JP5725667B2 - Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method - Google Patents
Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method Download PDFInfo
- Publication number
- JP5725667B2 JP5725667B2 JP2012219886A JP2012219886A JP5725667B2 JP 5725667 B2 JP5725667 B2 JP 5725667B2 JP 2012219886 A JP2012219886 A JP 2012219886A JP 2012219886 A JP2012219886 A JP 2012219886A JP 5725667 B2 JP5725667 B2 JP 5725667B2
- Authority
- JP
- Japan
- Prior art keywords
- inorganic powder
- raw material
- powder
- spherical
- spherical inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 218
- 238000004519 manufacturing process Methods 0.000 title claims description 52
- 239000011342 resin composition Substances 0.000 title claims description 11
- 239000002994 raw material Substances 0.000 claims description 98
- 239000002245 particle Substances 0.000 claims description 37
- 238000010438 heat treatment Methods 0.000 claims description 29
- 238000004381 surface treatment Methods 0.000 claims description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000012159 carrier gas Substances 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 239000000377 silicon dioxide Substances 0.000 claims description 12
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical group C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 11
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 238000007711 solidification Methods 0.000 claims description 9
- 230000008023 solidification Effects 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 150000004706 metal oxides Chemical class 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229910010272 inorganic material Inorganic materials 0.000 claims description 5
- 239000011147 inorganic material Substances 0.000 claims description 5
- 238000005563 spheronization Methods 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 description 67
- 238000012360 testing method Methods 0.000 description 33
- 239000007789 gas Substances 0.000 description 24
- 230000008018 melting Effects 0.000 description 22
- 239000003822 epoxy resin Substances 0.000 description 14
- 229920000647 polyepoxide Polymers 0.000 description 14
- -1 silica or alumina) Chemical class 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000009826 distribution Methods 0.000 description 8
- 238000004220 aggregation Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 6
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010309 melting process Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003405 preventing effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- CQOZJDNCADWEKH-UHFFFAOYSA-N 2-[3,3-bis(2-hydroxyphenyl)propyl]phenol Chemical compound OC1=CC=CC=C1CCC(C=1C(=CC=CC=1)O)C1=CC=CC=C1O CQOZJDNCADWEKH-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000004294 cyclic thioethers Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002921 oxetanes Chemical class 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 150000004873 thianes Chemical class 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- CYIGRWUIQAVBFG-UHFFFAOYSA-N 1,2-bis(2-ethenoxyethoxy)ethane Chemical compound C=COCCOCCOCCOC=C CYIGRWUIQAVBFG-UHFFFAOYSA-N 0.000 description 1
- ZXHDVRATSGZISC-UHFFFAOYSA-N 1,2-bis(ethenoxy)ethane Chemical compound C=COCCOC=C ZXHDVRATSGZISC-UHFFFAOYSA-N 0.000 description 1
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- AUAGGMPIKOZAJZ-UHFFFAOYSA-N 1,3,6-trioxocane Chemical compound C1COCOCCO1 AUAGGMPIKOZAJZ-UHFFFAOYSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- CXURGFRDGROIKG-UHFFFAOYSA-N 3,3-bis(chloromethyl)oxetane Chemical compound ClCC1(CCl)COC1 CXURGFRDGROIKG-UHFFFAOYSA-N 0.000 description 1
- RVGLUKRYMXEQAH-UHFFFAOYSA-N 3,3-dimethyloxetane Chemical compound CC1(C)COC1 RVGLUKRYMXEQAH-UHFFFAOYSA-N 0.000 description 1
- RPRIYERFOHERFT-UHFFFAOYSA-N 3,3-dimethylthietane Chemical class CC1(C)CSC1 RPRIYERFOHERFT-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 239000007848 Bronsted acid Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical class [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004200 deflagration Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- VOVUARRWDCVURC-UHFFFAOYSA-N thiirane Chemical compound C1CS1 VOVUARRWDCVURC-UHFFFAOYSA-N 0.000 description 1
- 150000003553 thiiranes Chemical class 0.000 description 1
- 150000003572 thiolanes Chemical class 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Silicon Compounds (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、球状無機物粉体の製造方法及び球状無機物粉体製造装置並びに樹脂組成物の製造方法に関する。 The present invention relates to a spherical inorganic powder manufacturing method, a spherical inorganic powder manufacturing apparatus, and a resin composition manufacturing method.
シリカやアルミナからなる球状無機物粉体を製造する方法としては、含酸素雰囲気下にて対応する金属粉末を酸化させて得られる方法(VMC法)や、火炎溶融法などを挙げることができる。 Examples of the method for producing the spherical inorganic powder made of silica or alumina include a method (VMC method) obtained by oxidizing a corresponding metal powder in an oxygen-containing atmosphere, a flame melting method, and the like.
VMC法は、酸素を含む雰囲気中でバーナーにより化学炎を形成し、この化学炎中に目的とする酸化物粒子の一部を構成する金属粉末を粉塵雲が形成される程度の量投入し、爆燃を起こして球状の酸化物粒子を得る方法である。 In the VMC method, a chemical flame is formed by a burner in an atmosphere containing oxygen, and an amount of metal powder that forms part of the target oxide particles is added to the chemical flame so that a dust cloud is formed. This is a method for obtaining spherical oxide particles by deflagration.
火炎溶融法は目的とする球状金属酸化物粒子を構成する金属酸化物を粉砕などにより粉末化した後に、火炎中に投入・溶解させた後、冷却・固化させることで、球状金属酸化物粒子を製造する方法である。 In the flame melting method, the metal oxide constituting the target spherical metal oxide particles is pulverized by pulverization or the like, and then charged and dissolved in a flame. It is a manufacturing method.
いずれの方法を採用するにしても原料になる粉体を火炎中に輸送する必要がある。その場合に原料粉体が凝集したり輸送路に付着するなどの原因によって脈動が生じて輸送が円滑に進まないことがあり、輸送が円滑に進行しないと製造条件が大きく変化して目的の性状をもつ球状無機物粉体が得られないことになる。 Regardless of which method is used, it is necessary to transport the raw material powder into the flame. In this case, pulsation may occur due to causes such as the raw material powder agglomerating or adhering to the transportation path, and transportation may not proceed smoothly.If transportation does not proceed smoothly, the production conditions will change greatly and the desired properties Thus, a spherical inorganic powder having a particle size cannot be obtained.
この問題に対処する従来技術としては、無機質原料粉末を火炎中に溶射して球状化する球状無機質微粉末の製造方法であって、平均粒径0.5〜3μmの無機質原料粉末に分散系表面処理剤を混合した後、溶射バーナーの火炎に噴霧することにより、溶射バーナーや配管への前記無機質原料粉末の付着を防止すると共に、該原料粉末の凝集による溶射時の粒子の増大化を防止することを特徴とする球状無機質微粉末の製造方法及び製造装置が開示されている(特許文献1)。特許文献1には分散系表面処理剤としてシランカップリング剤が開示されている。 As a conventional technique for dealing with this problem, there is a method for producing a spherical inorganic fine powder in which an inorganic raw material powder is sprayed into a flame to form a spheroid, and the surface of the dispersion system is applied to the inorganic raw material powder having an average particle size of 0.5 to 3 μm After mixing the treatment agent, spraying on the flame of the thermal spray burner prevents the inorganic raw material powder from adhering to the thermal spray burner and piping, and prevents increase of particles during thermal spraying due to aggregation of the raw material powder. A manufacturing method and manufacturing apparatus for spherical inorganic fine powder characterized by the above is disclosed (Patent Document 1). Patent Document 1 discloses a silane coupling agent as a dispersion surface treatment agent.
