JPH1112771A - Aqueous corrosion inhibitor and corrosion preventive method - Google Patents

Aqueous corrosion inhibitor and corrosion preventive method

Info

Publication number
JPH1112771A
JPH1112771A JP16603697A JP16603697A JPH1112771A JP H1112771 A JPH1112771 A JP H1112771A JP 16603697 A JP16603697 A JP 16603697A JP 16603697 A JP16603697 A JP 16603697A JP H1112771 A JPH1112771 A JP H1112771A
Authority
JP
Japan
Prior art keywords
water
corrosion
compound
compd
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16603697A
Other languages
Japanese (ja)
Other versions
JP3389064B2 (en
Inventor
Yoshiteru Miyama
義輝 三山
Hitoshi Kimura
仁 木村
Yoshiharu Yasuhara
義晴 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15823767&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH1112771(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP16603697A priority Critical patent/JP3389064B2/en
Publication of JPH1112771A publication Critical patent/JPH1112771A/en
Application granted granted Critical
Publication of JP3389064B2 publication Critical patent/JP3389064B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aq. corrosion inhibitor which is capable of effectively preventing the corrosion of steel products, etc., by low- and middle concd. water without eutrophication of lakes and ponds by not incorporating a phosphorus compd., incorporating a specific ratio of a molybdic acid compd. and further incorporating a zinc compd. and high-polymer electrolyte therein into the corrosion preventive material. SOLUTION: This aq. corrosion inhibitor has substantially 0 ratio of the phosphorus compd., such as orthophosphate, contains >=1 wt.%, more preferably about 2 to 20% (in terms of MoO4 ) molybdic acid compd., such as sodium orthomolybdate, contains the zinc compd., such as zinc sulfate, preferably at 0.05 to 0.5 part for each 1 pt.wt. of the molybdic acid compd. and further contains the high-polymer electrolyte. The inhibitor is effective in preventing the corrosion of the steel products, such as piping, by the low and middle concd. water of <=200 mg/l in calcium hardness and does not give rise to a heat transfer fault. An azole compd. is further preferably added to this corrosion inhibitor if the inhibitor is used for copper. The aq. corrosion inhibitor is preferably used at a holding concn. of 20 to 200 mg/l.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水系防食剤、特に金
属部材の腐食を防止するための水系防食剤及び防食方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-based anticorrosion agent, and more particularly to a water-based anticorrosion agent for preventing corrosion of a metal member and a method for preventing corrosion.

【0002】[0002]

【従来の技術】鉄鋼産業、化学プラントなどでは機器の
冷却に広範囲で冷却水が利用されている。こうした冷却
水系では、多くの場合配管を軟鋼で形成し、熱交換器は
銅などで形成する。金属製の配管や熱交換器の腐食をど
う防ぐかは、冷却水系が抱える一つの問題である。冷却
水系で使用される冷却水の中には通常カルシウムなどの
硬度成分が存在するが、冷却のために水の一部が蒸発す
るため強制的に冷却水の一部を入れ替えない限り、硬度
成分が濃縮されてカルシウム硬度が250mg/リット
ル以上になる事も珍しくない。硬度成分が多量に含まれ
る水は一般に金属を腐食させにくいため、冷却水を濃縮
し、硬度成分の濃度を高める事で防食を図ることができ
る。このような系では、防スケールのためにポリマーの
みを添加することで冷却水系の障害を防ぐことが可能で
ある。
2. Description of the Related Art In the steel industry, chemical plants and the like, cooling water is widely used for cooling equipment. In such a cooling water system, the piping is often formed of mild steel, and the heat exchanger is formed of copper or the like. How to prevent corrosion of metal pipes and heat exchangers is one of the problems with cooling water systems. Hardness components such as calcium are usually present in the cooling water used in the cooling water system, but some of the water evaporates due to cooling. It is not unusual for calcium to be concentrated to 250 mg / liter or more. Water containing a large amount of a hardness component generally does not easily corrode metals, so that corrosion prevention can be achieved by concentrating cooling water and increasing the concentration of the hardness component. In such a system, the failure of the cooling water system can be prevented by adding only the polymer for scale prevention.

