JP2012206870A - Method for producing spherical silica powder and method for producing semiconductor sealing material - Google Patents

Method for producing spherical silica powder and method for producing semiconductor sealing material Download PDF

Info

Publication number
JP2012206870A
JP2012206870A JP2011071800A JP2011071800A JP2012206870A JP 2012206870 A JP2012206870 A JP 2012206870A JP 2011071800 A JP2011071800 A JP 2011071800A JP 2011071800 A JP2011071800 A JP 2011071800A JP 2012206870 A JP2012206870 A JP 2012206870A
Authority
JP
Japan
Prior art keywords
silica powder
uranium
spherical silica
producing
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011071800A
Other languages
Japanese (ja)
Other versions
JP5956113B2 (en
Inventor
Hirokazu Sugiura
広和 杉浦
Kohei Suzukida
亘平 鈴木田
Takeshi Yanagihara
武 楊原
Nobutaka Tomita
亘孝 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2011071800A priority Critical patent/JP5956113B2/en
Publication of JP2012206870A publication Critical patent/JP2012206870A/en
Application granted granted Critical
Publication of JP5956113B2 publication Critical patent/JP5956113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can produce silica powder of a low uranium concentration at a low cost.SOLUTION: The method includes a grinding process in which ground quartz rocks of 1 ppb or below uranium content are made to collide mutually in high velocity gas to be ground into a ground product and a melting spheroidization process in which the ground product is put into a flame to melt and spheroidize it. In other words, the mingling of uranium from a grinder can be prevented by adopting a method for carrying out a grinding operation without contact with the grinder to the utmost. Especially, the grinding process, by being carried out in a grinding container lined with an elastomer, can reduce the possibility of the mingling from the wall of the container which occurs by the collision of silica powder in a high velocity air current with the wall of the grinding container of the grinder. Since the removal of uranium from a polymer material is relatively simple, even if the polymer material is mixed, the mingling of uranium can be suppressed, and if the polymer material is mixed into the ground product, it is oxidized and scattered in a following melting spheroidization process so that there may be no problem.

Description

本発明は、高純度の球状シリカ粉体を得ることができる球状シリカ粉体の製造方法及びその製造方法を利用する半導体封止材の製造方法に関する。   The present invention relates to a method for producing a spherical silica powder capable of obtaining a high-purity spherical silica powder and a method for producing a semiconductor encapsulant using the production method.

半導体封止材は高い性能を付与する目的で球状シリカ粉体が配合されていることが多い。その場合に球状シリカ粉体中に含まれる不純物の存在は半導体封止材が適用される半導体に大きな影響を与えることになる。   In many cases, a semiconductor sealing material is blended with spherical silica powder for the purpose of imparting high performance. In this case, the presence of impurities contained in the spherical silica powder greatly affects the semiconductor to which the semiconductor sealing material is applied.

従来、高純度の球状シリカ粉体の原料としての高純度シリカを製造する方法としては高純度の天然ケイ石を用いることで製造されるシリカ粉体中の不純物濃度を制御する方法があった(特許文献1)。特許文献1には不純物としてのウラン含有量が0.1ppbのケイ石を用いて溶融シリカ粉体を製造する方法が開示されている。   Conventionally, as a method for producing high-purity silica as a raw material for high-purity spherical silica powder, there has been a method for controlling the impurity concentration in silica powder produced by using high-purity natural silica ( Patent Document 1). Patent Document 1 discloses a method for producing a fused silica powder using silica with an uranium content of 0.1 ppb as an impurity.

特許第3434047号公報Japanese Patent No. 3434047

しかしながら、必要とする純度のケイ石を確保しても粉砕などによって粉体にする過程で接触する粉砕装置の摩耗物由来の不純物が混入するおそれがある。特に、放射性元素は、低濃度であっても性能に大きな影響を与えるのでシリカ粉体への混入量を低くすることが求められるが、ウランなどは自然界に比較的多く含まれており、通常の存在量であっても性能に影響を与えかねない。   However, even if the required purity of the silica is secured, impurities derived from the wear of the pulverizing apparatus that are in contact with the powder in the process of being pulverized may be mixed. In particular, radioactive elements have a significant effect on performance even at low concentrations, so it is required to reduce the amount of silica powder mixed in, but uranium and the like are contained in the natural world in relatively large amounts. Even the abundance can affect performance.

