JP2010268576A - Power supply distribution control apparatus - Google Patents

Power supply distribution control apparatus Download PDF

Info

Publication number
JP2010268576A
JP2010268576A JP2009116855A JP2009116855A JP2010268576A JP 2010268576 A JP2010268576 A JP 2010268576A JP 2009116855 A JP2009116855 A JP 2009116855A JP 2009116855 A JP2009116855 A JP 2009116855A JP 2010268576 A JP2010268576 A JP 2010268576A
Authority
JP
Japan
Prior art keywords
power
storage battery
vehicle
amount
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116855A
Other languages
Japanese (ja)
Inventor
Keiichi Ito
桂一 伊藤
Hiromi Tonegawa
浩巳 刀根川
Kenichi Sugiyama
健一 杉山
Katsutoshi Murawaka
亮憲 村若
Shizuo Tsuchiya
静男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009116855A priority Critical patent/JP2010268576A/en
Publication of JP2010268576A publication Critical patent/JP2010268576A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To unfailingly charge a storage battery installed on an automobile, using the power generated by a solar battery. <P>SOLUTION: An estimated photovoltaic power generated amount and an estimated charging amount of the storage battery for an automobile are calculated, and the distribution of the power is controlled so that the photovoltaic power generation amount may be supplied to the storage battery for an automobile (100-106). If the estimated photovoltaic power amount is larger than the estimated charged amount, power distribution is controlled so that excessive power is supplied to loads in dwellings (108, 112). If the estimated photovoltaic power generation amount is larger than a power generated amount obtained by adding the estimated charged amount to the loads of the dwellings, power distribution is controlled so that the excessive power is supplied to the storage battery for a dwelling (114, 116, 122), and the storage battery is charged, when further, the excessive power becomes available (124-126). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力供給配分制御装置にかかり、特に、太陽電池によって発電した電力の供給配分を制御する電力供給配分制御装置にに関する。   The present invention relates to a power supply distribution control device, and more particularly to a power supply distribution control device that controls supply distribution of power generated by a solar cell.

近年、環境問題等を考慮して、太陽電池によって発電した電力を蓄電池に充電して住宅で使用する技術が普及している。   In recent years, in consideration of environmental problems and the like, a technique for charging a storage battery with electric power generated by a solar battery and using it in a house has become widespread.

例えば、特許文献1に記載の技術では、屋外に配設された太陽電池による発電電力を充電する蓄電池と、蓄電池からの電力供給により作動するヒートポンプユニットと、ヒートポンプユニットの作動を制御するコントローラと、ヒートポンプユニットの作動により内部に高温熱源として温水を蓄える温水槽と、温水槽の高温熱源との熱交換により室内暖房を行う空調装置とを備えて、太陽電池パネルによって発電された電力を蓄電池に供給して充電すると共に、余剰電力をヒートポンプユニットに供給して強制的にヒートポンプユニットを作動することが提案されている。   For example, in the technique described in Patent Document 1, a storage battery that charges generated power from a solar battery disposed outdoors, a heat pump unit that operates by supplying power from the storage battery, a controller that controls the operation of the heat pump unit, A hot water tank that stores hot water as a high-temperature heat source by operating the heat pump unit, and an air conditioner that heats the interior by heat exchange with the high-temperature heat source of the hot water tank, and supplies the power generated by the solar panel to the storage battery In addition to charging, it has been proposed to forcibly operate the heat pump unit by supplying surplus power to the heat pump unit.

特開平6−42781号公報JP-A-6-42781

しかしながら、特許文献1に記載の技術では、太陽電池によって発電された電力が蓄電池に充電され、その余剰分がヒートポンプユニットへ供給されるが、熱源の温水が利用されない場合には、温水槽に蓄えられたエネルギーが無駄になるので、改善の余地がある。   However, in the technique described in Patent Document 1, the electric power generated by the solar battery is charged in the storage battery, and the surplus is supplied to the heat pump unit. However, when the hot water of the heat source is not used, the electric power is stored in the hot water tank. There is room for improvement because the energy consumed is wasted.

一方、環境問題を考慮して、二酸化炭素ガスの発生量が少ない、ハイブリッド自動車や電気自動車等の自動車が注目されており、これらの自動車に搭載された蓄電池を太陽電池の発電を用いて充電することが考えられるが、住宅で使用する電力が多い場合には、自動車に搭載した蓄電池を充電できなくなってしまう場合がある。   On the other hand, in consideration of environmental problems, automobiles such as hybrid cars and electric cars that generate a small amount of carbon dioxide gas are attracting attention, and the storage batteries installed in these cars are charged using the power generated by solar cells. However, when there is a lot of electric power used in a house, it may become impossible to charge a storage battery mounted in a car.

本発明は、上記事実を考慮して成されたもので、太陽電池の発電電力により自動車に搭載される蓄電池を確実に充電することを目的とする。   The present invention has been made in consideration of the above-described facts, and an object of the present invention is to reliably charge a storage battery mounted on an automobile with the generated power of a solar battery.

上記目的を達成するために請求項1に記載の発明は、太陽光によって発電する太陽電池と、建物で使用する電力を蓄電する建物用蓄電池と、自動車に搭載され、走行するための電力を蓄電する車両用蓄電池と電気的に接続するための接続手段と、建物において電力を消費する電力負荷、前記建物用蓄電池、及び前記接続手段に接続された前記車両用蓄電池へ前記太陽電池によって発電された電力を配分して供給されると共に、配分して供給する際に、前記車両用蓄電池へ優先的に供給されるように制御する制御手段と、を備えることを特徴としている。   In order to achieve the above object, the invention described in claim 1 is directed to a solar battery that generates electricity by sunlight, a building storage battery that stores electric power used in a building, and an electric power that is mounted on an automobile and travels. Connecting means for electrically connecting to the vehicle storage battery, a power load that consumes power in the building, the building storage battery, and the vehicle storage battery connected to the connection means generated by the solar battery It is characterized by comprising control means for controlling so that the electric power is distributed and supplied and preferentially supplied to the vehicle storage battery when the electric power is distributed and supplied.

請求項1に記載の発明によれば、太陽電池では、太陽光によって発電が行われ、建物用蓄電池には、建物で使用する電力が蓄電される。   According to the first aspect of the present invention, in the solar cell, power is generated by sunlight, and the building storage battery stores electric power used in the building.

また、自動車に搭載され、走行するための電力を蓄電する車両用蓄電池が、接続手段によって電気的に接続される。   In addition, a vehicle storage battery that is mounted on an automobile and stores electric power for traveling is electrically connected by the connecting means.

そして、制御手段では、建物において電力を消費する電力負荷、建物用蓄電池、及び接続手段に接続された車両用蓄電池へ太陽電池によって発電された電力の配分して供給が制御される。また、このとき、制御手段では、車両用蓄電池へ優先的に供給されるように制御される。   Then, the control means distributes and controls the distribution of the electric power generated by the solar battery to the electric power load that consumes electric power in the building, the building storage battery, and the vehicle storage battery connected to the connection means. At this time, the control means is controlled so as to be preferentially supplied to the vehicle storage battery.

すなわち、太陽電池の発電電力を車両用蓄電池に優先的に供給するので、発電電力を建物で消費して車両用蓄電池へ供給できなくなるようなことがなくなり、車両用蓄電池を確実に充電することができる。   That is, since the power generated by the solar battery is preferentially supplied to the vehicle storage battery, the generated power is not consumed in the building and cannot be supplied to the vehicle storage battery, and the vehicle storage battery can be reliably charged. it can.

なお、制御手段は、例えば、請求項2に記載の発明のように、太陽電池によって発電された電力の一部が車両用蓄電池に優先的に供給されるように、太陽電池の発電電力の配分を制御するようにしてもよい。すなわち、太陽電池によって発電されている全電力を瞬間的に車両用蓄電池に供給するのではなく、発電電力のうち一部だけを車両用蓄電池に供給することにより、太陽電池の発電電力のうち、車両用蓄電池を充電するために必要な電力量を確保することができると共に、車両用蓄電池に優しい充電が可能となる。   For example, as in the invention described in claim 2, the control means distributes the generated power of the solar battery so that a part of the power generated by the solar battery is preferentially supplied to the vehicle storage battery. May be controlled. That is, instead of instantaneously supplying all the electric power generated by the solar battery to the vehicle storage battery, by supplying only a part of the generated electric power to the vehicle storage battery, The amount of electric power necessary for charging the vehicle storage battery can be secured, and charging that is gentle to the vehicle storage battery is possible.

また、請求項3に記載の発明のように、一日あたりの走行距離を含む自動車の走行距離実績、または自動車の自家発電を除いた消費電力を自動車の必要電力量を表す情報として取得する取得手段を更に備えて、制御手段が、取得手段によって取得された情報が表す必要電力量が多いほど車両用蓄電池へ供給する電力割合が増加するように、太陽電池の発電電力の配分を制御するようにしてもよい。これによって、太陽電池の発電電力のうち車両用蓄電池を充電するために必要な電力を確保することができる。   Further, as in the third aspect of the invention, the acquisition of acquiring the mileage record of the vehicle including the mileage per day or the power consumption excluding the private power generation of the vehicle as information indicating the required electric energy of the vehicle. Means for controlling the distribution of the generated power of the solar cell so that the proportion of power supplied to the vehicle storage battery increases as the required power amount represented by the information acquired by the acquiring means increases. It may be. Thereby, electric power required in order to charge the storage battery for vehicles among the generated electric power of a solar cell is securable.

また、制御手段は、請求項4に記載の発明のように、車両用蓄電池が所定量充電された場合に、車両用蓄電池への電力供給を停止するように、太陽電池の発電電力の配分を制御するようにしてもよいし、請求項5に記載の発明のように、接続手段に接続された車両用蓄電池が新たな充電状態になった場合、または充電量が所定量以下の場合に、車両用蓄電池へ電力が供給開始されるように制御するようにしてもよい。   Further, as in the invention according to claim 4, the control means distributes the generated power of the solar cell so that the power supply to the vehicle storage battery is stopped when the vehicle storage battery is charged by a predetermined amount. When the vehicle storage battery connected to the connection means is in a new charge state, or when the charge amount is a predetermined amount or less, as in the invention according to claim 5, You may make it control so that electric power supply is started to the storage battery for vehicles.

また、制御手段は、請求項6に記載の発明のように、太陽電池の発電電力から車両用蓄電池への充電電力を差し引いた第1余剰電力が電力負荷へ優先的に供給されるように、太陽電池の発電電力の配分を制御するようにしてもよい。このとき、請求項7に記載の発明のように、第1余剰電力から電力負荷が必要とする電力を差し引いた第2余剰電力が建物用蓄電池へ優先的に供給されるように、太陽電池の発電電力の配分を制御するようにしてもよい。また、このとき、請求項8に記載の発明のように、第2余剰電力から建物用蓄電池への充電電力を差し引いた第3余剰電力が売電されるように、太陽電池の発電電力の供給配分を制御するようにしてもよい。   In addition, as in the invention described in claim 6, the control means preferentially supplies the first surplus power obtained by subtracting the charging power to the vehicle storage battery from the generated power of the solar battery to the power load. You may make it control distribution of the generated electric power of a solar cell. At this time, as in the invention described in claim 7, the second surplus power obtained by subtracting the power required by the power load from the first surplus power is preferentially supplied to the building storage battery. You may make it control distribution of generated electric power. At this time, as in the invention described in claim 8, the supply of the generated power of the solar cell so that the third surplus power obtained by subtracting the charging power to the building storage battery from the second surplus power is sold. The distribution may be controlled.