【0003】しかし、熱負荷が高い産業用冷却塔や冷却
水の補給水に塩化物イオン、硫酸イオン、シリカ、有機
物など腐食やスケール付着の原因となるものが多く含ま
れる場合には、冷却水をあまり濃縮させることができな
い。このような冷却水系では、一般に硬度成分は250
mg/リットル以下であり、金属特に軟鋼に対する腐食
性が高い。そのため、従来は必ず特定のリン化合物を含
有する防食剤を冷却水に添加し、軟鋼の表面に沈殿皮膜
というリン酸カルシウムなどを主成分とする皮膜を形成
させることで防食を図っていた。
[0003] However, in the case of an industrial cooling tower having a high heat load or a replenishing water for the cooling water, when the chloride water, the sulfate ion, the silica, the organic matter or the like which causes a large amount of corrosion or scale adhesion is contained, the cooling water is used. Cannot be concentrated too much. In such a cooling water system, the hardness component is generally 250.
mg / liter or less, and is highly corrosive to metals, especially mild steel. Therefore, in the past, anticorrosion was attempted by always adding an anticorrosive containing a specific phosphorus compound to cooling water and forming a precipitate film, which is mainly composed of calcium phosphate or the like, on the surface of mild steel.

【0004】[0004]

【発明が解決しようとする課題】冷却水系は水を一部蒸
発させながら水を循環させる。蒸発が進行してカルシウ
ムイオン濃度が相当に高い濃度に濃縮すればそうした水
はブローによって排出する。冷却水中のリン酸化合物が
ブロー水とともに排出されて湖沼に流れ込めば富養化の
原因になる。このように、従来のリン酸化合物を含む冷
却水系防食剤には湖沼などを富養化しかねないという問
題点があった。また、リン酸化合物は冷却装置の高温部
にスケールとして付着しやすい。リン酸化合物が高温部
に付着すれば伝熱の阻害の原因にもなる。従来のリン酸
化合物を含む冷却水系防食剤にはそういう問題点もあっ
た。
The cooling water system circulates water while partially evaporating the water. If the evaporation proceeds and the calcium ion concentration is concentrated to a considerably high concentration, such water is discharged by blowing. Phosphorus compounds in the cooling water are discharged together with the blow water and flow into lakes and marshes, leading to enrichment. As described above, the conventional cooling water-based anticorrosive containing a phosphoric acid compound has a problem that it can enrich lakes and marshes. Further, the phosphate compound easily adheres to the high temperature part of the cooling device as a scale. If the phosphate compound adheres to the high-temperature portion, it may also cause the inhibition of heat transfer. Conventional cooling water-based anticorrosives containing a phosphoric acid compound also have such a problem.

【0005】防食剤には、このほかモリブデン酸化合物
を主成分とするもの、亜鉛化合物を主成分とするものも
ある。しかし、十分な防食効果を得るには、モリブデン
酸化合物を主成分とするものの場合、これを200mg
/リットル以上の高い濃度で保持することが必要であ
り、コスト高となって実用的ではなかった。また、亜鉛
化合物を主成分とするものは、適応できる水質範囲が限
られ、水酸化物の析出などのために長期間安定した防食
効果を得ることは困難であった。
[0005] Other anticorrosives include those containing a molybdate compound as a main component and those containing a zinc compound as a main component. However, in order to obtain a sufficient anticorrosion effect, when the molybdate compound is the main component, 200 mg
It was necessary to maintain the concentration at a high concentration of 1 / liter or more, and the cost was high, which was not practical. In addition, those containing a zinc compound as a main component have a limited applicable water quality range, and it has been difficult to obtain a long-term stable anticorrosion effect due to precipitation of hydroxide.

【0006】そこで本発明は、湖沼を富養化することが
なく、カルシウム硬度200mg/リットル以下の低・
中濃縮水による配管鋼材等の腐食を効果的に防止するこ
とができる水系防食剤であって、とりわけ冷却水系の装
置内などでは、高温部で伝熱阻害を起こすこともないと
いう優れた効果も発揮する水系防食剤及び防食方法を提
供することを目的とする。
Accordingly, the present invention provides a low- and low-calcium hardness of 200 mg / liter or less without enriching the lake.
A water-based anticorrosive agent that can effectively prevent corrosion of steel pipes, etc. due to concentrated water, and also has the excellent effect of preventing heat transfer from occurring at high temperatures, especially in cooling water systems. An object of the present invention is to provide a water-based anticorrosive agent and an anticorrosion method to be exhibited.