そこで、従来はケイ石を粉砕する粉砕装置を構成する部材についてウランの含有量を減らしていたが、粉砕装置を構成する部材は耐久性の観点から金属やセラミックスなどのウランの分離操作が煩雑な材料で構成されることが多く、ウランの除去には多大な労力が必要であり、製造されるシリカ粉体のコスト上昇の一因となった。   Therefore, conventionally, the content of uranium has been reduced for the members constituting the pulverizer for pulverizing the quartzite. However, the members constituting the pulverizer are complicated in separating uranium such as metal and ceramics from the viewpoint of durability. It is often composed of materials, and a great deal of labor is required to remove uranium, which contributes to an increase in the cost of manufactured silica powder.

本発明は上記実情に鑑み完成されたものであり、低いコストでシリカ粉体が製造できる球状シリカ粉体の製造方法及びその製造方法にて製造された球状シリカ粉体を用いた半導体封止材の製造方法を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and a method for producing spherical silica powder capable of producing silica powder at a low cost, and a semiconductor sealing material using the spherical silica powder produced by the production method Providing a manufacturing method is a problem to be solved.

上記課題を解決する目的で本発明者らが鋭意研究を行った結果、以下の発明を完成した。すなわち、本発明の球状シリカ粉体の製造方法は、ウラン含有量が所定値(例えば1ppb)以下のケイ石破砕物を高速流体中にて互いに衝突させて粉砕し粉砕物にする粉砕工程と、該粉砕物を火炎中に投入して溶融球状化する溶融球状化工程と、を有することを特徴とする。   As a result of intensive studies conducted by the present inventors for the purpose of solving the above problems, the following invention has been completed. That is, the method for producing the spherical silica powder of the present invention includes a pulverization step in which crushed silica stones having a uranium content of a predetermined value (for example, 1 ppb) or less collide with each other in a high-speed fluid to be pulverized into a pulverized product, And a melt spheronization step in which the pulverized product is put into a flame and melt spheroidized.

つまり、極力、粉砕装置に接触させることなく粉砕操作を行うことができる方法を採用することで粉砕装置からのウランの混入を効果的に防止できる。   That is, it is possible to effectively prevent uranium from being mixed from the pulverizer by adopting a method capable of performing the pulverization operation without contacting the pulverizer as much as possible.

特に、前記粉砕工程は高分子材料にてライニングされた粉砕容器中にて行われることが望ましい。本発明の製造方法を実現する粉砕装置においても高速流体に乗ったシリカ粉体が粉砕装置において粉砕操作を行う容器の壁に衝突することにより、容器の壁を構成する材料が混入する可能性があるが、高分子材料にて被覆した容器の中で粉砕を行うことでウランの混入を効果的に防止できる。   In particular, the pulverization step is preferably performed in a pulverization vessel lined with a polymer material. Even in the pulverizing apparatus that realizes the manufacturing method of the present invention, the silica powder riding on the high-speed fluid may collide with the wall of the container that performs the pulverizing operation in the pulverizing apparatus, so that the material constituting the container wall may be mixed. However, mixing of uranium can be effectively prevented by grinding in a container coated with a polymer material.

ここで、高分子材料からウランを除去することは比較的簡単なので、万が一、高分子材料が混入してもウランの混入を抑制することができる。更に、高分子材料が粉砕物中に混入しても、その後の溶融球状化工程において高分子材料は酸化・飛散させることができるので問題になり難いという利点がある。高分子材料としてはエラストマーを採用することで削られにくくなり、粉砕物に夾雑物が混入することを防止できる。   Here, since it is relatively easy to remove uranium from the polymer material, uranium can be prevented from being mixed even if the polymer material is mixed. Furthermore, even if the polymer material is mixed in the pulverized product, the polymer material can be oxidized and scattered in the subsequent melt spheronization step, and therefore, there is an advantage that it does not become a problem. By adopting an elastomer as the polymer material, it becomes difficult to be scraped off, and impurities can be prevented from being mixed into the pulverized product.

そして、上記課題を解決する本発明の半導体封止材は上述した球状シリカ粉体の製造方法にて製造された球状シリカ粉体を分散用樹脂組成物中に分散する工程を有することを特徴とする。   And the semiconductor sealing material of this invention which solves the said subject has the process of disperse | distributing the spherical silica powder manufactured by the manufacturing method of the spherical silica powder mentioned above in the resin composition for dispersion | distribution, It is characterized by the above-mentioned. To do.