ところで、本出願人は従来より球状無機物微粉体を製造しており、その過程において、凝集や付着の発生を防止して脈動を防止する手法を確立している。 By the way, the present applicant has conventionally manufactured spherical inorganic fine powder, and has established a method for preventing pulsation by preventing the occurrence of aggregation and adhesion in the process.
本発明は上記実情に鑑み開示するものであり、従来技術とは異なる新規な処理剤にて粉体の凝集・付着を抑制する球状無機物粉体の製造方法及び製造装置、並びに、それらの製造方法にて球状無機物粉体を製造する工程をもつ樹脂組成物の製造方法を提供することを解決すべき課題とする。 SUMMARY OF THE INVENTION The present invention is disclosed in view of the above circumstances, and a manufacturing method and manufacturing apparatus for spherical inorganic powder that suppresses aggregation and adhesion of powder with a novel processing agent different from the prior art, and a manufacturing method thereof. It is a problem to be solved to provide a method for producing a resin composition having a step of producing spherical inorganic powders.
本発明の球状無機物粉体の製造方法は、金属からなる原料無機物粉体にオルガノシラザン類を接触させて処理済原料無機物粉体にする表面処理工程と、
前記処理済原料無機物粉体をキャリヤガスと共に搬送する搬送工程と搬送された前記処理済原料無機物粉体を高温火炎中に分散させて燃焼させる燃焼工程と燃焼した前記処理済原料無機物粉体を前記高温火炎中から取り出して冷却凝固させる凝固工程とをもつ球状化工程と、
を有することを特徴とする。
The method for producing a spherical inorganic powder of the present invention includes a surface treatment step in which an organosilazane is brought into contact with a raw material inorganic powder made of metal to form a treated raw inorganic powder,
A conveying step of conveying the treated raw material inorganic powder together with a carrier gas; a combustion step of dispersing the conveyed treated raw material inorganic powder in a high temperature flame and burning; and the treated raw material inorganic powder burned A spheronization process having a solidification process in which it is taken out from the high-temperature flame and solidified by cooling;
It is characterized by having.
つまり、本発明の球状無機物粉体の製造方法は、オルガノシラザン類にて表面処理を行うことで原料無機物粉体の粉体特性を向上し、粉体間の凝集防止や、粉体が輸送路に付着することを防止している。オルガノシラザン類はシランカップリング剤と比較して同等乃至優れた付着・凝集防止効果を発揮する。 That is, the spherical inorganic powder production method of the present invention improves the powder characteristics of the raw inorganic powder by surface treatment with organosilazanes, prevents aggregation between the powders, and the powder is transported. To prevent adhesion. Organosilazanes exhibit the same or superior adhesion / aggregation preventing effect as compared with silane coupling agents.
ここで、前記表面処理工程は前記原料無機粉体の表面積1m2 当たり0.05μモル〜5μモルの前記オルガノシラザン類を接触させる工程であることが望ましい。そして、前記オルガノシラザン類はヘキサメチルジシラザンであることが望ましい。 Here, the surface treatment step is preferably a step of contacting said organosilazane such 0.05μ mol ~5μ mol surface area 1 m 2 per the raw inorganic powder. The organosilazane is preferably hexamethyldisilazane.
上記課題を解決する本発明の樹脂組成物の製造方法が製造する樹脂組成物は球状無機物粉体と、前記球状無機物粉体を分散する有機樹脂材料とを有しており、その球状無機物粉体は前述の本発明の球状無機物粉体の製造方法により製造されることを特徴とする。 The resin composition produced by the method for producing a resin composition of the present invention that solves the above problems comprises a spherical inorganic powder and an organic resin material in which the spherical inorganic powder is dispersed, and the spherical inorganic powder. Is characterized by being produced by the above-described method for producing a spherical inorganic powder of the present invention.
また、上記課題を解決する本発明の球状無機物粉体の製造装置は、金属からなる原料無機物粉体にオルガノシラザン類を接触させて処理済原料無機物粉体にする表面処理手段と、
前記処理済原料無機物粉体をキャリヤガスにて搬送する原料搬送路をもつ原料搬送手段と、
前記処理済原料無機物粉体が前記原料搬送手段にて内部に搬送され且つ高温火炎を発生させる火炎発生装置を内部にもつ内部空間をもち、搬送された前記処理済原料無機物粉体を加熱処理する加熱炉と、
前記加熱炉の内部から加熱処理後の無機物粉体を搬出する搬出手段と、
を有することを特徴とする。
In addition, the spherical inorganic powder production apparatus of the present invention that solves the above-mentioned problems includes a surface treatment means for bringing a raw material inorganic powder made of metal into contact with an organosilazane to form a treated raw material inorganic powder,
Raw material transport means having a raw material transport path for transporting the treated raw material inorganic powder with a carrier gas;
The treated raw material inorganic powder is conveyed inside by the raw material conveying means and has an internal space having a flame generating device for generating a high temperature flame, and the conveyed treated raw material inorganic powder is heated. A heating furnace;
Unloading means for unloading the inorganic powder after heat treatment from the inside of the heating furnace;
It is characterized by having.
本発明の球状無機物粉体の製造方法及び製造装置は上記構成を採用することから以下の作用効果を発揮する。すなわち、オルガノシラザン類を表面に接触させて処理することで原料無機物粉体における互いの凝集や輸送路への付着が効果的に抑制できる。 Since the manufacturing method and the manufacturing apparatus of the spherical inorganic powder of the present invention adopt the above configuration, the following effects are exhibited. That is, by treating the organosilazane in contact with the surface, it is possible to effectively suppress mutual aggregation and adhesion to the transport path in the raw inorganic powder.
(球状無機物粉体の製造方法)
本発明の球状無機物粉体の製造方法について、以下、実施形態に従い詳細に説明を行う。本実施形態の球状無機物粉体の製造方法はVMC法に適用される。なお、溶融法及びVMC法は排他的な製造方法ではなく、VMC法にて説明するように、構成として組み合わせることも可能である。つまり、VMC法にて燃焼させる原料無機物粉体中に製造される球状無機物粉体を構成する無機物を混合することで、製造条件を変化させることが可能になって、種々の性状をもつ球状無機物粉体を製造することができる。
(Method for producing spherical inorganic powder)
Hereinafter, the manufacturing method of the spherical inorganic powder of the present invention will be described in detail according to the embodiment. Method for producing a spherical inorganic powder of the present embodiment is applied to a V MC method. Note that the melting method and the VMC method are not exclusive manufacturing methods, and can be combined as a configuration as described in the VMC method. In other words, it is possible to change the production conditions by mixing the inorganic material constituting the spherical inorganic powder produced in the raw material inorganic powder to be combusted by the VMC method, so that the spherical inorganic material having various properties can be obtained. Powder can be manufactured.
(参考)溶融法
本実施形態の球状無機物粉体の製造方法は原料無機物粉体を加熱溶融して球状無機物粉体を製造する方法であり、表面処理工程と球状化工程とを有する。原料無機物粉体の形態は特に限定しないが、原料無機物粉体の粒径(粒径分布)によって製造される球状無機物粉体の粒径(粒径分布)が変化するので、必要な粒径(粒径分布)が実現できるように粒径(粒径分布)を設定する。
( Reference ) Melting Method The method for producing a spherical inorganic powder of the present embodiment is a method for producing a spherical inorganic powder by heating and melting the raw inorganic powder, and has a surface treatment step and a spheroidizing step. The form of the raw material inorganic powder is not particularly limited, but the particle size (particle size distribution) of the spherical inorganic powder produced varies depending on the particle size (particle size distribution) of the raw material inorganic powder. The particle size (particle size distribution) is set so that the particle size distribution can be realized.
原料無機物粉体は溶融・固化後に球状無機物粉体を形成可能な材料から形成される。溶融・固化によって変化しない無機物から形成される球状無機物粉体を製造する場合にはその無機物からなる原料無機物粉体を採用する。例えば、球状無機物粉体が金属酸化物(シリカやアルミナなど)から形成される場合には、その金属酸化物からなる原料無機物粉体を用いることができる。また、原料無機物粉体としては低融点ガラスなどの混合物を採用することもできる。更に、ある種の有機物などのように、加熱によって揮散する化合物を混合しても良い。 The raw inorganic powder is formed from a material capable of forming a spherical inorganic powder after melting and solidification. When producing a spherical inorganic powder formed from an inorganic material that does not change due to melting and solidification, a raw material inorganic powder composed of the inorganic material is employed. For example, when the spherical inorganic powder is formed from a metal oxide (such as silica or alumina), a raw material inorganic powder composed of the metal oxide can be used. In addition, a mixture such as a low-melting glass can be employed as the raw inorganic powder. Furthermore, you may mix the compound volatilized by heating like a certain kind of organic substance.
原料無機物粉体として体積平均粒径が0.1μmから5.0μmであるものは輸送路において付着や凝集が問題になり易いので本実施形態の製造方法を採用することが望ましい。 Since the raw material inorganic powder having a volume average particle size of 0.1 μm to 5.0 μm is likely to cause adhesion and aggregation in the transportation path, it is desirable to employ the manufacturing method of this embodiment.
表面処理工程は原料無機物粉体にオルガノシラザン類を接触させて処理済原料無機物粉体にする工程である。オルガノシラザン類はSi−NH−Si結合を有し、1つ以上の炭化水素基をもつ化合物であれば充分であり、特に限定しない。例えば、ジシラザン:(R3Si)2NH、シクロシラザン:(R2SiNH)nなどが例示できる。ここで、Rはすべて独立して選択可能な炭化水素基である。特にヘキサメチルジシラザン(HMDS)を採用することが望ましい。オルガノシラザン類は原料無機粉体の表面積1m2 当たり0.05μモル〜5μモルの範囲で用いることが望ましく、0.07μモル〜3μモルの範囲で用いることがより望ましい。ここで、原料無機物粉体の表面積は窒素ガスを用いたBET法により測定した。 The surface treatment step is a step of bringing a raw material inorganic powder into contact with an organosilazane to obtain a treated raw material inorganic powder. The organosilazanes are not particularly limited as long as they are compounds having Si—NH—Si bonds and having one or more hydrocarbon groups. Examples thereof include disilazane: (R 3 Si) 2 NH and cyclosilazane: (R 2 SiNH) n . Here, all R are independently selectable hydrocarbon groups. In particular, it is desirable to employ hexamethyldisilazane (HMDS). Organosilazanes are preferably used in the range of 0.05 to 5 μmol, more preferably in the range of 0.07 to 3 μmol per 1 m 2 of the surface area of the raw inorganic powder. Here, the surface area of the raw inorganic powder was measured by the BET method using nitrogen gas.
原料無機物粉体にオルガノシラザン類を接触させる方法としては特に限定しない。例えば、オルガノシラザン類が液体状である場合にはそのままで、又は、何らかの溶媒を用いた溶液として添加して混合することができる。特に混合機や粉砕機中にて、よく撹拌しながらオルガノシラザン類を添加することで、原料無機物粉体の表面に対して、より均一に付着させることができる。オルガノシラザン類の添加方法についても特に限定しないが、噴霧器を用いて霧状としたオルガノシラザン類をそのまま又は何らかの溶媒を用いた溶液として添加することが望ましい。また、原料無機物粉体の一部について、その表面にオルガノシラザン類を接触させて処理した後に、残りの原料無機物粉体に混合することで、原料無機物粉体の全体を処理することもできる。ここで、オルガノシラザン類は、原料無機物粉体表面に単に付着しているものであっても良いし、原料無機物粉体表面との間で化学反応が進行しているものでも良い。 The method for bringing the organosilazane into contact with the raw material inorganic powder is not particularly limited. For example, when the organosilazane is in a liquid state, it can be mixed as it is or as a solution using some solvent. In particular, by adding organosilazanes with good stirring in a mixer or pulverizer, it can be more uniformly adhered to the surface of the raw material inorganic powder. The method for adding the organosilazanes is not particularly limited, but it is desirable to add the organosilazanes atomized using a sprayer as they are or as a solution using some solvent. In addition, a part of the raw material inorganic powder can be processed by bringing the organosilazane into contact with the surface of the raw material inorganic powder and then mixing the remaining raw material inorganic powder with the remaining raw material inorganic powder. Here, the organosilazanes may be those that are simply attached to the surface of the raw material inorganic powder, or those that undergo a chemical reaction with the surface of the raw material inorganic powder.
球状化工程は搬送工程と溶融工程と凝固工程とをもつ。搬送工程により原料無機物粉体を搬送した後、溶融工程にて原料無機物粉体を溶融・球状化し、凝固工程にて溶融した原料無機物粉体を凝固させている。 The spheronization process has a conveyance process, a melting process, and a solidification process. After the raw material inorganic powder is transported in the transporting process, the raw material inorganic powder is melted and spheroidized in the melting process, and the melted raw material inorganic powder is solidified in the solidifying process.
搬送工程は処理済原料無機物粉体をキャリヤガスと共に搬送する工程である。ホッパーなどに貯蔵された処理済原料無機物粉体をキャリヤガスを流通させている輸送路中に供給することで搬送する。キャリヤガスとしては処理済原料無機物粉体との間で望まない反応が進行しないガスを選択する。窒素、空気、酸素、アルゴンなどの希ガスなどが採用できる。特に常温にて搬送する場合であって、特に反応性が高い材料から構成される原料無機物粉体を採用しない限り、窒素や空気を採用することがコストの観点からは望ましい。 The transporting process is a process of transporting the processed raw material inorganic powder together with the carrier gas. The processed raw material inorganic powder stored in a hopper or the like is conveyed by being supplied into a transport path through which a carrier gas is circulated. As the carrier gas, a gas that does not cause an undesired reaction with the treated raw inorganic powder is selected. Nitrogen, air, oxygen, rare gases such as argon can be employed. In particular, it is desirable to use nitrogen or air from the viewpoint of cost unless it is a raw material inorganic powder composed of a highly reactive material, especially when transporting at room temperature.
