する発電は、天候や時間帯によって発電量が変動するが、その変動は系統電源の不安定化を招く恐れがある。バッテリを用いた電力需要の平滑化の技術は、その発電量の変動を吸収する目的にも応用できる。例えば住宅の太陽光発電(Photovoltaic power generation;PV)装置による発電量が増大して電力供給過多になったときはその電力をバッテリに蓄積し、反対にPV装置による発電量が減り電力需要過多になったときはバッテリに蓄積した電力を住宅内で使用することによって、PV装置による発電量の変動を吸収することができる。スマートグリッドは、このような電力の流れの制御を自動的に行おうとするものである。   Moreover, in power generation using natural energy such as solar power generation, the power generation amount fluctuates depending on the weather and time zone, but the fluctuation may cause instability of the system power supply. The power demand smoothing technique using a battery can also be applied for the purpose of absorbing fluctuations in the amount of power generated. For example, when the amount of power generated by a photovoltaic power generation (PV) device in a house increases and the power supply becomes excessive, the power is stored in the battery. On the other hand, the amount of power generated by the PV device decreases, resulting in excessive power demand. When it becomes, the fluctuation | variation of the electric power generation amount by a PV apparatus can be absorbed by using the electric power accumulate | stored in the battery in a house. The smart grid automatically controls such a power flow.

上記の用途のバッテリには、電動車両(例えば電気自動車(Electric Vehicle;EV)やプラグインハイブリッド車(Plug-in Hybrid Vehicle;PHV))のバッテリも利用できる。従ってスマートグリッドにより管理された電力網では、車両のバッテリの充電(住宅から車両への電力供給)だけでなく、バッテリの放電(車両から住宅への電力供給)も積極的に行うことが想定される。また車両のバッテリに蓄積されている電力を住宅内に取り込んで使用できれば、停電などの非常時にも対応できるという利点も得られる。   A battery for an electric vehicle (for example, an electric vehicle (EV) or a plug-in hybrid vehicle (PHV)) can be used as the battery for the above application. Therefore, in the power grid managed by the smart grid, it is assumed that not only charging of the battery of the vehicle (power supply from the house to the vehicle) but also discharging of the battery (power supply from the vehicle to the house) is actively performed. . Moreover, if the electric power stored in the vehicle battery can be taken into the house and used, there is an advantage that it can cope with an emergency such as a power failure.

スマートグリッドにおける電力の流れは、各需要家に配備されるエネルギーマネジメントシステム(Energy Management System;EMS)によって管理される。EMSは、PV装置等の発電設備や、電気温水器やエアコン等の主に大型の負荷設備、車両のバッテリ等の蓄電設備などを管理下に置き、電力需要が平滑化されるようにそれらを制御する。   The flow of electric power in the smart grid is managed by an energy management system (EMS) installed in each consumer. EMS puts power generation facilities such as PV devices, large-scale load facilities such as electric water heaters and air conditioners, and power storage facilities such as vehicle batteries under management, so that power demand can be smoothed. Control.

例えば下記の特許文献1のEMSでは、車載バッテリの状態(電圧・入出力電流及び残容量)および、走行履歴に基づいて規定される確保電力量(ユーザの日常使用に必要な電力量)並びに余力電力量(確保電力量および非常用電力量を除いた残容量)等のデータと時間帯を考慮して、バッテリを充電するか放電するかの判断がなされている。   For example, in the EMS of Patent Document 1 below, the state of the on-vehicle battery (voltage / input / output current and remaining capacity), the secured power amount (the amount of power necessary for daily use by the user) and the remaining power defined based on the travel history The determination of whether to charge or discharge the battery is made in consideration of data such as the amount of electric power (remaining capacity excluding the reserved electric energy and the amount of emergency power) and the time zone.

一方、特許文献2には、車両の走行開始前に、車載エアコンを車外の電源を用いて動作させる「プレエアコン」機能が開示されている。特許文献2のプレエアコン機能は、車両が給電コンセント(車外の電源)に接続されており、且つ、車載バッテリが満充電あるいは所定充電量に達したときに、車載エアコンを給電コンセントからの電力で動作させるものである。この技術によれば、車両の走行前に車内が予め所望の温度になるため、走行開始後の車載エアコンの消費電力が抑えられ、車載バッテリの電力を最大限、走行に利用できるようになる。   On the other hand, Patent Document 2 discloses a “pre-air conditioner” function for operating an in-vehicle air conditioner using a power source outside the vehicle before the vehicle starts running. In the pre-air conditioner function of Patent Document 2, when the vehicle is connected to a power outlet (a power source outside the vehicle) and the in-vehicle battery is fully charged or reaches a predetermined charge amount, the in-vehicle air conditioner is powered by the power from the power outlet. It is what makes it work. According to this technology, since the interior of the vehicle reaches a desired temperature in advance before the vehicle travels, the power consumption of the in-vehicle air conditioner after the start of travel can be suppressed, and the power of the in-vehicle battery can be used to the maximum for travel.

特開2001−8380号公報JP 2001-8380 A 特開2010−259308号公報JP 2010-259308 A

例えば住宅のPV装置による発電量が多い時間帯に負荷による電力消費が小さくなると、電力供給過多状態となる。そのとき過剰な電力が系統電源に流れ込む逆潮流が起こると、周波数変動や電圧変動などが生じ、系統電源の不安定化の問題が生じる。この問題を回避する最も一般的な手法は、過剰な電力をバッテリに蓄積して電力需給のバランスをとることである。また単純にPV装置の動作を停止させることも一つの手法である。   For example, if the power consumption due to the load decreases during a time period when the amount of power generated by the PV device in the house is large, the power supply is excessive. At this time, if a reverse power flow occurs in which excessive power flows into the system power supply, frequency fluctuations, voltage fluctuations, and the like occur, and the system power supply becomes unstable. The most common way to avoid this problem is to store excess power in the battery to balance power supply and demand. Another method is simply to stop the operation of the PV device.

しかし過剰な電力をバッテリに蓄積する手法は、バッテリの容量による限界がある。バッテリの容量を極めて大きくできればよいが、バッテリは高価であるため現実的ではない。   However, the method of accumulating excess power in the battery is limited by the capacity of the battery. Although it is sufficient that the capacity of the battery can be made extremely large, the battery is not practical because it is expensive.

また現在のPV装置では停止から再起動までに長時間(短くても5分程度)かかる。そのためPV装置の動作を停止させる手法をとると、電力供給過多状態が終わってもしばらくは発電を再開できないため得策ではない。電力供給過多状態が一時的なものであったときは特に非効率である。   Moreover, in the current PV apparatus, it takes a long time (about 5 minutes at the shortest) from the stop to the restart. Therefore, if the method of stopping the operation of the PV device is taken, it is not a good idea because power generation cannot be resumed for a while even after the excessive power supply state ends. This is particularly inefficient when the overpowered state is temporary.

一方、上記の特許文献2では、プレエアコン動作は、車載バッテリが満充電あるいは所定充電量に達したときに行われ、その動作タイミングには電力需給の状況や計画が考慮されていない。そのためプレエアコン動作が行われるタイミングによっては、プレエアコン動作にかかるコストの増大を招く可能性がある。   On the other hand, in the above-mentioned Patent Document 2, the pre-air conditioner operation is performed when the in-vehicle battery is fully charged or reaches a predetermined charge amount, and the status and plan of power supply and demand are not considered in the operation timing. Therefore, depending on the timing at which the pre-air conditioner operation is performed, there is a possibility that the cost for the pre-air conditioner operation increases.

本発明は以上のような課題を解決するためになされたものであり、車載エアコンを制御することによってプレエアコンの効率化および系統電源の不安定化防止が可能なエネルギーマネジメントシステムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides an energy management system capable of improving the efficiency of a pre-air conditioner and preventing instability of a system power supply by controlling an on-vehicle air conditioner. Objective.