ウランの混入を少なくできる本発明の球状シリカ粉体の製造方法を採用することで半導体封止材についてもウランの混入を防止することができる。   By adopting the method for producing the spherical silica powder of the present invention that can reduce uranium contamination, uranium contamination can also be prevented for the semiconductor sealing material.

本発明の球状シリカ粉体の製造方法はウランの混入を簡単に防止できるので低コストで球状シリカ粉体が製造できる利点がある。   The method for producing the spherical silica powder of the present invention has an advantage that the spherical silica powder can be produced at a low cost because it can easily prevent uranium from being mixed.

本実施形態の球状シリカ粉体の製造方法はいわゆる火炎溶融法により球状シリカ粉体を製造する方法である。本実施形態の製造方法にて製造された球状シリカ粉体はウランの混入が少ないので半導体封止材のフィラーとして用いてもウラン由来のα線の放出によるソフトエラー発生の原因になりにくい特徴がある。   The manufacturing method of the spherical silica powder of this embodiment is a method of manufacturing the spherical silica powder by a so-called flame melting method. Since the spherical silica powder produced by the production method of the present embodiment has little uranium contamination, it is difficult to cause soft errors due to emission of uranium-derived α rays even when used as a filler for semiconductor encapsulants. is there.

また、本製造方法にて製造される球状シリカ粉体は樹脂中に分散・添加することで樹脂組成物を調製することができる。この樹脂組成物は半導体素子の封止材に用いることができるほか、基板材料、無機ペースト、接着剤、コーティング剤、精密成形樹脂、プリプレグなどに用いることもできる。   Moreover, the spherical silica powder manufactured by this manufacturing method can prepare a resin composition by disperse | distributing and adding in resin. This resin composition can be used as a sealing material for semiconductor elements, and can also be used for substrate materials, inorganic pastes, adhesives, coating agents, precision molding resins, prepregs, and the like.

本実施形態の球状シリカ粉体の製造方法は粉砕工程と溶融球状化工程とを有する。   The method for producing spherical silica powder of the present embodiment includes a pulverization step and a melt spheronization step.

粉砕工程はケイ石の破砕物を粉砕して最終的に製造される球状シリカ粉体の原料として好適な大きさのシリカの粉砕物を得る工程である。ケイ石破砕物はケイ石を破砕することで得られる。ケイ石破砕物の性状としては特に限定しないが粒径が0.1〜1.0mm程度であることが望ましい。   The pulverization step is a step of obtaining a pulverized product of silica having a size suitable as a raw material for the spherical silica powder to be finally produced by pulverizing the crushed product of silica. Quartzite crushed material is obtained by crushing quartzite. Although it does not specifically limit as a property of a crushed silica stone, It is desirable that a particle size is about 0.1-1.0 mm.

ここでの破砕工程でも破砕装置由来のウランが混入するおそれはあるものの、破砕物の段階においては単位質量当たりの表面積が小さいのでウランの混入が問題になることは少ない。   Although there is a possibility that uranium derived from the crushing apparatus may be mixed in the crushing process here, since the surface area per unit mass is small at the stage of the crushed material, the mixing of uranium is rarely a problem.

但し、破砕時におけるウランの混入を抑制する目的で破砕装置において破砕物に接する部材のウラン含有量を低くすることは望ましいことである。破砕装置におけるウラン含有量を制御することで球状シリカ粉体の製造コストは上昇するものの、破砕時における破砕装置由来の材料の混入量は少ないものと推測できるので、後述する粉砕装置においてウラン含有量を制御するよりはコストの上昇の抑制が可能である。   However, it is desirable to reduce the uranium content of the member in contact with the crushed material in the crushing device for the purpose of suppressing uranium contamination during crushing. Although the production cost of the spherical silica powder increases by controlling the uranium content in the crushing device, it can be assumed that the amount of material derived from the crushing device at the time of crushing is small, so the uranium content in the crushing device described later It is possible to suppress an increase in cost rather than controlling.