また、制御手段は、請求項9に記載の発明のように、車両用蓄電池の充電量、または電力負荷が消費する電力量が太陽電池の発電量だけでは足りない場合に、建物用蓄電池から電力が供給されるように制御するようにしてもよいし、請求項10に記載の発明のように、夜間電力を用いて建物用蓄電池を充電するように更に制御するようにしてもよい。   In addition, as in the invention described in claim 9, the control means generates power from the building storage battery when the amount of charge of the vehicle storage battery or the amount of power consumed by the power load is not enough for the power generation amount of the solar battery alone. May be controlled so as to be supplied, or as in the invention according to claim 10, the building storage battery may be further charged using nighttime power.

なお、請求項7に記載の発明は、請求項11に記載の発明のように、電力により蓄熱する蓄熱機器を更に備えて、制御手段が、第2余剰電力から建物用蓄電池への充電電力を差し引いた第3余剰電力が蓄熱機器へ供給されるように、太陽電池の発電電力の供給配分を制御するようにしてもよい。これによって、余剰電力がある場合には蓄熱機器へ供給して、太陽電池の発電エネルギーを蓄熱することができる。また、この場合には、制御手段は、請求項12に記載の発明のように、蓄熱機器の毎日の蓄熱時間または蓄熱量から、平均的な蓄熱時間または蓄熱量を算出し、算出結果から前記蓄熱機器の蓄熱開始時間を決定し、決定した前記蓄熱開始時間に蓄熱機器へ電力を供給するように更に制御するようにしてもよい。   In addition, the invention of claim 7 is further provided with a heat storage device that stores heat by electric power as in the invention of claim 11, and the control means supplies charging power from the second surplus power to the building storage battery. You may make it control supply distribution of the generated electric power of a solar cell so that the 3rd surplus electric power deducted may be supplied to a thermal storage apparatus. Thereby, when there exists surplus electric power, it can supply to a thermal storage apparatus and the electric power generation energy of a solar cell can be stored. In this case, as in the invention described in claim 12, the control means calculates an average heat storage time or heat storage amount from a daily heat storage time or heat storage amount of the heat storage device, and calculates the above-mentioned from the calculation result. The heat storage start time of the heat storage device may be determined, and further control may be performed so that electric power is supplied to the heat storage device at the determined heat storage start time.

以上説明したように本発明によれば、太陽光によって発電した電力を優先的に車両用蓄電池に配分して供給されるように制御するので、太陽電池の発電電力により自動車に搭載される蓄電池を確実に充電することできる、という効果がある。   As described above, according to the present invention, since the electric power generated by sunlight is controlled so as to be distributed and supplied to the vehicle storage battery with priority, the storage battery mounted on the vehicle by the generated electric power of the solar battery is controlled. There is an effect that the battery can be reliably charged.

本発明の第1実施形態に係わる電力供給配分制御装置の概略構成を示す図である。It is a figure which shows schematic structure of the electric power supply distribution control apparatus concerning 1st Embodiment of this invention. 本発明の第1実施形態に係わる電力供給配分制御装置における電力管理装置の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the power management apparatus in the power supply distribution control apparatus concerning 1st Embodiment of this invention. 本発明の第1実施形態に係わる電力供給配分制御装置で行われる処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed with the electric power supply distribution control apparatus concerning 1st Embodiment of this invention. 本発明の第2実施形態に係わる電力供給配分制御装置の概略構成を示す図である。It is a figure which shows schematic structure of the electric power supply distribution control apparatus concerning 2nd Embodiment of this invention. 本発明の第2実施形態に係わる電力供給配分制御装置における電力管理装置の制御系の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the power management apparatus in the power supply distribution control apparatus concerning 2nd Embodiment of this invention. 本発明の第2実施形態に係わる電力供給配分制御装置で行われる処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed with the electric power supply distribution control apparatus concerning 2nd Embodiment of this invention.

以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。
(第1実施形態)
本発明の第1実施形態に係わる電力供給配分制御装置について説明する。図1は、本発明の第1実施形態に係わる電力供給配分制御装置の概略構成を示す図である。
Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
(First embodiment)
The power supply distribution control apparatus according to the first embodiment of the present invention will be described. FIG. 1 is a diagram showing a schematic configuration of a power supply distribution control apparatus according to the first embodiment of the present invention.

本発明の第1実施形態に係わる電力供給配分制御装置10は、住宅などの建物12で使用する電力の供給を制御する電力管理装置14を備えている。なお、建物12としては、図1では、戸建の住宅を例として示すが、これに限るものではなく、集合住宅や、その他の建物を適用するようにしてもよい。   The power supply distribution control device 10 according to the first embodiment of the present invention includes a power management device 14 that controls supply of power used in a building 12 such as a house. In addition, as a building 12, although the detached house is shown as an example in FIG. 1, it is not restricted to this, You may make it apply an apartment house and another building.

電力管理装置14には、太陽電池16、商用電源18、及び配電盤22が接続されていると共に、エンジンとモータを備えたハイブリッド自動車や電気自動車等の自動車28に搭載された車両用蓄電池26が接続可能とされている。また、電力管理装置14は、建物12で使用するための電力を蓄電する住宅用蓄電池20を備えている。なお、電力管理装置14と車両用蓄電池26との接続は、電気的に接続するためのケーブル21によって接続される(所謂プラグイン)。   Connected to the power management apparatus 14 are a solar battery 16, a commercial power supply 18, and a switchboard 22, and a vehicle storage battery 26 mounted on a car 28 such as a hybrid car or an electric car equipped with an engine and a motor. It is possible. The power management apparatus 14 includes a residential storage battery 20 that stores electric power for use in the building 12. The power management device 14 and the vehicle storage battery 26 are connected by a cable 21 for electrical connection (so-called plug-in).

太陽電池16は、太陽エネルギーを電力に変換するソーラーパネルを有し、該ソーラーパネルによって変換された電力を電力管理装置14へ供給する。   The solar cell 16 has a solar panel that converts solar energy into electric power, and supplies the electric power converted by the solar panel to the power management apparatus 14.

電力管理装置14は、インバータ変換器を備えており、交流電力を直流電力に変換したり、直流電力を交流電力に変換する機能を備えており、商用電源18から供給される電力を直流電力に変換して住宅用蓄電池20や車両用蓄電池26へ供給することによって充電したり、太陽電池16によって発電された電力や住宅用蓄電池20に蓄電された電力を交流電力に変換して配電盤22を介して建物12に備えた電気機器(例えば、照明や空調装置等)に供給したり、太陽電池16によって発電された電力や住宅用蓄電池20に蓄電された電力を交流電力に変換して商用電源18へ供給することにより売電したり、商用電源18から供給される電力を配電盤22を介して建物12に備えた電気機器に供給したり等の電力の供給制御を行う。   The power management device 14 includes an inverter converter, and has a function of converting AC power into DC power or converting DC power into AC power. The power supplied from the commercial power supply 18 is converted into DC power. It is charged by converting it and supplying it to the storage battery 20 for vehicles or the storage battery 26 for vehicles, or the electric power generated by the solar battery 16 or the electric power stored in the storage battery 20 for residential use is converted into alternating current power and supplied via the switchboard 22. Then, the power is supplied to electrical equipment (for example, lighting, air conditioner, etc.) provided in the building 12, or the electric power generated by the solar cell 16 or the electric power stored in the storage battery 20 is converted into alternating current power, thereby supplying the commercial power source 18. The power supply control is performed such as selling power by supplying power to the power source or supplying power supplied from the commercial power source 18 to the electrical equipment provided in the building 12 via the switchboard 22.

また、電力管理装置14は、太陽電池16によって発電された電力を、車両用蓄電池26、配電盤22、及び住宅用蓄電池20へ供給するが、電力を供給する際の配分を制御する。   In addition, the power management device 14 supplies the power generated by the solar battery 16 to the vehicle storage battery 26, the switchboard 22 and the residential storage battery 20, but controls distribution when supplying power.

続いて、電力管理装置14によって電力の配分を制御するための制御系の構成について説明する。図2は、本発明の第1実施形態に係わる電力供給配分制御装置10における電力管理装置14の制御系の構成を示すブロック図である。   Next, the configuration of the control system for controlling the power distribution by the power management apparatus 14 will be described. FIG. 2 is a block diagram showing the configuration of the control system of the power management apparatus 14 in the power supply distribution control apparatus 10 according to the first embodiment of the present invention.

電力管理装置14は、図2に示すように、電力配分決定部30を備えており、電力管理装置14が各電力供給先へ電力を供給する際の配分を決定する。   As shown in FIG. 2, the power management apparatus 14 includes a power distribution determination unit 30, and determines a distribution when the power management apparatus 14 supplies power to each power supply destination.

電力配分決定部30には、太陽光発電電力予測部32、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38が接続されていると共に、電力供給制御部40が接続されている。すなわち、電力配分決定部30は、太陽光発電電力予測部32、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38から得られる情報に基づいて電力の配分を決定して、電力供給制御部40を制御するようになっている。   The power distribution determination unit 30 is connected with a photovoltaic power generation power prediction unit 32, a residential storage battery charge amount monitoring unit 34, a vehicular storage battery charge amount prediction unit 36, and a residential load monitoring unit 38, and also with power supply control. The unit 40 is connected. In other words, the power distribution determination unit 30 determines the power based on the information obtained from the photovoltaic power generation prediction unit 32, the storage battery charge amount monitoring unit 34 for housing, the storage battery charge amount prediction unit 36 for vehicle, and the house load monitoring unit 38. The distribution is determined and the power supply control unit 40 is controlled.

太陽光発電電力予測部32には、太陽光発電電力監視部42が接続されており、太陽電池16によって発電される電力が太陽光発電電力監視部42によって監視され、監視結果が太陽光発電電力予測部32に出力される。太陽光発電電力予測部32は、太陽光発電電力監視部42による監視結果から、太陽電池16の発電量を予測して、予測結果を電力配分決定部31へ出力する。例えば、太陽光発電電力予測部32は、特許第2612639号明細書に記載の技術を用いて、翌日の天気予報に基づいて太陽光発電電力を予測することができる。   A solar power generation power monitoring unit 42 is connected to the solar power generation power prediction unit 32, and the power generated by the solar cell 16 is monitored by the solar power generation power monitoring unit 42, and the monitoring result is the solar power generation power. It is output to the prediction unit 32. The solar power generation power prediction unit 32 predicts the power generation amount of the solar battery 16 from the monitoring result by the solar power generation power monitoring unit 42, and outputs the prediction result to the power distribution determination unit 31. For example, the solar power generation power prediction unit 32 can predict the solar power generation power based on the weather forecast of the next day using the technology described in Japanese Patent No. 2612639.

住宅用蓄電池充電量監視部34は、住宅用蓄電池20の充電量を検出して、検出結果を電力配分決定部30へ出力する。   The residential storage battery charge amount monitoring unit 34 detects the charge amount of the residential storage battery 20 and outputs the detection result to the power distribution determination unit 30.

車両用蓄電池充電量予測部36には、車両用蓄電池26の充電量を車両情報として取得する車両情報取得部44が接続されており、該車両情報取得部44によって取得した車両情報が車両用蓄電池充電量予測部36へ出力される。車両用蓄電池充電量予測部36は、車両情報取得部44によって取得した車両用情報から、車両用蓄電池26の充電量を予測する。   The vehicle storage battery charge amount prediction unit 36 is connected to a vehicle information acquisition unit 44 that acquires the charge amount of the vehicle storage battery 26 as vehicle information, and the vehicle information acquired by the vehicle information acquisition unit 44 is the vehicle storage battery. It is output to the charge amount prediction unit 36. The vehicle storage battery charge amount prediction unit 36 predicts the charge amount of the vehicle storage battery 26 from the vehicle information acquired by the vehicle information acquisition unit 44.

また、車両情報取得部44は、一日あたりの走行距離を含む自動車の走行距離実績、自動車28の自家発電を除く消費電力等の情報を取得し、取得結果を車両用蓄電池充電量予測部36を介して電力配分決定部30へ出力する。   In addition, the vehicle information acquisition unit 44 acquires information such as the actual driving distance of the vehicle including the driving distance per day, the power consumption excluding private power generation of the vehicle 28, and the acquired result is stored in the vehicle storage battery charge amount prediction unit 36. Is output to the power distribution determination unit 30.

住宅負荷監視部38は、配電盤22から建物12の電気機器へ供給される電力を監視して監視結果を電力配分決定部30へ出力する。   The residential load monitoring unit 38 monitors the power supplied from the switchboard 22 to the electrical equipment in the building 12 and outputs the monitoring result to the power distribution determining unit 30.

そして、電力配分決定部30は、太陽光発電電力予測部32、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38から入力される情報に基づいて、太陽電池16によって発電される電力の配分を決定し、決定結果を電力供給制御部40へ出力するようになっている。これによって、電力供給制御部40が、電力配分決定部30によって決定された配分に従って太陽電池16の発電電力の供給を制御する。   And the electric power distribution determination part 30 is based on the information input from the photovoltaic power generation electric power prediction part 32, the storage battery charge amount monitoring part 34 for houses, the storage battery charge amount prediction part 36 for vehicles, and the house load monitoring part 38, The distribution of the power generated by the solar cell 16 is determined, and the determination result is output to the power supply control unit 40. Thereby, the power supply control unit 40 controls the supply of the generated power of the solar cell 16 according to the distribution determined by the power distribution determination unit 30.

電力配分決定部30は、具体的には、配電盤22、住宅用蓄電池20、及び車両用蓄電池26への電力の配分を決定して太陽電池16によって発電した電力を供給するように制御する。このとき、本実施形態では、車両用蓄電池26へ太陽電池16によって発電した電力が優先的に配分されるように配分を決定して電力を供給するようになっている。   Specifically, the power distribution determination unit 30 controls the power distribution generated by the solar cell 16 by determining the power distribution to the switchboard 22, the residential storage battery 20, and the vehicle storage battery 26. At this time, in the present embodiment, the distribution is determined so that the power generated by the solar battery 16 is preferentially distributed to the vehicle storage battery 26 and the power is supplied.

次に、上述のように構成された本発明の第1実施形態に係わる電力供給配分制御装置10で行われる処理について説明する。図3は、本発明の第1実施形態に係わる電力供給配分制御装置10で行われる処理の流れの一例を示すフローチャートである。   Next, processing performed by the power supply distribution control device 10 according to the first embodiment of the present invention configured as described above will be described. FIG. 3 is a flowchart showing an example of the flow of processing performed by the power supply distribution control device 10 according to the first embodiment of the present invention.

まず、ステップ100では、予想太陽光発電量Tが算出されてステップ102へ移行する。予想太陽光発電量の算出は、例えば、太陽光発電電力予測部32が、天気予報、季節(日の出から日没までの時間)、太陽電池16の能力等に基づいて算出してもよいし、太陽光発電電力監視部42によって日々の発電電力量を記憶しておき、日々の発電電力量から予測するようにしてもよい。   First, in step 100, the predicted solar power generation amount T is calculated, and the routine proceeds to step 102. For example, the photovoltaic power generation prediction unit 32 may calculate the predicted photovoltaic power generation amount based on the weather forecast, the season (time from sunrise to sunset), the capacity of the solar cell 16, and the like. The daily power generation amount may be stored by the solar power generation monitor 42 and predicted from the daily power generation amount.

ステップ102では、車両用蓄電池26の予想充電量Sが算出されてステップ104へ移行する。すなわち、車両用蓄電池充電量予測部36が、車両情報取得部44を介して車両情報を自動車28から取得して、車両用蓄電池26の充電量を予測し、予測結果を電力配分決定部30へ出力する。車両用蓄電池充電量予測部36による充電量の予測としては、例えば、車両用蓄電池26の残量から満充電にするために必要な電力量を算出してもよいし、一日あたりの走行距離を含む自動車28の走行距離実績、または自動車の自家発電を除いた消費電力を自動車28の必要電力量を表す情報から予測してもよいし、車両用蓄電池充電量予測部36が、日々の電力使用量を記憶しておき、電力使用量の平均値を算出するようにしてもよい。   In step 102, the expected charge amount S of the vehicle storage battery 26 is calculated, and the routine proceeds to step 104. That is, the vehicle storage battery charge amount prediction unit 36 acquires vehicle information from the automobile 28 via the vehicle information acquisition unit 44, predicts the charge amount of the vehicle storage battery 26, and sends the prediction result to the power distribution determination unit 30. Output. As the prediction of the charge amount by the vehicle storage battery charge amount prediction unit 36, for example, the amount of electric power necessary for full charge can be calculated from the remaining amount of the vehicle storage battery 26, or the travel distance per day Mileage of the vehicle 28 including the vehicle power consumption, or the power consumption excluding the vehicle's in-house power generation may be predicted from the information indicating the required power amount of the vehicle 28. You may make it memorize | store a usage-amount and calculate the average value of a power usage-amount.

ステップ104では、車両用蓄電池26の充電が不要か否かが電力配分決定部30によって判定される。該判定は、車両用蓄電池充電量予測部36が車両情報取得部44を介して車両用蓄電池26の充電量を取得し、取得結果を電力配分決定部30へ出力することにより、電力配分決定部30が車両用蓄電池26が満充電か否か、或いは電力使用量の平均値に対して所定量以上多い充電量が残っているか否か等を判定し、該判定が否定された場合にはステップ106へ移行し、肯定された場合にはステップ108へ移行する。なお、当該ステップ104では、車両用蓄電池26が新たな充電状態になった場合や、充電量が所定量以下の場合にも、充電が必要と判断して判定が否定される。   In step 104, the power distribution determination unit 30 determines whether or not the vehicle storage battery 26 needs to be charged. The determination is made by the vehicle storage battery charge amount prediction unit 36 acquiring the charge amount of the vehicle storage battery 26 via the vehicle information acquisition unit 44 and outputting the acquisition result to the power distribution determination unit 30. 30 determines whether or not the vehicle storage battery 26 is fully charged, or whether or not there is a remaining amount of charge greater than a predetermined amount with respect to the average value of power consumption, and if the determination is negative, step If the result is affirmative, the process proceeds to step. In step 104, the determination is denied when it is determined that charging is necessary even when the vehicle storage battery 26 is in a new charged state or when the charge amount is equal to or less than a predetermined amount.

ステップ106では、太陽光発電が車両用蓄電池26へ供給されてステップ108へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、太陽電池16によって発電された電力が車両用蓄電池26へ供給されるように電力の配分を制御する。本実施形態では、車両用蓄電池予想充電量Sが多いほど車両用蓄電池26へ供給する電力割合が増加するように、電力配分決定部30によって電力供給制御部40が制御される。また、電力供給制御部40による車両用蓄電池26の充電は、車両用蓄電池26の充電量が所定量充電された場合に停止されるように制御される。なお、このとき、電力配分決定部30では、車両用蓄電池予想充電量Sが分っているので、太陽電池16によって発電している時間帯のうち、○時間□kWh車両に充電すればよいか分るため、瞬間的に太陽電池16の発電電力を車両用蓄電池26に充電する必要がなく、太陽電池16の発電電力のうち一部だけを充電すればよい。これによって太陽電池16の発電電力のうち、車両用蓄電池26を充電するために必要な電力量を確保することができると共に、車両用蓄電池26に優しい充電が可能となる。   In step 106, solar power is supplied to the vehicle storage battery 26 and the process proceeds to step 108. That is, the power distribution determination unit 30 controls the power supply control unit 40 to control the power distribution so that the power generated by the solar cell 16 is supplied to the vehicle storage battery 26. In the present embodiment, the power distribution control unit 40 controls the power supply control unit 40 so that the proportion of the power supplied to the vehicle storage battery 26 increases as the vehicle storage battery expected charge amount S increases. Further, the charging of the vehicle storage battery 26 by the power supply control unit 40 is controlled so as to be stopped when the charging amount of the vehicle storage battery 26 is charged by a predetermined amount. At this time, the electric power distribution determination unit 30 knows the estimated storage amount S for the vehicle storage battery, and therefore, among the time periods during which power is generated by the solar battery 16, it is sufficient to charge the vehicle for □ hour □ kWh. Therefore, it is not necessary to instantaneously charge the vehicle storage battery 26 with the power generated by the solar battery 16, and only a part of the power generated by the solar battery 16 may be charged. As a result, it is possible to secure the amount of power necessary for charging the vehicle storage battery 26 out of the generated power of the solar battery 16 and to allow the vehicle storage battery 26 to be charged gently.

ステップ108では、予想太陽光発電量Tが車両用蓄電池予想充電量Sより大きいか否かが電力配分決定部30によって判定され、該判定が否定された場合にはステップ110へ移行し、肯定された場合にはステップ112へ移行する。   In step 108, it is determined by the power distribution determination unit 30 whether or not the predicted photovoltaic power generation amount T is larger than the vehicle storage battery expected charge amount S. If the determination is negative, the process proceeds to step 110 and affirmed. If YES, go to step 112.

ステップ110では、住宅用蓄電池20に蓄電された電力が、車両用蓄電池26及び住宅負荷(配電盤22)へ供給されてステップ120へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、住宅用蓄電池20に蓄電された電力が車両用蓄電池26及び配電盤22へ供給されるように配分を制御する。   In step 110, the electric power stored in the residential storage battery 20 is supplied to the vehicle storage battery 26 and the residential load (distribution panel 22), and the process proceeds to step 120. That is, the power distribution determination unit 30 controls the power supply control unit 40 to control the distribution so that the power stored in the residential storage battery 20 is supplied to the vehicle storage battery 26 and the switchboard 22.

ステップ112では、予想太陽光発電量Tから車両用蓄電池予想充電量Sを差し引いた余剰電力が住宅負荷へ供給されてステップ114へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、予想太陽光発電量Tから車両用蓄電池予想充電量Sを差し引いた余剰電力(T−S)が配電盤22へ供給されるように電力の配分を制御する。   In step 112, surplus power obtained by subtracting the vehicle storage battery predicted charge amount S from the predicted photovoltaic power generation amount T is supplied to the house load, and the process proceeds to step 114. That is, when the power distribution determining unit 30 controls the power supply control unit 40, surplus power (TS) obtained by subtracting the vehicle storage battery predicted charge amount S from the predicted solar power generation amount T is supplied to the switchboard 22. So as to control the distribution of power.

ステップ114では、住宅負荷Jが算出されてステップ116へ移行する。住宅負荷Jの算出は、例えば、住宅負荷監視部38が配電盤22から供給される電力を監視し、監視結果を電力配分決定部30へ出力し、電力配分決定部30が住宅負荷監視部38から得られる監視結果に基づいて配電盤22に供給される平均電力量等を算出する。   In step 114, the house load J is calculated and the routine proceeds to step 116. For example, the housing load monitoring unit 38 monitors the power supplied from the switchboard 22 and outputs the monitoring result to the power distribution determining unit 30, and the power distribution determining unit 30 calculates the housing load J from the housing load monitoring unit 38. Based on the obtained monitoring result, the average amount of power supplied to the switchboard 22 is calculated.

ステップ116では、予想太陽光発電量Tが、車両用蓄電池予想充電量Sと住宅負荷Jとを加算した電力量より大きいか否かが電力配分決定部30によって判定され、該判定が否定された場合にはステップ118へ移行し、肯定された場合にはステップ122へ移行する。   In step 116, it is determined by the power distribution determination unit 30 whether or not the predicted photovoltaic power generation amount T is larger than the power amount obtained by adding the vehicle storage battery predicted charge amount S and the house load J, and the determination is denied. If yes, then go to Step 118; if yes, go to Step 122.