【0007】[0007]

【課題を解決するための手段】即ち本発明の目的は下記
の構成によって達成される。 (1) リン化合物の比率が実質的にゼロであり、モリ
ブデン酸化合物を1wt%以上含有し、さらに亜鉛化合
物および高分子電解質を含有していることを特徴とする
水系防食剤。 (2) モリブデン酸化合物1重量部に対して前記亜鉛
化合物を0.05〜0.5重量部の比率で配合してある
ことを特徴とする上記(1)記載の水系防食剤。 (3) アゾール化合物を配合してあることを特徴とす
る上記(1)又は(2)記載の水系防食剤。 (4) 前記アゾール化合物が、ベンゾトリアゾール又
はトリルトリアゾールであることを特徴とする上記
(3)記載の水系防食剤。
That is, the object of the present invention is achieved by the following constitutions. (1) A water-based anticorrosive, wherein the proportion of a phosphorus compound is substantially zero, the molybdate compound is contained in an amount of 1 wt% or more, and a zinc compound and a polymer electrolyte are further contained. (2) The aqueous anticorrosive according to the above (1), wherein the zinc compound is blended in a ratio of 0.05 to 0.5 part by weight with respect to 1 part by weight of the molybdate compound. (3) The aqueous anticorrosive according to the above (1) or (2), further comprising an azole compound. (4) The aqueous corrosion inhibitor according to the above (3), wherein the azole compound is benzotriazole or tolyltriazole.

【0008】(5) (1)に記載の水系防食剤を20
〜200mg/リットルの保持濃度で使用することを特
徴とする水系防食方法。 (6) リン酸化合物の比率が実質的にゼロであり、モ
リブデン酸化合物を0.2〜60ppm含有し、さらに
亜鉛化合物および高分子電解質を含有する水を循環させ
ることを特徴とする水系防食方法。
(5) The aqueous anticorrosive described in (1) is added to 20
A water-based anticorrosion method characterized by being used at a retention concentration of 200 mg / liter. (6) A water-based anticorrosion method characterized in that the ratio of the phosphoric acid compound is substantially zero, the water containing the molybdic acid compound is 0.2 to 60 ppm, and the water containing the zinc compound and the polymer electrolyte is circulated. .

【0009】上記の水系防食剤および防食方法は、従来
の防食剤の成分であるリン酸化合物を含まないが、モリ
ブデン酸化合物と亜鉛化合物との相乗効果により軟鋼製
の配管材等の腐食を効果的に防止する。好ましくは冷却
水系で用いるとよい水系防食剤および防食方法である。
なお、モリブデン酸化合物の重量%は、MoO4 として
換算したものである。また、亜鉛化合物の重量%は単体
のZnとして換算したものである。
The above-mentioned water-based anticorrosive agent and anticorrosion method do not contain a phosphoric acid compound which is a component of the conventional anticorrosive agent, but have a synergistic effect of a molybdate compound and a zinc compound to prevent corrosion of mild steel pipe materials and the like. Prevention. An aqueous anticorrosive and an anticorrosion method preferably used in a cooling water system are preferred.
The weight percent of the molybdate compound is obtained by conversion as MoO 4. In addition, the weight percent of the zinc compound is calculated as Zn alone.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれに限定されない。本発明の水系防
食剤では、リン酸化合物の比率が実質的にゼロである。
リン酸化合物とは、具体的には、オルトリン酸塩、ポリ
リン酸塩、ホスホン酸塩、リン含有ポリマーを言う。従
来これらはカルシウム硬度20〜200mg/リットル
程度の低・中濃縮冷却水による腐食を防止する上で、必
須の成分と考えられてきていた。実質的にゼロとは、リ
ン酸化合物を全く含まない場合を言う。また、冷却装置
の高温部にスケールを起こすことがなく、湖沼などに放
流しても事実上富養化を招かないと評価できる程度で、
リン酸化合物をほとんど含まない場合も言う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited thereto. In the aqueous anticorrosive of the present invention, the ratio of the phosphoric acid compound is substantially zero.
The phosphate compound specifically refers to orthophosphate, polyphosphate, phosphonate, and a phosphorus-containing polymer. Conventionally, these have been considered as essential components for preventing corrosion due to low / medium concentrated cooling water having a calcium hardness of about 20 to 200 mg / liter. Substantially zero means that no phosphate compound is contained. Also, it does not cause scale in the high temperature part of the cooling device, and it can be evaluated that it does not actually cause eutrophication even if discharged to lakes and marshes,
It also refers to the case where almost no phosphate compound is contained.

【0011】リン酸化合物は事実上ほとんど含まず、そ
の代わりモリブデン酸化合物を含有する。モリブデン酸
化合物としては、具体的にはオルトモリブデン酸塩、パ
ラモリブデン酸塩、メタモリブデン酸塩などを含む。こ
の場合の金属塩としては、例えば、ナトリウム塩、カリ
ウム塩、アンモニウム塩などを挙げることができる。そ
の中でも特にオルトモリブデン酸ナトリウムが最も好ま
しい モリブデン酸化合物とともに亜鉛化合物を含む。亜鉛化
合物としては、具体的には硫酸亜鉛、塩化亜鉛、酢酸亜
鉛、亜鉛酸ナトリウム、亜鉛酸カリウムなどを挙げるこ
とができる。特にその中でも硫酸亜鉛が最も好ましい。
Phosphoric acid compounds are practically scarcely contained, but instead molybdate compounds. The molybdate compound specifically includes orthomolybdate, paramolybdate, metamolybdate, and the like. Examples of the metal salt in this case include a sodium salt, a potassium salt, and an ammonium salt. Among them, sodium orthomolybdate particularly contains a zinc compound together with the most preferred molybdate compound. Specific examples of the zinc compound include zinc sulfate, zinc chloride, zinc acetate, sodium zincate, potassium zincate and the like. Among them, zinc sulfate is most preferable.

【0012】モリブデン酸化合物などとともに、更に高
分子電解質を助剤として含有する。高分子電解質という
のは、具体的にはアクリル酸共重合体及びその金属塩、
マレイン酸共重合体及びその金属塩、スルフォン酸共重
合体及びその金属塩、ポリエチレングリコールやそのエ
ステル類などを挙げることができる。こうした高分子電
解質の作用は、亜鉛の沈殿を防止して防食効果を高める
と同時に、スケールや腐食生成物の付着を防止して金属
表面を清浄に保ち、防食皮膜の形成を助け、二次腐食を
防止する。
In addition to the molybdate compound and the like, a polymer electrolyte is further contained as an auxiliary. The polymer electrolyte is specifically an acrylic acid copolymer and its metal salt,
Maleic acid copolymers and metal salts thereof, sulfonic acid copolymers and metal salts thereof, polyethylene glycol and esters thereof, and the like can be given. The action of such a polymer electrolyte prevents zinc precipitation and enhances the anticorrosion effect, and at the same time, prevents the adhesion of scale and corrosion products, keeps the metal surface clean, helps the formation of anticorrosion films, and promotes secondary corrosion. To prevent

【0013】高分子電解質の他にも、更に銅用の防食剤
にあたるアゾール化合物を配合するとよい。そのような
アゾール化合物としては、たとえばベンゾトリアゾー
ル、あるいはトリトリアゾール、アミノトリアゾールな
どを挙げることができる。このほかにも例えばスルファ
ミン酸、クエン酸などの有機酸を配合してもよい。
In addition to the polymer electrolyte, an azole compound serving as an anticorrosive for copper may be further added. Such azole compounds include, for example, benzotriazole, tritriazole, aminotriazole and the like. In addition, organic acids such as sulfamic acid and citric acid may be added.

【0014】上記の各成分は、例えば次のような比率で
配合する。すなわち、モリブデン酸化合物の配合比率は
防食剤の総重量中、1〜30重量%、好ましくは2〜2
0重量%が望ましい。配合比率が1重量%未満の場合に
は十分な防食効果を期待できないので好ましくない。3
0重量%を越える場合には薬剤の安定性が損なわれ、コ
スト高にもなるため、余り好ましくない。最も好ましい
のは2〜20重量%である。この範囲にあると、防食効
果と安定性ともに高くなって好ましい。亜鉛化合物の配
合比率は、モリブデン酸化合物1重量部に対して0.0
5〜0.5重量部がよい。総重量中では1〜5重量%が
よく、1重量%未満では十分な防食効果が得られず、5
重量%以上では薬剤の安定性が損なわれるばかりか、冷
却水系に希釈して使用した場合においても亜鉛がスケー
ル化する原因にもなる。高分子電解質の配合比率は総重
量中、1〜50重量%がよい。50重量%を越えるとゲ
ル化が生じて効果が損なわれることがある。その他のア
ゾール類などは、10重量%以下が望ましい。
The above components are mixed, for example, in the following ratio. That is, the mixing ratio of the molybdic acid compound is 1 to 30% by weight, preferably 2 to 2% by weight based on the total weight of the anticorrosive.
0% by weight is desirable. If the compounding ratio is less than 1% by weight, a sufficient anticorrosive effect cannot be expected, which is not preferable. 3
If the amount exceeds 0% by weight, the stability of the drug is impaired, and the cost is increased. Most preferred is 2 to 20% by weight. When it is in this range, both the anticorrosion effect and the stability are increased, which is preferable. The compounding ratio of the zinc compound is 0.0 to 1 part by weight of the molybdate compound.
5 to 0.5 parts by weight is preferred. The total weight is preferably 1 to 5% by weight, and if it is less than 1% by weight, a sufficient anticorrosive effect cannot be obtained.
If the content is more than 10% by weight, not only the stability of the drug is impaired, but also when zinc is used after being diluted in a cooling water system, it causes zinc to be scaled. The mixing ratio of the polymer electrolyte is preferably 1 to 50% by weight based on the total weight. If it exceeds 50% by weight, gelation may occur and the effect may be impaired. Other azoles are desirably 10% by weight or less.

【0015】このような水系防食剤は、例えば水酸化ナ
トリウムに硫酸亜鉛を溶解させたものに、キレート力の
ある原料たとえば高分子電解質等を添加して安定化さ
せ、更に他の原料を加えて製造する。水酸化亜鉛の析出
を防止するため、製造途中、特に酸性の原料を加える際
にはpHを11以上に保持するとよい。発熱によって安
定性が損なわれることがあるので、液温は40℃以下に
保持するとよい。上記の防食剤は例えば水系において、
20〜200mg/リットルの保持濃度になるように希
釈して使用するとよい。すなわち水系においてモリブデ
ン酸化合物が0.2〜60ppmの濃度に保持されるよ
うに使用するとよい。
Such an aqueous anticorrosive is stabilized by adding a chelating raw material, for example, a polymer electrolyte, to sodium hydroxide dissolved in zinc sulfate, and further adding other raw materials. To manufacture. In order to prevent the precipitation of zinc hydroxide, the pH should be maintained at 11 or more during the production, particularly when adding an acidic raw material. Since the stability may be impaired by heat generation, the liquid temperature is preferably kept at 40 ° C. or lower. The above anticorrosive is, for example, in an aqueous system,
It is recommended to dilute to a retention concentration of 20 to 200 mg / liter before use. That is, the molybdate compound is preferably used in an aqueous system so as to be maintained at a concentration of 0.2 to 60 ppm.

【0016】さらに具体的には、例えば、次のような冷
却水系の冷却装置で使用するとよい。図1は冷却水を管
理する冷却装置の一例図である。この冷却装置は、発熱
反応などを行わせる図示外の化学反応槽などの排熱を吸
収する熱交換器1を有している。この熱交換器1には、
冷却水を一時貯蔵する搭底水槽2から冷却管が延び、ポ
ンプ3を挟んで冷媒流入口に通じている。熱交換器1の
冷媒流出口は、送風機4を有する冷却搭5に高温管を介
して通じている。この冷却搭5からは冷却された水が、
直下にある搭底水槽2に供給される。搭底水槽2には、
ポンプを備えた注入管が薬注タンク6からまた別に延び
てきている。
More specifically, for example, it may be used in the following cooling water system cooling device. FIG. 1 is an example of a cooling device for managing cooling water. This cooling device has a heat exchanger 1 for absorbing waste heat such as a chemical reaction tank (not shown) for performing an exothermic reaction and the like. In this heat exchanger 1,
A cooling pipe extends from a bottom water tank 2 for temporarily storing cooling water, and communicates with a refrigerant inlet via a pump 3. A refrigerant outlet of the heat exchanger 1 communicates with a cooling tower 5 having a blower 4 through a high-temperature pipe. Cooled water from this cooling tower 5,
It is supplied to the bottom water tank 2 located immediately below. The bottom tank 2
An injection tube with a pump extends from the dosing tank 6 again.

【0017】上記の防食剤は、予め薬注タンク6に水溶
液の状態で投入する。上記の防食剤は、水系において通
常20〜200mg/リットルの濃度範囲に希釈して使
用するとよい。搭底水槽2における上記の防食剤の濃度
が、冷却装置の防食に必要なだけの十分な濃度すなわち
20mg/リットルを満たしていない場合は、薬注タン
ク6から防食剤を供給する。搭底水槽2、熱交換器1、
搭底水槽2の間に冷却水を循環させる。送風機4を駆動
させ、図示外の化学反応槽などから送られる排熱を熱交
換器1で冷却水に吸収させる。冷却水を循環させる間に
搭底水槽2の防食剤成分の濃度が上昇すれば給水管8よ
り補給水を給水し、該防食剤成分を好ましい濃度にす
る。また、冷却水の水質が悪化した場合あるいは冷却水
量が多くなった場合は、高温管から分岐するブロー管7
を通じ、その一部を放水し、搭底水槽2に給水装置から
新たな水を補給し、必要により、薬注タンク6により防
食剤を補充し、該防食剤成分を好ましい濃度にする。
The above-mentioned anticorrosive agent is previously charged in the form of an aqueous solution into the chemical injection tank 6. The above anticorrosive may be used by diluting it to a concentration range of usually 20 to 200 mg / liter in an aqueous system. If the concentration of the above-mentioned anticorrosive in the bottom water tank 2 does not satisfy a concentration sufficient for the anticorrosion of the cooling device, that is, does not satisfy 20 mg / liter, the anticorrosive is supplied from the chemical injection tank 6. Bottom water tank 2, heat exchanger 1,
Cooling water is circulated between the bottom water tanks 2. The blower 4 is driven, and waste heat sent from a chemical reaction tank (not shown) or the like is absorbed in the cooling water by the heat exchanger 1. If the concentration of the anticorrosive component in the bottom water tank 2 rises while circulating the cooling water, make-up water is supplied from the water supply pipe 8 to bring the anticorrosive component to a preferable concentration. Further, when the quality of the cooling water is deteriorated or when the amount of the cooling water is increased, the blow pipe 7 branching from the high temperature pipe.
, A part of the water is discharged, the bottom water tank 2 is replenished with fresh water from a water supply device, and if necessary, an anticorrosive is replenished by the chemical injection tank 6 to bring the anticorrosive component to a preferred concentration.

【0018】[0018]

【実施例】以下、実施例を説明するが、本発明はこの内
容に限定されない。 〔実施例1〜13〕〔比較例1〜11〕〔参考例1,
2〕 表1、表2に示す比率で水系防食剤を調製し、工業用水
腐食性試験法(JIS−K0100)に示す質量減法に
よって軟鋼及び銅の腐食速度を測定した。すなわち、試
水中に試験片を固定した円盤を投入し、一定速度で5日
間撹拌した。5日後に試験片を取り出し、除錆して重量
を測定した。試験開始前に測定した試験片重量との差か
ら腐食速度を求めた。
EXAMPLES Examples will be described below, but the present invention is not limited to these contents. [Examples 1 to 13] [Comparative Examples 1 to 11] [Reference Example 1,
2] Aqueous corrosion inhibitors were prepared at the ratios shown in Tables 1 and 2, and the corrosion rates of mild steel and copper were measured by the mass subtraction method shown in the Industrial Water Corrosion Test Method (JIS-K0100). That is, a disk on which the test piece was fixed was put into the test water and stirred at a constant speed for 5 days. After 5 days, the test piece was taken out, rust-removed, and the weight was measured. The corrosion rate was determined from the difference from the weight of the test piece measured before the start of the test.

【0019】試験条件 試水:pH7.5、カルシウム硬度150mg/リット
ル(CaCO3換算) 水温:40℃ 撹拌:60rpm 試験期間:5日間 薬剤濃度:いずれも100mg/リットル濃度に希釈 2リットルのビーカーを使用 結果を表1及び図2に示す。表中、mddのmはmg、d
はdm2、dはday(日)を表す。アゾールはベンゾ
トリアゾール、亜鉛は亜鉛化合物を表す。
Test conditions Sample water: pH 7.5, calcium hardness 150 mg / liter (CaCO 3 equivalent) Water temperature: 40 ° C. Stirring: 60 rpm Test period: 5 days Drug concentration: Diluted to a concentration of 100 mg / liter. Use 2 liter beaker. The results are shown in Table 1 and FIG. In the table, m of mdd is mg, d
Represents dm 2 , and d represents day (day). Azole represents benzotriazole and zinc represents a zinc compound.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】更に実施例6に供した防食剤について薬剤
濃度と軟鋼腐食速度の関係を調べ、燐酸を含む従来の防
食剤と比較した。比較グラフを図3に示す。なお、従来
の防食剤のリン酸濃度は5wt%で、実施例と同様に1
00mg/リットルに希釈して試験に供した。表1から
分かるように、モリブデン酸ナトリウムと硫酸亜鉛の相
乗効果により、効果的に軟鋼腐食速度を抑えることがで
きる。また、図2から分かるように、本発明の防食剤は
モリブデン酸ナトリウム10wt%、硫酸亜鉛1wt%
の配合が最も効果的に、軟鋼腐食速度を抑えることがで
きる。モリブデン酸ナトリウム、硫酸亜鉛をこれ以上に
配合させても、防食効果は大きく上昇しない。
Further, the relationship between the chemical concentration and the corrosion rate of mild steel was examined for the anticorrosive provided in Example 6, and compared with a conventional anticorrosive containing phosphoric acid. FIG. 3 shows a comparative graph. The phosphoric acid concentration of the conventional anticorrosive was 5 wt%, and was 1% as in the example.
The sample was diluted to 00 mg / liter and used for the test. As can be seen from Table 1, the mild steel corrosion rate can be effectively suppressed by the synergistic effect of sodium molybdate and zinc sulfate. Further, as can be seen from FIG. 2, the anticorrosive of the present invention contains 10% by weight of sodium molybdate and 1% by weight of zinc sulfate.
Is most effective in suppressing the mild steel corrosion rate. Even if sodium molybdate and zinc sulfate are further added, the anticorrosion effect does not increase significantly.