ケイ石としては無水ケイ酸を主成分とする鉱石であって、ウラン含有量が所定値以下の材料を用いる。所定値としては最終的に製造された球状シリカ粉体の用途に応じて設定可能な値であり、メモリ素子などの半導体封止材に用いる場合には1ppb程度を設定することができる。ケイ石が含有するウラン含有量を制御する方法は特に限定しない。最初からウラン含有量が所定値以内の形成を用いたり、何らかの手法によってウラン含有量を制御することができる。ケイ石としては、石英、白ケイ石、青白ケイ石、赤白ケイ石、軟ケイ石、ケイ砂などが例示可能で、最終的に必要な不純物濃度、入手性、価格などから適正に選択する。   The silica is an ore containing silicic acid anhydride as a main component, and a material having a uranium content of a predetermined value or less is used. The predetermined value is a value that can be set according to the use of the finally produced spherical silica powder, and can be set to about 1 ppb when used for a semiconductor sealing material such as a memory element. The method for controlling the uranium content contained in the silica is not particularly limited. The formation of the uranium content within the predetermined value can be used from the beginning, or the uranium content can be controlled by some technique. Examples of quartzite include quartz, white quartzite, blue-white quartzite, red-white quartzite, soft quartzite, quartz sand, etc., and select the appropriate impurity concentration, availability, and price. .

粉砕工程はケイ石破砕物を高速流体中にて互いに衝突させて粉砕する工程である。具体的には、空気や窒素ガスなどのキャリヤガスと共にケイ石破砕物を加圧噴射することでケイ石破砕物同士を衝突させることで粉砕する方法であり、一般的にジェットミルと称される装置が含まれる。   The pulverization step is a step in which crushed silica stones are crushed by colliding with each other in a high-speed fluid. Specifically, it is a method of pulverizing by colliding the crushed silica stones with a carrier gas such as air or nitrogen gas by pressurizing them, and is generally called a jet mill. Device included.

特に、互いに衝突するように配置された2以上の加圧ノズルを用いて粉砕を行うことで効率的に粉砕を行うことができる。噴射したケイ石破砕物は繰り返し高圧噴射されることで必要な粒径である所定粒径にまで粉砕する。所定粒径としては一般的な半導体封止材に適用する球状シリカ粉体の製造を目的とする場合には0.1μm〜50μm程度が例示できる。   In particular, the pulverization can be efficiently performed by performing pulverization using two or more pressure nozzles arranged so as to collide with each other. The crushed quartzite crushed material is pulverized to a predetermined particle size, which is a required particle size, by being repeatedly injected with high pressure. An example of the predetermined particle size is about 0.1 μm to 50 μm in the case of producing spherical silica powder applied to a general semiconductor sealing material.

所定粒径以下になった粉砕物を分離する目的で分級手段を内蔵させて粉砕操作と共に分級操作を行うことも可能である。また、流体として水などの液体を用い、その液体中にケイ石破砕物を分散させて高圧噴射を行うことでも同様に粉砕操作を行うことができる。   For the purpose of separating the pulverized product having a predetermined particle size or less, it is possible to incorporate a classification means and perform the classification operation together with the pulverization operation. Further, the pulverization operation can be similarly performed by using a liquid such as water as the fluid, and dispersing the crushed silica in the liquid and performing high-pressure injection.

高速流体の噴射は何らかの容器(粉砕容器)中にて行うことが通常である。この粉砕容器として高分子材料にてライニングされた容器を採用することが望ましい。ライニングする高分子材料としては特に限定しないがエラストマーを採用することが望ましい。エラストマーとしては、天然ゴム、合成ゴム(ポリブタジエン系ゴム、ブタジエン−アクリロニトリル系ゴム、クロロプレン系ゴムなど)のいずれを採用することもできる。また、加硫を全く行っていないゴムであっても採用できる。その他採用可能な高分子材料を例示すると、ポリオレフィン(ポリエチレン(高密度、低密度)、ポリプロピレン、ポリテトラフルオロエチレン、ETFE、PVDF、ポリアミド、ポリエステル、ポリウレタン、シリコーンなどを挙げることができる。特に、高分子材料として望ましい材料としてはポリウレタン、シリコーンを挙げることができる。   The high-speed fluid is usually ejected in some kind of container (pulverization container). It is desirable to use a container lined with a polymer material as the pulverization container. The polymer material to be lined is not particularly limited, but it is desirable to employ an elastomer. As the elastomer, any of natural rubber and synthetic rubber (polybutadiene rubber, butadiene-acrylonitrile rubber, chloroprene rubber, etc.) can be employed. Even rubber that has not been vulcanized at all can be employed. Other polymer materials that can be used include polyolefins (polyethylene (high density, low density), polypropylene, polytetrafluoroethylene, ETFE, PVDF, polyamide, polyester, polyurethane, silicone, etc.) Examples of desirable materials for the molecular material include polyurethane and silicone.