ステップ118では、住宅用蓄電池20の電力が住宅負荷へ供給されてステップ120へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、住宅用蓄電池20に蓄電された電力が配電盤22へ供給されるように電力の配分をする。   In step 118, the electric power of the residential storage battery 20 is supplied to the residential load, and the routine proceeds to step 120. That is, the power distribution determining unit 30 controls the power supply control unit 40 to distribute the power so that the power stored in the residential storage battery 20 is supplied to the switchboard 22.

ステップ120では、深夜電力で住宅用蓄電池20が充電されるように制御されてステップ122へ移行する。すなわち、電力料金が安くなる予め定めた深夜時間になったところで、電力配分決定部30が電力供給制御部40を制御して、商用電源18から住宅用蓄電池20へ電力が供給されるように制御する。これによって深夜電力を利用して住宅用蓄電池20を充電することができる。   In step 120, control is performed so that the residential storage battery 20 is charged with midnight power, and the routine proceeds to step 122. That is, at a predetermined midnight time when the power rate is reduced, the power distribution determining unit 30 controls the power supply control unit 40 so that power is supplied from the commercial power supply 18 to the residential storage battery 20. To do. Thus, the residential storage battery 20 can be charged using late-night power.

一方、ステップ122では、予想太陽光発電量Tから車両用蓄電池予想充電量S及び住宅負荷Jを差し引いた余剰電力が住宅用蓄電池20へ供給されてステップ124へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、予想太陽光発電量Tから車両用蓄電池予想充電量S及び住宅負荷Jを差し引いた余剰電力(T−S−J)が住宅用蓄電池20へ供給されるように電力の配分を制御する。   On the other hand, in step 122, surplus power obtained by subtracting the vehicle storage battery predicted charge amount S and the house load J from the predicted photovoltaic power generation amount T is supplied to the house storage battery 20, and the process proceeds to step 124. That is, when the power distribution determination unit 30 controls the power supply control unit 40, surplus power (TSJ) obtained by subtracting the vehicle storage battery expected charge amount S and the house load J from the expected solar power generation amount T is obtained. The distribution of electric power is controlled so as to be supplied to the storage battery 20 for housing.

ステップ124では、余剰電力があるか否か電力配分決定部30によって判定される。該判定は、車両用蓄電池26及び住宅負荷へ供給してもさらに余剰電力があるか否かを電力配分決定部30が判定し、該判定が肯定された場合にはステップ126へ移行し、否定された場合にはステップ128へ移行する。   In step 124, the power distribution determination unit 30 determines whether there is surplus power. In the determination, the power distribution determination unit 30 determines whether or not there is surplus power even if it is supplied to the vehicle storage battery 26 and the house load. If the determination is affirmative, the process proceeds to step 126, and negative If so, the process proceeds to step 128.

ステップ126では、余剰電力が売電されてステップ128へ移行する。すなわち、電力配分決定部30が電力供給制御部40を制御することによって、太陽電池16で発電された電力の余剰電力が商用電源18へ供給されるように電力の配分を制御する。   In step 126, surplus power is sold, and the process proceeds to step 128. That is, the power distribution determining unit 30 controls the power supply control unit 40 to control power distribution so that surplus power generated by the solar cell 16 is supplied to the commercial power supply 18.

ステップ128では、太陽光発電が終了か否かが電力配分決定部30によって判定される。該判定は、予め定めた時間になったか否かを電力配分決定部30が判定してもよいし、太陽光発電電力監視部42の監視結果を太陽光発電電力予測部32を介して電力配分決定部30が取得し、太陽電池16による発電がなくなったか否かを判定してもよい。該判定が否定された場合にはステップ100に戻って上述の処理が繰り返され、判定が肯定された場合に一連の処理を終了する。なお、太陽電池16による発電が終了した後は、太陽電池16による発電電力や深夜電力によって住宅用蓄電池20に充電された電力を建物12へ供給することにより、経済的かつ環境に優しい電力供給が可能となる。   In step 128, the power distribution determining unit 30 determines whether or not the photovoltaic power generation is completed. In the determination, the power distribution determination unit 30 may determine whether or not a predetermined time has come, and the monitoring result of the solar power generation power monitoring unit 42 is distributed via the solar power generation power prediction unit 32. The determination unit 30 may acquire and determine whether or not the power generation by the solar cell 16 is lost. If the determination is negative, the process returns to step 100 and the above-described processing is repeated. If the determination is affirmative, the series of processing ends. In addition, after the power generation by the solar cell 16 is completed, the power stored in the residential storage battery 20 by the power generated by the solar cell 16 or the late-night power is supplied to the building 12, so that economical and environmentally friendly power supply can be achieved. It becomes possible.

このように、本実施形態では、太陽電池16によって発電された電力が車両用蓄電池26に優先的に充電されるので、車両用蓄電池26を確実に充電することができる。これによって、昼間でも自動車28を使える状態の家庭では、太陽電池16の発電電力を利用して確実に充電できるので経済的である。   Thus, in this embodiment, since the electric power generated by the solar cell 16 is preferentially charged to the vehicle storage battery 26, the vehicle storage battery 26 can be reliably charged. As a result, in a home where the automobile 28 can be used even in the daytime, it is economical because the power generated by the solar cell 16 can be reliably charged.

また、本実施形態では、太陽電池16のよって発電された電力を、車両用蓄電池26、住宅負荷、住宅用蓄電池20の順に優先的に供給することにより、太陽電池16によって発電された電力を無駄なく効率的に使用することができる。   In the present embodiment, the power generated by the solar battery 16 is preferentially supplied in the order of the vehicle storage battery 26, the house load, and the house storage battery 20, so that the power generated by the solar battery 16 is wasted. Can be used efficiently.

また、太陽電池16によって発電された電力により、車両用蓄電池26の充電、住宅負荷への電力供給、住宅用蓄電池20の充電、及び売電のそれぞれが行われた場合、並びに、車両用蓄電池26の充電、住宅負荷への供給、及び住宅用蓄電池20の充電のそれぞれが行われた場合には、CO2排出量がゼロとなり、地球温暖化を抑制する効果が高い。また、太陽電池16の供給配分先が増えるほどCO2排出量を削減することが可能となる。
(第2実施形態)
次に、本発明の第2実施形態に係わる電力供給配分制御装置について説明する。図4は、本発明の第2実施形態に係わる電力供給配分制御装置の概略構成を示す図である。なお、第1実施形態と同一構成について同一符号を付して説明する。また、本実施形態では、第1実施形態に対して、蓄熱機器24を更に備えた構成とされている。
Further, when the power generated by the solar battery 16 is used to charge the vehicle storage battery 26, supply power to the house load, charge the residential storage battery 20, and sell power, and the vehicle storage battery 26. When the charging, the supply to the housing load, and the charging of the housing storage battery 20 are performed, the CO2 emission becomes zero, and the effect of suppressing global warming is high. Moreover, it becomes possible to reduce CO2 emission, so that the supply distribution destination of the solar cell 16 increases.
(Second Embodiment)
Next, the power supply distribution control apparatus according to the second embodiment of the present invention will be described. FIG. 4 is a diagram showing a schematic configuration of a power supply distribution control device according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the same structure as 1st Embodiment. Moreover, in this embodiment, it is set as the structure further provided with the thermal storage apparatus 24 with respect to 1st Embodiment.

本発明の第2実施形態に係わる電力供給配分制御装置11は、住宅などの建物12で使用しる電力の供給を制御する電力管理装置14を備えている。なお、建物12としては、図4では、戸建の住宅を例として示すが、これに限るものではなく、集合住宅や、その他の建物を適用するようにしてもよい。   The power supply distribution control device 11 according to the second embodiment of the present invention includes a power management device 14 that controls the supply of power used in a building 12 such as a house. As the building 12, FIG. 4 shows a detached house as an example, but the present invention is not limited to this, and an apartment house or other buildings may be applied.

電力管理装置14には、太陽電池16、商用電源18、配電盤22、及び蓄熱機器24が接続されていると共に、エンジンとモータを備えたハイブリッド自動車や電気自動車等の自動車28に搭載された車両用蓄電池26が接続可能とされている。また、電力管理装置14は、建物12で使用するための電力を蓄電池する住宅用蓄電池20を備えている。なお、電力管理装置14と車両用蓄電池26との接続は、電気的に接続するためのケーブル21によって接続される(所謂プラグイン)。   The power management device 14 is connected to a solar cell 16, a commercial power source 18, a switchboard 22, and a heat storage device 24, and is used for a vehicle mounted on a vehicle 28 such as a hybrid vehicle or an electric vehicle equipped with an engine and a motor. The storage battery 26 is connectable. The power management apparatus 14 includes a residential storage battery 20 that stores power for use in the building 12. The power management device 14 and the vehicle storage battery 26 are connected by a cable 21 for electrical connection (so-called plug-in).

太陽電池16は、太陽エネルギーを電力に変換するソーラーパネルを有し、該ソーラーパネルによって変換された電力を電力管理装置14へ供給する。   The solar cell 16 has a solar panel that converts solar energy into electric power, and supplies the electric power converted by the solar panel to the power management apparatus 14.

蓄熱機器24は、電力管理装置14から供給される電力によって給湯することによって蓄熱し、温水を建物12へ供給する。例えば、蓄熱機器24は、太陽電池16の発電電力や深夜電力によって水を昇温することにより給湯する。なお、蓄熱機器24は、本実施形態では、水を昇温して蓄熱するが、蓄熱方法としては、他の方法を適用するようにしてもよい。   The heat storage device 24 stores heat by supplying hot water using electric power supplied from the power management device 14 and supplies hot water to the building 12. For example, the heat storage device 24 supplies hot water by raising the temperature of the water using the generated power of the solar cell 16 or midnight power. In addition, in this embodiment, although the heat storage apparatus 24 heats up water and stores heat, you may make it apply another method as a heat storage method.

電力管理装置14は、インバータ変換器を備えており、交流電力を直流電力に変換したり、直流電力を交流電力に変換する機能を備えており、商用電源18から供給される電力を直流電力に変換して住宅用蓄電池20や車両用蓄電池26へ供給することによって充電したり、太陽電池16によって発電された電力や住宅用蓄電池20に蓄電された電力を交流電力に変換して配電盤22を介して建物12に備えた電気機器(例えば、照明や空調装置等)や蓄熱機器24に供給したり、太陽電池16によって発電された電力や住宅用蓄電池20に蓄電された電力を交流電力に変換して商用電源18へ供給することにより売電したり、商用電源18から供給される電力を配電盤22を介して建物12に備えた電気機器に供給したり等の電力の供給制御を行う。   The power management device 14 includes an inverter converter, and has a function of converting AC power into DC power or converting DC power into AC power. The power supplied from the commercial power supply 18 is converted into DC power. It is charged by converting it and supplying it to the storage battery 20 for vehicles or the storage battery 26 for vehicles, or the electric power generated by the solar battery 16 or the electric power stored in the storage battery 20 for residential use is converted into alternating current power and supplied via the switchboard 22. Power supplied to the building 12 (for example, lighting, air conditioner, etc.) and the heat storage device 24, or the electric power generated by the solar cell 16 or the electric power stored in the residential storage battery 20 is converted into AC power. Power supply by supplying power to the commercial power supply 18 and supplying power supplied from the commercial power supply 18 to the electrical equipment provided in the building 12 via the switchboard 22. It is carried out.

また、電力管理装置14は、太陽電池16によって発電された電力を、車両用蓄電池26、配電盤22、及び住宅用蓄電池20へ供給するが、電力を供給する際の配分を制御する。   In addition, the power management device 14 supplies the power generated by the solar battery 16 to the vehicle storage battery 26, the switchboard 22 and the residential storage battery 20, but controls distribution when supplying power.

続いて、本実施形態の電力管理装置14によって電力の配分を制御するための制御系の構成について説明する。図5は、本発明の第2実施形態に係わる電力供給配分制御装置11における電力管理装置14の制御系の構成を示すブロック図である。なお、第1実施形態と同一構成については同一符号を付して説明する。   Subsequently, the configuration of a control system for controlling the distribution of power by the power management apparatus 14 of the present embodiment will be described. FIG. 5 is a block diagram showing a configuration of a control system of the power management apparatus 14 in the power supply distribution control apparatus 11 according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the same structure as 1st Embodiment.

電力管理装置14は、図5に示すように、電力配分決定部31を備えており、電力管理装置14が各電力供給先へ電力を供給する際の配分を決定する。   As illustrated in FIG. 5, the power management apparatus 14 includes a power distribution determination unit 31, and determines a distribution when the power management apparatus 14 supplies power to each power supply destination.

電力配分決定部31には、太陽光発電電力予測部32、予想蓄熱量算出部46、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38が接続されていると共に、電力供給制御部41が接続されている。すなわち、電力配分決定部31は、太陽光発電電力予測部32、予想蓄熱量算出部46、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38から得られる情報に基づいて電力の配分を決定して、電力供給制御部41を制御するようになっている。   Connected to the power distribution determination unit 31 are a photovoltaic power generation power prediction unit 32, an estimated heat storage amount calculation unit 46, a residential battery charge amount monitoring unit 34, a vehicle storage battery charge amount prediction unit 36, and a house load monitoring unit 38. And a power supply control unit 41 is connected. That is, the power distribution determination unit 31 is obtained from the photovoltaic power generation power prediction unit 32, the predicted heat storage amount calculation unit 46, the residential storage battery charge amount monitoring unit 34, the vehicle storage battery charge amount prediction unit 36, and the residential load monitoring unit 38. The power supply control unit 41 is controlled by determining the power distribution based on the obtained information.

太陽光発電電力予測部32には、太陽光発電電力監視部42が接続されており、太陽電池16によって発電される電力が太陽光発電電力監視部42によって監視され、監視結果が太陽光発電電力予測部32に出力される。太陽光発電電力予測部32は、太陽光発電電力監視部42による監視結果から、太陽電池16の発電量を予測して、予測結果を電力配分決定部31へ出力する。例えば、太陽光発電電力予測部32は、特許第2612639号明細書に記載の技術を用いて、翌日の天気予報に基づいて太陽光発電電力を予測することができる。   A photovoltaic power generation monitoring unit 42 is connected to the photovoltaic power generation prediction unit 32, and the power generated by the solar cell 16 is monitored by the photovoltaic power generation monitoring unit 42, and the monitoring result is the photovoltaic power generation power. It is output to the prediction unit 32. The solar power generation power prediction unit 32 predicts the power generation amount of the solar battery 16 from the monitoring result by the solar power generation power monitoring unit 42, and outputs the prediction result to the power distribution determination unit 31. For example, the solar power generation power prediction unit 32 can predict the solar power generation power based on the weather forecast of the next day using the technology described in Japanese Patent No. 2612639.

予想蓄熱量算出部46には、蓄熱機器使用実績検出部48が接続されており、蓄熱機器24の使用実績が蓄熱機器使用実績検出部48によって検出され、検出結果が予想蓄熱量算出部46に出力される。予想蓄熱量算出部46は、蓄熱機器使用実績検出部48による蓄熱機器の使用実績から蓄熱機器24で消費される電力量を予測して、予測結果を電力配分決定部31へ出力する。例えば、予想蓄熱量算出部46は、蓄熱機器24の日々の使用実績を記憶しておき、平均等を求めることにより消費電力を予想することができる。   A heat storage device usage record detection unit 48 is connected to the predicted heat storage amount calculation unit 46, the use record of the heat storage device 24 is detected by the heat storage device use record detection unit 48, and the detection result is sent to the expected heat storage amount calculation unit 46. Is output. The predicted heat storage amount calculation unit 46 predicts the amount of power consumed by the heat storage device 24 from the heat storage device usage record by the heat storage device use record detection unit 48 and outputs the prediction result to the power distribution determination unit 31. For example, the predicted heat storage amount calculation unit 46 can store the daily usage record of the heat storage device 24 and can estimate the power consumption by obtaining an average or the like.

住宅用蓄電池充電量監視部34は、住宅用蓄電池20の充電量を検出して、検出結果を電力配分決定部31へ出力する。   The residential storage battery charge amount monitoring unit 34 detects the charge amount of the residential storage battery 20 and outputs the detection result to the power distribution determination unit 31.

車両用蓄電池充電量予測部36には、車両用蓄電池26の充電量を車両情報として取得する車両情報取得部44が接続されており、該車両情報取得部44によって取得した車両情報が車両用蓄電池充電量予測部36へ出力される。車両用蓄電池充電量予測部36は、車両情報取得部44によって取得した車両用情報から、車両用蓄電池26の充電量を予測する。   The vehicle storage battery charge amount prediction unit 36 is connected to a vehicle information acquisition unit 44 that acquires the charge amount of the vehicle storage battery 26 as vehicle information, and the vehicle information acquired by the vehicle information acquisition unit 44 is the vehicle storage battery. It is output to the charge amount prediction unit 36. The vehicle storage battery charge amount prediction unit 36 predicts the charge amount of the vehicle storage battery 26 from the vehicle information acquired by the vehicle information acquisition unit 44.

また、車両情報取得部44は、一日あたりの走行距離を含む自動車の走行距離実績、自動車28の自家発電を除く消費電力等の情報を取得し、取得結果を車両用蓄電池充電量予測部36を介して電力配分決定部31へ出力する。   In addition, the vehicle information acquisition unit 44 acquires information such as the actual driving distance of the vehicle including the driving distance per day, the power consumption excluding private power generation of the vehicle 28, and the acquired result is stored in the vehicle storage battery charge amount prediction unit 36. To the power distribution determination unit 31.

住宅負荷監視部38は、配電盤22から建物12の電気機器へ供給される電力を監視して監視結果を電力配分決定部31へ出力する。   The residential load monitoring unit 38 monitors the power supplied from the switchboard 22 to the electrical equipment of the building 12 and outputs the monitoring result to the power distribution determining unit 31.

そして、電力配分決定部31は、太陽光発電電力予測部32、予想蓄熱量算出部46、住宅用蓄電池充電量監視部34、車両用蓄電池充電量予測部36、及び住宅負荷監視部38から入力される情報に基づいて、太陽電池16によって発電される電力の配分を決定し、決定結果を電力供給制御部41へ出力するようになっている。これによって、電力供給制御部41が、電力配分決定部31によって決定された電力供給配分に従って太陽電池16の発電電力の供給を制御する。   The power distribution determination unit 31 is input from the photovoltaic power generation power prediction unit 32, the predicted heat storage amount calculation unit 46, the residential battery charge amount monitoring unit 34, the vehicle storage battery charge amount prediction unit 36, and the house load monitoring unit 38. The distribution of the power generated by the solar cell 16 is determined based on the information to be output, and the determination result is output to the power supply control unit 41. Thereby, the power supply control unit 41 controls the supply of the generated power of the solar cell 16 according to the power supply distribution determined by the power distribution determination unit 31.

電力配分決定部31は、具体的には、配電盤22、住宅用蓄電池20、車両用蓄電池26、及び蓄熱機器24への電力の配分を決定して太陽電池16によって発電した電力を供給するように制御する。このとき、本実施形態では、車両用蓄電池26へ太陽電池16によって発電した電力が優先的に供給されるように配分を決定して電力を供給するようになっている。   Specifically, the power distribution determination unit 31 determines the power distribution to the switchboard 22, the residential storage battery 20, the vehicle storage battery 26, and the heat storage device 24 and supplies the power generated by the solar cell 16. Control. At this time, in this embodiment, the distribution is determined so that the electric power generated by the solar cell 16 is preferentially supplied to the vehicle storage battery 26 and the electric power is supplied.

次に、上述のように構成された本発明の第2実施形態に係わる電力供給配分制御装置11で行われる処理について説明する。図6は、本発明の第2実施形態に係わる電力供給配分制御装置11で行われる処理の流れの一例を示すフローチャートである。   Next, processing performed by the power supply distribution control device 11 according to the second embodiment of the present invention configured as described above will be described. FIG. 6 is a flowchart showing an example of the flow of processing performed by the power supply distribution control device 11 according to the second embodiment of the present invention.

まず、ステップ200では、予想太陽光発電量Tが算出されてステップ202へ移行する。予想太陽光発電量の算出は、例えば、太陽光発電電力予測部32が、天気予報、季節(日の出から日没までの時間)、及び太陽電池16の能力等に基づいて算出してもよいし、太陽光発電電力監視部42によって日々の発電電力量を記憶しておき、日々の発電電力量から予測するようにしてもよい。   First, in step 200, the predicted solar power generation amount T is calculated, and the routine proceeds to step 202. For example, the photovoltaic power generation prediction unit 32 may calculate the predicted photovoltaic power generation amount based on the weather forecast, the season (time from sunrise to sunset), the capacity of the solar cell 16, and the like. Alternatively, the daily power generation amount may be stored by the photovoltaic power generation monitoring unit 42 and predicted from the daily power generation amount.

ステップ202では、車両用蓄電池26の予想充電量Sが算出されてステップ204へ移行する。すなわち、車両用蓄電池充電量予測部36が、車両情報取得部44を介して車両情報を自動車28から取得して、車両用蓄電池26の充電量を予測し、予測結果を電力配分決定部31へ出力する。車両用蓄電池充電量予測部36による充電量の予測としては、例えば、車両用蓄電池26の残量から満充電にするために必要な電力量を算出してもよいし、一日あたりの走行距離を含む自動車28の走行距離実績、または自動車の自家発電を除いた消費電力を自動車28の必要電力量を表す情報から予測してもよいし、車両用蓄電池充電量予測部36が、日々の電力使用量を記憶しておき、電力使用量の平均値を算出するようにしてもよい。   In step 202, the expected charge amount S of the vehicle storage battery 26 is calculated, and the routine proceeds to step 204. That is, the vehicle storage battery charge amount prediction unit 36 acquires vehicle information from the automobile 28 via the vehicle information acquisition unit 44, predicts the charge amount of the vehicle storage battery 26, and sends the prediction result to the power distribution determination unit 31. Output. As the prediction of the charge amount by the vehicle storage battery charge amount prediction unit 36, for example, the amount of electric power necessary for full charge can be calculated from the remaining amount of the vehicle storage battery 26, or the travel distance per day Mileage of the vehicle 28 including the vehicle power consumption, or the power consumption excluding the vehicle's in-house power generation may be predicted from the information indicating the required power amount of the vehicle 28. You may make it memorize | store a usage-amount and calculate the average value of a power usage-amount.

ステップ204では、車両用蓄電池26の充電が不要か否かが電力配分決定部31によって判定される。該判定は、車両用蓄電池充電量予測部36が車両情報取得部44を介して車両用蓄電池26の充電量を取得し、取得結果を電力配分決定部31へ出力することにより、電力配分決定部31が車両用蓄電池26が満充電か否か、或いは電力使用量の平均値に対して所定量以上多い充電量が残っているか否か等を判定し、該判定が否定された場合にはステップ206へ移行し、肯定された場合にはステップ208へ移行する。なお、当該ステップ104では、車両用蓄電池26が新たな充電状態になった場合や、充電量が所定量以下の場合にも、充電が必要と判断して判定が否定される。   In step 204, the power distribution determining unit 31 determines whether or not the vehicle storage battery 26 needs to be charged. The determination is made by the vehicle storage battery charge amount prediction unit 36 acquiring the charge amount of the vehicle storage battery 26 via the vehicle information acquisition unit 44 and outputting the acquisition result to the power distribution determination unit 31. 31 determines whether or not the vehicle storage battery 26 is fully charged, or whether or not there is a remaining amount of charge greater than a predetermined amount with respect to the average value of power consumption, and if the determination is negative, step If the result is affirmative, the process proceeds to step 208. In step 104, the determination is denied when it is determined that charging is necessary even when the vehicle storage battery 26 is in a new charged state or when the charge amount is equal to or less than a predetermined amount.

ステップ206では、太陽光発電が車両用蓄電池26へ供給されてステップ208へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、太陽電池16によって発電された電力が車両用蓄電池26へ供給されるように電力の配分を制御する。本実施形態では、車両用蓄電池予想充電量Sが多いほど車両用蓄電池26へ供給する電力割合が増加するように、電力配分決定部31によって電力供給制御部41が制御される。また、電力供給制御部41による車両用蓄電池26の充電は、車両用蓄電池26の充電量が所定量充電された場合に停止されるように制御される。なお、このとき、電力配分決定部31では、車両用蓄電池予想充電量Sが分っているので、太陽電池16によって発電している時間帯のうち、○時間□kWh車両に充電すればよいか分るため、瞬間的に太陽電池16の発電電力を車両用蓄電池26に充電する必要がなく、太陽電池16の発電電力のうち一部だけを充電すればよい。これによって太陽電池16の発電電力のうち、車両用蓄電池26を充電するために必要な電力量を確保することができると共に、車両用蓄電池26に優しい充電が可能となる。   In step 206, solar power is supplied to the vehicle storage battery 26 and the process proceeds to step 208. That is, the power distribution determining unit 31 controls the power supply control unit 41 to control power distribution so that the power generated by the solar cell 16 is supplied to the vehicle storage battery 26. In the present embodiment, the power distribution control unit 41 controls the power supply control unit 41 so that the proportion of the power supplied to the vehicle storage battery 26 increases as the vehicle storage battery expected charge amount S increases. Further, the charging of the vehicle storage battery 26 by the power supply control unit 41 is controlled so as to be stopped when the charging amount of the vehicle storage battery 26 is charged by a predetermined amount. At this time, the electric power distribution determination unit 31 knows the estimated storage amount S for the vehicle storage battery. Therefore, it is not necessary to instantaneously charge the vehicle storage battery 26 with the power generated by the solar battery 16, and only a part of the power generated by the solar battery 16 may be charged. As a result, it is possible to secure the amount of power necessary for charging the vehicle storage battery 26 out of the generated power of the solar battery 16 and to allow the vehicle storage battery 26 to be charged gently.

ステップ208では、予想太陽光発電量Tが車両用蓄電池予想充電量Sより大きいか否かが電力配分決定部31によって判定され、該判定が否定された場合にはステップ210へ移行し、肯定された場合にはステップ212へ移行する。   In step 208, it is determined by the power distribution determination unit 31 whether or not the predicted solar power generation amount T is larger than the vehicle storage battery expected charge amount S. If the determination is negative, the process proceeds to step 210 and affirmed. If YES, go to step 212.

ステップ210では、住宅用蓄電池20に蓄電された電力が、車両用蓄電池26及び住宅負荷(配電盤22)へ供給されてステップ236へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、住宅用蓄電池20に蓄電された電力が車両用蓄電池26及び配電盤22へ供給されるように電力の配分を制御する。   In step 210, the electric power stored in the residential storage battery 20 is supplied to the vehicle storage battery 26 and the residential load (distribution panel 22), and the process proceeds to step 236. That is, the power distribution determining unit 31 controls the power supply control unit 41 to control the power distribution so that the power stored in the residential storage battery 20 is supplied to the vehicle storage battery 26 and the switchboard 22.

ステップ212では、予想太陽光発電量Tから車両用蓄電池予想充電量Sを差し引いた余剰電力が住宅負荷へ供給されてステップ214へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、予想太陽光発電量Tから車両用蓄電池予想充電量Sを差し引いた余剰電力(T−S)が配電盤22へ供給されるように電力の配分をする。   In step 212, surplus power obtained by subtracting the vehicle storage battery predicted charge amount S from the predicted photovoltaic power generation amount T is supplied to the house load, and the process proceeds to step 214. That is, when the power distribution determining unit 31 controls the power supply control unit 41, surplus power (TS) obtained by subtracting the vehicle storage battery predicted charge amount S from the predicted solar power generation amount T is supplied to the switchboard 22. To distribute power.

ステップ214では、住宅負荷Jが算出されてステップ216へ移行する。住宅負荷Jの算出は、例えば、住宅負荷監視部38が配電盤22から供給される電力を監視し、監視結果を電力配分決定部31へ出力し、電力配分決定部31が住宅負荷監視部38から得られる監視結果に基づいて配電盤22に供給される平均電力量等を算出する。   In step 214, the house load J is calculated, and the process proceeds to step 216. For example, the housing load monitoring unit 38 monitors the power supplied from the switchboard 22, outputs the monitoring result to the power distribution determining unit 31, and the power distribution determining unit 31 calculates the housing load J from the housing load monitoring unit 38. Based on the obtained monitoring result, the average amount of power supplied to the switchboard 22 is calculated.

ステップ216では、予想太陽光発電量Tが、車両用蓄電池予想充電量Sと住宅負荷Jとを加算した電力量より大きいか否かが電力配分決定部31によって判定され、該判定が否定された場合にはステップ218へ移行し、肯定された場合にはステップ220へ移行する。   In step 216, it is determined by the power distribution determination unit 31 whether or not the predicted photovoltaic power generation amount T is larger than the power amount obtained by adding the vehicle storage battery predicted charge amount S and the house load J, and the determination is denied. If yes, then go to Step 218; if yes, go to Step 220.

ステップ218では、住宅用蓄電池20の電力が住宅負荷へ供給されてステップ236へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、住宅用蓄電池20に蓄電された電力が配電盤22へ供給されるように電力の配分を制御する。   In step 218, the electric power of the residential storage battery 20 is supplied to the residential load, and the process proceeds to step 236. That is, the power distribution determining unit 31 controls the power supply control unit 41 to control power distribution so that the power stored in the residential storage battery 20 is supplied to the switchboard 22.

一方、ステップ220では、予想太陽光発電量Tから車両用蓄電池予想充電量S及び住宅負荷Jを差し引いた余剰電力が住宅用蓄電池20へ供給されてステップ222へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、予想太陽光発電量Tから車両用蓄電池予想充電量S及び住宅負荷Jを差し引いた余剰電力(T−S−J)が住宅用蓄電池20へ供給されるように電力の配分を制御する。なお、電力供給制御部41が蓄熱機器24へ電力を供給する際には、電力供給制御部41が、蓄熱機器の毎日の給湯時間または給湯量から、平均的な給湯時間または給湯量を算出し、算出結果から蓄熱機器24の蓄熱開始時間を決定して、決定した蓄熱開始時間に蓄熱機器24へ電力を供給するように制御してもよい。   On the other hand, in step 220, surplus power obtained by subtracting the vehicle storage battery expected charge amount S and the house load J from the expected photovoltaic power generation amount T is supplied to the house storage battery 20, and the process proceeds to step 222. That is, when the power distribution determination unit 31 controls the power supply control unit 41, surplus power (TSJ) obtained by subtracting the vehicle storage battery expected charge amount S and the house load J from the expected solar power generation amount T is obtained. The distribution of electric power is controlled so as to be supplied to the storage battery 20 for housing. When the power supply control unit 41 supplies power to the heat storage device 24, the power supply control unit 41 calculates an average hot water supply time or hot water supply amount from the daily hot water supply time or hot water supply amount of the heat storage device. The heat storage start time of the heat storage device 24 may be determined from the calculation result, and control may be performed so that electric power is supplied to the heat storage device 24 at the determined heat storage start time.

ステップ222では、必要蓄熱量Nが算出されてステップ224へ移行する。すなわち、予想蓄熱量算出部46が蓄熱機器使用実績検出部48から得られる蓄熱機器24の使用実績から蓄熱機器24で消費される電力量を予測し、予測結果を電力配分決定部31へ出力する。予想蓄熱量算出部46による必要蓄熱量Nの算出は、例えば、蓄熱機器24の日々の使用実績を記憶しておき、平均等を算出する。   In step 222, the necessary heat storage amount N is calculated, and the routine proceeds to step 224. That is, the predicted heat storage amount calculation unit 46 predicts the amount of power consumed by the heat storage device 24 from the usage record of the heat storage device 24 obtained from the heat storage device use result detection unit 48, and outputs the prediction result to the power distribution determination unit 31. . The calculation of the necessary heat storage amount N by the predicted heat storage amount calculation unit 46 stores, for example, the daily usage record of the heat storage device 24 and calculates the average or the like.

ステップ224では、予想太陽光発電量Tが、車両用蓄電池予想充電量Sと住宅負荷Jと必要蓄熱量Nとを加算した電力量より大きいか否かが電力配分決定部31によって判定され、該判定が否定された場合にはステップ226へ移行し、肯定された場合にはステップ228へ移行する。   In step 224, it is determined by the power distribution determination unit 31 whether or not the predicted photovoltaic power generation amount T is larger than the power amount obtained by adding the vehicle storage battery predicted charge amount S, the house load J, and the necessary heat storage amount N. If the determination is negative, the process proceeds to step 226. If the determination is affirmative, the process proceeds to step 228.

ステップ226では、住宅用蓄電池20の電力が蓄熱機器24へ供給されてステップ236へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、住宅用蓄電池20に蓄電された電力が蓄熱機器24へ供給されるように電力の配分を制御する。なお、電力供給制御部41が蓄熱機器24へ電力を供給する際には、電力供給制御部41が、蓄熱機器の毎日の給湯時間または給湯量から、平均的な給湯時間または給湯量を算出し、算出結果から蓄熱機器24の蓄熱開始時間を決定して、決定した蓄熱開始時間に蓄熱機器24へ電力を供給するように制御してもよい。   In step 226, the electric power of the residential storage battery 20 is supplied to the heat storage device 24, and the process proceeds to step 236. That is, the power distribution determining unit 31 controls the power supply control unit 41 to control the power distribution so that the power stored in the residential storage battery 20 is supplied to the heat storage device 24. When the power supply control unit 41 supplies power to the heat storage device 24, the power supply control unit 41 calculates an average hot water supply time or hot water supply amount from the daily hot water supply time or hot water supply amount of the heat storage device. The heat storage start time of the heat storage device 24 may be determined from the calculation result, and control may be performed so that electric power is supplied to the heat storage device 24 at the determined heat storage start time.

一方、ステップ228では、予想太陽光発電量Tから、車両用蓄電池予想充電量S、住宅負荷J、及び必要蓄熱量Nを差し引いた余剰電力が住宅用蓄電池20へ供給されてステップ230へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、予想太陽光発電量Tから、車両用蓄電池予想充電量S、住宅負荷J、及び必要蓄熱量Nを差し引いた余剰電力(T−S−J−N)が住宅用蓄電池20へ供給されるように電力の配分を制御する。   On the other hand, in step 228, surplus power obtained by subtracting the estimated storage amount S of the vehicle storage battery S, the house load J, and the required heat storage amount N from the expected photovoltaic power generation amount T is supplied to the residential storage battery 20, and the process proceeds to step 230. . That is, when the power distribution determining unit 31 controls the power supply control unit 41, surplus power obtained by subtracting the vehicle storage battery expected charge amount S, the house load J, and the necessary heat storage amount N from the predicted solar power generation amount T ( The distribution of the electric power is controlled such that (TSJN) is supplied to the residential storage battery 20.

ステップ230では、昼以外の住宅負荷Hが算出されてステップ232へ移行する。住宅負荷Jの算出は、例えば、住宅負荷監視部38が配電盤22から供給される電力を監視し、監視結果を電力配分決定部31へ出力し、電力配分決定部31が住宅負荷監視部38から得られる監視結果に基づいて昼以外の時間帯で配電盤22に供給される平均電力量等を算出する。   In step 230, the house load H other than noon is calculated, and the process proceeds to step 232. For example, the housing load monitoring unit 38 monitors the power supplied from the switchboard 22, outputs the monitoring result to the power distribution determining unit 31, and the power distribution determining unit 31 calculates the housing load J from the housing load monitoring unit 38. Based on the obtained monitoring results, the average amount of power supplied to the switchboard 22 in a time zone other than noon is calculated.

ステップ232では、予想太陽光発電量Tが、車両用蓄電池予想充電量Sと住宅負荷Jと必要蓄熱量Nと昼以外の住宅負荷Hとを加算した電力量より大きいか否かが電力配分決定部31によって判定され、該判定が否定された場合にはステップ234へ移行し、肯定された場合にはステップ238へ移行する。   In step 232, it is determined whether or not the estimated photovoltaic power generation amount T is greater than the amount of power obtained by adding the vehicle storage battery expected charge amount S, the house load J, the required heat storage amount N, and the house load H other than daytime. If the determination is negative and the determination is negative, the process proceeds to step 234. If the determination is positive, the process proceeds to step 238.

ステップ234では、住宅用蓄電池20の電力が昼以外の時間帯の住宅負荷へ供給されてステップ236へ移行する。すなわち、電力配分決定部31が予め定めた昼以外の時間帯に電力供給制御部41を制御することによって、住宅用蓄電池20に蓄電された電力が配電盤22へ供給されるように電力の配分を制御する。   In Step 234, the electric power of the residential storage battery 20 is supplied to the residential load in the time zone other than the daytime, and the process proceeds to Step 236. That is, the power distribution determining unit 31 controls the power supply control unit 41 in a time zone other than the daytime determined in advance so that the power stored in the residential storage battery 20 is distributed to the switchboard 22. Control.

ステップ236では、深夜電力で住宅用蓄電池20が充電されるように制御されてステップ242へ移行する。すなわち、電力料金が安くなる予め定めた深夜時間になったところで、電力配分決定部31が電力供給制御部41を制御して、商用電源18から住宅用蓄電池20へ電力が供給されるように制御する。これによって深夜電力を利用して住宅用蓄電池20を充電することができる。   In step 236, control is performed so that the residential storage battery 20 is charged with late-night power, and the routine proceeds to step 242. That is, at a predetermined late-night time when the power rate is reduced, the power distribution determination unit 31 controls the power supply control unit 41 so that power is supplied from the commercial power supply 18 to the residential storage battery 20. To do. Thus, the residential storage battery 20 can be charged using late-night power.

一方、ステップ238では、余剰電力があるか否か電力配分決定部31によって判定される。該判定は、車両用蓄電池26、住宅負荷、蓄熱機器24、及び住宅用蓄電池20へ供給してもさらに余剰電力があるか否かを電力配分決定部31が判定し、該判定が肯定された場合にはステップ240へ移行し、否定された場合にはステップ242へ移行する。   On the other hand, in step 238, the power distribution determination unit 31 determines whether there is surplus power. In the determination, the power distribution determination unit 31 determines whether or not there is surplus power even if the battery is supplied to the vehicle storage battery 26, the house load, the heat storage device 24, and the house storage battery 20, and the determination is affirmed. If yes, then go to Step 240, otherwise go to Step 242.

ステップ240では、余剰電力が売電されてステップ242へ移行する。すなわち、電力配分決定部31が電力供給制御部41を制御することによって、太陽電池16で発電された電力の余剰電力が商用電源18へ供給されるように電力の配分を制御する。   In step 240, surplus power is sold and the process proceeds to step 242. That is, the power distribution determining unit 31 controls the power supply control unit 41 to control power distribution so that surplus power generated by the solar cell 16 is supplied to the commercial power supply 18.

ステップ242では、太陽光発電が終了か否かが電力配分決定部31によって判定される。該判定は、予め定めた時間になったか否かを電力配分決定部31が判定してもよいし、太陽光発電電力監視部42の監視結果を太陽光発電電力予測部32を介して電力配分決定部31が取得し、太陽電池16による発電がなくなったか否かを判定してもよい。該判定が否定された場合にはステップ200に戻って上述の処理が繰り返され、判定が肯定された場合に一連の処理を終了する。なお、太陽電池16による発電が終了した後は、太陽電池16による発電電力や深夜電力によって住宅用蓄電池20に充電された電力を建物12へ供給することにより、経済的かつ環境に優しい電力供給が可能となる。   In step 242, the power distribution determining unit 31 determines whether or not the photovoltaic power generation is finished. In the determination, the power distribution determination unit 31 may determine whether or not a predetermined time has come, and the monitoring result of the solar power generation power monitoring unit 42 is distributed via the solar power generation power prediction unit 32. The determination unit 31 may acquire and determine whether or not the power generation by the solar cell 16 is lost. If the determination is negative, the process returns to step 200 and the above-described processing is repeated. If the determination is affirmative, the series of processing ends. In addition, after the power generation by the solar cell 16 is completed, the power stored in the residential storage battery 20 by the power generated by the solar cell 16 or the late-night power is supplied to the building 12, so that economical and environmentally friendly power supply can be achieved. It becomes possible.

このように、本実施形態においても、太陽電池16によって発電された電力が車両用蓄電池26に優先的に充電されるので、車両用蓄電池26を確実に充電することができる。これによって、昼間でも自動車を使える状態の家庭では、太陽電池16の発電電力を利用して確実に充電できるので経済的である。   Thus, also in this embodiment, since the electric power generated by the solar cell 16 is preferentially charged to the vehicle storage battery 26, the vehicle storage battery 26 can be reliably charged. As a result, in a home in which a car can be used even in the daytime, the power generated by the solar battery 16 can be used for reliable charging, which is economical.

また、本実施形態では、太陽電池16のよって発電された電力を、車両用蓄電池26、住宅負荷、蓄熱機器24、住宅用蓄電池20の順に供給することにより、太陽電池16によって発電された電力を無駄なく効率的に使用することができる。   Moreover, in this embodiment, the electric power generated by the solar cell 16 is supplied in the order of the vehicle storage battery 26, the house load, the heat storage device 24, and the house storage battery 20. It can be used efficiently without waste.

また、太陽電池16によって発電された電力により、車両用蓄電池26の充電、住宅負荷への電力供給、蓄熱機器24への電力供給、住宅用蓄電池20の充電、及び売電のそれぞれが行われた場合、車両用蓄電池26の充電、住宅負荷への供給、蓄熱機器24への電力供給、及び住宅用蓄電池20の充電のそれぞれが行われた場合には、CO2排出量がゼロとなり、地球温暖化を抑制する効果が高い。また、太陽電池16の供給配分先が増えるほどCO2排出量を削減することが可能となる。   In addition, charging of the vehicle storage battery 26, power supply to the house load, power supply to the heat storage device 24, charging of the storage battery 20 and power sale were performed by the power generated by the solar battery 16, respectively. If the vehicle storage battery 26 is charged, the housing load is supplied, the power is supplied to the heat storage device 24, and the housing storage battery 20 is charged, the CO2 emission becomes zero and global warming occurs. The effect which suppresses is high. Moreover, it becomes possible to reduce CO2 emission, so that the supply distribution destination of the solar cell 16 increases.

なお、上記の実施の形態では、太陽電池16による発電が行われる時間帯に、車両用蓄電池26へ優先的に電力を供給するように、供給配分を制御するようにしたが、太陽電池16による発電が行われない時間帯においても、住宅用蓄電池20に充電された電力を、車両用蓄電池26へ優先的に供給するように供給配分を制御するようにしてもよい。   In the above embodiment, the supply distribution is controlled so that power is preferentially supplied to the vehicular storage battery 26 in the time zone in which power generation by the solar battery 16 is performed. The supply distribution may be controlled so that the electric power charged in the residential storage battery 20 is preferentially supplied to the vehicle storage battery 26 even during a time period when power generation is not performed.

10 電力供給配分制御装置
12 建物
14 電力管理装置
16 太陽電池
20 住宅用蓄電池
21 ケーブル
22 配電盤
24 蓄熱機器
26 車両用蓄電池
28 自動車
30、31 電力配分決定部
32 太陽光発電電力予測部
34 住宅用蓄電池充電量監視部
36 車両用蓄電池充電量予測部
38 住宅負荷監視部
40、41 電力供給制御部
42 太陽光発電電力監視部
44 車両情報取得部
46 予想蓄熱量算出部
48 蓄熱機器使用実績検出部
DESCRIPTION OF SYMBOLS 10 Power supply distribution control apparatus 12 Building 14 Power management apparatus 16 Solar cell 20 Residential battery 21 Residential battery 21 Cable 22 Distribution board 24 Thermal storage device 26 Vehicle storage battery 28 Car 30, 31 Power distribution determination part 32 Photovoltaic power prediction part 34 Residential storage battery Charge amount monitoring unit 36 Vehicle storage battery charge amount prediction unit 38 Residential load monitoring unit 40, 41 Power supply control unit 42 Photovoltaic power monitoring unit 44 Vehicle information acquisition unit 46 Expected heat storage amount calculation unit 48 Thermal storage device usage record detection unit

Claims (12)