溶融工程は搬送された処理済原料無機物粉体を高温火炎中に分散させて加熱溶融する工程である。溶融工程は加熱炉中にて行うことが望ましい。加熱炉は特に限定しないが、製造する球状無機物粉体に要求される純度に応じて加熱炉の壁を構成する材料を選択することが望ましい。例えば、製造する球状無機物粉体に対して、ウラン濃度が所定値以下であることが要求されている場合には、原料無機物粉体及び球状無機物粉体が接触する可能性がある加熱炉の壁を構成する材料中のウラン濃度を低く制御することが望ましい。 The melting step is a step of dispersing and heating the processed raw material inorganic powder in a high-temperature flame. The melting step is preferably performed in a heating furnace. Although a heating furnace is not specifically limited, It is desirable to select the material which comprises the wall of a heating furnace according to the purity requested | required of the spherical inorganic powder to manufacture. For example, when the spherical inorganic powder to be manufactured is required to have a uranium concentration of a predetermined value or less, the wall of the heating furnace in which the raw inorganic powder and the spherical inorganic powder may come into contact with each other It is desirable to control the uranium concentration in the material that constitutes low.
凝固工程は、溶融工程にて加熱溶融した原料無機物粉体を火炎中から回収して、冷却凝固させる工程である。冷却凝固させるには火炎中から球状化した原料無機物粉体を回収する必要があるが、火炎中から回収する方法としては限定しない。 The solidification step is a step in which the raw material inorganic powder heated and melted in the melting step is recovered from the flame and cooled and solidified. In order to cool and solidify, it is necessary to collect the spheroidized raw material inorganic powder from the flame, but the method of collecting from the flame is not limited.
凝固工程の一例としては以下の工程を挙げることができる。溶融工程において火炎中に分散された原料無機物粉体は火炎の熱によって溶融した後、自重によって下降していくので、加熱炉の下方に火炎を形成させずに、下方の空間の温度を低くしておくことで、溶融して球状化した原料無機物粉体は加熱炉の下方空間にて凝固する工程を採用することができる。この構成を採用した場合に、冷却凝固して形成された球状無機物粉体は加熱炉の下方、例えば、下方に形成した回収口から内容物を吸引することで回収することができる。 The following processes can be mentioned as an example of a coagulation process. Since the raw inorganic powder dispersed in the flame in the melting process is melted by the heat of the flame and then descends by its own weight, the temperature of the space below is lowered without forming a flame below the heating furnace. Thus, it is possible to employ a process in which the raw inorganic powder that has been melted and spheroidized is solidified in the lower space of the heating furnace. When this configuration is adopted, the spherical inorganic powder formed by cooling and solidification can be recovered by sucking the contents from a recovery port formed below the heating furnace, for example, below.
(1)VMC法
本実施形態の球状無機物粉体の製造方法は金属からなる原料無機物粉体を火炎中にて燃焼させることで、金属と火炎中の雰囲気ガスとを反応させることで、球状無機物粉体を製造する方法であり、表面処理工程と球状化工程とを有する。原料無機物粉体の形態は特に限定しないが、原料無機物粉体の粒径(粒径分布)によって製造される球状無機物粉体の粒径(粒径分布)が変化するので、必要な粒径(粒径分布)が実現できるように粒径(粒径分布)を設定する。
( 1 ) VMC method The manufacturing method of the spherical inorganic powder according to the present embodiment is such that the raw inorganic powder made of metal is burned in a flame, and the metal and the atmospheric gas in the flame are reacted, thereby causing the spherical inorganic substance to react. A method for producing a powder, which includes a surface treatment step and a spheronization step. The form of the raw material inorganic powder is not particularly limited, but the particle size (particle size distribution) of the spherical inorganic powder produced varies depending on the particle size (particle size distribution) of the raw material inorganic powder. The particle size (particle size distribution) is set so that the particle size distribution can be realized.
原料無機物粉体を構成する金属は燃焼した後に球状無機物粉体を形成可能な材料である。例えば、球状無機物粉体が金属酸化物(シリカやアルミナなど)から形成される場合には、その対応する金属(ケイ素、アルミニウム)からなる原料無機物粉体を用いる。これらの金属は最終的に製造される球状無機物粉体に要求される純度に応じて純度を調節する。そして、原料無機物粉体としては単一の金属のみならず、必要に応じて複数の金属の混合物であっても良い。また、ある種の有機物などのように、燃焼によって揮散する化合物を混合しても良い。 The metal constituting the raw inorganic powder is a material capable of forming a spherical inorganic powder after burning. For example, when the spherical inorganic powder is formed from a metal oxide (such as silica or alumina), a raw material inorganic powder composed of the corresponding metal (silicon, aluminum) is used. The purity of these metals is adjusted according to the purity required for the spherical inorganic powder finally produced. And as raw material inorganic substance powder, not only a single metal but the mixture of a some metal may be sufficient as needed. Moreover, you may mix the compound volatilized by combustion like a certain kind of organic substance.
また、必要に応じて、球状無機物粉体を構成する無機物(例えばシリカ、アルミナなど)から形成される粉体を原料無機物粉体中に含有させることができる(溶融法類似の構成の採用)。その場合には、その粉体についてもオルガノシラザン類にて処理することが望ましい。 Further, if necessary, a powder formed from an inorganic substance (for example, silica, alumina, etc.) constituting the spherical inorganic powder can be contained in the raw inorganic powder (adopting a structure similar to the melting method). In that case, it is desirable to treat the powder with organosilazanes.
表面処理工程は原料無機物粉体にオルガノシラザン類を接触させて処理済原料無機物粉体にする工程である。本表面処理工程は、被処理対象である原料無機物粉体の種類が異なる以外、前述した溶融法における表面処理工程と同じなので更なる説明は省略する。 The surface treatment step is a step of bringing a raw material inorganic powder into contact with an organosilazane to obtain a treated raw material inorganic powder. Since this surface treatment process is the same as the surface treatment process in the melting method described above except that the kind of raw material inorganic powder to be treated is different, further explanation is omitted.
球状化工程は搬送工程と燃焼工程と凝固工程とを有する。搬送工程及び凝固工程は前述した溶融法において説明した同工程と同じ工程が採用できるので更なる説明は省略する。 The spheronization process includes a conveyance process, a combustion process, and a solidification process. Since the same process as the process demonstrated in the melting method mentioned above can be employ | adopted for a conveyance process and a solidification process, the further description is abbreviate | omitted.
燃焼工程は、搬送工程によって搬送された処理済原料無機物粉体を高温火炎中に分散させて燃焼させる工程である。高温火炎中には製造される球状無機物粉体を組成する元素に応じて選択される元素を含有する雰囲気ガスを含む。例えば、球状無機物粉体を構成する無機物がシリカ(アルミナ)である場合、原料無機物粉体はケイ素(アルミニウム)から構成し、雰囲気ガスは酸素を含むものを選択する。燃焼工程では原料無機物粉体中のケイ素が雰囲気ガス中の酸素と反応することで燃焼反応が進行して、シリカを形成する。 The combustion process is a process in which the processed raw material inorganic powder transported in the transport process is dispersed in a high-temperature flame and burned. The high-temperature flame contains an atmospheric gas containing an element selected according to the elements composing the spherical inorganic powder to be produced. For example, when the inorganic substance constituting the spherical inorganic powder is silica (alumina), the raw inorganic powder is made of silicon (aluminum), and the atmosphere gas is selected to contain oxygen. In the combustion step, silicon in the raw material inorganic powder reacts with oxygen in the atmospheric gas, so that the combustion reaction proceeds to form silica.
(球状無機物粉体の製造装置)
本実施形態の球状無機物粉体の製造装置は、表面処理手段と原料搬送手段と加熱炉と搬出手段とを有する。表面処理手段は原料無機物粉体にオルガノシラザン類を接触させて処理済原料無機物粉体にする手段である。本製造装置は前述の溶融法、VMC法のいずれの方法にも適用できる。
(Spherical inorganic powder production equipment)
The spherical inorganic powder manufacturing apparatus of the present embodiment includes a surface treatment unit, a raw material transfer unit, a heating furnace, and an unloading unit. The surface treatment means is means for bringing a raw material inorganic powder into contact with an organosilazane to form a treated raw material inorganic powder. This manufacturing apparatus can be applied to both the melting method and the VMC method described above.
原料搬送手段は処理済原料無機物粉体をキャリヤガスにて搬送する原料搬送路をもつ手段である。原料無機物粉体の表面にオルガノシラザン類を接触・処理して処理済原料無機物粉体にすることで、処理済原料無機物粉体が原料搬送路に付着して搬送量の変動が発生し難くなる。 The raw material transport means is a means having a raw material transport path for transporting the processed raw material inorganic powder with a carrier gas. By treating and treating organosilazanes with the surface of the raw material inorganic powder to form a processed raw material inorganic powder, the processed raw material inorganic powder adheres to the raw material transport path, and the amount of transport is less likely to occur. .
加熱炉は内部空間を備える。内部空間はその内部に処理済原料無機物粉体が搬送される空間である。内部空間内にて処理済原料無機物粉体が加熱処理される。この加熱処理としては、溶融法の場合には処理済原料無機物粉体を加熱溶融する処理であり、VMC法の場合には処理済原料無機物粉体を燃焼させる処理である。 The heating furnace has an internal space. The internal space is a space in which the processed raw material inorganic powder is conveyed. The treated raw material inorganic powder is heated in the internal space. In the case of the melting method, this heat treatment is a treatment in which the treated raw material inorganic powder is heated and melted, and in the case of the VMC method, the treated raw material inorganic powder is burned.
内部空間の内部には火炎発生装置をもつ。火炎発生装置は高温火炎を発生する装置であり、可燃ガスと支燃ガスとを供給し内部空間内に開口する供給ノズルなどにより構成される。可燃ガスとしてはメタン、プロパン、アセチレンなどの炭化水素ガス、水素ガスなどが例示され、支燃ガスとしては酸素などが例示される。特にVMC法に適用する場合に、支燃ガスとしての酸素を過剰に添加することでVMC法にて利用される酸素を供給することができる。VMC法において酸素以外のガスを用いる場合にはそのガスをキャリヤガス、可燃ガス及び/又は支燃ガスに混合して供給することもできる。 There is a flame generator inside the interior space. The flame generator is a device that generates a high-temperature flame, and includes a supply nozzle that supplies a combustible gas and a combustion-supporting gas and opens into the internal space. Examples of the combustible gas include hydrocarbon gases such as methane, propane, and acetylene, hydrogen gas, and examples of the combustion supporting gas include oxygen. In particular, when applied to the VMC method, oxygen used in the VMC method can be supplied by excessively adding oxygen as a combustion support gas. When a gas other than oxygen is used in the VMC method, the gas may be mixed with a carrier gas, a combustible gas and / or a combustion-supporting gas and supplied.
搬出手段は加熱炉の内部から加熱処理後の無機物粉体を搬出する手段である。例えば、バグフィルタなどを備えた吸引装置を挙げることができ、この装置によって、加熱炉の下方に開口する開口部から内部のガスを吸引して浮遊する球状無機物粉体を分離する。 The unloading means is means for unloading the inorganic powder after the heat treatment from the inside of the heating furnace. For example, a suction device provided with a bag filter or the like can be cited, and this device separates the spherical inorganic powder that floats by sucking the internal gas from an opening opening below the heating furnace.
(樹脂組成物の製造方法)
本実施形態の樹脂組成物の製造方法にて製造される樹脂組成物は、前述の球状無機物粉体と有機樹脂材料とを混合し、球状無機物粉体を有機樹脂材料中に分散させたものである。本樹脂組成物は半導体液状封止材として半導体素子や電子デバイスの封止に用いることができるほか、基板材料、接着剤、シール材、充填材、レジスト材、無機ペースト、コーティング剤、精密成形樹脂などに用いることができる。
(Production method of resin composition)
The resin composition produced by the resin composition production method of the present embodiment is a mixture of the spherical inorganic powder and the organic resin material, and the spherical inorganic powder is dispersed in the organic resin material. is there. The resin composition can be used as a semiconductor liquid sealing material for sealing semiconductor elements and electronic devices, as well as substrate materials, adhesives, sealing materials, fillers, resist materials, inorganic pastes, coating agents, precision molding resins. Can be used.
球状無機物粉体については上述した通りなので更なる説明は省略する。球状無機物粉体は全体の質量を基準として40質量%以上含有することが望ましく、更には50質量%以上含有することがより望ましい。 Since the spherical inorganic powder is as described above, further explanation is omitted. The spherical inorganic powder is preferably contained in an amount of 40% by mass or more, more preferably 50% by mass or more based on the total mass.
有機樹脂材料としては、エポキシ樹脂、オキシラン樹脂、オキセタン化合物、環状エーテル化合物、環状ラクトン化合物、チイラン化合物、環状アセタール化合物、環状チオエーテル化合物、スピロオルトエステル化合物、ビニル化合物などが挙げられ、これらの化合物を単独で、又は複数種類混合して用いることができる。 Examples of organic resin materials include epoxy resins, oxirane resins, oxetane compounds, cyclic ether compounds, cyclic lactone compounds, thiirane compounds, cyclic acetal compounds, cyclic thioether compounds, spiro orthoester compounds, vinyl compounds, and the like. It can be used alone or in combination.
特に、エポキシ樹脂が入手性、取扱性などの観点から好ましい。エポキシ樹脂は特に限定されないが、1分子中に2以上のエポキシ基を有するモノマー、オリゴマー、ポリマーが挙げられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂が挙げられる。 In particular, an epoxy resin is preferable from the viewpoints of availability, handleability, and the like. Although an epoxy resin is not specifically limited, The monomer, oligomer, and polymer which have two or more epoxy groups in 1 molecule are mentioned. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin is mentioned.
エポキシ樹脂以外の具体例としては、フェニルグリシジルエーテル、エチレンオキシド、エピクロロヒドリンなどのオキシラン化合物;トリメチレンオキサイド、3,3−ジメチルオキセタン、3,3−ジクロロメチルオキセタンなどのオキセタン化合物;テトラヒドロフラン、2,3−ジメチルテトラヒドロフラン、トリオキサン、1,3−ジオキソフラン、1,3,6−トリオキサシクロオクタンなどの環状エーテル化合物;β−プロピオラクトン、ε−カプロラクトンなどの環状ラクトン化合物;エチレンスルフィド、3,3−ジメチルチイランなどのチイラン化合物;1,3−プロピンスルフィド、3,3−ジメチルチエタンなどのチエタン化合物;テトラヒドロチオフェン誘導体などの環状チオエーテル化合物;エポキシ化合物とラクトンとの反応によって得られるスピロオルトエステル化合物;スピロオルトカルボナート化合物;環状カルボナート化合物;エチレングリコールジビニルエーテル、アルキルビニルエーテル、トリエチレングリコールジビニルエーテルなどのビニル化合物;スチレン、ビニルシクロヘキセン、イソブチレン、ポリブタジエンなどのエチレン性不飽和化合物が例示できる。カチオン重合性化合物としては、エポキシ樹脂及びこれらの化合物を単独で、又は複数種類混合して用いることができる。 Specific examples other than the epoxy resin include oxirane compounds such as phenylglycidyl ether, ethylene oxide and epichlorohydrin; oxetane compounds such as trimethylene oxide, 3,3-dimethyloxetane and 3,3-dichloromethyloxetane; tetrahydrofuran, 2 Cyclic ether compounds such as 1,3-dimethyltetrahydrofuran, trioxane, 1,3-dioxofuran, 1,3,6-trioxacyclooctane; cyclic lactone compounds such as β-propiolactone and ε-caprolactone; ethylene sulfide, 3, Thiane compounds such as 3-dimethylthiirane; Thiane compounds such as 1,3-propyne sulfide and 3,3-dimethyl thietane; Cyclic thioether compounds such as tetrahydrothiophene derivatives; Spiro ortho ester compounds obtained by reaction with kuton; spiro ortho carbonate compounds; cyclic carbonate compounds; vinyl compounds such as ethylene glycol divinyl ether, alkyl vinyl ether, triethylene glycol divinyl ether; styrene, vinyl cyclohexene, isobutylene, polybutadiene, etc. An ethylenically unsaturated compound can be illustrated. As a cationically polymerizable compound, an epoxy resin and these compounds can be used alone or in combination.
エポキシ樹脂を採用した場合などに添加する硬化剤としては1級アミン、2級アミン、フェノール樹脂、酸無水物を用いることがあり、硬化触媒としてはブレンステッド酸、ルイス酸、塩基性触媒などが用いられる。塩基性触媒としては、イミダゾール系、ジシアンジアミド系、アミンアダクト系、ホスフィン系、ヒドラジド系が用いられる。 As a curing agent to be added when an epoxy resin is employed, a primary amine, a secondary amine, a phenol resin, or an acid anhydride may be used. As a curing catalyst, Bronsted acid, Lewis acid, basic catalyst, or the like may be used. Used. As the basic catalyst, imidazole, dicyandiamide, amine adduct, phosphine, and hydrazide are used.
本発明の球状無機物粉体の製造方法について実施例に基づき、更に詳細に説明を行う。 The production method of the spherical inorganic powder of the present invention will be described in more detail based on examples.
(試験1)
図1に示す球状無機物粉体製造装置にて評価を行った。図1に示す部分は原料搬送手段の部分と加熱炉における火炎発生装置の部分とに相当し、本発明の製造方法における搬送工程と溶融工程の一部とを実現する装置に相当するものである。
(Test 1)
Evaluation was carried out using the spherical inorganic powder production apparatus shown in FIG. The part shown in FIG. 1 corresponds to the part of the raw material transfer means and the part of the flame generating device in the heating furnace, and corresponds to the apparatus for realizing the transfer process and part of the melting process in the manufacturing method of the present invention. .
キャリヤガスとしては空気を用いた。キャリヤガスAは搬送路22の一端部から圧力0.3MPaで導入した。キャリヤガスAの導入量は50Nm/時間とした。搬送路22の他端部は火炎発生装置3に開口する原料供給ノズル221である。処理済原料無機物粉体に相当する試験粉体を導入していないときの圧力を圧力計23にて確認したところ、5kPaであった。試験粉体は原料ホッパ10中に貯蔵されており、原料供給路21を通じて、搬送路22内に導入した。試験粉体の供給速度は200kg/時間とした。搬送路22は内径が27.6mm、長さが15mとした。火炎発生装置3には可燃ガスBを可燃ガスノズル311に供給する可燃ガス供給路31と支燃ガスCを支燃ガスノズル321に供給する支燃ガス供給路32とが接続されている。火炎発生装置3は加熱炉(図略)の内部空間内に配設されている。
Air was used as the carrier gas. Carrier gas A was introduced from one end of the
試験粉体の搬送を開始してから30分間の搬送状態を観察した。そして、圧力計23によって、30分後における平均輸送圧と輸送圧のばらつきとを測定した。
The conveyance state for 30 minutes was observed after the conveyance of the test powder was started. And the
〈参考例1:表中では「実施例1」と記載〉
原料無機物粉体としては体積平均粒径が0.8μmの破砕結晶シリカを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり0.08μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は15.0m2/gであった。
< Reference Example 1: Described as " Example 1 " in the table >
As the raw material inorganic powder, crushed crystal silica having a volume average particle size of 0.8 μm was used. A surface treatment process is performed by spraying hexamethylene disilazane to 0.08 μmol per 1 m 2 of the surface area of the raw inorganic powder while stirring the raw inorganic powder into a mixer. The test powder was used for the test. The specific surface area of the raw inorganic powder was 15.0 m 2 / g.
〈参考例2:表中では「実施例2」と記載〉
原料無機物粉体としては体積平均粒径が0.8μmの破砕結晶シリカを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり0.5μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は15.0m2/gであった。
< Reference Example 2: Described as “ Example 2 ” in the table >
As the raw material inorganic powder, crushed crystal silica having a volume average particle size of 0.8 μm was used. A surface treatment process is performed by spraying hexamethylene disilazane to 0.5 μmol per 1 m 2 of surface area of the raw inorganic powder while stirring the raw inorganic powder into a mixer. The test powder was used for the test. The specific surface area of the raw inorganic powder was 15.0 m 2 / g.
〈参考例3:表中では「実施例3」と記載〉
原料無機物粉体としては体積平均粒径が0.8μmの破砕結晶シリカを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり2.0μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は15.0m2/gであった。
< Reference Example 3: “ Example 3 ” in the table >
As the raw material inorganic powder, crushed crystal silica having a volume average particle size of 0.8 μm was used. While the raw material inorganic powder is put into a mixer and stirred, the surface treatment process is performed by spraying hexamethylene disilazane so as to be 2.0 μmol per 1 m 2 of the surface area of the raw material inorganic powder. The test powder was used for the test. The specific surface area of the raw inorganic powder was 15.0 m 2 / g.
〈参考例4:表中では「実施例4」と記載〉
原料無機物粉体としては体積平均粒径が1.5μmの破砕結晶シリカを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり0.5μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は8.0m2/gであった。
< Reference Example 4: “ Example 4 ” in the table >
As the raw material inorganic powder, crushed crystal silica having a volume average particle size of 1.5 μm was used. A surface treatment process is performed by spraying hexamethylene disilazane to 0.5 μmol per 1 m 2 of surface area of the raw inorganic powder while stirring the raw inorganic powder into a mixer. The test powder was used for the test. The specific surface area of the raw inorganic powder was 8.0 m 2 / g.