溶融球状化工程は粉砕工程にて得られた粉砕物を溶融して球状化シリカ粉体とする工程である。具体的には粉砕物を火炎中に投入・融解させた後、冷却・固化させることで、球状シリカ微粒子を製造する。   The melt spheronization step is a step in which the pulverized product obtained in the pulverization step is melted to obtain a spheroidized silica powder. Specifically, spherical silica fine particles are produced by charging and melting a pulverized product in a flame and then cooling and solidifying it.

融解・固化は耐火レンガなどにて構成される炉中にて行われるが、不純物の混入を防止するために、耐火レンガなどのシリカ原料に接触する部分には不純物の含有量が少ない材料を採用することが望ましい。   Melting and solidification is performed in a furnace composed of refractory bricks, etc., but in order to prevent impurities from being mixed, materials with low impurity content are used for the parts that come into contact with silica raw materials such as refractory bricks. It is desirable to do.

本実施形態の半導体封止材の製造方法は前述の本実施形態の製造方法にて得られた球状シリカ粉体を分散用樹脂組成物中に分散する工程を有する。球状シリカ粉体は全体の質量を基準として85質量%以上含有することが望ましい。   The manufacturing method of the semiconductor sealing material of this embodiment has the process of disperse | distributing the spherical silica powder obtained by the manufacturing method of the above-mentioned this embodiment in the resin composition for dispersion | distribution. The spherical silica powder is desirably contained in an amount of 85% by mass or more based on the total mass.

分散用樹脂組成物は特に限定しないが、熱硬化性樹脂(又はその前駆体)を採用することが望ましい。例えば、カチオン重合性化合物を採用することができる。カチオン重合性化合物としては、エポキシ樹脂、オキシラン樹脂、オキセタン化合物、環状エーテル化合物、環状ラクトン化合物、チイラン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルトエステル化合物、ビニル化合物などが挙げられ、これらの化合物を単独で、又は複数種類混合して用いることができる。   The resin composition for dispersion is not particularly limited, but it is desirable to employ a thermosetting resin (or a precursor thereof). For example, a cationic polymerizable compound can be employed. Examples of the cationic polymerizable compound include epoxy resins, oxirane resins, oxetane compounds, cyclic ether compounds, cyclic lactone compounds, thiirane compounds, cyclic acetal compounds, cyclic thioether compounds, spiro orthoester compounds, vinyl compounds, and the like. Can be used alone or in combination.

特に、エポキシ樹脂が入手性、取扱性などの観点から好ましい。エポキシ樹脂は特に限定されないが、1分子中に2以上のエポキシ基を有するモノマー、オリゴマー、ポリマーが挙げられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂が挙げられる。   In particular, an epoxy resin is preferable from the viewpoints of availability, handleability, and the like. Although an epoxy resin is not specifically limited, The monomer, oligomer, and polymer which have two or more epoxy groups in 1 molecule are mentioned. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin is mentioned.

エポキシ樹脂以外の具体例としては、フェニルグリシジルエーテル、エチレンオキシド、エピクロロヒドリンなどのオキシラン化合物;トリメチレンオキサイド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタンなどのオキセタン化合物;テトラヒドロフラン、2,3−ジメチルテトラヒドロフラン、トリオキサン、1,3−ジオキソフラン、1,3,6−トリオキサシクロオクタンなどの環状エーテル化合物;β−プロピオラクトン、ε−カプロラクトンなどの環状ラクトン化合物;エチレンスルフィド、3,3−ジメチルチイランなどのチイラン化合物;1,3−プロピンスルフィド、3,3−ジメチルチエタンなどのチエタン化合物;テトラヒドロチオフェン誘導体などの環状チオエーテル化合物;エポキシ化合物とラクトンとの反応によって得られるスピロオルトエステル化合物;スピロオルトカルボナート化合物;環状カルボナート化合物;エチレングリコールジビニルエーテル、アルキルビニルエーテル、トリエチレングリコールジビニルエーテルなどのビニル化合物;スチレン、ビニルシクロヘキセン、イソブチレン、ポリブタジエンなどのエチレン性不飽和化合物が例示できる。カチオン重合性化合物としては、エポキシ樹脂及びこれらの化合物を単独で、又は複数種類混合して用いることができる。   Specific examples other than the epoxy resin include oxirane compounds such as phenylglycidyl ether, ethylene oxide and epichlorohydrin; oxetane compounds such as trimethylene oxide, 3,3-dimethyloxetane and 3,3-dichloromethyloxetane; tetrahydrofuran, 2 Cyclic ether compounds such as 1,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxofuran, 1,3,6-trioxacyclooctane; cyclic lactone compounds such as β-propiolactone and ε-caprolactone; ethylene sulfide, 3, Thiane compounds such as 3-dimethylthiirane; Thiane compounds such as 1,3-propyne sulfide and 3,3-dimethyl thietane; Cyclic thioether compounds such as tetrahydrothiophene derivatives; Spiro ortho ester compounds obtained by reaction with kuton; spiro ortho carbonate compounds; cyclic carbonate compounds; vinyl compounds such as ethylene glycol divinyl ether, alkyl vinyl ether, triethylene glycol divinyl ether; styrene, vinyl cyclohexene, isobutylene, polybutadiene, etc. An ethylenically unsaturated compound can be illustrated. As a cationically polymerizable compound, an epoxy resin and these compounds can be used alone or in combination.

更に上記カチオン重合性化合物を硬化させるために、硬化剤及び硬化触媒を混合させることができる。硬化剤としては1級アミン、2級アミン、フェノール樹脂、酸無水物を用いることができる。硬化触媒としてはリン系イミダゾール化合物、3級アミンなどが用いられ、その他、ルイス酸も3級アミン、オニウム塩などで錯体にして潜在的加熱触媒として使用することができる。具体的には硬化剤として、ジアミノジフェニルメタン、無水ヘキサヒドロフタル酸、フェノール樹脂(ノボラック)が挙げられる。また、硬化触媒として、2−メチルイミダゾール、トリフェニルホスフィン、1,8−ジアザビシクロウンデセンが挙げられる。   Further, a curing agent and a curing catalyst can be mixed in order to cure the cationic polymerizable compound. As the curing agent, primary amine, secondary amine, phenol resin, and acid anhydride can be used. As the curing catalyst, a phosphorus-based imidazole compound, a tertiary amine, or the like is used. In addition, a Lewis acid can be complexed with a tertiary amine, an onium salt, or the like and used as a latent heating catalyst. Specific examples of the curing agent include diaminodiphenylmethane, hexahydrophthalic anhydride, and phenol resin (novolak). Examples of the curing catalyst include 2-methylimidazole, triphenylphosphine, and 1,8-diazabicycloundecene.

・実施例:ウラン濃度0.3ppbのケイ石破砕物(石英砂:体積平均粒径約1mm)100kgをジェットミル(日本ニューマチック工業製、PJM−200SP)にて20kg/時間の処理速度で粉砕した(粉砕工程)。粉砕条件としてはエアー圧力0.6MPaとした。ジェットミルは後方にサイクロン集塵機及びバグフィルタを備えている装置を用いた。更に、粉砕容器内は天然ゴムにてライニングしたものを採用した。 Example: 100 kg of crushed quartzite (quartz sand: volume average particle size of about 1 mm) with a uranium concentration of 0.3 ppb was pulverized with a jet mill (Nihon Pneumatic Kogyo, PJM-200SP) at a processing rate of 20 kg / hour. (Grinding step). The pulverization condition was an air pressure of 0.6 MPa. The jet mill used a device equipped with a cyclone dust collector and a bag filter in the rear. Furthermore, the inside of the pulverizing container was lined with natural rubber.

粉砕終了後、サイクロン集塵機にて粉砕物としてのシリカ粉体の回収を行った。60%の回収率で体積平均粒径5μmのシリカ粉体が得られた。得られたシリカ粉体中のウラン濃度は0.5ppbであった。   After the pulverization, the silica powder was recovered as a pulverized product with a cyclone dust collector. A silica powder having a volume average particle diameter of 5 μm was obtained with a recovery rate of 60%. The uranium concentration in the obtained silica powder was 0.5 ppb.

炉内が耐火材張りされた炉内(高さ5m×内径0.5mの円筒型)で5Nm/時間で供給するLPGガスと、25Nm/時間で供給する酸素ガスとを供給・燃焼させて火炎を生成した中に得られたシリカ粉体を10kg/時間の速度で気流分散投入し、加熱溶融させた後、回収することで体積平均粒径7μmの球状化シリカ粉体を得た(溶融球状化工程)。得られた球状シリカ粉体中のウラン濃度は0.6ppbであった。
・比較例:実施例と同じ石英砂100kgを300Lボールミル(中央化工機製、型番:MB−300)にて20kg/時間の処理速度で粉砕した。粉砕終了後、体積平均粒径5μmのシリカ粉体が得られた。得られたシリカ粉体中のウラン濃度は100ppbであった。
And LPG gas supplied at 5 Nm 3 / time in the furnace is a refractory material tension has been furnace (cylindrical height 5 m × inside diameter 0.5 m), to supply and burning an oxygen gas supplied at 25 Nm 3 / time The silica powder obtained in the course of generating the flame was dispersed into the air stream at a rate of 10 kg / hour, heated and melted, and then recovered to obtain a spheroidized silica powder having a volume average particle diameter of 7 μm ( Melt spheronization step). The uranium concentration in the obtained spherical silica powder was 0.6 ppb.
Comparative Example: 100 kg of the same quartz sand as in the example was pulverized with a 300 L ball mill (manufactured by Chuo Kakoki, model number: MB-300) at a processing rate of 20 kg / hour. After pulverization, a silica powder having a volume average particle size of 5 μm was obtained. The uranium concentration in the obtained silica powder was 100 ppb.

実施例と同じ方法で溶融球状化工程に相当する工程を行った。加熱溶融させた後、回収することで体積平均粒径7μmの球状化シリカ粉体を得た。得られた球状シリカ粉体中のウラン濃度は100ppbであった。
・以上の結果から明らかなように、本実施例の製造方法にて調製された球状シリカ粉体は比較例の製造方法にて調製した球状シリカ粉体と比べてウラン濃度を低く保つことができた。これは、粉砕装置からの摩耗物由来の夾雑物の混入を効果的に防ぐことができたことが要因であると考えられる。
A step corresponding to the melt spheronization step was performed in the same manner as in the example. After melting by heating, recovery was performed to obtain a spheroidized silica powder having a volume average particle diameter of 7 μm. The uranium concentration in the obtained spherical silica powder was 100 ppb.
As is apparent from the above results, the spherical silica powder prepared by the manufacturing method of this example can keep the uranium concentration lower than the spherical silica powder prepared by the manufacturing method of the comparative example. It was. This is considered to be due to the fact that it was possible to effectively prevent contamination of wear-derived impurities from the pulverizer.

Claims (5)

ウラン含有量が所定値以下のケイ石破砕物を高速流体中にて互いに衝突させて粉砕し粉砕物にする粉砕工程と、
該粉砕物を火炎中に投入して溶融球状化する溶融球状化工程と、
を有することを特徴とする球状シリカ粉体の製造方法。
A pulverization step in which crushed silica stones having a uranium content of a predetermined value or less collide with each other in a high-speed fluid to be pulverized into a pulverized product,
A melt spheronization step in which the pulverized product is put into a flame and melt spheroidized;
A method for producing a spherical silica powder, comprising:
前記所定値は1ppbである請求項1に記載の球状シリカ粉体の製造方法。   The method for producing a spherical silica powder according to claim 1, wherein the predetermined value is 1 ppb. 前記粉砕工程は高分子材料にてライニングされた粉砕容器中にて行われる請求項1又は2に記載の球状シリカ粉体の製造方法。   The method for producing spherical silica powder according to claim 1 or 2, wherein the pulverization step is performed in a pulverization container lined with a polymer material. 前記高分子材料はエラストマーである請求項3に記載の球状シリカ粉体の製造方法。   The method for producing spherical silica powder according to claim 3, wherein the polymer material is an elastomer. 請求項1〜4のいずれかに記載の球状シリカ粉体の製造方法にて製造された球状シリカ粉体を分散用樹脂組成物中に分散する工程を有する半導体封止材の製造方法。   The manufacturing method of the semiconductor sealing material which has the process of disperse | distributing the spherical silica powder manufactured with the manufacturing method of the spherical silica powder in any one of Claims 1-4 in the resin composition for dispersion | distribution.
JP2011071800A 2011-03-29 2011-03-29 Method for producing spherical silica powder and method for producing semiconductor encapsulant Active JP5956113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011071800A JP5956113B2 (en) 2011-03-29 2011-03-29 Method for producing spherical silica powder and method for producing semiconductor encapsulant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011071800A JP5956113B2 (en) 2011-03-29 2011-03-29 Method for producing spherical silica powder and method for producing semiconductor encapsulant

Publications (2)

Publication Number Publication Date
JP2012206870A true JP2012206870A (en) 2012-10-25
JP5956113B2 JP5956113B2 (en) 2016-07-20

Family

ID=47186959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011071800A Active JP5956113B2 (en) 2011-03-29 2011-03-29 Method for producing spherical silica powder and method for producing semiconductor encapsulant

Country Status (1)

Country Link
JP (1) JP5956113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022523589A (en) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby and its application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133310A (en) * 1988-07-18 1990-05-22 Internatl Minerals & Chem Corp <Imc> Manufacture of pure, dense, amorphous synthetic silica particle
JPH05506420A (en) * 1990-01-25 1993-09-22 マリンクロド グループ インコーポレーティド Manufacturing method of high purity fused silica
JPH1121432A (en) * 1997-06-30 1999-01-26 Nippon Shiyaauin Uiriamuzu Kk Encapsulant for semiconductor
JP2007176738A (en) * 2005-12-28 2007-07-12 Asahi Glass Si-Tech Co Ltd Stabilized surface-treated foliaceous silica secondary particulate powder and production method
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
WO2010073457A1 (en) * 2008-12-22 2010-07-01 電気化学工業株式会社 Powder, method for producing same, and resin composition containing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133310A (en) * 1988-07-18 1990-05-22 Internatl Minerals & Chem Corp <Imc> Manufacture of pure, dense, amorphous synthetic silica particle
JPH05506420A (en) * 1990-01-25 1993-09-22 マリンクロド グループ インコーポレーティド Manufacturing method of high purity fused silica
JPH1121432A (en) * 1997-06-30 1999-01-26 Nippon Shiyaauin Uiriamuzu Kk Encapsulant for semiconductor
JP2007176738A (en) * 2005-12-28 2007-07-12 Asahi Glass Si-Tech Co Ltd Stabilized surface-treated foliaceous silica secondary particulate powder and production method
JP2008247726A (en) * 2007-03-30 2008-10-16 Admatechs Co Ltd Metallic silicon powder and method for manufacturing the same, spherical silica powder, and resin composition
WO2010073457A1 (en) * 2008-12-22 2010-07-01 電気化学工業株式会社 Powder, method for producing same, and resin composition containing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022523589A (en) * 2019-03-12 2022-04-25 浙江三時紀新材科技有限公司 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby and its application
JP7456642B2 (en) 2019-03-12 2024-03-27 浙江三時紀新材科技有限公司 Method for producing spherical silica powder filler, spherical silica powder filler obtained thereby, and applications thereof

Also Published As

Publication number Publication date
JP5956113B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
TWI639556B (en) Method for producing disintegrated silica fine particles and resin composition including same
CN1827689A (en) Polyarylene ether ketone powder, molding containing the same and method for preparing the same
CN104221140B (en) Resin combination and semiconductor device
CN103937294B (en) Preparation method of silicon micropowder for high-density integrated circuit packaging
CN105522161A (en) Rapid large-scale preparing method for small-grain-size spherical powder for 3D printing
JP2007051019A (en) Method for producing spheroidized inorganic powder
US10364152B2 (en) Particle production apparatus, particle production method and method for producing semiconductor encapsulating resin composition
US11260397B2 (en) Device for granulating powders by cryogenic atomisation
JP5956113B2 (en) Method for producing spherical silica powder and method for producing semiconductor encapsulant
WO2009139425A1 (en) Amorphous siliceous powder, process for production of the same, and use thereof
CN108296490A (en) A kind of manufacturing method of spherical shape tungsten tantalum alloy powder
JP5090404B2 (en) Manufacturing method of resin tablet for optical semiconductor sealing, resin tablet for optical semiconductor sealing obtained thereby, and optical semiconductor device using the same
JP2019112283A (en) Method for producing glass filler
TWI457282B (en) Amorphous siliceous powder, method for production thereof, resin composition, and semiconductor sealing material
JPWO2017014067A1 (en) Glass filler and resin composition for three-dimensional modeling using the same
CN103374241A (en) Integrated powder modification production process
JP5580513B2 (en) Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method
SG184177A1 (en) Method for producing semiconductor encapsulating resin composition and pulverizing apparatus
JP5094184B2 (en) Metallic silicon powder and method for producing the same, spherical silica powder and resin composition
KR101417335B1 (en) Manufacturing Process for Aggregate Using Blast Furnace Slag and FINEX Slag and Aggregate
JP4569296B2 (en) Manufacturing method of resin tablet for semiconductor sealing and manufacturing method of resin molding
JP5544205B2 (en) Method for producing spherical silica particles
JP5725667B2 (en) Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method
CN1784255A (en) Method of crystallizing organic oligomer, epoxy resin composition containing organic oligomer obtained by the method and epoxy resin cured material
JPS6243452B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150520

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5956113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250