【0023】[0023]

【発明の効果】本発明の水系防食剤及び防食方法は、リ
ン酸化合物の比率が実質的にゼロであり、モリブン酸化
合物を1wt%以上含有し、さらに亜鉛化合物および高
分子電解質を含有していることから、湖沼を富養化する
ことがない。河川、湖沼の富栄養化を十分防止する。カ
ルシウム硬度200mg/リットル以下の低・中濃縮水
による配管鋼材等の腐食を効果的に防止する。リン酸化
合物を含有していないので冷却装置系の高温部にスケー
ルが付着することがなく、冷却水系の装置内で使用すれ
ば高温部で伝熱阻害を起こすこともないという優れた効
果も発揮する。
Industrial Applicability The aqueous anticorrosive agent and the anticorrosive method of the present invention have a phosphoric acid compound ratio of substantially zero, contain a molybdate compound at 1 wt% or more, and further contain a zinc compound and a polymer electrolyte. So that they do not enrich the lakes. Fully prevent eutrophication of rivers and lakes. It effectively prevents corrosion of piping steel materials and the like by low / medium concentrated water having a calcium hardness of 200 mg / liter or less. Since it does not contain a phosphoric acid compound, there is no scale adhered to the high-temperature part of the cooling system, and the excellent effect of preventing heat transfer at the high-temperature part when used in the cooling water system is also exhibited. I do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷却水を管理する冷却装置の一例図である。FIG. 1 is an example of a cooling device for managing cooling water.

【図2】モリブデン酸化合物の含有濃度と亜鉛化合物の
含有濃度と、軟鋼の腐食速度との関係を示すグラフ図で
ある。
FIG. 2 is a graph showing the relationship between the content of a molybdate compound, the content of a zinc compound, and the corrosion rate of mild steel.

【図3】軟鋼腐食速度を実施例6の腐食防止剤と従来の
リン系防食剤とで比較したグラフ図である。
FIG. 3 is a graph comparing the corrosion rate of mild steel between the corrosion inhibitor of Example 6 and a conventional phosphorus-based anticorrosive.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 搭底水槽 3 ポンプ 4 送風機 5 冷却搭 6 薬注タンク 7 ブロー管 8 給水管 DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Bottom water tank 3 Pump 4 Blower 5 Cooling tower 6 Chemical injection tank 7 Blow pipe 8 Water supply pipe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リン化合物の比率が実質的にゼロであ
り、モリブデン酸化合物を1wt%以上含有し、さらに
亜鉛化合物および高分子電解質を含有していることを特
徴とする水系防食剤。
1. A water-based anticorrosive, wherein the ratio of a phosphorus compound is substantially zero, a molybdate compound is contained in an amount of 1 wt% or more, and a zinc compound and a polymer electrolyte are further contained.
【請求項2】 モリブデン酸化合物1重量部に対して前
記亜鉛化合物を0.05〜0.5重量部の比率で配合し
てあることを特徴とする請求項1記載の水系防食剤。
2. The aqueous anticorrosive according to claim 1, wherein the zinc compound is blended in a ratio of 0.05 to 0.5 part by weight with respect to 1 part by weight of the molybdate compound.
【請求項3】 アゾール化合物を配合してあることを特
徴とする請求項1又は2記載の水系防食剤。
3. The aqueous anticorrosive according to claim 1, further comprising an azole compound.
【請求項4】 前記アゾール化合物が、ベンゾトリアゾ
ール又はトリルトリアゾールであることを特徴とする請
求項3記載の水系防食剤。
4. The aqueous anticorrosive according to claim 3, wherein the azole compound is benzotriazole or tolyltriazole.
【請求項5】 請求項1に記載の水系防食剤を20〜2
00mg/リットルの保持濃度で使用することを特徴と
する水系防食方法。
5. The water-based anticorrosive according to claim 1, wherein the water-based anticorrosive is 20 to 2 times.
A water-based anticorrosion method characterized by being used at a retention concentration of 00 mg / liter.
【請求項6】 リン酸化合物の比率が実質的にゼロであ
り、モリブデン酸化合物を0.2〜60ppm含有し、
さらに亜鉛化合物および高分子電解質を含有する水を循
環させることを特徴とする水系防食方法。
6. The method according to claim 1, wherein the ratio of the phosphoric acid compound is substantially zero, the molybdate compound is contained in an amount of 0.2 to 60 ppm,
A water-based anticorrosion method, further comprising circulating water containing a zinc compound and a polymer electrolyte.
JP16603697A 1997-06-23 1997-06-23 Water-based anticorrosion agent and anticorrosion method Ceased JP3389064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16603697A JP3389064B2 (en) 1997-06-23 1997-06-23 Water-based anticorrosion agent and anticorrosion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16603697A JP3389064B2 (en) 1997-06-23 1997-06-23 Water-based anticorrosion agent and anticorrosion method

Publications (2)

Publication Number Publication Date
JPH1112771A true JPH1112771A (en) 1999-01-19
JP3389064B2 JP3389064B2 (en) 2003-03-24

Family

ID=15823767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16603697A Ceased JP3389064B2 (en) 1997-06-23 1997-06-23 Water-based anticorrosion agent and anticorrosion method

Country Status (1)

Country Link
JP (1) JP3389064B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032311A (en) * 2006-07-28 2008-02-14 Daikin Ind Ltd Ammonia absorption type refrigerating machine and its corrosion inhibitor
JP2012206044A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Method for preventing cooling water system from scaling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032311A (en) * 2006-07-28 2008-02-14 Daikin Ind Ltd Ammonia absorption type refrigerating machine and its corrosion inhibitor
JP2012206044A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Method for preventing cooling water system from scaling

Also Published As

Publication number Publication date
JP3389064B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
US4409121A (en) Corrosion inhibitors
US4512552A (en) Corrosion inhibitor
US4108790A (en) Corrosion inhibitor
US3751372A (en) Scale and corrosion control in circulating water using polyphosphates and organophonic acids
TWI527933B (en) Composition and method for controlling copper discharge and erosion of copper alloys in industrial systems
JP2010202893A (en) Liquid composition for preventing corrosion and scaling, and method for preventing corrosion and scaling
JP2012041606A (en) Corrosion and scale preventing liquid composition and method for preventing corrosion and scale
US4548787A (en) Aqueous liquids containing metal cavitation-erosion corrosion inhibitors
TW200400006A (en) Composition for preventing formation of slime and process for preventing formation of slime
US4298568A (en) Method and composition for inhibiting corrosion of nonferrous metals in contact with water
JP4934896B2 (en) Multifunctional water treatment agent
JP3389064B2 (en) Water-based anticorrosion agent and anticorrosion method
US20030173543A1 (en) Organic Corrosion Inhibitors and Corrosion Control Methods for Water Systems
JP2004211137A (en) Anticorrosive composition of
US8828273B2 (en) Additive formulation for industrial cooling systems
JP3838612B2 (en) Water-based anticorrosion method
JP5559629B2 (en) Water-based metal anticorrosion method
JP2004339611A (en) Water-based anticorrosive
JP4598330B2 (en) Anticorrosion method
JP6156494B2 (en) Water treatment method for steam generating equipment
JP3929552B2 (en) Water-based anticorrosive
JP3838610B2 (en) Water-based anticorrosive and anticorrosion method
GB1579217A (en) Her closed circuit water system composition for addition to a central heating system or ot
JP4715987B2 (en) Water treatment agent
JP2006233287A (en) Corrosion-preventing composition and corrosion-preventing method

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition