JP2012206044A - Method for preventing cooling water system from scaling - Google Patents

Method for preventing cooling water system from scaling Download PDF

Info

Publication number
JP2012206044A
JP2012206044A JP2011074619A JP2011074619A JP2012206044A JP 2012206044 A JP2012206044 A JP 2012206044A JP 2011074619 A JP2011074619 A JP 2011074619A JP 2011074619 A JP2011074619 A JP 2011074619A JP 2012206044 A JP2012206044 A JP 2012206044A
Authority
JP
Japan
Prior art keywords
cooling water
water system
water
zinc
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011074619A
Other languages
Japanese (ja)
Inventor
Yasushi Murano
靖 村野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011074619A priority Critical patent/JP2012206044A/en
Priority to CN2012100895525A priority patent/CN102730849A/en
Priority to SG2012023248A priority patent/SG184693A1/en
Publication of JP2012206044A publication Critical patent/JP2012206044A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent a cooling water system from generating calcium carbonate scale in water treatment using no phosphorus compound.SOLUTION: The method for preventing the cooling water system from scaling includes adding water-soluble polymers and zinc compounds to the cooling water system. The zinc compounds are added so that the concentration of zinc in the cooling water system becomes 0.5-3 mg/L and the water-soluble polymers are added so that the concentration of the water-soluble polymers becomes 2-50 mg-solid content/L. Addition of the water-soluble polymers and the zinc compounds together without using phosphorus compounds can raise the CSI of the water system and effectively prevents the cooling water system from generating scale, especially calcium carbonate scale, even though the system includes high calcium hardness water.

Description

本発明は、冷却水系のスケール防止方法に係り、特に、リン化合物を使用しない水処理において、冷却水系の炭酸カルシウムスケールの生成を効果的に防止する方法に関する。   The present invention relates to a cooling water system scale prevention method, and more particularly to a method for effectively preventing the formation of a cooling water system calcium carbonate scale in water treatment without using a phosphorus compound.

冷却水系の熱交換器などにスケールが付着すると、伝熱障害による効率低下、性能不良を生じさせる。配管へのスケール付着は流路狭窄をもたらし、ポンプ吐出圧を上昇させる。スケールがさらに多量に付着すると、配管が閉塞する。   If a scale adheres to a cooling water heat exchanger or the like, the efficiency is deteriorated due to a heat transfer failure, resulting in poor performance. Scale adhesion to the piping causes narrowing of the flow path and increases pump discharge pressure. If a larger amount of scale adheres, the piping will be blocked.

従来、冷却水系における炭酸カルシウムスケールの析出防止には、ホスホン酸や重合リン酸などのリン化合物と水溶性ポリマーとを併用する処理が行われているが(例えば特許文献1)、近年の環境負荷低減の流れを受け、冷却水系の水処理においてリン化合物の使用制限が厳しくなっていることから、リン化合物を使用しないスケール防止技術が望まれる。また、同時に、節水及びブロー水排出量の削減を目的として、冷却水系の高濃縮運転の要求も高まっているが、従来の水処理ではCSI(炭酸カルシウムの限界飽和指数)が低いため、炭酸カルシウムスケールの発生を防止するために濃縮度を下げ、カルシウム硬度を低く維持する必要があった。   Conventionally, in order to prevent precipitation of calcium carbonate scale in a cooling water system, a treatment using a phosphorus compound such as phosphonic acid or polymerized phosphoric acid and a water-soluble polymer has been carried out (for example, Patent Document 1). In view of the trend of reduction, the use of phosphorus compounds in water treatment in cooling water systems is becoming more restrictive, so a scale prevention technique that does not use phosphorus compounds is desired. At the same time, the demand for high concentration operation of the cooling water system is increasing for the purpose of saving water and blown water discharge. However, the conventional water treatment has a low CSI (limit saturation index of calcium carbonate), so calcium carbonate. In order to prevent the generation of scale, it was necessary to reduce the concentration and to keep the calcium hardness low.

特開平9−174092号公報Japanese Patent Laid-Open No. 9-174092

本発明は、リン化合物を使用しない水処理で冷却水系の炭酸カルシウムスケールの生成を効果的に防止する冷却水系のスケール防止方法を提供することを課題とする。   This invention makes it a subject to provide the scale prevention method of a cooling water system which prevents effectively the production | generation of the calcium carbonate scale of a cooling water system by the water treatment which does not use a phosphorus compound.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、水溶性ポリマーと亜鉛化合物とを併用することで、水系のCSIを上げることができ、炭酸カルシウムスケールの抑制効果が向上し、節水や排水量削減が可能になることを知見した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors can increase the CSI of the aqueous system by using the water-soluble polymer and the zinc compound in combination, and the effect of suppressing the calcium carbonate scale is improved. It was discovered that water saving and drainage reduction would be possible.

本発明はこのような知見に基いて達成されたものであり、本発明(請求項1)の冷却水系のスケール防止方法は、冷却水系に水溶性ポリマーと亜鉛化合物とを添加する冷却水系のスケール防止方法であって、該冷却水系の亜鉛濃度が0.5〜3mg/Lとなるように亜鉛化合物を添加すると共に、水溶性ポリマー濃度が2〜50mg−固形分/Lとなるように水溶性ポリマーを添加することを特徴とする。   The present invention has been achieved based on such knowledge, and the cooling water system scale prevention method of the present invention (Claim 1) is a cooling water system scale in which a water-soluble polymer and a zinc compound are added to the cooling water system. A zinc compound is added so that the cooling water system has a zinc concentration of 0.5 to 3 mg / L, and the water-soluble polymer concentration is 2 to 50 mg-solid content / L. It is characterized by adding a polymer.

請求項2の冷却水系のスケール防止方法は、請求項1において、該冷却水系が非リン、亜鉛処理を行う冷却水系であることを特徴とする。   The cooling water system scale prevention method according to claim 2 is characterized in that, in claim 1, the cooling water system is a cooling water system that performs non-phosphorus and zinc treatment.

本発明によれば、リン化合物を使用することなく、水溶性ポリマーと亜鉛化合物とを併用添加することにより、水系のCSIが上昇し、高カルシウム硬度の水系であっても、冷却水系のスケール、特に炭酸カルシウムスケールの生成を効果的に防止することができる。   According to the present invention, by adding a water-soluble polymer and a zinc compound in combination without using a phosphorus compound, the water-based CSI increases, and even in a high calcium hardness aqueous system, the cooling water system scale, In particular, the formation of calcium carbonate scale can be effectively prevented.

水溶性ポリマーと亜鉛化合物とを併用する本発明によるスケール防止効果の作用機構の詳細は明らかではないが、水溶性ポリマーのスケール分散機能と、亜鉛による炭酸カルシウム結晶の成長阻害作用とによって、炭酸カルシウムスケールの発生が抑制されているものと推定される。   Although the details of the action mechanism of the scale prevention effect according to the present invention in which the water-soluble polymer and the zinc compound are used in combination are not clear, the calcium carbonate crystal has the function of dispersing the scale of the water-soluble polymer and inhibiting the growth of calcium carbonate crystals by zinc It is estimated that the generation of scale is suppressed.

本発明によれば、水溶性ポリマーと亜鉛化合物とを併用することによる優れたスケール防止効果により、高濃縮運転が可能となり、節水、排水量の低減が可能となる。   According to the present invention, a high concentration operation is possible due to an excellent scale prevention effect by using a water-soluble polymer and a zinc compound in combination, and water saving and drainage can be reduced.

実施例1〜4及び比較例1,2の結果(CSI値)を示すグラフである。It is a graph which shows the result (CSI value) of Examples 1-4 and Comparative Examples 1 and 2. FIG. 実施例5〜10及び比較例3〜8の結果(CSI値)を示すグラフである。It is a graph which shows the result (CSI value) of Examples 5-10 and Comparative Examples 3-8.

以下に本発明の冷却水系のスケール防止方法の実施の形態を詳細に説明する。   Embodiments of the cooling water system scale prevention method of the present invention will be described in detail below.

本発明においては、冷却水系に水溶性ポリマーと亜鉛化合物とを添加して冷却水系のスケールを防止する。   In the present invention, a water-soluble polymer and a zinc compound are added to the cooling water system to prevent the cooling water system from being scaled.