本発明の第1の局面に係るエネルギーマネジメントシステムは、発電設備からの電力供給と負荷による電力需要に基づく電力需給状況、並びに、電動車両のバッテリの充放電を管理するエネルギーマネジメントシステムであって、今後の電力需給状況を予測する電力需給状況予測部と、前記今後の電力需給状況の予測に基づいて、前記電動車両の車載エアコンを制御する車載エアコン制御部とを備えるものである。   An energy management system according to a first aspect of the present invention is an energy management system that manages power supply and demand based on power supply from a power generation facility and power demand from a load, and charge / discharge of a battery of an electric vehicle, A power supply / demand situation prediction unit that predicts a future power supply / demand situation and an on-vehicle air conditioner control unit that controls an on-vehicle air conditioner of the electric vehicle based on the prediction of the future power supply / demand situation.

本発明の第2の局面に係るエネルギーマネジメントシステムは発電設備からの電力供給と負荷による電力需要に基づく電力需給状況、並びに、電動車両のバッテリの充放電を管理するエネルギーマネジメントシステムであって、現在の電力需給状況を取得する電力需給状況取得部と、前記現在の電力需給状況に基づいて、前記電動車両の車載エアコンを制御する車載エアコン制御部とを備えるものである。   An energy management system according to a second aspect of the present invention is an energy management system that manages power supply / demand status based on power supply from a power generation facility and power demand from a load, and charging / discharging of a battery of an electric vehicle, An electric power supply / demand situation acquisition unit for acquiring the electric power supply / demand situation and an in-vehicle air conditioner control unit for controlling the in-vehicle air conditioner of the electric vehicle based on the current electric power supply / demand situation.

本発明の第1の局面によれば、今後の電力需給状況の予測に基づいて車載エアコンを制御できるため、例えば電力コストが低くなると予想される期間に車載エアコンを駆動させてのプレエアコンを行うことが可能になる。   According to the first aspect of the present invention, since the in-vehicle air conditioner can be controlled based on the prediction of the future power supply / demand situation, for example, the in-vehicle air conditioner is driven during a period in which the power cost is expected to be reduced. It becomes possible.

本発明の第2の局面によれば、現在の電力需給状況に基づいて車載エアコンを制御できるため、電力供給過多のときに車載エアコンを稼働させて過剰な電力を消費することで、電力需給のバランスをとることができる。   According to the second aspect of the present invention, the on-vehicle air conditioner can be controlled based on the current power supply and demand situation. Therefore, when the power supply is excessive, the on-vehicle air conditioner is operated to consume excess power. Balance can be taken.

本発明の実施の形態に係る充放電システムの構成図である。It is a block diagram of the charging / discharging system which concerns on embodiment of this invention. 本発明の実施の形態に係るEMSの要部構成図である。It is a principal part block diagram of EMS which concerns on embodiment of this invention. 実施の形態1に係る充放電システムにおけるプレエアコン動作を説明するための図である。It is a figure for demonstrating the pre air-conditioner operation | movement in the charging / discharging system which concerns on Embodiment 1. FIG. 実施の形態2に係る充放電システムにおけるダミーエアコン動作のフローチャートである。It is a flowchart of the dummy air-conditioner operation | movement in the charging / discharging system which concerns on Embodiment 2. FIG.

図1は、本発明の実施の形態に係る充放電システムの構成図である。同図において、各ブロック間の太線矢印は電力線、細線矢印は通信線を示している。   FIG. 1 is a configuration diagram of a charge / discharge system according to an embodiment of the present invention. In the figure, thick arrows between blocks indicate power lines, and thin arrows indicate communication lines.

この充放電システムは、電動車両30と、電動車両30のユーザの自宅である住宅10とを含んでいる。住宅10には、電力会社20から電力(系統電源)が供給されている。   The charge / discharge system includes an electric vehicle 30 and a house 10 that is a home of the user of the electric vehicle 30. The house 10 is supplied with power (system power supply) from the power company 20.

住宅10には、蓄電設備である住宅用蓄電池12、発電設備である太陽光発電装置13、電気温水器やエアコン等の負荷設備である家庭内負荷14、など各種の電気設備が備えられており、これらの電力需給は、家庭用エネルギーマネジメントシステム(Home Energy Management System;HEMS)11によって管理されている。また本システムでは、電動車両30も住宅10に属する電気設備の一つとして、EMS11により管理される。   The house 10 is equipped with various electrical equipment such as a residential storage battery 12 that is a power storage facility, a solar power generation device 13 that is a power generation facility, and a home load 14 that is a load facility such as an electric water heater or an air conditioner. These power supply and demand are managed by a home energy management system (HEMS) 11. In the present system, the electric vehicle 30 is also managed by the EMS 11 as one of the electrical equipment belonging to the house 10.

EMS11は通信機能を有しており、太陽光発電装置13(発電設備)による発電量(電力供給状況)や家庭内負荷14による消費電力(電力需要状況)、住宅用蓄電池12の充電残量などの蓄電状況の情報を取得できる。また電動車両30も通信機能を有しており、EMS11は電動車両30との通信により、電動車両30の走行履歴等を取得したり、バッテリコントローラ32を通して車載バッテリ31の蓄電状況を取得したりできる。さらにEMS11は、電力会社20から提供される電力制御に関する情報を取得することもできる。   The EMS 11 has a communication function, such as the amount of power generated by the solar power generation device 13 (power generation equipment) (power supply status), the power consumption by the home load 14 (power demand status), the remaining charge of the storage battery 12 for home use, and the like. Can be obtained. Further, the electric vehicle 30 also has a communication function, and the EMS 11 can acquire a traveling history of the electric vehicle 30 through communication with the electric vehicle 30 or can acquire a storage state of the in-vehicle battery 31 through the battery controller 32. . Furthermore, the EMS 11 can also acquire information related to power control provided from the power company 20.

EMS11は、それらの情報に基づいて、電力会社20からの電力購入量が抑えられるように住宅10内の電力需要の平滑化を図ると共に、電力の逆潮流を防止するために住宅10内の電力需給のバランスをとる。その際、住宅10の住宅用蓄電池12および電動車両30の車載バッテリ31はバッファとして利用される。   The EMS 11 smoothes the power demand in the house 10 so that the amount of power purchased from the power company 20 can be suppressed based on the information, and the power in the house 10 to prevent reverse power flow. Balance supply and demand. At that time, the storage battery 12 for the house 10 and the in-vehicle battery 31 of the electric vehicle 30 are used as buffers.

例えば太陽光発電装置13の発電量が家庭内負荷14での電力消費量より多い電力供給過多状態になると、EMS11は過剰な電力を住宅用蓄電池12および車載バッテリ31に充電する。逆に、太陽光発電装置13の発電量が住宅用蓄電池12での電力消費量に満たない電力需要過多状態になると、EMS11は住宅用蓄電池12および車載バッテリ31に蓄積された電力を家庭内負荷14に供給する。   For example, when the amount of power generated by the solar power generation device 13 exceeds the amount of power consumed by the household load 14, the EMS 11 charges the residential storage battery 12 and the in-vehicle battery 31 with excess power. On the contrary, when the power generation amount of the solar power generation device 13 becomes an excessive power demand state that does not satisfy the power consumption of the residential storage battery 12, the EMS 11 uses the power stored in the residential storage battery 12 and the in-vehicle battery 31 as a household load. 14.

また本実施の形態では、EMS11はその通信を利用したスケジュール機能を備えており、予め設定された住宅用蓄電池12や車載バッテリ31の充放電スケジュール、太陽光発電装置13および家庭内負荷14の稼働スケジュールに従って、それらの動作を制御することができるものとする。これらのスケジュールは、ユーザの手で設定されたものでもよいし、EMS11が自動設定したものであってもよい。EMS11が自動設定するスケジュールは、例えばEMS11にプリセットされたテンプレートを利用したものでもよいし、EMS11が日常の住宅用蓄電池12の充放電パターンや太陽光発電装置13および家庭内負荷14の稼働パターンを学習して、それらの最適化を図ったものでもよい。   Moreover, in this Embodiment, EMS11 is provided with the schedule function using the communication, the charge / discharge schedule of the storage battery 12 and the vehicle-mounted battery 31 set beforehand, operation | movement of the solar power generation device 13, and the household load 14 These operations can be controlled according to a schedule. These schedules may be set by the user's hand, or may be automatically set by the EMS 11. The schedule automatically set by the EMS 11 may use, for example, a template preset in the EMS 11, or the EMS 11 may use the daily charge / discharge pattern of the storage battery 12 and the operation pattern of the solar power generation device 13 and the household load 14. You may learn and optimize them.

電動車両30は、車載バッテリ31に蓄積された電力を動力源とするEVやPHV等である。バッテリコントローラ32は、車載バッテリ31の状態を取得したり、車載バッテリ31の充放電時の電流・電圧等を制御したりするものである。上の説明からも分かるようにバッテリコントローラ32は、住宅10のEMS11との通信を行うことができる。車載エアコン33は、電動車両30の室内の温度調整に用いられる一般的な機能を有するものであるが、これも住宅10のEMS11との通信が可能となっており、EMS11がその通信を通して車載エアコン33を遠隔操作できるように構成されている。   The electric vehicle 30 is an EV, a PHV, or the like that uses electric power stored in the in-vehicle battery 31 as a power source. The battery controller 32 acquires the state of the in-vehicle battery 31 and controls the current / voltage and the like during charging / discharging of the in-vehicle battery 31. As can be seen from the above description, the battery controller 32 can communicate with the EMS 11 of the house 10. The in-vehicle air conditioner 33 has a general function that is used to adjust the temperature in the room of the electric vehicle 30. However, the in-vehicle air conditioner 33 can also communicate with the EMS 11 of the house 10. 33 is configured to be remotely operated.

住宅10内におけるEMS11と各電気設備との間、およびEMS11と電動車両30との間の通信方式は任意でよい。ここでは専用の通信線を用いるLAN(Local Area Network)通信と仮定するが、他の通信方式、例えばCAN(Controller Area Network)通信や、ケーブル内の電力線を通信線として用いるPLC(Power Line Communications)、あるいは近距離の無線通信などであってもよい。   A communication method between the EMS 11 and each electric facility in the house 10 and between the EMS 11 and the electric vehicle 30 may be arbitrary. Here, LAN (Local Area Network) communication using a dedicated communication line is assumed, but other communication methods such as CAN (Controller Area Network) communication and PLC (Power Line Communications) using a power line in a cable as a communication line are used. Alternatively, short-distance wireless communication may be used.

図2は、EMS11の要部(本発明に係る部分)の構成図である。同図の如く、EMS11は、電力需給状況取得部111、電力需給状況予測部112、車両情報取得部113、車載エアコン制御部114を備えている。   FIG. 2 is a configuration diagram of a main part (portion according to the present invention) of the EMS 11. As shown in the figure, the EMS 11 includes a power supply / demand situation acquisition unit 111, a power supply / demand situation prediction unit 112, a vehicle information acquisition unit 113, and an in-vehicle air conditioner control unit 114.

電力需給状況取得部111は、太陽光発電装置13(発電設備)からの電力供給、家庭内負荷14による電力需要、住宅用蓄電池12の充電状態(充電残量等)の情報を受信し、それらに基づいて現在の電力需給状況を得る。また、電力需給状況取得部111は、電力会社20からの系統電源の電力需給状況や電力料金の情報も受信し、これらの情報を加味し現在の電力需給状況を得るように構成してもよい。   The power supply / demand situation acquisition unit 111 receives information on the power supply from the solar power generation device 13 (power generation equipment), the power demand by the household load 14, and the charge state (remaining charge amount, etc.) of the storage battery 12 for home. Based on the current power supply and demand situation. The power supply / demand situation acquisition unit 111 may also be configured to receive information on the power supply / demand situation and power rate of the grid power supply from the power company 20 and obtain the current power supply / demand situation in consideration of these information. .

電力需給状況予測部112は、ユーザあるいはEMS11が設定した太陽光発電装置13および家庭内負荷14の稼働スケジュールや、EMS11が太陽光発電装置13および家庭内負荷14の過去の稼働履歴から学習したそれらの稼働パターンに基づいて、今後の電力需給状況を予測する。また、電力需給状況予測部112は、電力会社20からの系統電源の電力需給状況や電力料金の情報(予測情報)も受信し、これらの情報を加味し今後の電力需給状況を予測するように構成してもよい。   The power supply and demand situation prediction unit 112 is the user or the operation schedule of the photovoltaic power generation device 13 and the household load 14 set by the EMS 11 and those learned by the EMS 11 from the past operational history of the photovoltaic power generation device 13 and the domestic load 14. The future power supply and demand situation is predicted based on the operation pattern. In addition, the power supply / demand situation prediction unit 112 receives the power supply / demand situation of the grid power supply from the power company 20 and the information (prediction information) of the power charge, and predicts the future power supply / demand situation taking these information into account. It may be configured.

車両情報取得部113は、電動車両30との通信により、電動車両30に関する情報を取得する。車両情報取得部113が電動車両30から取得する情報には、車載バッテリ31の蓄電状況に関する情報、電動車両30の使用予定の情報、車載エアコン33がEMS11から制御可能か否かの情報、電動車両30の室内の人の在否の情報、車載エアコン33の設定(目標温度、風量など)の情報、車載エアコン33の消費電力の情報、電動車両30の室内および周囲(外気)の温度などの情報が含まれる。電動車両30の使用予定の情報は、使用開始時刻や予定走行距離などを含むものである。なお、電動車両30の室内の人の在否は、例えば電動車両30のシートに設けられた荷重センサなどにより検出可能である。   The vehicle information acquisition unit 113 acquires information related to the electric vehicle 30 through communication with the electric vehicle 30. Information acquired by the vehicle information acquisition unit 113 from the electric vehicle 30 includes information on the storage status of the in-vehicle battery 31, information on the scheduled use of the electric vehicle 30, information on whether the in-vehicle air conditioner 33 can be controlled from the EMS 11, electric vehicle Information on the presence / absence of persons in 30 rooms, information on settings (target temperature, air volume, etc.) of the on-vehicle air conditioner 33, information on power consumption of the on-vehicle air conditioner 33, information on the temperature of the indoor and surrounding (outside air) of the electric vehicle 30 Is included. The information on the scheduled use of the electric vehicle 30 includes a use start time, a planned travel distance, and the like. The presence / absence of a person inside the electric vehicle 30 can be detected by, for example, a load sensor provided on the seat of the electric vehicle 30.

車載エアコン制御部114は、電力需給状況取得部111が得た現在の電力需給状況、電力需給状況予測部112が予測した今後の電力需給状況、および車両情報取得部113が取得した電動車両30に関する情報に基づいて、車載エアコン33を制御するものである。車載エアコン33は、車載エアコン制御部114により、オン/オフの切り替えの他、目標温度や風量なども設定可能なものとする。   The in-vehicle air conditioner control unit 114 relates to the current power supply / demand situation obtained by the power supply / demand situation acquisition unit 111, the future power supply / demand situation predicted by the power supply / demand situation prediction unit 112, and the electric vehicle 30 obtained by the vehicle information acquisition unit 113. The in-vehicle air conditioner 33 is controlled based on the information. The in-vehicle air conditioner 33 can be set by the in-vehicle air conditioner control unit 114 to set a target temperature, an air volume, and the like in addition to on / off switching.

<実施の形態1>
実施の形態1では、図1および図2に示したシステムを、電動車両30のプレエアコンの効率化を図る目的に用いた例を示す。
<Embodiment 1>
The first embodiment shows an example in which the system shown in FIGS. 1 and 2 is used for the purpose of improving the efficiency of the pre-air conditioner of the electric vehicle 30.

図3は、実施の形態1に係るプレエアコン動作を説明するための図である。図3の最も上のグラフは、住宅10における昼間から夜間にかけての電力供給状況を示している。昼間は太陽光発電装置13の発電量が多いため、家庭内負荷14による電力需要よりも太陽光発電装置13による電力供給の方が多くなっている。夕方は日射量が減るため太陽光発電装置13の発電量が減り、夜間になると太陽光発電装置13の発電量がほぼゼロになり、家庭内負荷14による電力需要が太陽光発電装置13による電力供給より多い状況となる。   FIG. 3 is a diagram for explaining the pre-air conditioner operation according to the first embodiment. The uppermost graph in FIG. 3 shows the power supply status of the house 10 from daytime to nighttime. Since the amount of power generated by the solar power generation device 13 is large in the daytime, the power supply by the solar power generation device 13 is greater than the power demand by the household load 14. In the evening, since the amount of solar radiation decreases, the amount of power generated by the solar power generation device 13 decreases. At night, the amount of power generated by the solar power generation device 13 becomes almost zero. More than supply.

EMS11の電力需給状況予測部112は、ユーザあるいはEMS11が設定した太陽光発電装置13および家庭内負荷14の稼働スケジュールや、EMS11が学習したそれらの稼働パターンに基づいて、このような電力需給状況の変化を予測する。   The power supply / demand situation prediction unit 112 of the EMS 11 is configured based on the operation schedule of the solar power generation device 13 and the household load 14 set by the user or the EMS 11 and the operation patterns learned by the EMS 11. Predict changes.

また実施の形態1では、電力需給状況予測部112は、住宅10内の今後の電力供給状況の予測から、今後の電気料金(電力コスト)の変化を算出する。図3の真中のグラフは、その電気料金の変化を示している。昼間は太陽光発電装置13が発電する電力を使用できるため電力コストは低く、夜間は電力会社20から供給される電力や住宅用蓄電池12および車載バッテリ31に蓄積しておいた電力を使用せねばならないため、電力コストは高くなる。ここでは電気料金は、電力供給量に比例して下がるものと仮定している。   Further, in the first embodiment, the power supply / demand situation prediction unit 112 calculates a future change in electricity rate (power cost) from the prediction of the future power supply situation in the house 10. The middle graph in FIG. 3 shows the change in the electricity rate. Since the power generated by the solar power generation device 13 can be used during the daytime, the power cost is low. At night, the power supplied from the power company 20 or the power stored in the residential storage battery 12 and the in-vehicle battery 31 must be used. Therefore, the power cost is high. Here, it is assumed that the electricity bill falls in proportion to the amount of power supply.

図3の最も下のグラフは、本実施の形態のプレエアコン動作における車載エアコン33の駆動電力を示している。ここでは、電力供給量の少ない(電力コストの高い)夜間に車両使用予定がある場合を例示している。   The lowermost graph in FIG. 3 shows the driving power of the in-vehicle air conditioner 33 in the pre-air conditioner operation of the present embodiment. Here, a case where a vehicle is scheduled to be used at night with a small amount of power supply (high power cost) is illustrated.

電力需給状況が考慮されていない場合のプレエアコン動作は、図3の最も下のグラフに破線で示すように、車両の使用予定時刻の直前の所定時間、一定の電力で車載エアコン33を駆動することで電動車両30の室内を目標温度にされる。   In the pre-air conditioner operation when the power supply / demand situation is not considered, as shown by the broken line in the lowermost graph of FIG. 3, the on-vehicle air conditioner 33 is driven with a constant power for a predetermined time immediately before the scheduled use time of the vehicle. As a result, the interior of the electric vehicle 30 is set to the target temperature.

これに対し、本実施の形態のプレエアコン動作は、実線で示すように、電力需給状況予測部112が予測した電力需給状況(図3の最も上のグラフ)に基づいて、電力供給が比較的多い(電力コストが比較的低い)時期に車載エアコン33を高い電力で駆動し、電力供給が比較的少ない(電力コストが比較的高い)時期に車載エアコン33を低い電力で駆動することによって、電動車両30の使用開始予定時刻までにその室内を目標温度にする。   On the other hand, in the pre-air conditioner operation of the present embodiment, as shown by the solid line, the power supply is relatively based on the power supply / demand situation predicted by the power supply / demand situation prediction unit 112 (the uppermost graph in FIG. 3). By driving the on-vehicle air conditioner 33 with high power when there is a lot (relatively low power cost) and driving the on-vehicle air conditioner 33 with low power when the power supply is relatively low (relatively high power cost), The room is set to the target temperature by the scheduled start time of use of the vehicle 30.

図3の例では、電動車両30の使用開始予定時刻は電力コストの高い夜間であるため、その直前に車載エアコン33を高い電力で駆動すると、それにかかる電力料金は高くなる。しかし本実施の形態では、電力コストの比較的低い夕方のうちに車載エアコン33を大きな電力で駆動して電動車両30の室内を目標温度近辺にしておき、電力コストが比較的高くなった夜間には車載エアコン33を小さな電力で駆動すれば済むようにしている(実線のグラフ)。この場合、プレエアコン動作が早目に開始されるため、車載エアコン33を駆動する時間は長くなるが、コストの高い電力の使用を抑制できるため、結果としてプレエアコン動作にかかる電力料金は低くなる。   In the example of FIG. 3, the scheduled start time of the use of the electric vehicle 30 is nighttime when the power cost is high. Therefore, if the on-vehicle air conditioner 33 is driven with high power immediately before that, the power charge will increase. However, in this embodiment, during the evening when the power cost is relatively low, the vehicle-mounted air conditioner 33 is driven with a large amount of power to keep the interior of the electric vehicle 30 near the target temperature, and at night when the power cost is relatively high. Is configured to drive the in-vehicle air conditioner 33 with small electric power (solid line graph). In this case, since the pre-air-conditioner operation is started early, the time for driving the on-vehicle air-conditioner 33 becomes longer, but the use of high-cost power can be suppressed, resulting in a lower power charge for the pre-air-conditioner operation. .

このように電力需給状況(電力コスト)の予測を考慮してプレエアコン動作における車載エアコン33の駆動電力を制御することで、電力コストを抑えた効率的なプレエアコン動作が可能になる。   Thus, by controlling the driving power of the on-vehicle air conditioner 33 in the pre-air conditioner operation in consideration of the prediction of the power supply / demand situation (power cost), an efficient pre-air conditioner operation with reduced power cost is possible.

なお、プレエアコン動作の主目的は、走行開始後の車載エアコン33の使用を抑えて電動車両30の走行距離を延ばすことである。そのためプレエアコン動作を行うことによって車載バッテリ31の充電が不充分になったのでは、その目的を達成できないため好ましくない。従って、車載バッテリ31の充電量が所定量未満の場合には、プレエアコン動作よりも車載バッテリ31の充電を優先させることが望ましい。   The main purpose of the pre-air conditioner operation is to extend the travel distance of the electric vehicle 30 by suppressing the use of the in-vehicle air conditioner 33 after the start of travel. Therefore, if the in-vehicle battery 31 is insufficiently charged by performing the pre-air conditioner operation, the purpose cannot be achieved, which is not preferable. Therefore, when the charge amount of the in-vehicle battery 31 is less than the predetermined amount, it is desirable to prioritize the charge of the in-vehicle battery 31 over the pre-air conditioner operation.

また、本実施の形態1では、電力需給状況予測部112は、住宅10内の今後の電力供給状況の予測から今後の電気料金(電力コスト)の変化を算出すると示したが、電力会社20からの系統電源の電力需給状況や電力料金の情報(予測情報)も受信し、これらの情報を加味し今後の電気料金(電力コスト)の変化を算出するように構成してもよい。例えば、最も単純には、電力会社20からの系統電源の電力料金の予測情報をそのまま利用する構成としてもよい。   Moreover, in this Embodiment 1, although it showed that the electric power supply-and-demand condition prediction part 112 calculates the change of the future electricity bill (electric power cost) from the prediction of the future electric power supply condition in the house 10, from the electric power company 20 It may also be configured to receive information on power supply / demand status and power rate information (prediction information) of the system power supply, and to calculate future changes in the electricity rate (power cost) by taking these information into account. For example, in the simplest case, the prediction information of the power charge of the system power supply from the power company 20 may be used as it is.

<実施の形態2>
実施の形態2では、図1および図2に示したシステムを、電力供給過多による電力の逆潮流対策の目的で用いた例を示す。
<Embodiment 2>
Embodiment 2 shows an example in which the system shown in FIGS. 1 and 2 is used for the purpose of countermeasures against reverse power flow due to excessive power supply.

上記のように、電力供給過多状態のときに電力需給のバランスをとる手法としては、過剰な電力を蓄電池に充電する手法や、単純に発電設備の動作を停止させる手法が考えられる。しかし蓄電池が満充電の場合など、蓄電池の充電ができないときには、前者の手法はとれない。また後者の手法は、発電設備の停止から再起動までに長時間かかる場合には効率的でない(現在の太陽光発電装置では停止から再起動までに5分程度かかる)。電力供給過多状態が一時的なものであったときは特に非効率である。   As described above, as a method of balancing the power supply and demand in an excessive power supply state, a method of charging excessive power to the storage battery or a method of simply stopping the operation of the power generation facility can be considered. However, when the storage battery cannot be charged, such as when the storage battery is fully charged, the former method cannot be taken. In addition, the latter method is not efficient when it takes a long time from stopping to restarting the power generation facility (in the current photovoltaic power generation apparatus, it takes about 5 minutes from stopping to restarting). This is particularly inefficient when the overpowered state is temporary.

そこで本実施の形態では、電力供給過多状態のときに電動車両30の車載エアコン33を駆動させて電力需要を増やし、それによって電力需給のバランスをとる手法を提案する。このとき電動車両30が搭載する機器のうちの車載エアコン33を用いるのは、他の車載機器に比べ消費電力が高く、比較的容易に消費電力の大きさを調整可能だからである。また家庭内負荷14を駆動するよりも屋外の車載エアコン33を駆動する方がユーザに与える影響が少ない。以下、EMS11が電力需要を増やす目的として車載エアコン33を駆動する動作を「ダミーエアコン動作」と称す。   Therefore, in the present embodiment, a method is proposed in which the in-vehicle air conditioner 33 of the electric vehicle 30 is driven to increase the power demand when the power supply is excessive, thereby balancing the power supply and demand. The reason why the vehicle-mounted air conditioner 33 among the devices mounted on the electric vehicle 30 is used is that the power consumption is higher than other vehicle-mounted devices and the power consumption can be adjusted relatively easily. In addition, driving the outdoor in-vehicle air conditioner 33 has less influence on the user than driving the home load 14. Hereinafter, the operation in which the EMS 11 drives the in-vehicle air conditioner 33 for the purpose of increasing the power demand is referred to as “dummy air conditioner operation”.

なお、車載バッテリ31の充電残量が所定量未満であり追加して充電可能な状態であれば、過剰な電力を車載バッテリ31に充電することによって電力需給のバランスをとることができるため、ダミーエアコン動作を行う必要はない。   If the remaining charge amount of the in-vehicle battery 31 is less than a predetermined amount and can be additionally charged, the power supply / demand balance can be balanced by charging the in-vehicle battery 31 with excess power, so that the dummy There is no need to operate the air conditioner.

図4はEMS11が車載エアコン33を用いて行う、本実施の形態に係るダミーエアコン動作を示すフローチャートである。   FIG. 4 is a flowchart showing a dummy air conditioner operation according to the present embodiment, which is performed by the EMS 11 using the in-vehicle air conditioner 33.

電力需給状況取得部111は、現在の電力需給状況を監視して、電力供給過多を検出する(ステップST1)。すなわち電力需給状況取得部111は、太陽光発電装置13の発電量が家庭内負荷14の消費電力を上回り、且つ、住宅用蓄電池12および車載バッテリ31への充電を追加して行えない状態(太陽光発電装置13および車載バッテリ31の充電残量が所定量以上である場合)を検出する。   The power supply / demand situation acquisition unit 111 monitors the current power supply / demand situation and detects excessive power supply (step ST1). That is, the power supply / demand situation acquisition unit 111 is in a state in which the amount of power generated by the solar power generation device 13 exceeds the power consumption of the household load 14 and charging the residential storage battery 12 and the in-vehicle battery 31 cannot be performed (solar In the case where the remaining amount of charge of the photovoltaic power generation device 13 and the in-vehicle battery 31 is a predetermined amount or more).

電力需給状況取得部111により電力供給過多が検出されると、車両情報取得部113は、電動車両30との通信により、車載エアコン33がEMS11から制御可能かどうか確認する(ステップST2)。EMS11が車載エアコン33を制御できない場合は、ダミーエアコン動作は実施できないため、例えば太陽光発電装置13の動作を停止させるなどして電力需給のバランスをとる。   When an excessive power supply is detected by the power supply / demand situation acquisition unit 111, the vehicle information acquisition unit 113 confirms whether the in-vehicle air conditioner 33 can be controlled from the EMS 11 by communication with the electric vehicle 30 (step ST2). When the EMS 11 cannot control the in-vehicle air conditioner 33, the dummy air conditioner operation cannot be performed. Therefore, for example, the operation of the solar power generation device 13 is stopped to balance the power supply and demand.

電動車両30の車載エアコン33を制御可能であれば、電力需給状況予測部112は、電力供給過多が一時的なもの(例えば5分以内)かどうか予測する(ステップST3)。この予測は、家庭内負荷14の稼働スケジュールや稼働履歴に基づいて行われる。このとき電力供給過多が一時的なものでないと判断された場合には、EMS11が太陽光発電装置13(発電設備)の動作を停止させる。電力供給過多が長時間続くのなら、ダミーエアコン動作を行うよりも、太陽光発電装置13の動作を停止させて電力需給のバランスをとる方が簡単且つ効率的であるからである。   If the on-vehicle air conditioner 33 of the electric vehicle 30 can be controlled, the power supply / demand situation prediction unit 112 predicts whether the excessive power supply is temporary (for example, within 5 minutes) (step ST3). This prediction is performed based on the operation schedule and operation history of the household load 14. At this time, when it is determined that the excessive power supply is not temporary, the EMS 11 stops the operation of the solar power generation device 13 (power generation facility). If excessive power supply continues for a long time, it is easier and more efficient to balance the power supply and demand by stopping the operation of the solar power generation device 13 than performing the dummy air conditioner operation.

一方、電力供給過多が一時的なものと判断できれば、車両情報取得部113は電動車両30の室内の人の在否の情報を確認する(ステップST4)。そして電動車両30の室内が無人であれば、EMS11は電力需要を増やすために車載エアコン33を駆動するダミーエアコン動作を行う。電動車両30の室内が無人のときに限って行うのは、ダミーエアコン動作をユーザへの影響を小さくするためである。電動車両30の室内に人がいる場合には、ダミーエアコン動作を行わずに、例えば太陽光発電装置13の動作を停止させるなどして電力需給のバランスをとる。   On the other hand, if it can be determined that the excessive power supply is temporary, vehicle information acquisition section 113 confirms the presence / absence information of the person in the room of electric vehicle 30 (step ST4). If the interior of the electric vehicle 30 is unmanned, the EMS 11 performs a dummy air conditioner operation for driving the in-vehicle air conditioner 33 in order to increase the power demand. The reason for performing the dummy air conditioner operation only when the room of the electric vehicle 30 is unattended is to reduce the influence on the user. When there is a person in the room of the electric vehicle 30, the power supply and demand is balanced by, for example, stopping the operation of the solar power generation device 13 without performing the dummy air conditioner operation.

上記のステップST1〜ST4の順番は任意でよい。つまり本実施の形態のダミーエアコン動作は、(1)電力供給過多状態になり、(2)車載エアコン33がEMS11から制御可能であり、(3)電力供給過多が一時的なものであり、(4)電動車両30の室内が無人である、という4つの条件が揃う場合に実行される。   The order of the above steps ST1 to ST4 may be arbitrary. In other words, the dummy air conditioner operation of the present embodiment is (1) the power supply is excessive, (2) the in-vehicle air conditioner 33 can be controlled from the EMS 11, and (3) the excessive power supply is temporary. 4) It is executed when the four conditions that the interior of the electric vehicle 30 is unattended are met.

ダミーエアコン動作を実行する場合、車載エアコン制御部114は、車載エアコン33の制御に用いる各種のパラメータ(車載エアコン制御パラメータ)の設定値を演算する(ステップST5)。車載エアコン制御パラメータは、車載エアコン33の消費電力が所望の値になるように設定されるものであり、具体的には、電動車両30の室内温度の目標値(目標温度)や風量の設定値である。例えば目標温度を現在の電動車両30の室内温度から大きく異なる値にしたり、風量を強風に設定すれば、車載エアコン33での消費電力を大きくできる。   When executing the dummy air conditioner operation, the in-vehicle air conditioner control unit 114 calculates set values of various parameters (in-vehicle air conditioner control parameters) used for controlling the in-vehicle air conditioner 33 (step ST5). The in-vehicle air conditioner control parameter is set so that the power consumption of the in-vehicle air conditioner 33 becomes a desired value. Specifically, the target value (target temperature) of the indoor temperature of the electric vehicle 30 and the set value of the air volume are set. It is. For example, if the target temperature is set to a value greatly different from the current room temperature of the electric vehicle 30 or the air volume is set to a strong wind, the power consumption in the in-vehicle air conditioner 33 can be increased.

EMS11は、得られた車載エアコン制御パラメータを電動車両30の車載エアコン33へと送信し(ステップST6)、車載エアコン33を駆動する(ステップST7)。車載エアコン33は、受信した車載エアコン制御パラメータに基づいて動作し、このダミーエアコン動作によって所定の電力が消費されることにより、電力需給のバランスがとられる。   The EMS 11 transmits the obtained in-vehicle air conditioner control parameter to the in-vehicle air conditioner 33 of the electric vehicle 30 (step ST6), and drives the in-vehicle air conditioner 33 (step ST7). The in-vehicle air conditioner 33 operates based on the received in-vehicle air conditioner control parameter, and a predetermined power is consumed by the dummy air conditioner operation, thereby balancing the power supply and demand.

このように本実施の形態に係るダミーエアコン動作によれば、ユーザへの影響を抑えつつ、電力供給過多による電力の逆潮流を抑え、系統電源の不安定化を防止することができる。また太陽光発電装置13の動作を停止させる必要がないため、一時的な電力供給過多に無駄なく対応でき、効率的に電力需給のバランスをとることができる。   As described above, according to the dummy air conditioner operation according to the present embodiment, it is possible to suppress the reverse power flow due to excessive power supply while suppressing the influence on the user, and to prevent the system power supply from becoming unstable. Further, since it is not necessary to stop the operation of the solar power generation device 13, it is possible to cope with a temporary excessive power supply without waste and to efficiently balance power supply and demand.

10 住宅、11 EMS、12 住宅用蓄電池、13 太陽光発電装置、14 家庭内負荷、20 電力会社、30 電動車両、31 車載バッテリ、33 車載エアコン、32 バッテリコントローラ、111 電力需給状況取得部、112 電力需給状況予測部、113 車両情報取得部、114 車載エアコン制御部。   DESCRIPTION OF SYMBOLS 10 Housing, 11 EMS, 12 Residential storage battery, 13 Photovoltaic generator, 14 Domestic load, 20 Electric power company, 30 Electric vehicle, 31 Car battery, 33 Car air conditioner, 32 Battery controller, 111 Electric power supply / demand situation acquisition part, 112 Electricity supply / demand situation prediction unit, 113 vehicle information acquisition unit, 114 vehicle-mounted air conditioner control unit.

Claims (20)

発電設備からの電力供給と負荷による電力需要に基づく電力需給状況、並びに、電動車両のバッテリの充放電を管理するエネルギーマネジメントシステムであって、
今後の電力需給状況を予測する電力需給状況予測部と、
前記今後の電力需給状況の予測に基づいて、前記電動車両の車載エアコンを制御する車載エアコン制御部とを備える
ことを特徴とするエネルギーマネジメントシステム。
An energy management system that manages the power supply / demand situation based on the power supply from the power generation facility and the power demand from the load, and the charging / discharging of the battery of the electric vehicle,
An electricity supply and demand situation forecasting unit that predicts the future electricity supply and demand situation;
An energy management system comprising: an in-vehicle air conditioner control unit that controls an in-vehicle air conditioner of the electric vehicle based on prediction of the future power supply and demand situation.
前記電動車両との通信により当該電動車両に関する情報を取得する車両情報取得部をさらに備え、
前記車両情報取得部は、前記電動車両の使用予定時刻の情報を取得し、
前記車載エアコン制御部は、前記今後の電力需給状況の予測に基づき、前記電力供給が比較的多い時期には前記車載エアコンを高い電力で駆動し、前記電力供給が比較的少ない時期には前記車載エアコンを低い電力で駆動することによって、前記電動車両の前記使用予定時刻までに当該電動車両の室内を指定された温度にするプレエアコン動作を行う
請求項1記載のエネルギーマネジメントシステム。
A vehicle information acquisition unit that acquires information about the electric vehicle by communication with the electric vehicle;
The vehicle information acquisition unit acquires information on a scheduled use time of the electric vehicle,
The vehicle-mounted air conditioner control unit drives the vehicle-mounted air conditioner with high power when the power supply is relatively high based on the prediction of the future power supply and demand situation, and the vehicle mounted air-conditioner when the power supply is relatively low The energy management system according to claim 1, wherein a pre-air conditioner operation is performed to bring the interior of the electric vehicle to a designated temperature by the scheduled use time of the electric vehicle by driving the air conditioner with low power.
前記電動車両との通信により当該電動車両に関する情報を取得する車両情報取得部をさらに備え、
前記車両情報取得部は、前記電動車両の使用予定時刻の情報を取得し、
前記電力需給状況予測部は、前記今後の電力需給状況の予測に基づき今後の電力コストの変化を予測し、
前記車載エアコン制御部は、前記今後の電力コストの変化の予測に基づき、前記電力コストが比較的低い時期には前記車載エアコンを高い電力で駆動し、前記電力コストが比較的高い時期には前記車載エアコンを低い電力で駆動することによって、前記電動車両の前記使用予定時刻までに当該電動車両の室内を指定された温度にするプレエアコン動作を行う
請求項1記載のエネルギーマネジメントシステム。
A vehicle information acquisition unit that acquires information about the electric vehicle by communication with the electric vehicle;
The vehicle information acquisition unit acquires information on a scheduled use time of the electric vehicle,
The power supply / demand situation prediction unit predicts a future change in power cost based on the prediction of the future power supply / demand situation,
The on-vehicle air conditioner control unit drives the on-vehicle air conditioner with high power when the power cost is relatively low based on the prediction of the future change in power cost, and the power cost when the power cost is relatively high. The energy management system according to claim 1, wherein a pre-air conditioner operation is performed to bring the interior of the electric vehicle to a specified temperature by the scheduled use time of the electric vehicle by driving the on-vehicle air conditioner with low power.
前記車両情報取得部は、前記電動車両のバッテリの残量の情報を取得し、
前記車載エアコン制御部は、前記プレエアコン動作を、前記バッテリの残量が所定量以上の場合にのみ行う
請求項2または請求項3記載のエネルギーマネジメントシステム。
The vehicle information acquisition unit acquires information on a remaining battery level of the electric vehicle,
The energy management system according to claim 2 or 3, wherein the on-vehicle air conditioner control unit performs the pre-air conditioner operation only when the remaining amount of the battery is equal to or greater than a predetermined amount.
前記車両情報取得部と前記電動車両との通信内容には、前記電動車両が当該エネルギーマネジメントシステムから制御可能か否かを示す情報が含まれている
請求項2から請求項4のいずれか一項記載のエネルギーマネジメントシステム。
The communication content between the vehicle information acquisition unit and the electric vehicle includes information indicating whether the electric vehicle can be controlled from the energy management system. The energy management system described.
発電設備からの電力供給と負荷による電力需要に基づく電力需給状況、並びに、電動車両のバッテリの充放電を管理するエネルギーマネジメントシステムであって、
現在の電力需給状況を取得する電力需給状況取得部と、
前記現在の電力需給状況に基づいて、前記電動車両の車載エアコンを制御する車載エアコン制御部とを備える
ことを特徴とするエネルギーマネジメントシステム。
An energy management system that manages the power supply / demand situation based on the power supply from the power generation facility and the power demand from the load, and the charging / discharging of the battery of the electric vehicle,
A power supply and demand status acquisition unit that acquires the current power supply and demand status;
An energy management system comprising: an in-vehicle air conditioner control unit that controls an in-vehicle air conditioner of the electric vehicle based on the current power supply / demand situation.
前記電動車両との通信により当該電動車両に関する情報を取得する車両情報取得部をさらに備え、
前記車両情報取得部は、前記電動車両のバッテリの残量の情報を取得し、
前記電力需給状況取得部は、前記現在の電力需給状況に基づき電力供給過多を検出し、
前記車載エアコン制御部は、前記バッテリの残量が所定量以上であり、且つ電力供給過多が検出された場合、前記車載エアコンを駆動して過剰な電力を消費するダミーエアコン動作を行う
請求項6記載のエネルギーマネジメントシステム。
A vehicle information acquisition unit that acquires information about the electric vehicle by communication with the electric vehicle;
The vehicle information acquisition unit acquires information on a remaining battery level of the electric vehicle,
The power supply / demand situation acquisition unit detects excessive power supply based on the current power supply / demand situation,
7. The on-vehicle air conditioner control unit performs a dummy air conditioner operation that drives the on-vehicle air conditioner and consumes excessive power when the remaining amount of the battery is equal to or greater than a predetermined amount and excessive power supply is detected. The energy management system described.
前記バッテリの残量が前記所定量未満の場合は、前記余剰な電力で前記バッテリを充電する
請求項7記載のエネルギーマネジメントシステム。
The energy management system according to claim 7, wherein when the remaining amount of the battery is less than the predetermined amount, the battery is charged with the surplus power.
前記車両情報取得部は、前記電動車両の室内における人の在否の情報をさらに取得し、
前記車載エアコン制御部は、前記電動車両の室内が無人のときにのみ、前記ダミーエアコン動作を行う
請求項7または請求項8記載のエネルギーマネジメントシステム。
The vehicle information acquisition unit further acquires information on the presence or absence of a person in the room of the electric vehicle,
The energy management system according to claim 7 or 8, wherein the in-vehicle air conditioner control unit performs the dummy air conditioner operation only when the interior of the electric vehicle is unattended.
前記車載エアコン制御部は、前記車載エアコンの設定温度を制御することによって、前記ダミーエアコン動作で消費される電力を制御する
請求項7から請求項9のいずれか一項記載のエネルギーマネジメントシステム。
The energy management system according to any one of claims 7 to 9, wherein the in-vehicle air conditioner control unit controls electric power consumed in the dummy air conditioner operation by controlling a set temperature of the in-vehicle air conditioner.
前記車両情報取得部と前記電動車両との通信内容には、前記電動車両が当該エネルギーマネジメントシステムから制御可能か否かを示す情報が含まれている
請求項7から請求項10のいずれか一項記載のエネルギーマネジメントシステム。
The communication content between the vehicle information acquisition unit and the electric vehicle includes information indicating whether the electric vehicle can be controlled from the energy management system. The energy management system described.
今後の電力需給状況を予測する電力需給状況予測部をさらに備え、
前記車載エアコン制御部は、前記現在の電力需給状況および前記今後の電力需給状況の予測に基づいて、前記電動車両の車載エアコンの動作を制御する
請求項6記載のエネルギーマネジメントシステム。
It is further equipped with a power supply and demand situation prediction unit that predicts the future power supply and demand situation,
The energy management system according to claim 6, wherein the in-vehicle air conditioner control unit controls the operation of the in-vehicle air conditioner of the electric vehicle based on the prediction of the current power supply / demand situation and the future power supply / demand situation.
前記電動車両との通信により当該電動車両に関する情報を取得する車両情報取得部をさらに備え、
前記車両情報取得部は、前記電動車両のバッテリの残量の情報を取得し、
前記電力需給状況取得部は、前記現在の電力需給状況に基づき電力供給過多を検出し、
電力需給状況予測部は、前記電力供給過多の継続時間を予測し、
前記車載エアコン制御部は、前記バッテリの残量が所定量以上であり、且つ電力供給過多が検出されその継続時間の予測が所定の長さ未満の場合、前記車載エアコンを駆動して過剰な電力を消費するダミーエアコン動作を行う
請求項12記載のエネルギーマネジメントシステム。
A vehicle information acquisition unit that acquires information about the electric vehicle by communication with the electric vehicle;
The vehicle information acquisition unit acquires information on a remaining battery level of the electric vehicle,
The power supply / demand situation acquisition unit detects excessive power supply based on the current power supply / demand situation,
The power supply / demand situation prediction unit predicts the duration of excessive power supply,
The on-vehicle air conditioner control unit drives the on-vehicle air conditioner to generate excessive power when the remaining amount of the battery is equal to or greater than a predetermined amount and excessive power supply is detected and the duration is predicted to be less than a predetermined length. The energy management system of Claim 12 which performs the dummy air-conditioner operation | movement which consumes.
電力供給過多が検出されその継続時間の予測が所定の長さ以上の場合は、前記発電設備の動作を停止させる
請求項13記載のエネルギーマネジメントシステム。
The energy management system according to claim 13, wherein an operation of the power generation facility is stopped when an excessive power supply is detected and the prediction of the duration is not less than a predetermined length.
前記バッテリの残量が前記所定量未満の場合は、前記余剰な電力で前記バッテリを充電する
請求項13または請求項14記載のエネルギーマネジメントシステム。
The energy management system according to claim 13 or 14, wherein when the remaining amount of the battery is less than the predetermined amount, the battery is charged with the surplus power.
前記車両情報取得部は、前記電動車両の室内における人の在否の情報をさらに取得し、
前記車載エアコン制御部は、前記電動車両の室内が無人のときにのみ、前記ダミーエアコン動作を行う
請求項13から請求項15のいずれか一項記載のエネルギーマネジメントシステム。
The vehicle information acquisition unit further acquires information on the presence or absence of a person in the room of the electric vehicle,
The energy management system according to any one of claims 13 to 15, wherein the in-vehicle air conditioner control unit performs the dummy air conditioner operation only when an interior of the electric vehicle is unattended.
前記車載エアコン制御部は、前記車載エアコンの設定温度を制御することによって、前記ダミーエアコン動作で消費される電力を制御する
請求項13から請求項16のいずれか一項記載のエネルギーマネジメントシステム。
The energy management system according to any one of claims 13 to 16, wherein the on-vehicle air conditioner control unit controls electric power consumed by the dummy air conditioner operation by controlling a set temperature of the on-vehicle air conditioner.
電力需給状況予測部は、前記電力供給過多の継続時間を、負荷の稼働スケジュールに基づいて予測する
請求項13から請求項17のいずれか一項記載のエネルギーマネジメントシステム。
The energy management system according to any one of claims 13 to 17, wherein the power supply / demand situation prediction unit predicts a continuation time of the excessive power supply based on an operation schedule of a load.
電力需給状況予測部は、前記電力供給過多の継続時間を、負荷の稼働履歴に基づいて予測する
請求項13から請求項17のいずれか一項記載のエネルギーマネジメントシステム。
The energy management system according to any one of claims 13 to 17, wherein the power supply / demand situation prediction unit predicts a continuation time of the excessive power supply based on a load operation history.
前記車両情報取得部と前記電動車両との通信内容には、前記電動車両が当該エネルギーマネジメントシステムから制御可能か否かを示す情報が含まれている
請求項13から請求項19のいずれか一項記載のエネルギーマネジメントシステム。
20. The communication content between the vehicle information acquisition unit and the electric vehicle includes information indicating whether or not the electric vehicle can be controlled from the energy management system. The energy management system described.
JP2011071791A 2011-03-29 2011-03-29 Energy management system Active JP5312504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071791A JP5312504B2 (en) 2011-03-29 2011-03-29 Energy management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071791A JP5312504B2 (en) 2011-03-29 2011-03-29 Energy management system

Publications (2)

Publication Number Publication Date
JP2012210004A true JP2012210004A (en) 2012-10-25
JP5312504B2 JP5312504B2 (en) 2013-10-09

Family

ID=47189316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071791A Active JP5312504B2 (en) 2011-03-29 2011-03-29 Energy management system

Country Status (1)

Country Link
JP (1) JP5312504B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138534A (en) * 2013-01-18 2014-07-28 Kyocera Corp Power control unit, power control system, and power control method
JP2014225995A (en) * 2013-05-17 2014-12-04 三菱電機株式会社 Charging/discharging control device
US9008858B1 (en) 2014-03-31 2015-04-14 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for providing adaptive vehicle settings based on a known route
US9266443B2 (en) 2014-03-31 2016-02-23 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for adaptive battery charge and discharge rates and limits on known routes
US9290108B2 (en) 2014-03-31 2016-03-22 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for adaptive battery temperature control of a vehicle over a known route
JP2016073113A (en) * 2014-09-30 2016-05-09 富士通株式会社 Charge/discharge control program, charge/discharge control method, and charge/discharge control device
JPWO2016017011A1 (en) * 2014-07-31 2017-04-27 三菱電機株式会社 Electrical equipment, energy management controller, energy management method and program
CN106655232A (en) * 2017-01-13 2017-05-10 东北电力大学 Electric car distributed charge-discharge scheduling policy based on three-phase load balance
US9695760B2 (en) 2014-03-31 2017-07-04 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving energy efficiency of a vehicle based on known route segments
CN106949595A (en) * 2015-05-14 2017-07-14 南通大学 Effective energy-conservation based on the friendly air conditioner load side active demand strategy of electric energy
JP2017143634A (en) * 2016-02-09 2017-08-17 トヨタ自動車株式会社 Charge control system
WO2018105874A1 (en) * 2016-12-05 2018-06-14 삼성에스디아이주식회사 Battery pack charging system
CN111446729A (en) * 2019-01-17 2020-07-24 本田技研工业株式会社 Control device and computer-readable storage medium
CN112193018A (en) * 2020-10-19 2021-01-08 珠海格力电器股份有限公司 Vehicle control method, device and system
CN116512969A (en) * 2023-07-04 2023-08-01 四川金信石信息技术有限公司 Ordered charging power regulation and control method, system, terminal and medium for alternating-current charging pile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269161A (en) * 2006-03-31 2007-10-18 Autech Japan Inc Air conditioner control device
JP2009083567A (en) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp Air-conditioning control device of electric automobile
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
JP2010098793A (en) * 2008-10-14 2010-04-30 Osaka Gas Co Ltd Power demand and supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269161A (en) * 2006-03-31 2007-10-18 Autech Japan Inc Air conditioner control device
JP2009083567A (en) * 2007-09-28 2009-04-23 Mitsubishi Motors Corp Air-conditioning control device of electric automobile
JP2009284586A (en) * 2008-05-20 2009-12-03 Nippon Telegr & Teleph Corp <Ntt> Power system and its control method
JP2010098793A (en) * 2008-10-14 2010-04-30 Osaka Gas Co Ltd Power demand and supply system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138534A (en) * 2013-01-18 2014-07-28 Kyocera Corp Power control unit, power control system, and power control method
JP2014225995A (en) * 2013-05-17 2014-12-04 三菱電機株式会社 Charging/discharging control device
US9695760B2 (en) 2014-03-31 2017-07-04 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving energy efficiency of a vehicle based on known route segments
US9008858B1 (en) 2014-03-31 2015-04-14 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for providing adaptive vehicle settings based on a known route
US9290108B2 (en) 2014-03-31 2016-03-22 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for adaptive battery temperature control of a vehicle over a known route
US9266443B2 (en) 2014-03-31 2016-02-23 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for adaptive battery charge and discharge rates and limits on known routes
JPWO2016017011A1 (en) * 2014-07-31 2017-04-27 三菱電機株式会社 Electrical equipment, energy management controller, energy management method and program
JP2016073113A (en) * 2014-09-30 2016-05-09 富士通株式会社 Charge/discharge control program, charge/discharge control method, and charge/discharge control device
CN106949595A (en) * 2015-05-14 2017-07-14 南通大学 Effective energy-conservation based on the friendly air conditioner load side active demand strategy of electric energy
JP2017143634A (en) * 2016-02-09 2017-08-17 トヨタ自動車株式会社 Charge control system
WO2018105874A1 (en) * 2016-12-05 2018-06-14 삼성에스디아이주식회사 Battery pack charging system
CN106655232A (en) * 2017-01-13 2017-05-10 东北电力大学 Electric car distributed charge-discharge scheduling policy based on three-phase load balance
CN111446729A (en) * 2019-01-17 2020-07-24 本田技研工业株式会社 Control device and computer-readable storage medium
CN111446729B (en) * 2019-01-17 2023-07-04 本田技研工业株式会社 Control device and computer-readable storage medium
CN112193018A (en) * 2020-10-19 2021-01-08 珠海格力电器股份有限公司 Vehicle control method, device and system
CN116512969A (en) * 2023-07-04 2023-08-01 四川金信石信息技术有限公司 Ordered charging power regulation and control method, system, terminal and medium for alternating-current charging pile
CN116512969B (en) * 2023-07-04 2023-09-05 四川金信石信息技术有限公司 Ordered charging power regulation and control method, system, terminal and medium for alternating-current charging pile

Also Published As

Publication number Publication date
JP5312504B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5312504B2 (en) Energy management system
JP6188120B2 (en) Integrated power generation system control method with energy storage element and related apparatus
CN104040829B (en) The load that solar energy for photovoltaic system synchronizes
CN102447286B (en) Power exchange system
JP6168564B2 (en) Method and power generation system for supplying electrical energy from a distributed energy source
JP5547902B2 (en) Power supply control device
US9024471B2 (en) System and method for an intelligent power controller
JP5336810B2 (en) Vehicle and energy supply system
JP2008141926A (en) Home power storage device, on-vehicle power storage device, power supply/storage system and power storage control method
JP5660863B2 (en) Control apparatus and control method
WO2013065419A1 (en) Charging control device, cell management device, charging control method, and recording medium
JP5490834B2 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
JP2010268576A (en) Power supply distribution control apparatus
US11689118B2 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
CN110112783B (en) Photovoltaic storage battery microgrid dispatching control method
WO2016082238A1 (en) Solar-powered vehicle air-conditioning system
JP7207437B2 (en) DC power supply system
US11336113B2 (en) Back-up generator and associated electric power systems
JP2011250673A (en) Energy controller and control method
WO2011042788A1 (en) Electricity supply management device
JP2013017284A (en) Power control system, electric apparatus and charge/discharge control section
WO2015001767A1 (en) Control device and power management system
WO2018211263A1 (en) Heat and power generation and storage system
CN104734180A (en) Power supply control method and system
KR101392460B1 (en) Power supplying control apparatus based on priority of power supply and load, and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Ref document number: 5312504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250