〈実施例5〉
原料無機物粉体としては体積平均粒径が8.5μmの破砕金属シリコンを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり0.5μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は4.5m2/gであった。
<Example 5>
As the raw material inorganic powder, crushed metal silicon having a volume average particle size of 8.5 μm was used. A surface treatment process is performed by spraying hexamethylene disilazane to 0.5 μmol per 1 m 2 of surface area of the raw inorganic powder while stirring the raw inorganic powder into a mixer. The test powder was used for the test. The specific surface area of the raw inorganic powder was 4.5 m 2 / g.
〈参考例6:表中では「実施例6」と記載〉
原料無機物粉体としては体積平均粒径が3.2μmの破砕無鉛低融点ガラスを用いた。この原料無機物粉体をミキサに投入して撹拌しながら、ヘキサメチレンジシラザンを原料無機物粉体の表面積1m2あたり0.5μmolになるように噴霧することで表面処理工程を行い、本実施例の試験粉体として試験に供した。なお、原料無機物粉体の比表面積は0.7m2/gであった。
< Reference Example 6: “ Example 6 ” in the table >
As the raw material inorganic powder, crushed lead-free low melting glass having a volume average particle size of 3.2 μm was used. A surface treatment process is performed by spraying hexamethylene disilazane to 0.5 μmol per 1 m 2 of surface area of the raw inorganic powder while stirring the raw inorganic powder into a mixer. The test powder was used for the test. The specific surface area of the raw material inorganic powder was 0.7 m 2 / g.
(比較例1〜4)
表面処理工程を行わない以外、実施例1及び4〜6における材料及び工程を採用した粉末を調製してそれぞれの比較例の試験粉体として試験に供した。
(Comparative Examples 1-4)
Except not performing a surface treatment process, the powder which employ | adopted the material and process in Example 1 and 4-6 was prepared, and it used for the test as a test powder of each comparative example.
(結果)
結果を表1に示す。
The results are shown in Table 1.
表1より明らかなように、HMDSを表面に接触させて処理することで、平均輸送圧、輸送圧の変動共に低く、試験粉体の安定した搬送が実現できた。特に表面処理を行わないシリカ(比較例1及び2)については本評価試験の試験条件では詰まりが発生して満足な搬送が実現できなかった。また、金属ケイ素及び低融点ガラスについても表面処理を行わないと平均輸送圧が2倍程度にまで上昇し、搬送量の変動の大きさも5〜6倍にまで上昇した。 As is apparent from Table 1, by treating HMDS in contact with the surface, both the average transport pressure and the transport pressure were low, and stable conveyance of the test powder could be realized. In particular, silica (Comparative Examples 1 and 2) not subjected to surface treatment was clogged under the test conditions of this evaluation test, and satisfactory conveyance could not be realized. In addition, when the surface treatment was not performed on the metal silicon and the low melting point glass, the average transport pressure increased to about twice, and the fluctuation amount of the transport amount also increased to 5-6 times.
(試験2)
〈参考例7:表中では「実施例7」と記載〉
参考例4の試験粉体を用いて溶融法による球状無機物粉体の製造を行った。装置は図1に示す装置を用いた。キャリヤガスAとして酸素を用いた。加熱炉として保温構造を有するものを採用した。
(Test 2)
< Reference Example 7: “ Example 7 ” in the table >
Using the test powder of Reference Example 4, spherical inorganic powder was produced by the melting method. The apparatus shown in FIG. 1 was used. Oxygen was used as carrier gas A. A heating furnace having a heat retaining structure was adopted.
〈参考例8:表中では「実施例8」と記載〉
実施例6の試験粉体を用いて溶融法による球状無機物粉体の製造を行った。装置は図1に示す装置を用いた。キャリヤガスAとして酸素を用いた。加熱炉として保温構造を有するものを採用した。
< Reference Example 8: Described as “ Example 8 ” in the table >
Using the test powder of Example 6, spherical inorganic powder was produced by the melting method. The apparatus shown in FIG. 1 was used. Oxygen was used as carrier gas A. A heating furnace having a heat retaining structure was adopted.
(実施例9)
実施例5の試験粉体を用いて溶融法による球状無機物粉体の製造を行った。装置は図1に示す装置を用いた。キャリヤガスAとして空気を用いた。加熱炉として除熱構造を有するものを採用した。
Example 9
Using the test powder of Example 5, spherical inorganic powder was produced by the melting method. The apparatus shown in FIG. 1 was used. Air was used as carrier gas A. A heating furnace having a heat removal structure was adopted.
(比較例5)
比較例4の試験粉体を用いて溶融法による球状無機物粉体の製造を行った。装置は図1に示す装置を用いた。キャリヤガスAとして酸素を用いた。加熱炉として保温構造を有するものを採用した。
(Comparative Example 5)
Using the test powder of Comparative Example 4, spherical inorganic powder was produced by the melting method. The apparatus shown in FIG. 1 was used. Oxygen was used as carrier gas A. A heating furnace having a heat retaining structure was adopted.
(結果)
体積平均粒径は堀場製作所製のLA500にて測定を行った。真球度はSEMでの観察結果から所定数の粒子について、その投影面積と周囲長とを測定し、(真球度)={4π×(投影面積)÷(周囲長)2}にて算出した。真球度は各実施例及び比較例の球状無機物粉体毎に100個ずつ測定した上で平均値として求めた。結果を表2に示す。
(result)
The volume average particle diameter was measured with LA500 manufactured by Horiba. The sphericity is calculated from (Sphericality) = {4π × (Projected area) ÷ (Ambient length) 2 } by measuring the projected area and circumference of a predetermined number of particles based on the observation result with SEM. did. The sphericity was determined as an average value after measuring 100 for each spherical inorganic powder of each example and comparative example. The results are shown in Table 2.
表2より明らかなように、HMDSにて表面処理した試験粉体(参考例4及び6)を用いて溶融法にて製造した実施例7及び8の球状無機物粉体は、原料となった試験粉体の体積平均粒径に比べて僅かに大きくなる程度でほとんど変わらない体積平均粒径をもつものであった。これは原料となる試験粉体を安定的に供給することが可能になったことに由来するものと推測できる。 As is clear from Table 2, the spherical inorganic powders of Examples 7 and 8 produced by the melting method using the test powders ( Reference Examples 4 and 6) surface-treated with HMDS were used as raw materials. It had a volume average particle diameter that was almost the same as the volume average particle diameter of the powder. This can be presumed to originate from the fact that it became possible to stably supply the test powder as a raw material.
それに対して、HMDSにて処理していない比較例4の試験粉体を用いたことを除き、参考例8と同様の操作を行った比較例5にて製造された球状無機物粉体の体積平均粒径は6.0μmとなり、原料の平均粒径が3.2μmであったのに対して大幅に大きくなることが分かった。これは、比較例5では原料としての試験粉体の搬送量が±40kg/時間と大きく変動していることに起因して、試験粉体の安定した供給が実現されず、試験粉体の粒子が複数個融合して原料よりも大きな粒径なったものと推測された。複数個融合したことは真球度の値からも推測できる。すなわち、比較例5の球状無機物粉体の真球度は0.87であって、表面処理以外の製造条件が同じである実施例8の球状無機物粉体の真球度0.97と比較して、低い値であり、複数個の融合が進行したことを裏付けている。 On the other hand, the volume average of the spherical inorganic powder produced in Comparative Example 5 was the same as in Reference Example 8 except that the test powder of Comparative Example 4 that was not treated with HMDS was used. The particle size was 6.0 μm, which was found to be significantly larger than the average particle size of the raw material was 3.2 μm. This is because, in Comparative Example 5, the amount of the test powder as a raw material greatly fluctuates as ± 40 kg / hour, so that stable supply of the test powder is not realized, and the particles of the test powder are not realized. It was presumed that a plurality of particles were fused to a particle size larger than that of the raw material. It can be inferred from the value of sphericity that a plurality is fused. That is, the sphericity of the spherical inorganic powder of Comparative Example 5 is 0.87, and compared with the sphericity of 0.97 of the spherical inorganic powder of Example 8 in which the manufacturing conditions other than the surface treatment are the same. This is a low value, confirming that multiple fusions have progressed.
実施例9の結果から明らかなように、VMC法にて球状無機物粉体を製造する場合であっても、真球度が0.99と非常に安定した品質の球状無機物粉体を提供することが可能になることが分かった。 As is clear from the results of Example 9, even when a spherical inorganic powder is produced by the VMC method, a spherical inorganic powder having a very stable sphericity of 0.99 is provided. It turns out that is possible.
10…原料ホッパ
21…原料供給路 22…搬送路 221…原料ノズル 23…圧力計
3…火炎発生装置 31…可燃ガス供給路 311…可燃ガスノズル 32…支燃ガス供給路 322…支燃ガスノズル
DESCRIPTION OF
Claims (6)
前記処理済原料無機物粉体をキャリヤガスと共に搬送する搬送工程と搬送された前記処理済原料無機物粉体を酸素を含む高温火炎中に分散させて燃焼させる燃焼工程と燃焼した前記処理済原料無機物粉体を前記高温火炎中から取り出して冷却凝固させる凝固工程とをもつ球状化工程と、
を有することを特徴とする球状無機物粉体の製造方法。 A surface treatment step of reacting organosilazanes with a raw material inorganic powder composed of a metal that reacts with oxygen in a high-temperature flame to form a metal oxide to form a treated raw material inorganic powder;
A conveying step of conveying the treated raw material inorganic powder together with a carrier gas; a combustion step of dispersing the conveyed treated raw material inorganic powder in a high-temperature flame containing oxygen; and burning the treated raw material inorganic powder A spheronization step having a solidification step of removing the body from the high-temperature flame and solidifying by cooling;
A method for producing a spherical inorganic powder characterized by comprising:
前記球状無機物粉体は請求項1〜4のいずれかに記載の製造方法により製造されることを特徴とする樹脂組成物の製造方法。 A method for producing a resin composition comprising a spherical inorganic powder and an organic resin material in which the spherical inorganic powder is dispersed,
The said spherical inorganic substance powder is manufactured by the manufacturing method in any one of Claims 1-4, The manufacturing method of the resin composition characterized by the above-mentioned.
前記処理済原料無機物粉体をキャリヤガスにて搬送する原料搬送路をもつ原料搬送手段と、
前記処理済原料無機物粉体が前記原料搬送手段にて内部に搬送され且つ酸素を含む高温火炎を発生させる火炎発生装置を内部にもつ内部空間をもち、搬送された前記処理済原料無機物粉体を加熱処理する加熱炉と、
前記加熱炉の内部から加熱処理後の無機物粉体を搬出する搬出手段と、
を有することを特徴とする球状無機物粉体製造装置。 Surface treatment means for reacting organosilazane with a raw inorganic powder composed of a metal that reacts with oxygen in a high-temperature flame to form a metal oxide, to form a treated raw inorganic powder;
Raw material transport means having a raw material transport path for transporting the treated raw material inorganic powder with a carrier gas;
The treated raw material inorganic powder is transported inside the raw material transport means and has an internal space having a flame generating device for generating a high-temperature flame containing oxygen. A heating furnace for heat treatment;
Unloading means for unloading the inorganic powder after heat treatment from the inside of the heating furnace;
A spherical inorganic powder manufacturing apparatus characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012219886A JP5725667B2 (en) | 2012-10-01 | 2012-10-01 | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012219886A JP5725667B2 (en) | 2012-10-01 | 2012-10-01 | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007316111A Division JP5580513B2 (en) | 2007-12-06 | 2007-12-06 | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013035751A JP2013035751A (en) | 2013-02-21 |
JP5725667B2 true JP5725667B2 (en) | 2015-05-27 |
Family
ID=47885714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012219886A Active JP5725667B2 (en) | 2012-10-01 | 2012-10-01 | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5725667B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023176812A1 (en) * | 2022-03-15 | 2023-09-21 | 株式会社アドマテックス | Method for manufacturing spherical particle material |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4030668B2 (en) * | 1998-12-25 | 2008-01-09 | 株式会社トクヤマ | Method for producing fused spherical silica |
-
2012
- 2012-10-01 JP JP2012219886A patent/JP5725667B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013035751A (en) | 2013-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2024088697A (en) | Metal powder atomization manufacturing processes | |
JP5580513B2 (en) | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method | |
JP4815209B2 (en) | Curing agent and resin composition | |
JP4941629B2 (en) | Method for producing spheroidized inorganic powder | |
CN106458632B (en) | The manufacturing method of tungsten composite oxide particle | |
JP5112157B2 (en) | Silica fine particles and silica fine particle-containing resin composition | |
Do Kim et al. | Formation of spherical hollow silica particles from sodium silicate solution by ultrasonic spray pyrolysis method | |
CN105324337A (en) | Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film | |
CN104411634A (en) | Method for production of titanium carbide microparticles | |
JP5725667B2 (en) | Spherical inorganic powder manufacturing method, spherical inorganic powder manufacturing apparatus, and resin composition manufacturing method | |
TWI600703B (en) | Semiconductor package resin composition and semiconductor device | |
JP2008543708A5 (en) | Mixed oxide powder containing alkali metal oxide and silicone rubber containing this powder | |
KR102305736B1 (en) | Method for manufacturing metal powder | |
JP2009227504A (en) | Spherical low-melting point glass composition powder, manufacturing method, and low-melting point glass composition | |
JP2008050207A (en) | Spherical silica particle, resin composition, semiconductor liquid sealing material and method for producing spherical silica particle | |
JP5108607B2 (en) | Method for producing spherical silica and method for producing resin composition | |
JP5094184B2 (en) | Metallic silicon powder and method for producing the same, spherical silica powder and resin composition | |
JP2003212572A (en) | Method of manufacturing spherical glass powder | |
JP5389374B2 (en) | Colored amorphous silica fine particles, production method thereof, and resin composition containing colored amorphous silica fine particles | |
JP3957581B2 (en) | Method for producing spherical silica powder | |
JP5094183B2 (en) | Metallic silicon powder and method for producing the same, spherical silica powder and resin composition | |
JP3765769B2 (en) | Method for producing fine spherical silica powder | |
JP4145855B2 (en) | Method for producing spherical fused silica powder | |
CN106458628A (en) | Metal composite oxide particles and method for producing same | |
JP7502884B2 (en) | Spherical silica powder and its manufacturing method, and composite material containing the same and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150330 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5725667 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |