JP2012205246A - Harmonic processing circuit, high frequency amplifier and high frequency oscillator - Google Patents

Harmonic processing circuit, high frequency amplifier and high frequency oscillator Download PDF

Info

Publication number
JP2012205246A
JP2012205246A JP2011070439A JP2011070439A JP2012205246A JP 2012205246 A JP2012205246 A JP 2012205246A JP 2011070439 A JP2011070439 A JP 2011070439A JP 2011070439 A JP2011070439 A JP 2011070439A JP 2012205246 A JP2012205246 A JP 2012205246A
Authority
JP
Japan
Prior art keywords
line
processing circuit
harmonic processing
harmonic
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070439A
Other languages
Japanese (ja)
Inventor
Hiroshi Otsuka
浩志 大塚
Saneto Kimura
実人 木村
Koji Yamanaka
宏治 山中
Toshiyuki Oishi
敏之 大石
Eigo Kuwata
英悟 桑田
Masatoshi Nakayama
正敏 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011070439A priority Critical patent/JP2012205246A/en
Publication of JP2012205246A publication Critical patent/JP2012205246A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microwave Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem wherein second harmonic matching cannot be performed over a wideband and the frequency range of high efficiency is limited.SOLUTION: A harmonic processing circuit includes: a main line comprising a transmission line 2; a sub line in parallel connection to the main line comprising a circuit of a resistance 6 and transmission lines 5, 7 connected in series; and open stubs 3, 4 each having one end connected to a junction of the main line and the sub line.

Description

この発明は、高調波処理回路、高周波増幅器及び高周波発振器に関する。   The present invention relates to a harmonic processing circuit, a high frequency amplifier, and a high frequency oscillator.

マイクロ波高出力増幅器において、トランジスタ(半導体)に最適な位相の高調波を反射して、トランジスタの効率を向上させる高調波処理という技術がある。
例えば、特許文献1(特開2009−159591)では、高調波処理回路および高周波増幅器が開示されている。特許文献1の高周波増幅器の回路構成を図15に示す。線路(1)、(3)はオープンスタブ、線路(2)、(4)は伝送線路である。線路(1)−(3)が高調波処理回路を構成している。線路(4)の長さは基本波(f0)においてλ/8(2倍波(2f0)においてλ/4)である。λ(ラムダ)は波長を示す。
従来の高調波処理回路の動作について説明する。まず、f0のときについて考える。線路(1)のオープンスタブの長さがf0において無視できる程度に短い場合、高調波処理回路は、線路(2)とオープンスタブである線路(3)だけが作用し、ローパス型の整合回路として働く。これにより、f0においてトランジスタのインピーダンスに対して整合を取ることができる。
次に、2f0について考える。2f0において、オープンスタブである線路(3)は線路長がλ/4であり、短絡点を形成する。つまり、図15中のZcは短絡(ショート)になる。したがって、トランジスタで生じた2f0はその短絡点で全反射される。その2f0を線路(2)及び線路(1)で位相を調整し、適切な位相でトランジスタに戻すことにより高調波処理(言い換えれば高調波整合)を行っている。
In a microwave high-power amplifier, there is a technique called harmonic processing that reflects harmonics having an optimum phase for a transistor (semiconductor) to improve transistor efficiency.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2009-159591) discloses a harmonic processing circuit and a high-frequency amplifier. FIG. 15 shows a circuit configuration of the high-frequency amplifier disclosed in Patent Document 1. Lines (1) and (3) are open stubs, and lines (2) and (4) are transmission lines. Lines (1)-(3) constitute a harmonic processing circuit. The length of the line (4) is λ / 8 at the fundamental wave (f0) (λ / 4 at the second harmonic wave (2f0)). λ (lambda) indicates the wavelength.
The operation of the conventional harmonic processing circuit will be described. First, consider the case of f0. When the length of the open stub of the line (1) is negligibly short at f0, the harmonic processing circuit acts only as the line (2) and the line (3) that is an open stub, and as a low-pass type matching circuit work. This makes it possible to match the impedance of the transistor at f0.
Next, consider 2f0. At 2f0, the line (3), which is an open stub, has a line length of λ / 4 and forms a short circuit point. That is, Zc in FIG. 15 is short-circuited. Therefore, 2f0 generated in the transistor is totally reflected at the short-circuit point. The phase of the 2f0 is adjusted by the line (2) and the line (1), and the harmonic processing (in other words, harmonic matching) is performed by returning it to the transistor with an appropriate phase.

特開2009−159591JP2009-159591

しかしながら、従来の構成は、オープンスタブ及び伝送線路だけから構成されているため2倍波インピーダンスの周波数特性が大きくなる。図16に従来の2倍波インピーダンスの計算結果を示す。ターゲットとなるインピーダンス範囲に対して、2倍波インピーダンスの周波数特性が大きいことが分かる。このように、2倍波インピーダンスの周波数特性が大きいために、広帯域での2倍波整合を取れず、高効率化できる周波数範囲が狭いという課題があった。   However, since the conventional configuration includes only an open stub and a transmission line, the frequency characteristic of the second harmonic impedance is increased. FIG. 16 shows a conventional calculation result of the second harmonic impedance. It can be seen that the frequency characteristic of the second harmonic impedance is large with respect to the target impedance range. As described above, since the frequency characteristic of the second harmonic impedance is large, there is a problem that the second harmonic matching in a wide band cannot be achieved and the frequency range in which the efficiency can be improved is narrow.

この発明は、上記のような課題を解決するためになされたもので、広帯域にて2倍波整合を取れ、高効率化できる周波数範囲が広い高調波処理回路、高周波増幅器及び高周波発振器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a harmonic processing circuit, a high-frequency amplifier, and a high-frequency oscillator having a wide frequency range that can achieve double-harmonic matching in a wide band and achieve high efficiency. For the purpose.

この発明に係る高調波処理回路は、伝送線路から構成されるメイン線路と、抵抗と伝送線路とが直列接続された回路から構成され、メイン線路と並列接続されたサブ線路と、一端がメイン線路とサブ線路との接続点に接続されたオープンスタブとを含んで構成されることを特徴とするものである。   The harmonic processing circuit according to the present invention includes a main line composed of a transmission line, a circuit in which a resistor and a transmission line are connected in series, a sub-line connected in parallel with the main line, and one end of the main line And an open stub connected to the connection point between the sub-line and the sub-line.

この発明によれば、サブ線路を構成する抵抗の影響から、中心周波数付近での共振時に反射位相の周波数特性を小さくすることができ、広帯域にて2倍波整合を取れ、高効率化できる周波数範囲が広い高調波処理回路を提供することができる。   According to the present invention, the frequency characteristic of the reflection phase can be reduced at the time of resonance near the center frequency due to the influence of the resistance that constitutes the sub-line, and the frequency that can achieve the second harmonic matching in a wide band and increase the efficiency. A harmonic processing circuit with a wide range can be provided.

この発明の実施の形態1に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高調波処理回路の等価回路図である。It is an equivalent circuit diagram of the harmonic processing circuit according to the first embodiment of the present invention. この発明の実施の形態1に係る高調波処理回路の基本波における等価回路図である。It is an equivalent circuit diagram in the fundamental wave of the harmonic processing circuit according to the first embodiment of the present invention. この発明の実施の形態1に係る高調波処理回路の2倍波における等価回路図である。It is an equivalent circuit diagram in the 2nd harmonic of the harmonic processing circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高調波処理回路のインピーダンスの軌跡のイメージ図である。It is an image figure of the locus | trajectory of the impedance of the harmonic processing circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高調波処理回路の2倍波インピーダンスの計算結果である。It is a calculation result of the 2nd harmonic impedance of the harmonic processing circuit which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る高周波増幅器と従来の高周波増幅器の効率の周波数特性を比較した図である。It is the figure which compared the frequency characteristic of the efficiency of the high frequency amplifier which concerns on Embodiment 1 of this invention, and the conventional high frequency amplifier. この発明の別の実施の形態に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on another embodiment of this invention. この発明の更に別の実施の形態に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on another embodiment of this invention. この発明の実施の形態2に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on Embodiment 2 of this invention. この発明の実施の形態2における別の実施の形態に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on another embodiment in Embodiment 2 of this invention. この発明の実施の形態2における更に別の実施の形態に係る高調波処理回路の回路構成図である。It is a circuit block diagram of the harmonic processing circuit which concerns on another embodiment in Embodiment 2 of this invention. この発明の実施の形態3に係る高周波増幅器の回路構成図である。It is a circuit block diagram of the high frequency amplifier which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る高周波発振器の回路構成図である。It is a circuit block diagram of the high frequency oscillator which concerns on Embodiment 4 of this invention. 従来の高周波増幅器の等価回路図である。It is an equivalent circuit diagram of a conventional high-frequency amplifier. 従来の高調波処理回路の2倍波インピーダンスの計算結果である。It is a calculation result of the 2nd harmonic impedance of the conventional harmonic processing circuit.

図1から図14を用いてこの発明の実施の形態について、高調波処理回路、それを用いた高周波増幅器及び高周波発振器について説明する。また、ここでは入力整合回路を例に説明を行っているが本発明は入力整合回路だけでなく、出力整合回路及び段間整合回路等すべての整合回路に適用可能である。なお、各実施の形態を示す図において共通する要素には同一の符号を付し、重複する説明については省略している。   A harmonic processing circuit, a high-frequency amplifier and a high-frequency oscillator using the same will be described with reference to FIGS. Although the input matching circuit is described here as an example, the present invention is applicable not only to the input matching circuit but also to all matching circuits such as an output matching circuit and an interstage matching circuit. In the drawings showing the respective embodiments, common elements are denoted by the same reference numerals, and overlapping descriptions are omitted.

実施の形態1.
図1は、この発明の実施の形態1に係る高調波処理回路9の回路構成図である。図1にて1はFET(Field Effect Transistor:電界効果トランジスタ)、9は高調波処理回路を示す。
Embodiment 1.
1 is a circuit configuration diagram of a harmonic processing circuit 9 according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes an FET (Field Effect Transistor), and 9 denotes a harmonic processing circuit.

FET1は、入力した高周波信号を増幅する。この実施の形態1では、FETを用いるが、それに限らず、バイポーラトランジスタ(HBT)等入力した高周波信号を増幅する半導体を用いることが可能である。   The FET 1 amplifies the input high frequency signal. In the first embodiment, an FET is used. However, the present invention is not limited to this, and a semiconductor that amplifies an input high-frequency signal such as a bipolar transistor (HBT) can be used.

高調波処理回路9は、主としてVHF帯、UHF帯、マイクロ波帯およびミリ波帯で使用される高周波増幅器又は高周波発振器等に装荷され、FET1に対する反射波を最適な位相とする回路である。
高調波処理回路9は、具体的には、伝送線路2(メイン線路)、オープンスタブ3、オープンスタブ4、伝送線路5(サブ線路)、抵抗6(サブ線路)、伝送線路7(サブ線路)、及び伝送線路8から構成されている。
The harmonic processing circuit 9 is a circuit that is loaded on a high-frequency amplifier or a high-frequency oscillator that is mainly used in the VHF band, UHF band, microwave band, and millimeter wave band, and has a reflected wave with respect to the FET 1 as an optimum phase.
Specifically, the harmonic processing circuit 9 includes a transmission line 2 (main line), an open stub 3, an open stub 4, a transmission line 5 (sub line), a resistor 6 (sub line), and a transmission line 7 (sub line). , And a transmission line 8.

伝送線路2の一端は、FET1と接続される。伝送線路2の電気長(線路長)は、この高調波処理回路9の基本波(f0)に対する2倍波(2f0)において約90°となる。   One end of the transmission line 2 is connected to the FET 1. The electrical length (line length) of the transmission line 2 is about 90 ° at the second harmonic (2f0) with respect to the fundamental wave (f0) of the harmonic processing circuit 9.

伝送線路2のFET1側の端部には、伝送線路5が接続されている。伝送線路5における伝送線路2の反対側には、抵抗6が直列接続している。抵抗6における伝送線路5の反対側には、伝送線路7が直列接続している。伝送線路7における抵抗6の反対側は、伝送線路2におけるFET1と反対側の端部に接続している。
これにより、伝送線路2から構成されるメイン線路と、伝送線路5、7及び抵抗6から構成されるサブ線路とが並列接続されることとなる。
A transmission line 5 is connected to the end of the transmission line 2 on the FET 1 side. A resistor 6 is connected in series on the opposite side of the transmission line 5 from the transmission line 2. A transmission line 7 is connected in series to the opposite side of the transmission line 5 in the resistor 6. The opposite side of the resistor 6 in the transmission line 7 is connected to the end of the transmission line 2 opposite to the FET 1.
As a result, the main line composed of the transmission line 2 and the sub-line composed of the transmission lines 5 and 7 and the resistor 6 are connected in parallel.

サブ線路のインピーダンスは、メイン線路のインピーダンスよりも高い。このような構成とすることによって、基本波(f0)の帯域を広げることができるという効果がある。また、抵抗6が直列接続しているサブ路線のインピーダンスが高いことによって、回路損失を低減することができるという効果がある。   The impedance of the sub line is higher than the impedance of the main line. With such a configuration, there is an effect that the band of the fundamental wave (f0) can be widened. Moreover, since the impedance of the sub line to which the resistor 6 is connected in series is high, there is an effect that the circuit loss can be reduced.

伝送線路2と伝送線路7との接続点には、オープンスタブ3が接続され、伝送線路2と伝送線路5との接続点にはオープンスタブ4が接続されている。オープンスタブ3及びオープンスタブ4の電気長(路線長)は、2f0において90°以下である。
抵抗6は、サブ線路中FET1側に配置されている。
抵抗6をサブ線路中FET1側に配置する構成としたことにより、後述の図6等に例示するようにインピーダンスが円を描くようになり、インピーダンスの周波数特性を小さくできるという効果がある。
この実施の形態1では、高調波処理回路9を入力整合回路に適応した場合を説明しているが、出力整合回路に適用した場合にも抵抗6は、FET1側に配置される。それにより、上記同様の効果を得ることができる。
An open stub 3 is connected to a connection point between the transmission line 2 and the transmission line 7, and an open stub 4 is connected to a connection point between the transmission line 2 and the transmission line 5. The electrical length (route length) of the open stub 3 and the open stub 4 is 90 ° or less at 2f0.
The resistor 6 is arranged on the FET1 side in the sub line.
By adopting a configuration in which the resistor 6 is arranged on the FET 1 side in the sub-line, the impedance becomes a circle as illustrated in FIG. 6 and the like described later, and there is an effect that the frequency characteristic of the impedance can be reduced.
In the first embodiment, the case where the harmonic processing circuit 9 is applied to the input matching circuit has been described, but the resistor 6 is also arranged on the FET 1 side when applied to the output matching circuit. Thereby, the same effect as described above can be obtained.

次に、この実施の形態1に係る高調波処理回路9の動作について説明する。図2に、図1の高調波処理回路9の等価回路を示す。
図2に示すように、この実施の形態1に係る高調波処理回路9の等価回路は、特性インピーダンスをZ2、Z4とする2つの伝送線路(伝送線路Z2及び伝送線路Z4)と、特性インピーダンスをZ1、Z3とする2つのオープンスタブ(オープンスタブZ1及びオープンスタブZ3)と、抵抗値をR1とする抵抗(抵抗R1)と、2つの端子(端子A及び端子B)とから構成される。
Next, the operation of the harmonic processing circuit 9 according to the first embodiment will be described. FIG. 2 shows an equivalent circuit of the harmonic processing circuit 9 of FIG.
As shown in FIG. 2, the equivalent circuit of the harmonic processing circuit 9 according to the first embodiment includes two transmission lines (transmission line Z2 and transmission line Z4) having characteristic impedances Z2 and Z4, and a characteristic impedance. It is composed of two open stubs Z1 and Z3 (open stub Z1 and open stub Z3), a resistor having a resistance value R1 (resistor R1), and two terminals (terminal A and terminal B).

端子Aは、FET1に接続する端子であり、端子Bは、入力側の端子である。伝送線路Z2の2f0における電気長(θ2)は、約90°であり、伝送線路Z4の2f0における電気長(θ4)は、約90°である。オープンスタブZ3の2f0における電気長(θ3)は、90°以下である。オープンスタブZ1の電気長(θ1)は、伝送線路Z4の電気長(θ4)よりも小さい。   The terminal A is a terminal connected to the FET 1, and the terminal B is an input side terminal. The electrical length (θ2) at 2f0 of the transmission line Z2 is about 90 °, and the electrical length (θ4) at 2f0 of the transmission line Z4 is about 90 °. The electrical length (θ3) at 2f0 of the open stub Z3 is 90 ° or less. The electrical length (θ1) of the open stub Z1 is smaller than the electrical length (θ4) of the transmission line Z4.

図3を参照し、基本波(f0)について説明する。オープンスタブZ1の電気長θ1がf0において無視できる程度に小さいとすると、図2に示す等価回路は、図3に示す等価回路のようになる。
図3に示す等価回路に抵抗R1に対応する抵抗がないが、これはf0において、信号は、抵抗R1が設置された経路を通らないためである。このように、高調波処理回路9の等価回路は、f0においてローパス型のインピーダンス変成回路とみなすことができるので、f0に対して整合を取ることができる。
The fundamental wave (f0) will be described with reference to FIG. If the electrical length θ1 of the open stub Z1 is small enough to be ignored at f0, the equivalent circuit shown in FIG. 2 becomes the equivalent circuit shown in FIG.
The equivalent circuit shown in FIG. 3 does not have a resistor corresponding to the resistor R1 because the signal does not pass through the path where the resistor R1 is installed at f0. Thus, since the equivalent circuit of the harmonic processing circuit 9 can be regarded as a low-pass impedance transformation circuit at f0, matching can be achieved with respect to f0.

図4を参照し、2倍波(2f0)について説明する。伝送線路Z2、Z4をそれぞれコイル(コイルL2及びコイルL4)及びコンデンサ(コンデンサC2及びコンデンサC4)に変換して、オープンスタブZ1、Z3をコンデンサ(コンデンサC1及びコンデンサC3)に変換すると、図2に示す等価回路は、図4(a)に示す等価回路のようになる。ここで、抵抗R1が接続されている線路では、2f0においてコンデンサC4よりもコイルL4の影響が大きく、抵抗R1が接続されていない側の線路では、コイルL2よりもコンデンサC2の影響が大きい場合、図4(a)に示す等価回路は、図4(b)に示す等価回路のようになる。   The second harmonic (2f0) will be described with reference to FIG. When the transmission lines Z2 and Z4 are converted into coils (coil L2 and coil L4) and capacitors (capacitor C2 and capacitor C4), respectively, and open stubs Z1 and Z3 are converted into capacitors (capacitor C1 and capacitor C3), FIG. The equivalent circuit shown is similar to the equivalent circuit shown in FIG. Here, in the line to which the resistor R1 is connected, the influence of the coil L4 is larger than that of the capacitor C4 at 2f0, and in the line to which the resistor R1 is not connected, the influence of the capacitor C2 is larger than that of the coil L2. The equivalent circuit shown in FIG. 4A is similar to the equivalent circuit shown in FIG.

一般に、端子B側から見たインピーダンスより、コンデンサC1、コンデンサC2及びコンデンサC3を合わせたキャパシタのインピーダンスの方が小さいと考えられるから、図4(b)に示す等価回路は、図4(c)に示す等価回路のようになる。以上から、図2に示す等価回路は、2f0においてRLCの直列共振回路(抵抗Rt1〜コイルLt1〜コンデンサCt1)とC(コンデンサCt0)とを並列接続した回路に等価となる。   In general, since it is considered that the impedance of the capacitor C1, the capacitor C2, and the capacitor C3 combined is smaller than the impedance viewed from the terminal B side, the equivalent circuit shown in FIG. The equivalent circuit shown in FIG. From the above, the equivalent circuit shown in FIG. 2 is equivalent to a circuit in which an RLC series resonant circuit (resistor Rt1 to coil Lt1 to capacitor Ct1) and C (capacitor Ct0) are connected in parallel at 2f0.

図5は、図4(c)に示す等価回路のインピーダンスの軌跡のイメージ図である。図4(c)に示す等価回路のインピーダンスの軌跡を考えると、低周波(F)ではキャパシタのインピーダンスが大きいため開放側(スミスチャートの右側)に、Lt1−Ct1の共振する周波数(F)では抵抗Rt1の影響からスミスチャートの内側に、高周波(F)ではコンデンサCt0のインピーダンスが低くなるため短絡側(スミスチャートの左側)に移動する。 FIG. 5 is an image diagram of the impedance locus of the equivalent circuit shown in FIG. Considering the locus of the impedance of the equivalent circuit shown in FIG. 4C, since the impedance of the capacitor is large at the low frequency (F L ), the resonant frequency of Lt 1 -Ct 1 (F C ) on the open side (right side of the Smith chart). ) Moves to the inside of the Smith chart due to the influence of the resistor Rt1, and to the short circuit side (left side of the Smith chart) because the impedance of the capacitor Ct0 becomes low at high frequency (F H ).

図5に示すように、この実施の形態1に係る高調波処理回路9は、中心周波数付近で共振により円の内側に入るため、従来よりも2f0の反射位相の周波数特性を小さくすることができる。   As shown in FIG. 5, since the harmonic processing circuit 9 according to the first embodiment enters the inside of the circle by resonance near the center frequency, the frequency characteristic of the reflection phase of 2f0 can be made smaller than before. .

図6は、この実施の形態に係る高調波処理回路9の2倍波インピーダンスの計算結果を示す図である。従来回路と比較して、2倍波インピーダンスの周波数特性(反射位相の周波数特性)を小さくすることができ、全周波数(2f0=5.8−6.8GHz)でターゲットとなるインピーダンス範囲にほぼ入っていることが分かる。   FIG. 6 is a diagram showing the calculation result of the second harmonic impedance of the harmonic processing circuit 9 according to this embodiment. Compared with the conventional circuit, the frequency characteristic of the double-wave impedance (frequency characteristic of the reflection phase) can be reduced, and it almost falls within the target impedance range at all frequencies (2f0 = 5.8-6.8 GHz). I understand that

この実施の形態1に係る高調波処理回路9を適用した高周波増幅器において、周波数に対する効率の変化(増減)を意味する「効率の周波数特性」を計算した結果を図7に示す。縦軸のΔPAEは、本回路、従来回路を適用したときの効率と2f0のインピーダンスを50オームとして計算したとき(高調波処理なしの場合)の効率との差を示している。f0=2.9−3.4GHzの比帯域16パーセントで従来回路に比べて効率を2.5パーセント改善できていることが分かる。
ここで、PAE(Power−Added−Efficiency)は、電力付加効率を示し、(RF出力電力−RF入力電力)/DC電力で定義される。
FIG. 7 shows the calculation result of “frequency characteristic of efficiency” which means a change (increase / decrease) in efficiency with respect to frequency in the high frequency amplifier to which the harmonic processing circuit 9 according to the first embodiment is applied. ΔPAE on the vertical axis indicates the difference between the efficiency when the present circuit and the conventional circuit are applied and the efficiency when the impedance of 2f0 is calculated as 50 ohms (in the case of no harmonic processing). It can be seen that the efficiency can be improved by 2.5% compared to the conventional circuit at a specific band of 16% at f0 = 2.9-3.4 GHz.
Here, PAE (Power-Add-Efficiency) indicates power added efficiency and is defined as (RF output power-RF input power) / DC power.

以上より、実施の形態1に係る高調波処理回路9は、伝送線路2から構成されるメイン線路と、抵抗6と伝送線路5、7とが直列接続された回路から構成され、メイン線路と並列接続されたサブ線路と、一端がメイン線路とサブ線路との接続点に接続されたオープンスタブ3、4とを含んで構成される。このため、サブ線路を構成する抵抗6の影響から、中心周波数付近での共振時に反射位相の周波数特性を小さくすることができ、広帯域にて2倍波整合を取れ、高効率化できる周波数範囲が広い高調波処理回路を提供することができる。   As described above, the harmonic processing circuit 9 according to the first embodiment includes a main line configured by the transmission line 2 and a circuit in which the resistor 6 and the transmission lines 5 and 7 are connected in series, and is parallel to the main line. It is configured to include a connected sub line and open stubs 3 and 4 having one end connected to a connection point between the main line and the sub line. Therefore, due to the influence of the resistor 6 constituting the sub-line, the frequency characteristic of the reflection phase can be reduced at the time of resonance near the center frequency, and the frequency range in which the second harmonic matching can be obtained in a wide band and the efficiency can be improved. A wide harmonic processing circuit can be provided.

また、実施の形態1によれば、オープンスタブ3、4の線路長は、2倍波の波長の1/4以下となるように構成した。その為に、高調波処理回路9が広帯域での2倍波整合を取れるようになる。   Further, according to the first embodiment, the line lengths of the open stubs 3 and 4 are configured to be 1/4 or less of the wavelength of the second harmonic. Therefore, the harmonic processing circuit 9 can achieve a second harmonic matching in a wide band.

また、実施の形態1によれば、メイン線路を構成する伝送線路2の線路長は、2倍波の波長の1/4となるように構成した。その為に、高調波処理回路9が広帯域での2倍波整合を取れるようになる。   Further, according to the first embodiment, the transmission line 2 constituting the main line is configured so that the line length is ¼ of the wavelength of the second harmonic. Therefore, the harmonic processing circuit 9 can achieve a second harmonic matching in a wide band.

また、実施の形態1によれば、サブ線路を構成する伝送線路5、7の線路長は、2倍波の波長の1/4となるように構成した。その為に、高調波処理回路9が広帯域での2倍波整合を取れるようになる。   Further, according to the first embodiment, the transmission lines 5 and 7 constituting the sub-line are configured so that the line length is ¼ of the wavelength of the second harmonic. Therefore, the harmonic processing circuit 9 can achieve a second harmonic matching in a wide band.

また、実施の形態1によれば、メイン線路の一端は、信号を増幅するFET1と接続され、サブ線路を構成する抵抗は、サブ線路のうちFET1側に配置されるように構成した。その為に、反射位相の周波数特性を小さくすることができるため、高調波処理回路9が広帯域での2倍波整合を取れるようになる。   Further, according to the first embodiment, one end of the main line is connected to the FET 1 that amplifies the signal, and the resistor that constitutes the sub line is arranged on the FET 1 side of the sub line. Therefore, since the frequency characteristic of the reflection phase can be reduced, the harmonic processing circuit 9 can achieve the second harmonic matching in a wide band.

また、実施の形態1によれば、サブ線路のインピーダンスは、メイン線路のインピーダンスより高くなるように構成した。その為に、基本波(f0)の帯域を広げることができるようになる。また、抵抗6が接続されているサブ路線のインピーダンスが高いことによって、回路損失を低減できるようになる。   Further, according to the first embodiment, the impedance of the sub-line is configured to be higher than the impedance of the main line. Therefore, the band of the fundamental wave (f0) can be expanded. Further, since the impedance of the sub line to which the resistor 6 is connected is high, the circuit loss can be reduced.

次に、この実施の形態1の別の実施の形態について説明する。
図8は、この発明の別の実施の形態に係る高調波処理回路9の回路構成図である。この図8に示すように、別の実施の形態に係る高調波処理回路9におけるオープンスタブ3の一端は伝送線路5に、オープンスタブ4の一端は伝送線路7にそれぞれ接続している。
その他の構成については上記図1で説明した構成と同様である。
Next, another embodiment of the first embodiment will be described.
FIG. 8 is a circuit configuration diagram of a harmonic processing circuit 9 according to another embodiment of the present invention. As shown in FIG. 8, one end of the open stub 3 in the harmonic processing circuit 9 according to another embodiment is connected to the transmission line 5, and one end of the open stub 4 is connected to the transmission line 7.
Other configurations are the same as those described with reference to FIG.

図9は、この発明の更に別の実施の形態に係る高調波処理回路9の回路構成図である。この図9に示すように、伝送線路5は、FET1と接続している。伝送線路8は、伝送線路7と接続している。
その他の構成については上記図8で説明した構成と同様である。
FIG. 9 is a circuit configuration diagram of a harmonic processing circuit 9 according to still another embodiment of the present invention. As shown in FIG. 9, the transmission line 5 is connected to the FET 1. The transmission line 8 is connected to the transmission line 7.
Other configurations are the same as those described with reference to FIG.

図8及び図9にて示した構成でも上記図1で示した構成と同様の効果が得られる。   8 and 9 can provide the same effects as those of the configuration shown in FIG.

実施の形態2.
上記実施の形態1では、伝送線路2が1個である実施の形態について説明したが、伝送線路2は2個あってもよい。以下、実施の形態2では、伝送線路2が2個ある場合について説明する。
Embodiment 2. FIG.
In the first embodiment, the embodiment in which there is one transmission line 2 has been described. However, there may be two transmission lines 2. Hereinafter, in the second embodiment, a case where there are two transmission lines 2 will be described.

図10は、この実施の形態2に係る高調波処理回路9の回路構成図である。この図10にて1はFET、9は高調波処理回路を示す。この図10に示すように、この実施の形態2に係る高調波処理回路9は、伝送線路2、オープンスタブ3、オープンスタブ4、伝送線路5、抵抗6、伝送線路7及び伝送線路8を備える。   FIG. 10 is a circuit configuration diagram of the harmonic processing circuit 9 according to the second embodiment. In FIG. 10, 1 is an FET, and 9 is a harmonic processing circuit. As shown in FIG. 10, the harmonic processing circuit 9 according to the second embodiment includes a transmission line 2, an open stub 3, an open stub 4, a transmission line 5, a resistor 6, a transmission line 7, and a transmission line 8. .

この実施の形態2に係る高調波処理回路9は、伝送線路7を中心として上下に2本の伝送線路2を備える。伝送線路2と伝送線路7との接続点には、オープンスタブ3及びオープンスタブ4が接続されている。   The harmonic processing circuit 9 according to the second embodiment includes two transmission lines 2 in the vertical direction with the transmission line 7 as the center. An open stub 3 and an open stub 4 are connected to a connection point between the transmission line 2 and the transmission line 7.

この実施の形態2に係る高調波処理回路9は、抵抗を接続してないメイン線路の対称性を高めるレイアウトにしている。また、オープンスタブ3、4についても対称性を高めるため上下に設けている。   The harmonic processing circuit 9 according to the second embodiment has a layout that improves the symmetry of the main line to which no resistor is connected. Further, the open stubs 3 and 4 are also provided up and down in order to enhance symmetry.

このようにメイン線路を2本並列に設ける構成とすることにより、線路のインピーダンスを下げることができ、設計においてインピーダンスの選択幅を広げることができる。また、メイン線路を対称に配置することにより、f0に対する電気的な対称性も向上させることができる。これによりトランジスタ(FET1)のアンバランス動作による特性劣化を避けることができる。   Thus, by setting it as the structure which provides two main lines in parallel, the impedance of a line can be lowered | hung and the selection range of an impedance can be expanded in design. Moreover, the electrical symmetry with respect to f0 can be improved by arranging the main lines symmetrically. Thereby, characteristic deterioration due to the unbalanced operation of the transistor (FET1) can be avoided.

この構成においても、その等価回路は図2に示す回路のようになるため、実施の形態1と同様の効果を得られる。   Also in this configuration, the equivalent circuit is as shown in FIG. 2, so that the same effect as in the first embodiment can be obtained.

次に、この実施の形態2における別の実施の形態について説明する。図11は、この実施の形態2における別の実施の形態に係る高調波処理回路9の回路構成図である。この図で示すように、高調波処理回路9は、オープンスタブ3及びオープンスタブ4を各1個ずつ備えてもよい。   Next, another embodiment in the second embodiment will be described. FIG. 11 is a circuit configuration diagram of a harmonic processing circuit 9 according to another embodiment in the second embodiment. As shown in this figure, the harmonic processing circuit 9 may include one open stub 3 and one open stub 4 each.

図12は、この実施の形態2における更に別の実施の形態に係る高調波処理回路9の回路構成図である。この図で示すように、高調波処理回路9は、オープンスタブ3及びオープンスタブ4を、上側及び下側に備えてもよい。
図12にて示した構造としても上記図10で示した構造と同様の効果が得られる。
FIG. 12 is a circuit configuration diagram of a harmonic processing circuit 9 according to still another embodiment of the second embodiment. As shown in this figure, the harmonic processing circuit 9 may include the open stub 3 and the open stub 4 on the upper side and the lower side.
Also with the structure shown in FIG. 12, the same effect as the structure shown in FIG. 10 can be obtained.

以上から、実施の形態2に係る高調波処理回路9は、メイン線路を2つ備え、サブ線路を1つ備え、オープンスタブを少なくとも2つ備えるように構成した。そのため、上記実施の形態1で説明した効果に加え、線路のインピーダンスを下げることができ、設計においてインピーダンスの選択幅を広げることができ、また、メイン線路を対称に配置することにより、f0に対する電気的な対称性も向上させることができ、これによりトランジスタ(FET1)のアンバランス動作による特性劣化を避けることができる高調波処理回路9を提供することができる。   From the above, the harmonic processing circuit 9 according to the second embodiment is configured to include two main lines, one subline, and at least two open stubs. Therefore, in addition to the effects described in the first embodiment, the impedance of the line can be reduced, the selection range of the impedance can be widened in the design, and the main line is symmetrically arranged, thereby providing an electric power for f0. As a result, it is possible to provide a harmonic processing circuit 9 that can avoid characteristic deterioration due to an unbalanced operation of the transistor (FET1).

また、実施の形態2によれば、2つのメイン線路と1つのサブ線路は並列に接続されており、オープンスタブ3、4は、メイン線路とサブ線路との接続点に接続されるように構成した。その為、高調波処理回路9は、広帯域での2倍波整合を取れるようになる。   Further, according to the second embodiment, two main lines and one sub line are connected in parallel, and the open stubs 3 and 4 are configured to be connected to a connection point between the main line and the sub line. did. Therefore, the harmonic processing circuit 9 can achieve a second harmonic matching in a wide band.

また、実施の形態2によれば、サブ線路のインピーダンスは、2つのメイン線路の合成インピーダンスより高くなるように構成した。その為、基本波(f0)の帯域を広げることができる。また、抵抗6が接続されているサブ路線のインピーダンスが高いことによって、回路損失を低減することができる。   Further, according to the second embodiment, the sub-line impedance is configured to be higher than the combined impedance of the two main lines. Therefore, the band of the fundamental wave (f0) can be expanded. In addition, since the impedance of the sub line to which the resistor 6 is connected is high, circuit loss can be reduced.

実施の形態3.
上記実施の形態1及び実施の形態2において、この発明の高調波処理回路9について説明したが、以下、実施の形態3では、入力整合回路として高調波処理回路9を装荷した高周波増幅器30について説明する。
Embodiment 3.
In the first embodiment and the second embodiment, the harmonic processing circuit 9 of the present invention has been described. In the third embodiment, the high frequency amplifier 30 loaded with the harmonic processing circuit 9 as an input matching circuit will be described below. To do.

図13は、この実施の形態3に係る高周波増幅器30の回路構成図である。この図13で示すように、高周波増幅器30は、FET1a〜1d、高調波処理回路9a〜9d、分波回路10、入力端子11、合波回路12及び出力端子13を備える。この図13では、出力整合回路を省略している。上記実施の形態1及び実施の形態2で説明したいずれかの高調波処理回路9を出力整合回路として用いてもよい。   FIG. 13 is a circuit configuration diagram of the high-frequency amplifier 30 according to the third embodiment. As shown in FIG. 13, the high-frequency amplifier 30 includes FETs 1 a to 1 d, harmonic processing circuits 9 a to 9 d, a branching circuit 10, an input terminal 11, a multiplexing circuit 12, and an output terminal 13. In FIG. 13, the output matching circuit is omitted. Any of the harmonic processing circuits 9 described in the first embodiment and the second embodiment may be used as an output matching circuit.

FET1a〜1dは、実施の形態1において説明したFET1と同様である。高調波処理回路9a〜9dは、実施の形態1及び実施の形態2にて説明したいずれかの高調波処理回路9である。   The FETs 1a to 1d are the same as the FET 1 described in the first embodiment. The harmonic processing circuits 9a to 9d are any of the harmonic processing circuits 9 described in the first embodiment and the second embodiment.

この実施の形態3においては、FET1を4個、高調波処理回路9を4個備える例を示すが、FET1及び高調波処理回路9の数は、両方が同じ数であれば特に限定はない。   In the third embodiment, an example in which four FETs 1 and four harmonic processing circuits 9 are provided is shown. However, the number of FETs 1 and harmonic processing circuits 9 is not particularly limited as long as both are the same.

分波回路10は、入力端子11と接続され、入力信号を分波する。合波回路12は、出力端子13と接続され、出力信号を合波(電力合成)する。   The demultiplexing circuit 10 is connected to the input terminal 11 and demultiplexes the input signal. The multiplexing circuit 12 is connected to the output terminal 13 and combines (power synthesis) the output signals.

この構成においても実施の形態1と同様の効果を有する。さらに、この実施の形態3では、FET1から出力された電力を合成できるので、より高出力な高周波増幅器を得ることができる。なお、ここでは例として4合成の場合を示したが、高調波回路9はN合成のものに対して適用可能である。   This configuration also has the same effect as the first embodiment. Furthermore, in the third embodiment, since the power output from the FET 1 can be synthesized, a higher output high frequency amplifier can be obtained. Here, the case of 4 synthesis is shown as an example, but the harmonic circuit 9 can be applied to the N synthesis.

以上より、実施の形態3に係る高周波増幅器30は、上記実施の形態1及び実施の形態2で説明したいずれかの高調波処理回路9を装荷して構成される。その為、広帯域にて2倍波整合を取れ、高効率化できる周波数範囲が広い高周波増幅器を提供することができる。   As described above, the high-frequency amplifier 30 according to the third embodiment is configured by loading any one of the harmonic processing circuits 9 described in the first and second embodiments. Therefore, it is possible to provide a high-frequency amplifier having a wide frequency range that can achieve a second harmonic matching in a wide band and can be highly efficient.

実施の形態4.
上記実施の形態1及び実施の形態2において、この発明の高調波処理回路9について説明したが、以下、実施の形態4では、入力側の整合回路として高調波処理回路9を装荷した高周波発振器40について説明する。
Embodiment 4.
In the first embodiment and the second embodiment, the harmonic processing circuit 9 of the present invention has been described. However, in the following fourth embodiment, the high frequency oscillator 40 loaded with the harmonic processing circuit 9 as a matching circuit on the input side. Will be described.

図14に示すようにこの実施の形態4に係る高周波発振器40は、帰還線路15、キャパシタ16、出力端子20及び増幅器部21を備える。   As shown in FIG. 14, the high-frequency oscillator 40 according to the fourth embodiment includes a feedback line 15, a capacitor 16, an output terminal 20, and an amplifier unit 21.

帰還線路15は、後述の増幅器部21からの出力を入力し、帰還線路15の出力は再び増幅器部21へ入力される。キャパシタ16は、帰還線路15と直列に接続されている。
増幅器部21は、具体的には、FET1、高調波処理回路9、伝送線路14、伝送線路17、オープンスタブ18及び伝送線路19を備える。
FET1は、上記実施の形態1で説明したものと同様である。高調波処理回路9は、上記実施の形態1及び実施の形態2で説明したいずれかの高調波処理回路9である。
The feedback line 15 receives an output from an amplifier unit 21 described later, and the output of the feedback line 15 is input to the amplifier unit 21 again. The capacitor 16 is connected in series with the feedback line 15.
Specifically, the amplifier unit 21 includes an FET 1, a harmonic processing circuit 9, a transmission line 14, a transmission line 17, an open stub 18, and a transmission line 19.
The FET 1 is the same as that described in the first embodiment. The harmonic processing circuit 9 is any one of the harmonic processing circuits 9 described in the first embodiment and the second embodiment.

次に動作について説明する。まず、f0における動作について説明する。高周波増幅器部21から出力されたf0の信号は、その一部がキャパシタ16を介して帰還線路15を通り増幅器部21に入力される。その入力された信号は増幅器部21で増幅され、上記同様に帰還線路15を通って増幅器部21に入力され、増幅される。この動きを繰り返すことにより、高周波発振器40はf0で発振する。発振している間、高周波増幅器40は飽和動作していると考えられ、f0だけでなく2f0等の高調波も出力されている。   Next, the operation will be described. First, the operation at f0 will be described. Part of the signal f0 output from the high frequency amplifier unit 21 is input to the amplifier unit 21 through the feedback line 15 via the capacitor 16. The input signal is amplified by the amplifier unit 21, and is input to the amplifier unit 21 through the feedback line 15 and amplified as described above. By repeating this movement, the high-frequency oscillator 40 oscillates at f0. While oscillating, the high-frequency amplifier 40 is considered to be operating in saturation, and not only f0 but also harmonics such as 2f0 are output.

次に、2f0における動作について説明する。発振時にFET1で生じた2f0は、入力側は高調波処理回路9で反射され、出力側はオープンスタブ18で反射されるため、出力端子20には出力されず、高調波における電力損失は生じない。
高調波処理回路9の動作は、実施の形態1で説明した動作と同様である。
Next, the operation at 2f0 will be described. The 2f0 generated in the FET 1 at the time of oscillation is reflected by the harmonic processing circuit 9 on the input side and reflected by the open stub 18 on the output side, so that it is not output to the output terminal 20 and no power loss occurs in the harmonics. .
The operation of the harmonic processing circuit 9 is the same as the operation described in the first embodiment.

このように、入出力側で適切に高調波処理を行うことにより、増幅器部21の効率を高めることができ、その増幅器部21を用いた高周波発振器40の効率も高めることができる。高周波発振器40では上述した高調波処理回路9を適用しているため、2f0のインピーダンスの周波数特性を小さくすることができ、広帯域に高効率な特性を得ることができる。   Thus, by appropriately performing harmonic processing on the input / output side, the efficiency of the amplifier unit 21 can be increased, and the efficiency of the high-frequency oscillator 40 using the amplifier unit 21 can also be increased. Since the high frequency oscillator 40 uses the harmonic processing circuit 9 described above, the frequency characteristic of the impedance of 2f0 can be reduced, and a highly efficient characteristic can be obtained in a wide band.

以上より、実施の形態4に係る高周波発振器は、上記実施の形態1及び実施の形態2で説明したいずれかの高調波処理回路9を装荷して構成される。その為、広帯域での2倍波整合を取れ、高効率化できる周波数範囲が広い高周波増幅器を提供することができる。   As described above, the high-frequency oscillator according to the fourth embodiment is configured by loading any one of the harmonic processing circuits 9 described in the first and second embodiments. Therefore, it is possible to provide a high-frequency amplifier having a wide frequency range that can achieve a second-harmonic matching in a wide band and improve efficiency.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

1 FET(半導体)、2 伝送線路、3 オープンスタブ、4 オープンスタブ、5 伝送線路、6 抵抗、7 伝送線路、8 伝送線路、9 高調波処理回路、10 分波回路、11 入力端子、12 合波回路、13 出力端子、14 伝送線路、15 帰還線路、16 キャパシタ、17 伝送線路、18 オープンスタブ、19 伝送線路、20 出力端子、21 増幅器部、30 高周波増幅器、40高周波発振器。   1 FET (semiconductor), 2 transmission line, 3 open stub, 4 open stub, 5 transmission line, 6 resistance, 7 transmission line, 8 transmission line, 9 harmonic processing circuit, 10 demultiplexing circuit, 11 input terminal, 12 coupling Wave circuit, 13 output terminal, 14 transmission line, 15 feedback line, 16 capacitor, 17 transmission line, 18 open stub, 19 transmission line, 20 output terminal, 21 amplifier section, 30 high frequency amplifier, 40 high frequency oscillator.

Claims (11)

伝送線路から構成されるメイン線路と、
抵抗と伝送線路とが直列接続された回路から構成され、前記メイン線路と並列接続されたサブ線路と、
一端が前記メイン線路と前記サブ線路との接続点に接続されたオープンスタブと
を含んで構成される高調波処理回路。
A main line composed of transmission lines;
A circuit composed of a resistor and a transmission line connected in series, a sub-line connected in parallel with the main line,
A harmonic processing circuit including an open stub having one end connected to a connection point between the main line and the sub line.
前記オープンスタブの線路長は、2倍波の波長の1/4以下であることを特徴とする請求項1記載の高調波処理回路。   2. The harmonic processing circuit according to claim 1, wherein the line length of the open stub is ¼ or less of the wavelength of the second harmonic. 前記メイン線路を構成する伝送線路の線路長は、2倍波の波長の1/4であることを特徴とする請求項1記載の高調波処理回路。   The harmonic processing circuit according to claim 1, wherein the transmission line constituting the main line has a line length that is ¼ of the wavelength of the second harmonic. 前記サブ線路を構成する伝送線路の線路長は、2倍波の波長の1/4であることを特徴とする請求項1記載の高調波処理回路。   The harmonic processing circuit according to claim 1, wherein a transmission line constituting the sub-line has a line length that is ¼ of a wavelength of a second harmonic. 前記メイン線路の一端は、信号を増幅する半導体と接続され、
前記サブ線路を構成する抵抗は、前記サブ線路のうち前記半導体側に配置されていることを特徴とする請求項1記載の高調波処理回路。
One end of the main line is connected to a semiconductor that amplifies the signal,
The harmonic processing circuit according to claim 1, wherein the resistor constituting the sub-line is disposed on the semiconductor side of the sub-line.
前記サブ線路のインピーダンスは、前記メイン線路のインピーダンスより高いことを特徴とする請求項1記載の高調波処理回路。   The harmonic processing circuit according to claim 1, wherein an impedance of the sub-line is higher than an impedance of the main line. 前記メイン線路を2つ備え、前記サブ線路を1つ備え、前記オープンスタブを少なくとも2つ備えることを特徴とする請求項1記載の高調波処理回路。   The harmonic processing circuit according to claim 1, comprising two main lines, one subline, and at least two open stubs. 前記2つのメイン線路と前記1つのサブ線路は並列に接続されており、
前記オープンスタブは、前記メイン線路と前記サブ線路との接続点に接続されていることを特徴とする請求項7記載の高調波処理回路。
The two main lines and the one sub line are connected in parallel,
The harmonic processing circuit according to claim 7, wherein the open stub is connected to a connection point between the main line and the sub line.
前記サブ線路のインピーダンスは、前記2つのメイン線路の合成インピーダンスより高いことを特徴とする請求項7記載の高調波処理回路。   The harmonic processing circuit according to claim 7, wherein the impedance of the sub-line is higher than a combined impedance of the two main lines. 請求項1から請求項9のいずれか1項に記載の高調波処理回路を装荷したことを特徴とする高周波増幅器。   A high frequency amplifier comprising the harmonic processing circuit according to any one of claims 1 to 9. 請求項1から請求項9のいずれか1項に記載の高調波処理回路を装荷したことを特徴とする高周波発振器。   A high frequency oscillator comprising the harmonic processing circuit according to any one of claims 1 to 9.
JP2011070439A 2011-03-28 2011-03-28 Harmonic processing circuit, high frequency amplifier and high frequency oscillator Withdrawn JP2012205246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070439A JP2012205246A (en) 2011-03-28 2011-03-28 Harmonic processing circuit, high frequency amplifier and high frequency oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070439A JP2012205246A (en) 2011-03-28 2011-03-28 Harmonic processing circuit, high frequency amplifier and high frequency oscillator

Publications (1)

Publication Number Publication Date
JP2012205246A true JP2012205246A (en) 2012-10-22

Family

ID=47185709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070439A Withdrawn JP2012205246A (en) 2011-03-28 2011-03-28 Harmonic processing circuit, high frequency amplifier and high frequency oscillator

Country Status (1)

Country Link
JP (1) JP2012205246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200255A1 (en) 2016-03-18 2017-09-21 Mitsubishi Electric Corporation power amplifier
KR20190092497A (en) 2017-01-12 2019-08-07 미쓰비시덴키 가부시키가이샤 Power amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200255A1 (en) 2016-03-18 2017-09-21 Mitsubishi Electric Corporation power amplifier
US9887675B2 (en) 2016-03-18 2018-02-06 Mitsubishi Electric Corporation Power amplifier
KR20190092497A (en) 2017-01-12 2019-08-07 미쓰비시덴키 가부시키가이샤 Power amplifier
DE112017006798T5 (en) 2017-01-12 2019-10-02 Mitsubishi Electric Corporation power amplifier
US11012038B2 (en) 2017-01-12 2021-05-18 Mitsubishi Electric Corporation Power amplifier

Similar Documents

Publication Publication Date Title
JP5260801B2 (en) High frequency amplifier circuit
CN109155612B (en) Doherty amplifier
JP2009232076A (en) High-frequency power amplifier
JPH11251849A (en) High frequency power amplifier
JPH08148949A (en) High frequency amplifier
JP5646302B2 (en) Frequency multiplier
JP2020088643A (en) Single pole double throw switch
CN113824412A (en) Differential amplifier circuit
JP2013055405A (en) Class f amplification circuit and transmission device using the same
JP5829885B2 (en) Balun
JP2012205246A (en) Harmonic processing circuit, high frequency amplifier and high frequency oscillator
JP7207522B2 (en) power amplifier
US9602068B2 (en) High-frequency power amplifier
JP2005117200A (en) Class f amplifier circuit and load circuit for class f amplifier
JP5402887B2 (en) High frequency amplifier
JP5496074B2 (en) High frequency amplifier and matching circuit
JP5504465B2 (en) Power amplifier circuit
JPH07283668A (en) High frequency amplifier
JP6332097B2 (en) Power amplifier
JP6729989B2 (en) amplifier
JP6678827B2 (en) High frequency amplifier
JP7418662B2 (en) doherty amplifier
JP2002217615A (en) Power distributor/combiner
JP6973068B2 (en) amplifier
JP2000077957A (en) High output amplifier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603