太陽光によって発電する太陽電池と、
建物で使用する電力を蓄電する建物用蓄電池と、
自動車に搭載され、走行するための電力を蓄電する車両用蓄電池と電気的に接続するための接続手段と、
建物において電力を消費する電力負荷、前記建物用蓄電池、及び前記接続手段に接続された前記車両用蓄電池へ前記太陽電池によって発電された電力を配分して供給されると共に、配分して供給する際に、前記車両用蓄電池へ優先的に供給されるように制御する制御手段と、
を備えた電力供給配分制御装置。
Solar cells that generate electricity by sunlight,
A building storage battery that stores the power used in the building;
A connection means for electrically connecting to a vehicle storage battery that is mounted in an automobile and stores electric power for traveling;
When the power generated by the solar cell is distributed and supplied to the power load that consumes power in the building, the storage battery for the building, and the vehicle storage battery connected to the connection means. Control means for controlling to be preferentially supplied to the vehicle storage battery;
A power supply distribution control device.
前記制御手段は、前記太陽電池によって発電された電力の一部が前記車両用蓄電池に供給されるように、前記太陽電池の発電電力の配分を制御する請求項1に記載の電力供給配分制御装置。   2. The power supply distribution control device according to claim 1, wherein the control unit controls distribution of the generated power of the solar battery so that a part of the power generated by the solar battery is supplied to the vehicle storage battery. . 一日あたりの走行距離を含む自動車の走行距離実績、または自動車の自家発電を除いた消費電力を自動車の必要電力量を表す情報として取得する取得手段を更に備え、
前記制御手段が、前記取得手段によって取得された情報が表す前記必要電力量が多いほど前記車両用蓄電池へ供給する電力割合が増加するように、前記太陽電池の発電電力の配分を制御する請求項1又は請求項2に記載の電力供給配分制御装置。
The vehicle further includes an acquisition means for acquiring the mileage performance of the vehicle including the mileage per day, or the power consumption excluding in-house power generation of the vehicle as information indicating the required power amount of the vehicle,
The said control means controls distribution of the electric power generated by the said solar cell so that the ratio of the electric power supplied to the said storage battery for vehicles increases, so that the said required electric energy amount which the information acquired by the said acquisition means represents increases. The power supply distribution control device according to claim 1 or 2.
前記制御手段は、前記車両用蓄電池が所定量充電された場合に、前記車両用蓄電池への電力供給を停止するように、前記太陽電池の発電電力の配分を制御する請求項1〜3の何れか1項に記載の電力供給配分制御装置。   The said control means controls distribution of the electric power generation of the said solar cell so that the electric power supply to the said storage battery for vehicles may be stopped when the said storage battery for vehicles is charged by predetermined amount. The power supply distribution control device according to claim 1. 前記制御手段は、前記接続手段に接続された前記車両用蓄電池が新たな充電状態になった場合、または充電量が所定量以下の場合に、前記車両用蓄電池へ電力が供給開始されるように制御する請求項1〜4の何れか1項に記載の電力供給配分制御装置。   The control means starts supplying power to the vehicle storage battery when the vehicle storage battery connected to the connection means is newly charged or when the charge amount is a predetermined amount or less. The power supply distribution control device according to any one of claims 1 to 4, which is controlled. 前記制御手段は、前記太陽電池の発電電力から前記車両用蓄電池への充電電力を差し引いた第1余剰電力が前記電力負荷へ優先的に供給されるように、前記太陽電池の発電電力の配分を制御する請求項1〜5の何れか1項に記載の電力供給配分制御装置。   The control means distributes the generated power of the solar cell so that the first surplus power obtained by subtracting the charged power for the vehicle storage battery from the generated power of the solar cell is preferentially supplied to the power load. The power supply distribution control device according to any one of claims 1 to 5, which is controlled. 前記制御手段は、前記第1余剰電力から前記電力負荷が必要とする電力を差し引いた第2余剰電力が前記建物用蓄電池へ優先的に供給されるように、前記太陽電池の発電電力の配分を制御する請求項6に記載の電力供給配分制御装置。   The control means distributes the generated power of the solar cell so that second surplus power obtained by subtracting power required by the power load from the first surplus power is preferentially supplied to the building storage battery. The power supply distribution control device according to claim 6 to be controlled. 前記制御手段は、前記第2余剰電力から前記建物用蓄電池への充電電力を差し引いた第3余剰電力が売電されるように、前記太陽電池の発電電力の配分を制御する請求項7に記載の電力供給配分制御装置。   The said control means controls distribution of the generated electric power of the said solar cell so that the 3rd surplus electric power which deducted the charging electric power to the said storage battery from the said 2nd surplus electric power is sold. Power supply distribution control device. 前記制御手段は、前記車両用蓄電池の充電量、または前記電力負荷が消費する電力量が前記太陽電池の発電量だけでは足りない場合に、前記建物用蓄電池から電力が供給されるように制御する請求項1〜8の何れか1項に記載の電力供給配分制御装置。   The control means performs control so that power is supplied from the building storage battery when the amount of charge of the vehicle storage battery or the amount of power consumed by the power load is not enough for the power generation amount of the solar battery. The power supply distribution control device according to any one of claims 1 to 8. 前記制御手段は、夜間電力を用いて前記建物用蓄電池を充電するように更に制御する請求項1〜9の何れか1項に記載の電力供給配分制御装置。   The power supply distribution control device according to any one of claims 1 to 9, wherein the control unit further controls to charge the building storage battery using nighttime power. 電力により蓄熱する蓄熱機器を更に備え、
前記制御手段は、前記第2余剰電力から前記建物用蓄電池への充電電力を差し引いた第3余剰電力が前記蓄熱機器へ供給されるように、前記太陽電池の発電電力の配分を制御する請求項7に記載の電力供給配分制御装置。
It further comprises a heat storage device that stores heat with electric power,
The said control means controls distribution of the generated electric power of the said solar cell so that the 3rd surplus electric power which deducted the charging electric power to the said storage battery from the said 2nd surplus electric power is supplied to the said thermal storage apparatus. The power supply distribution control device according to claim 7.
前記制御手段は、前記蓄熱機器の毎日の蓄熱時間または蓄熱量から、平均的な蓄熱時間または蓄熱量を算出し、算出結果から前記蓄熱機器の蓄熱開始時間を決定し、決定した前記蓄熱開始時間に前記蓄熱機器へ電力を供給するように更に制御する請求項11に記載の電力供給配分制御装置。   The control means calculates an average heat storage time or heat storage amount from the daily heat storage time or heat storage amount of the heat storage device, determines the heat storage start time of the heat storage device from the calculation result, and determines the determined heat storage start time The power supply distribution control device according to claim 11, further controlling to supply power to the heat storage device.
JP2009116855A 2009-05-13 2009-05-13 Power supply distribution control apparatus Pending JP2010268576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116855A JP2010268576A (en) 2009-05-13 2009-05-13 Power supply distribution control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116855A JP2010268576A (en) 2009-05-13 2009-05-13 Power supply distribution control apparatus

Publications (1)

Publication Number Publication Date
JP2010268576A true JP2010268576A (en) 2010-11-25

Family

ID=43365061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116855A Pending JP2010268576A (en) 2009-05-13 2009-05-13 Power supply distribution control apparatus

Country Status (1)

Country Link
JP (1) JP2010268576A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117838A1 (en) * 2011-03-02 2012-09-07 ソニー株式会社 Charger, charging system, and charging method
WO2013076957A1 (en) 2011-11-22 2013-05-30 パナソニック株式会社 Power management device, power management program, and power distribution system
WO2013125217A1 (en) 2012-02-23 2013-08-29 パナソニック株式会社 Vehicle-mounted apparatus, charger/discharger, and charging/discharging system
JP5364199B1 (en) * 2012-12-03 2013-12-11 積水化学工業株式会社 Energy management system
JP2014110758A (en) * 2012-12-03 2014-06-12 Sekisui Chem Co Ltd Energy management system
CN106314182A (en) * 2016-09-08 2017-01-11 无锡同春新能源科技有限公司 Laser positioning charging pile for supplying power by alternately using photovoltaic power on wharf and power on power supply network
JP2017051094A (en) * 2014-02-27 2017-03-09 三菱重工業株式会社 Charger
JP2019022288A (en) * 2017-07-13 2019-02-07 パナソニックIpマネジメント株式会社 Power distribution system, installation method, branching device
JP2022089634A (en) * 2020-12-04 2022-06-16 株式会社ニプロン Electric vehicle charging system
KR102567474B1 (en) * 2023-03-17 2023-08-16 (주)제이에이치케이 Electric vehicle charging method, device and system capable of dynamic control according to solar power generation amount
WO2023198462A1 (en) * 2022-04-13 2023-10-19 Robert Bosch Gmbh Method for determining a charging power for charging a battery of a vehicle by means of a charging device
WO2023210865A1 (en) * 2022-04-25 2023-11-02 주식회사 지앤아이테크 System and method for predicting charged capacity using sunset/sunrise time predictions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285109A (en) * 1998-03-30 1999-10-15 Sharp Corp Automatic guided vehicle and its charging control method
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2002051481A (en) * 1992-04-24 2002-02-15 Adc Technology Kk Energy controlling apparatus
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system
JP2008066016A (en) * 2006-09-05 2008-03-21 Ebara Ballard Corp Operation method of fuel cell system and fuel cell system
JP2008182851A (en) * 2007-01-25 2008-08-07 Chugoku Electric Power Co Inc:The Power storage apparatus and system
JP2008245416A (en) * 2007-03-27 2008-10-09 Osaka Gas Co Ltd Vehicle and power system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002051481A (en) * 1992-04-24 2002-02-15 Adc Technology Kk Energy controlling apparatus
JPH11285109A (en) * 1998-03-30 1999-10-15 Sharp Corp Automatic guided vehicle and its charging control method
JP2001008380A (en) * 1999-06-17 2001-01-12 Nissan Motor Co Ltd Power management system
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system
JP2008066016A (en) * 2006-09-05 2008-03-21 Ebara Ballard Corp Operation method of fuel cell system and fuel cell system
JP2008182851A (en) * 2007-01-25 2008-08-07 Chugoku Electric Power Co Inc:The Power storage apparatus and system
JP2008245416A (en) * 2007-03-27 2008-10-09 Osaka Gas Co Ltd Vehicle and power system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182922A (en) * 2011-03-02 2012-09-20 Sony Corp Charger, charging system, and charging method
WO2012117838A1 (en) * 2011-03-02 2012-09-07 ソニー株式会社 Charger, charging system, and charging method
US10406927B2 (en) 2011-11-22 2019-09-10 Panasonic Intellectual Property Management Co., Ltd. Electricity management device, electricity management method, and electricity distribution system inside a house with electricity generating device, utility grid connection, and electric vehicle containing a rechargeable battery in a vehicle-to-grid connection with counter device
WO2013076957A1 (en) 2011-11-22 2013-05-30 パナソニック株式会社 Power management device, power management program, and power distribution system
JP2013110881A (en) * 2011-11-22 2013-06-06 Panasonic Corp Power management device, power management program, and power distribution system
US10913371B2 (en) 2011-11-22 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Electricity management device, electricity management method, and electricity distribution system inside a house with electricity generating device, utility grid connection, and electric vehicle containing a rechargeable battery in a vehicle-to-grid connection with counter device
WO2013125217A1 (en) 2012-02-23 2013-08-29 パナソニック株式会社 Vehicle-mounted apparatus, charger/discharger, and charging/discharging system
US9533594B2 (en) 2012-02-23 2017-01-03 Panasonic Intellectual Property Management Co., Ltd. Vehicle-mounted apparatus, charger/discharger, and charge/discharge system
JP2014110758A (en) * 2012-12-03 2014-06-12 Sekisui Chem Co Ltd Energy management system
JP5364199B1 (en) * 2012-12-03 2013-12-11 積水化学工業株式会社 Energy management system
JP2017051094A (en) * 2014-02-27 2017-03-09 三菱重工業株式会社 Charger
JP2017060398A (en) * 2014-02-27 2017-03-23 三菱重工業株式会社 Charge equipment management system, on-vehicle equipment and electric automobile
CN106314182A (en) * 2016-09-08 2017-01-11 无锡同春新能源科技有限公司 Laser positioning charging pile for supplying power by alternately using photovoltaic power on wharf and power on power supply network
JP2019022288A (en) * 2017-07-13 2019-02-07 パナソニックIpマネジメント株式会社 Power distribution system, installation method, branching device
JP7012279B2 (en) 2017-07-13 2022-01-28 パナソニックIpマネジメント株式会社 Power distribution system and installation method
JP2022089634A (en) * 2020-12-04 2022-06-16 株式会社ニプロン Electric vehicle charging system
WO2023198462A1 (en) * 2022-04-13 2023-10-19 Robert Bosch Gmbh Method for determining a charging power for charging a battery of a vehicle by means of a charging device
WO2023210865A1 (en) * 2022-04-25 2023-11-02 주식회사 지앤아이테크 System and method for predicting charged capacity using sunset/sunrise time predictions
KR102567474B1 (en) * 2023-03-17 2023-08-16 (주)제이에이치케이 Electric vehicle charging method, device and system capable of dynamic control according to solar power generation amount

Similar Documents

Publication Publication Date Title
JP2010268576A (en) Power supply distribution control apparatus
JP5547902B2 (en) Power supply control device
JP5071545B2 (en) Electricity supply and demand system
JP5592274B2 (en) DC power supply system
JP4164996B2 (en) Power management system
JP5312504B2 (en) Energy management system
JP5644650B2 (en) Charging / discharging system and charging / discharging device between electric vehicle and house
JP5336810B2 (en) Vehicle and energy supply system
JP5369885B2 (en) Power supply system and control method thereof
JP5336811B2 (en) Energy supply system
JP5925554B2 (en) Control device, control system, and control method
US9233616B2 (en) Charging system for minimizing system energy
JP2012175791A (en) Electric power supply system
JP5551098B2 (en) Energy management system
JP5589890B2 (en) Power supply system
JP2012123637A (en) Charge controller, control method of charge controller, charge/discharge controller, control method of charge/discharge controller, control program, and recording medium
JP2012075282A (en) Charging control device
JP5548061B2 (en) Apartment house power supply system
JP2011250673A (en) Energy controller and control method
JP2012075281A (en) Charging management device
JP2012239260A (en) Power supply system for collective housing
JP2014138534A (en) Power control unit, power control system, and power control method
JP2013226007A (en) Vehicle and control method of the same
JP5983237B2 (en) Power management system
US11772507B1 (en) Energy facility leveraging electric vehicle charging to increase usage of renewable energy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101126

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130820