亜鉛化合物としては特に制限はなく、通常、硫酸亜鉛や塩化亜鉛を用いることができる。これらの亜鉛化合物は1種を単独で用いてもよく、2種以上を併用してもよい。   There is no restriction | limiting in particular as a zinc compound, Usually, zinc sulfate and zinc chloride can be used. These zinc compounds may be used individually by 1 type, and may use 2 or more types together.

水溶性ポリマーとしても特に制限はなく、冷却水系のスケール防止剤として用いられているものをいずれも好適に用いることができる。例えば、アクリル酸、メタアクリル酸、HAPS(2−ヒドロキシ−3−アリルオキシ−1−プロパンスルホン酸)、マレイン酸、AMPS(2−アクリルアミド−2−メチルプロパンスルホン酸)、HEMA(2−ヒドロキシエチルメタアクリレート)、アクリル酸メチル、スチレンスルホン酸、イソブチレンよりなる群から選ばれる1種又は2種以上のモノマーが重合又は共重合した、ホモポリマー又はコポリマー、好ましくはアクリル酸、メタアクリル酸、HAPS、マレイン酸、AMPS、イソブチレンよりなる群から選ばれる1種又は2種以上のモノマーが重合又は共重合した、ホモポリマー又はコポリマーであって、平均分子量が5000〜50000の低分子量水溶性ポリマーが挙げられる。   There is no restriction | limiting in particular also as a water-soluble polymer, All can be used suitably as what is used as a scale inhibitor of a cooling water system. For example, acrylic acid, methacrylic acid, HAPS (2-hydroxy-3-allyloxy-1-propanesulfonic acid), maleic acid, AMPS (2-acrylamido-2-methylpropanesulfonic acid), HEMA (2-hydroxyethylmeta) Acrylate), methyl acrylate, styrene sulfonic acid, isobutylene, one or two or more monomers polymerized or copolymerized, homopolymer or copolymer, preferably acrylic acid, methacrylic acid, HAPS, male A low molecular weight water-soluble polymer having an average molecular weight of 5000 to 50000, which is a homopolymer or copolymer obtained by polymerization or copolymerization of one or more monomers selected from the group consisting of acid, AMPS, and isobutylene.

低分子水溶性ポリマーとしては、特にマレイン酸又はアクリル酸のホモポリマー或いは、アクリル酸とHAPSとのモル比20〜80:80〜20のコポリマー、アクリルアミドとAMPSとのモル比20〜80:80〜20のコポリマー、マレイン酸とイソブチレンとのモル比50〜80:50〜20のコポリマー等が好適である。
これらの水溶性ポリマーは1種を単独で用いても良く、2種以上を併用しても良い。
As the low-molecular water-soluble polymer, a homopolymer of maleic acid or acrylic acid, a copolymer of acrylic acid and HAPS in a molar ratio of 20-80: 80-20, or a molar ratio of acrylamide and AMPS of 20-80: 80- 20 copolymers, copolymers of maleic acid and isobutylene in a molar ratio of 50-80: 50-20, etc. are preferred.
These water-soluble polymers may be used alone or in combination of two or more.

本発明において、冷却水系への亜鉛化合物の添加量は、冷却水系中の亜鉛濃度が0.5〜3mg/Lとなるような量とする。亜鉛濃度が0.5mg/Lよりも少ないと亜鉛の添加効果を十分に得ることができず、3mg/Lよりも多いと亜鉛塩のスケールが生じやすくなる。   In the present invention, the amount of zinc compound added to the cooling water system is such that the zinc concentration in the cooling water system is 0.5 to 3 mg / L. When the zinc concentration is less than 0.5 mg / L, the effect of adding zinc cannot be sufficiently obtained, and when it is more than 3 mg / L, scale of zinc salt tends to occur.

また、水溶性ポリマーは、冷却水系中の水溶性ポリマーの固形分濃度として、2〜50mg/L、好ましくは10〜20mg/Lとなるように添加する。水溶性ポリマーの濃度が2mg/L未満では、水溶性ポリマーによるスケール分散効果を十分に得ることができず、50mg/Lを超えると水溶性ポリマーのゲル化や冷却水の発泡が起こりやすくなる。   The water-soluble polymer is added so that the solid content concentration of the water-soluble polymer in the cooling water system is 2 to 50 mg / L, preferably 10 to 20 mg / L. If the concentration of the water-soluble polymer is less than 2 mg / L, the scale dispersion effect by the water-soluble polymer cannot be sufficiently obtained, and if it exceeds 50 mg / L, gelation of the water-soluble polymer and foaming of cooling water tend to occur.

本発明においては、このように亜鉛化合物と水溶性ポリマーとを併用して良好なスケール防止効果を得ることができるため、排水規制が問題となるホスホン酸等のリン化合物は添加することなく、非リン、亜鉛処理の冷却水系に本発明を適用することが好ましい。   In the present invention, since a good scale prevention effect can be obtained by using a zinc compound and a water-soluble polymer in this way, a phosphorus compound such as phosphonic acid, which has a problem with wastewater regulations, is added without adding a non-phosphorus compound. The present invention is preferably applied to a cooling water system for phosphorus and zinc treatment.

また、本発明によれば、亜鉛化合物と水溶性ポリマーの併用によるCSIの上昇で高カルシウム硬度の冷却水系においてもスケール防止効果を有効に得ることができる。このため、カルシウム硬度1,000mg−CaCO/L程度の冷却水系にも本発明を有効に適用可能であるが、好ましくは本発明が適用される冷却水系のカルシウム硬度は500mg−CaCO/L以下である。 Further, according to the present invention, the effect of preventing scale can be effectively obtained even in a cooling water system having a high calcium hardness due to an increase in CSI by the combined use of a zinc compound and a water-soluble polymer. Therefore, the present invention can be effectively applied to a cooling water system having a calcium hardness of about 1,000 mg-CaCO 3 / L. Preferably, the calcium hardness of the cooling water system to which the present invention is applied is 500 mg-CaCO 3 / L. It is as follows.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

以下の実施例及び比較例において、水溶性ポリマーとしては以下のものを用いた。
・アクリル樹脂(AA)と2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)とのコポリマー、分子量10,000、AAとAMPSとのモル比は4:1(以下「AA/AMPS」と略記する。)
・アクリル樹脂(AA)と3−アリロキシ−2−ヒドロキシプロパンスルホン酸(HAPS)とのコポリマー、分子量5,000、AAとHAPSとのモル比は4:1(以下「AA/HAPS」と略記する。)
・マレイン酸(MA)のホモポリマー(分子量500、以下「PMA」と略記する。)
・アクリル樹脂(AA)のホモポリマー(分子量5,000、以下「PAA」と略記する。)
・イソブチレン(IB)とマレイン酸(MA)とのコポリマー、分子量15,000、IBとMAとのモル比は1:1(以下「IB/MA」と略記する。)
In the following examples and comparative examples, the following were used as water-soluble polymers.
-Copolymer of acrylic resin (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), molecular weight 10,000, molar ratio of AA to AMPS is 4: 1 (hereinafter abbreviated as "AA / AMPS") .)
A copolymer of acrylic resin (AA) and 3-allyloxy-2-hydroxypropane sulfonic acid (HAPS), molecular weight 5,000, molar ratio of AA to HAPS is 4: 1 (hereinafter abbreviated as “AA / HAPS”) .)
A homopolymer of maleic acid (MA) (molecular weight 500, hereinafter abbreviated as “PMA”)
A homopolymer of acrylic resin (AA) (molecular weight 5,000, hereinafter abbreviated as “PAA”)
-Copolymer of isobutylene (IB) and maleic acid (MA), molecular weight 15,000, molar ratio of IB and MA is 1: 1 (hereinafter abbreviated as "IB / MA").

試験は以下の方法で行った。
1)試験条件
試験装置:恒温水槽,500mLネジ口ビン
期間:20時間
温度:50℃
試験水質:カルシウム硬度300mg−CaCO/L,酸消費量pH4.8
2)評価手順
(1)500mLネジ口ビンに超純水を入れた(500mLから各試薬添加量を差引いた量)。
(2)更に、2.5重量%カルシウム硬度(硝酸カルシウム)水溶液(6mL)、水溶性ポリマー水溶液(必要量mL)、硫酸亜鉛水溶液(必要量mL)、酸消費量(pH4.8)(重炭酸ナトリウム)水溶液(6mL)を添加後、0.01〜1NのNaOHまたは硫酸でpH調整した。
(3)次いで、種晶として0.5重量%の炭酸カルシウム水溶液を添加した(10mL)。
(4)ネジ口ビンを50℃の恒温水槽に入れて静置した。
(5)20時間後、0.22μmGSWPミリポアフィルターでネジ口ビン内の試験水100〜150mLを濾過した。
(6)濾液のカルシウム硬度を測定した。
(7)30℃まで温度が下がってからネジ口ビン内の残液のpHを測定した。
(8)試験後のSI(ランジェリア指数)を計算し、極大値をCSIとした。
The test was conducted by the following method.
1) Test conditions Test equipment: constant temperature water bath, 500 mL screw mouth bottle Duration: 20 hours Temperature: 50 ° C
Test water quality: calcium hardness 300 mg-CaCO 3 / L, acid consumption pH 4.8
2) Evaluation procedure (1) Ultrapure water was put into a 500 mL screw mouth bottle (amount obtained by subtracting the amount of each reagent added from 500 mL).
(2) Further, a 2.5 wt% calcium hardness (calcium nitrate) aqueous solution (6 mL), a water-soluble polymer aqueous solution (necessary amount mL), a zinc sulfate aqueous solution (necessary amount mL), an acid consumption (pH 4.8) (heavy After adding an aqueous solution (6 mL) of sodium carbonate), the pH was adjusted with 0.01 to 1N NaOH or sulfuric acid.
(3) Next, a 0.5 wt% calcium carbonate aqueous solution was added as a seed crystal (10 mL).
(4) The screw port bottle was placed in a constant temperature water bath at 50 ° C. and allowed to stand.
(5) After 20 hours, 100 to 150 mL of test water in the screw mouth bottle was filtered with a 0.22 μm GSWP Millipore filter.
(6) The calcium hardness of the filtrate was measured.
(7) After the temperature dropped to 30 ° C., the pH of the residual liquid in the screw mouth bottle was measured.
(8) SI (Langeria index) after the test was calculated, and the maximum value was defined as CSI.

[実施例1〜4、比較例1,2]
水溶性ポリマーとしてAA/HAPSを15mg−固形分/L添加すると共に、亜鉛濃度を0mg/L(比較例1)、0.2mg/L(比較例2)、0.5mg/L(実施例1)、1mg/L(実施例2)、2mg/L(実施例3)又は3mg/L(実施例4)として試験を行ったときのCSI値を図1に示す。
図1に示されるように、亜鉛濃度0.5〜3mg/LでCSIの上昇が顕著であり、亜鉛無添加の場合に比べて最大で0.4も上昇した。
[Examples 1 to 4, Comparative Examples 1 and 2]
AA / HAPS as a water-soluble polymer was added at 15 mg-solid content / L, and the zinc concentration was 0 mg / L (Comparative Example 1), 0.2 mg / L (Comparative Example 2), 0.5 mg / L (Example 1). ) The CSI value when tested as 1 mg / L (Example 2), 2 mg / L (Example 3) or 3 mg / L (Example 4) is shown in FIG.
As shown in FIG. 1, the increase in CSI was remarkable at a zinc concentration of 0.5 to 3 mg / L, and the maximum increase was 0.4 as compared with the case of no addition of zinc.

[実施例5〜10、比較例3〜8]
水溶性ポリマーとして表1に示すものを表1に示す濃度で添加すると共に、亜鉛濃度を2mg/Lとした場合(実施例5〜10)と亜鉛を添加しなかった場合(比較例3〜8)について試験を行ったときのCSI値を図2に示す。
[Examples 5 to 10, Comparative Examples 3 to 8]
As the water-soluble polymer, those shown in Table 1 were added at the concentrations shown in Table 1, and when the zinc concentration was 2 mg / L (Examples 5 to 10) and when zinc was not added (Comparative Examples 3 to 8) FIG. 2 shows the CSI value when the test was conducted for).

Figure 2012206044
Figure 2012206044

図2より、亜鉛の存在下において、水溶性ポリマーの添加効果が高められ、CSIが顕著に上昇することが分かる。   FIG. 2 shows that in the presence of zinc, the effect of adding the water-soluble polymer is enhanced, and the CSI is remarkably increased.

Claims (2)

冷却水系に水溶性ポリマーと亜鉛化合物とを添加する冷却水系のスケール防止方法であって、該冷却水系の亜鉛濃度が0.5〜3mg/Lとなるように亜鉛化合物を添加すると共に、水溶性ポリマー濃度が2〜50mg−固形分/Lとなるように水溶性ポリマーを添加することを特徴とする冷却水系のスケール防止方法。   A cooling water system scale prevention method for adding a water-soluble polymer and a zinc compound to a cooling water system, wherein the zinc concentration is added so that the cooling water system has a zinc concentration of 0.5 to 3 mg / L, and A method for preventing scale of a cooling water system, comprising adding a water-soluble polymer so that a polymer concentration is 2 to 50 mg-solid content / L. 請求項1において、該冷却水系が非リン、亜鉛処理を行う冷却水系であることを特徴とする冷却水系のスケール防止方法。   2. The cooling water system scale prevention method according to claim 1, wherein the cooling water system is a cooling water system that performs non-phosphorus and zinc treatment.
JP2011074619A 2011-03-30 2011-03-30 Method for preventing cooling water system from scaling Pending JP2012206044A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011074619A JP2012206044A (en) 2011-03-30 2011-03-30 Method for preventing cooling water system from scaling
CN2012100895525A CN102730849A (en) 2011-03-30 2012-03-27 Method for preventing scale from forming in cooling water system
SG2012023248A SG184693A1 (en) 2011-03-30 2012-03-29 Method of preventing scale in cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011074619A JP2012206044A (en) 2011-03-30 2011-03-30 Method for preventing cooling water system from scaling

Publications (1)

Publication Number Publication Date
JP2012206044A true JP2012206044A (en) 2012-10-25

Family

ID=46987254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011074619A Pending JP2012206044A (en) 2011-03-30 2011-03-30 Method for preventing cooling water system from scaling

Country Status (3)

Country Link
JP (1) JP2012206044A (en)
CN (1) CN102730849A (en)
SG (1) SG184693A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148094A (en) * 2015-02-13 2016-08-18 栗田工業株式会社 Initial treatment agent for circulating cooling water and initial treatment method of circulating cooling water
JP6057002B1 (en) * 2016-03-24 2017-01-11 栗田工業株式会社 Anti-scale agent for reverse osmosis membrane and reverse osmosis membrane treatment method
WO2020071309A1 (en) 2018-10-05 2020-04-09 栗田工業株式会社 Water treatment chemical for membranes and membrane treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635173B1 (en) * 2018-11-01 2020-01-22 栗田工業株式会社 Corrosion protection method for metal members of cooling water system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865763A (en) * 1971-12-10 1973-09-10
JPS55139446A (en) * 1979-04-05 1980-10-31 Betz Int Stable composition for corrosion preventing agent and corrosion prevention in aqueous medium
JPS59206097A (en) * 1983-04-08 1984-11-21 チバ−ガイギ−・アクチエンゲゼルシヤフト Water-treatment composition
JPH01299699A (en) * 1988-05-30 1989-12-04 Hakutou Kagaku Kk Non-phosphorus water treating agent for preventing corrosion and scale of metals in water system
JPH1112771A (en) * 1997-06-23 1999-01-19 Ebara Corp Aqueous corrosion inhibitor and corrosion preventive method
JP2005270769A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Scale prevention method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101700935A (en) * 2009-11-09 2010-05-05 中国海洋石油总公司 Phosphorus-free corrosion-inhibition antiscalant used for industrial circulation cooling water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865763A (en) * 1971-12-10 1973-09-10
JPS55139446A (en) * 1979-04-05 1980-10-31 Betz Int Stable composition for corrosion preventing agent and corrosion prevention in aqueous medium
JPS59206097A (en) * 1983-04-08 1984-11-21 チバ−ガイギ−・アクチエンゲゼルシヤフト Water-treatment composition
JPH01299699A (en) * 1988-05-30 1989-12-04 Hakutou Kagaku Kk Non-phosphorus water treating agent for preventing corrosion and scale of metals in water system
JPH1112771A (en) * 1997-06-23 1999-01-19 Ebara Corp Aqueous corrosion inhibitor and corrosion preventive method
JP2005270769A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Scale prevention method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148094A (en) * 2015-02-13 2016-08-18 栗田工業株式会社 Initial treatment agent for circulating cooling water and initial treatment method of circulating cooling water
JP6057002B1 (en) * 2016-03-24 2017-01-11 栗田工業株式会社 Anti-scale agent for reverse osmosis membrane and reverse osmosis membrane treatment method
WO2017163455A1 (en) * 2016-03-24 2017-09-28 栗田工業株式会社 Scale inhibitor for reverse osmosis membranes and reverse osmosis membrane treatment method
JP2017170348A (en) * 2016-03-24 2017-09-28 栗田工業株式会社 Scale inhibitor for reverse osmosis membrane and reverse osmosis membrane treatment method
KR20180123004A (en) * 2016-03-24 2018-11-14 쿠리타 고교 가부시키가이샤 Scale inhibitor for reverse osmosis membrane and reverse osmosis membrane treatment method
US10737221B2 (en) 2016-03-24 2020-08-11 Kurita Water Industries Ltd. Scale inhibitor for reverse osmosis membranes and reverse osmosis membrane treatment method
KR102343154B1 (en) 2016-03-24 2021-12-23 쿠리타 고교 가부시키가이샤 Scale inhibitor for reverse osmosis membrane and treatment method for reverse osmosis membrane
WO2020071309A1 (en) 2018-10-05 2020-04-09 栗田工業株式会社 Water treatment chemical for membranes and membrane treatment method
KR20210069621A (en) 2018-10-05 2021-06-11 쿠리타 고교 가부시키가이샤 Membrane water treatment chemicals and membrane treatment methods
EP3862071A4 (en) * 2018-10-05 2022-06-29 Kurita Water Industries Ltd. Water treatment chemical for membranes and membrane treatment method
US11958019B2 (en) 2018-10-05 2024-04-16 Kurita Water Industries Ltd. Water treatment chemical for membranes and membrane treatment method

Also Published As

Publication number Publication date
CN102730849A (en) 2012-10-17
SG184693A1 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
US7252770B2 (en) Multifunctional calcium carbonate and calcium phosphate scale inhibitor
KR102040143B1 (en) Method for preventing scale deposition and scale inhibitor
WO2012132892A1 (en) Scale preventing agent for reverse osmosis membrane and scale preventing method
JP5884730B2 (en) Reverse osmosis membrane scale inhibitor and scale prevention method
WO2014157139A1 (en) Scale inhibiting method and magnesium hydroxide scale inhibitor for reverse osmosis membrane
JP2012206044A (en) Method for preventing cooling water system from scaling
TWI705849B (en) Scale inhibitor for reverse osmosis membrane and reverse osmosis membrane treatment method
CN100368320C (en) Polymer for water treatment
JP6753448B2 (en) Acrylic acid-based copolymer, its production method, and water treatment agent
WO2013147112A1 (en) Method for treating cooling water system
AU2012289049B2 (en) Process for producing maleic acid-isoprenol copolymers
AU2012292468B2 (en) Copolymers made of isoprenol, monoethylenically unsaturated monocarboxylic acids and sulphonic acids, process for producing same and use of same as deposit inhibitors in systems conveying water
WO2020122173A1 (en) Cooling water scale prevention agent and cooling water scale prevention method
US20130180926A1 (en) Preparing maleic acid-isoprenol copolymers
JP5720369B2 (en) Basic treatment method for cooling water system
JP2018069167A (en) Scale inhibitor and scale inhibition method
US20070093609A1 (en) Acrylic-acid-based homopolymers comprising taurine modified for the treatment of water
WO2021117134A1 (en) Copolymers suitable for reducing the formation of magnesium hydroxide containing scale
JP2015085268A (en) Aqueous scale inhibitor and scale inhibition method
US20130178574A1 (en) Copolymers of isoprenol, monoethylenically unsaturated monocarboxylic acids and sulfonic acids, methods for production thereof and use thereof as deposit inhibitors in water-bearing systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728