JPH08148949A - High frequency amplifier - Google Patents

High frequency amplifier

Info

Publication number
JPH08148949A
JPH08148949A JP28559394A JP28559394A JPH08148949A JP H08148949 A JPH08148949 A JP H08148949A JP 28559394 A JP28559394 A JP 28559394A JP 28559394 A JP28559394 A JP 28559394A JP H08148949 A JPH08148949 A JP H08148949A
Authority
JP
Japan
Prior art keywords
circuit
harmonic
value
frequency amplifier
amplification element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28559394A
Other languages
Japanese (ja)
Inventor
Toru Maniwa
透 馬庭
Kazuhiko Kobayashi
一彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28559394A priority Critical patent/JPH08148949A/en
Publication of JPH08148949A publication Critical patent/JPH08148949A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microwave Amplifiers (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE: To simultaneously provide a second harmonic short-circuit circuit and a third harmonic short-circuit circuit for not influencing a fundamental wave matching circuit by providing an induction element serial to an amplification element in the fundamental wave matching circuit and providing a serial resonance circuit for resonating with second harmonic and a parallel resonance circuit for resonating with fundamental wave and third harmonic along with the serial resonance circuit. CONSTITUTION: The fundamental wave matching circuit 2 is provided with the induction element 2A serially connected to the amplification element 1. Then, power is supplied to a load through the fundamental wave matching circuit 2 serially connected to the amplification element 1 and high impedance is realized at a frequency higher than the fundamental waves by the induction element 2A of the fundamental wave matching circuit 2 first. Also, the serial resonane circuit 3 resonates with the second harmonic, the parallel resonance circuit 4 resonates with the fundamental waves and the third harmonic along with the serial resonance circuit 3, a short-circuit load is realized in the second harmonic and an open load is realized in the third harmonic. Thus, this highly efficient high frequency amplifier with the high degree of freedom of design is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば800MHz帯
〜2.5GHz帯の高周波を増幅して電力を負荷に供給
する高周波増幅器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency amplifier for amplifying a high frequency of 800 MHz band to 2.5 GHz band and supplying electric power to a load.

【0002】[0002]

【従来の技術】一般に、増幅素子を高効率に動作させる
ために、増幅素子の出力に発生する高調波に対して、そ
の負荷を偶数次高調波に対しては短絡、奇数次高調波に
対しては開放とすることによって、高調波による電力発
生を無くし、基本波の電力成分を高めて増幅器を高効率
動作させるようにしたF級増幅器が知られている。
2. Description of the Related Art In general, in order to operate an amplifying element with high efficiency, the harmonics generated at the output of the amplifying element are short-circuited with respect to the even harmonics and the load with respect to the odd harmonics. There is known a class F amplifier in which power generation due to harmonics is eliminated by increasing the power component of the fundamental wave to operate the amplifier with high efficiency by opening it.

【0003】図12はF級増幅器の回路例である。この
図12に示す高周波増幅器では、増幅素子(電界効果ト
ランジスタ(FET))101の出力側に、基本波の1
/4波長の伝送線路102を介して、基本波整合回路1
03が接続されるとともに、基本波に共振する並列共振
回路104が接続されている。ここで、増幅素子101
の出力側に発生する高調波のうち第2高調波以上の周波
数についていえば、並列共振回路104はほぼ短絡負荷
とみなせる。したがって、第2高調波についていえば伝
送線路102は1/2波長の線路となり、増幅素子10
1の出力端で短絡負荷にすることができ、第3高調波に
ついていえば伝送線路102は3/4波長の線路とな
り、増幅素子101の出力端で開放負荷にすることがで
きる。第4次以上の高調波についても同様である。
FIG. 12 is a circuit example of a class F amplifier. In the high frequency amplifier shown in FIG. 12, the fundamental wave 1 is added to the output side of the amplification element (field effect transistor (FET)) 101.
A fundamental wave matching circuit 1 via a / 4 wavelength transmission line 102.
03 is connected, and the parallel resonance circuit 104 that resonates with the fundamental wave is connected. Here, the amplification element 101
Regarding the frequencies higher than the second harmonic among the harmonics generated on the output side of, the parallel resonance circuit 104 can be regarded as a short-circuit load. Therefore, in terms of the second harmonic, the transmission line 102 becomes a line of ½ wavelength, and the amplification element 10
A short-circuit load can be applied at the output end of 1, the transmission line 102 can be a 3/4 wavelength line for the third harmonic, and an open load can be applied at the output end of the amplification element 101. The same applies to the fourth and higher harmonics.

【0004】なお、図12中の105は増幅素子101
の入力バイアス回路、106は増幅素子101の出力バ
イアス回路、107は入力バイアス回路105の電源端
子(入力電源端子)、108は出力バイアス回路106
の電源端子(出力電源端子)である。ところで、増幅器
の出力に含まれる高調波成分は第2,第3高調波成分が
大きいので、第2高調波と第3高調波だけを考慮する場
合が多い。図13,図14は第2高調波と第3高調波だ
けを考慮した例である。
Reference numeral 105 in FIG. 12 is an amplifying element 101.
Input bias circuit, 106 is an output bias circuit of the amplification element 101, 107 is a power supply terminal (input power supply terminal) of the input bias circuit 105, and 108 is an output bias circuit 106.
Is a power supply terminal (output power supply terminal). By the way, since the harmonic components included in the output of the amplifier are large in the second and third harmonic components, it is often the case that only the second and third harmonic components are considered. 13 and 14 are examples in which only the second harmonic and the third harmonic are considered.

【0005】まず、図13は増幅素子101の出力端
に、第3高調波に共振する並列共振回路109を接続し
たものである。ここで、並列共振回路109の誘導素子
109aのインダクタンス値を小さくすると、第3高調
波より低い周波数ではインピーダンスはほぼ0とみなせ
る。また、並列共振回路109の他端には第2高調波で
共振する直列共振回路110が一端を接地されて接続さ
れている。以上の構成から、第2高調波については短絡
負荷、第3高調波については開放負荷を実現している。
First, in FIG. 13, a parallel resonance circuit 109 that resonates with the third harmonic is connected to the output terminal of the amplification element 101. Here, if the inductance value of the inductive element 109a of the parallel resonant circuit 109 is reduced, the impedance can be regarded as almost zero at frequencies lower than the third harmonic. A series resonance circuit 110 that resonates at the second harmonic is connected to the other end of the parallel resonance circuit 109 with one end grounded. With the above configuration, a short-circuit load for the second harmonic and an open load for the third harmonic are realized.

【0006】また、図14は増幅素子101の出力側
に、伝送線路111を介して第3高調波で共振する直列
共振回路113(この直列共振回路113の他端は接地
されている)を並列に接続するとともに、更に伝送線路
112を介して第2高調波で共振する直列共振回路11
4(この直列共振回路114の他端は接地されている)
を並列に接続したものである。ここで、直列共振回路
(第2高調波共振回路)114と増幅素子101の距離
は基本波の波長で1/4波長、直列共振回路(第3高調
波共振回路)113と増幅素子101の距離は基本波の
波長で1/12に設定されており(従って、伝送線路1
11の長さは1/4波長相当、伝送線路112の長さは
1/6波長相当である)、これにより、第2高調波では
短絡負荷、第3高調波では開放負荷を実現している。
Further, in FIG. 14, a series resonance circuit 113 (the other end of the series resonance circuit 113 is grounded) which resonates at the third harmonic through the transmission line 111 is connected in parallel to the output side of the amplification element 101. And a series resonance circuit 11 that resonates at the second harmonic through the transmission line 112.
4 (the other end of the series resonance circuit 114 is grounded)
Are connected in parallel. Here, the distance between the series resonance circuit (second harmonic resonance circuit) 114 and the amplification element 101 is a quarter wavelength of the fundamental wave, and the distance between the series resonance circuit (third harmonic resonance circuit) 113 and the amplification element 101. Is set to 1/12 of the wavelength of the fundamental wave (therefore, transmission line 1
The length of 11 is equivalent to 1/4 wavelength, and the length of the transmission line 112 is equivalent to 1/6 wavelength.) With this, a short-circuit load is realized at the second harmonic and an open load is realized at the third harmonic. .

【0007】なお、図13,14中、図12と同じ符号
は同様の部分を示している。
In FIGS. 13 and 14, the same symbols as those in FIG. 12 indicate the same parts.

【0008】[0008]

【発明が解決しようとする課題】上記の回路において
は、共振回路の共振周波数以外では共振回路は理想的な
開放または短絡として扱われているが、実際にはある値
を持つため、共振回路の後段に接続されている基本波整
合回路のインピーダンスに影響を与える。そのため、基
本波整合回路は、各高調波に対する共振回路を接続した
場合、基本波の整合についてそれぞれの共振回路の基本
波成分を考慮して設計しなければならず、その結果、整
合回路を独立に設計できない。これにより、設計が煩雑
となったり、より良い特性を得るための基本波整合回路
だけの調整ができないという課題がある。
In the above circuit, the resonance circuit is treated as an ideal open or short circuit except for the resonance frequency of the resonance circuit, but since it actually has a certain value, Affects the impedance of the fundamental wave matching circuit connected in the subsequent stage. Therefore, the fundamental wave matching circuit must be designed by considering the fundamental wave component of each resonant circuit when the resonant circuit for each harmonic is connected, and as a result, the matching circuit must be independent. Can not be designed to. As a result, there are problems that the design becomes complicated and that only the fundamental wave matching circuit cannot be adjusted to obtain better characteristics.

【0009】なお、今まで2倍波共振器に基本波に共振
するような並列誘導素子を接続し、回路の小型化をねら
った例(例えば、特開平5−243873号公報の技術
参照)は提案されているが、より効率を高めるために、
3倍波まで考慮された例はなかった。本発明は、このよ
うな課題に鑑み創案されたもので、基本波整合回路に影
響しない第2高調波短絡回路と第3高調波開放回路を同
時に実現できるようにして、設計の自由度の高い高効率
な高周波増幅器を提供するとともに、基本波整合回路の
調整も独立してできるようにして、特性の良い高周波増
幅器を提供することを目的とする。
An example in which a parallel inductive element that resonates with a fundamental wave is connected to a second harmonic resonator so as to reduce the size of the circuit (see, for example, the technique disclosed in Japanese Patent Laid-Open No. 5-243873). Proposed, but for greater efficiency,
There was no case where the third harmonic was considered. The present invention was devised in view of the above problems, and has a high degree of freedom in design by enabling simultaneous implementation of a second harmonic short circuit and a third harmonic open circuit that do not affect the fundamental matching circuit. An object of the present invention is to provide a high-efficiency high-frequency amplifier, and also to independently adjust the fundamental wave matching circuit to provide a high-frequency amplifier with excellent characteristics.

【0010】[0010]

【課題を解決するための手段】図1は本発明の原理を説
明する電気回路図であり、この図1において、1は増幅
素子で、この増幅素子1に直列に接続された基本波整合
回路2を介して負荷に電力を供給するようになってい
る。また、基本波整合回路2には、増幅素子1と直列に
接続された誘導素子2Aが設けられている。なお、2B
はその他の基本波整合回路部分である。
FIG. 1 is an electric circuit diagram for explaining the principle of the present invention. In FIG. 1, reference numeral 1 is an amplifier element, and a fundamental wave matching circuit connected in series to the amplifier element 1. The electric power is supplied to the load via 2. Further, the fundamental wave matching circuit 2 is provided with an inductive element 2A connected in series with the amplification element 1. 2B
Are other fundamental wave matching circuit parts.

【0011】さらに、3は直列共振回路で、この直列共
振回路3は、増幅素子1の出力端に一端を接続されると
ともに他端を接地されることにより、増幅素子1の出力
端に対し並列に接続されて、増幅素子1の出力側に発生
する信号の高調波のうちの第2高調波に共振するもので
ある。また、4は並列共振回路であり、この並列共振回
路4は、増幅素子1の出力端に一端を接続されるととも
に他端を接地されることにより、増幅素子の出力端及び
直列共振回路3に対し並列に接続されて、増幅素子1の
出力側に発生する信号の基本波及び第3高調波に直列共
振回路3と共に共振するものである(請求項1)。
Further, 3 is a series resonance circuit, which is connected in parallel to the output end of the amplification element 1 by connecting one end to the output end of the amplification element 1 and grounding the other end. And is resonated with the second harmonic of the harmonics of the signal generated on the output side of the amplification element 1. Reference numeral 4 denotes a parallel resonance circuit. The parallel resonance circuit 4 has one end connected to the output end of the amplification element 1 and the other end grounded, so that the parallel resonance circuit 4 is connected to the output end of the amplification element and the series resonance circuit 3. On the other hand, they are connected in parallel and resonate together with the series resonance circuit 3 with respect to the fundamental wave and the third harmonic of the signal generated at the output side of the amplifying element 1 (claim 1).

【0012】なお、直列共振回路3のインピーダンス値
を、増幅素子1の出力端から入力側を見たときに見込ま
れる増幅素子1の内部インピーダンスの直列誘導成分を
含めて第2高調波で共振する値に設定することができる
(請求項2)。このとき、増幅素子1を電界効果トラン
ジスタ(FET)で構成した場合は、直列共振回路3の
インピーダンス値を、増幅素子1の内部ドレインインダ
クタンスの値を含めて第2高調波で共振する値に設定す
る(請求項3)。
The impedance value of the series resonance circuit 3 resonates at the second harmonic including the series induction component of the internal impedance of the amplification element 1 which is expected when the input side is viewed from the output end of the amplification element 1. It can be set to a value (claim 2). At this time, when the amplification element 1 is composed of a field effect transistor (FET), the impedance value of the series resonance circuit 3 is set to a value that resonates at the second harmonic including the value of the internal drain inductance of the amplification element 1. (Claim 3).

【0013】さらに、並列共振回路4のインピーダンス
値を、直列共振回路3のリアクタンス成分と増幅素子1
の出力端から入力側を見たときに見込まれる増幅素子1
の内部インピーダンスの並列容量成分とを含めて基本波
及び第3高調波で共振する値に設定することもできる
(請求項4)。このとき、増幅素子1を電界効果トラン
ジスタ(FET)で構成した場合は、並列共振回路4の
インピーダンス値を、直列共振回路3のリアクタンス成
分と増幅素子1の内部ドレインソースキャパシタと内部
ドレインインダクタンスとを含めて基本波及び第3高調
波で共振する値に設定する(請求項5)。
Further, the impedance value of the parallel resonance circuit 4 is set to the reactance component of the series resonance circuit 3 and the amplification element 1.
Amplification element 1 expected when the input side is seen from the output end of
It is also possible to set a value that resonates with the fundamental wave and the third harmonic, including the parallel capacitance component of the internal impedance of (4). At this time, when the amplifying element 1 is formed of a field effect transistor (FET), the impedance value of the parallel resonant circuit 4 is set to the reactance component of the series resonant circuit 3, the internal drain source capacitor of the amplifying element 1, and the internal drain inductance. Including it, it is set to a value that resonates with the fundamental wave and the third harmonic (claim 5).

【0014】さらに、直列共振回路3のインピーダンス
値を、増幅素子1の出力端から入力側を見たときに見込
まれる増幅素子1の内部インピーダンスの直列誘導成分
を含めて第2高調波で共振する値に設定するともに、並
列共振回路4のインピーダンス値を、直列共振回路3の
リアクタンス成分と増幅素子1の出力端から入力側を見
たときに見込まれる増幅素子1の内部インピーダンスの
並列容量成分とを含めて基本波及び第3高調波で共振す
る値に設定することもできる(請求項6)。
Further, the impedance value of the series resonance circuit 3 resonates at the second harmonic including the series induction component of the internal impedance of the amplification element 1 which is expected when the input side is viewed from the output end of the amplification element 1. In addition to setting the impedance value of the parallel resonance circuit 4 to the value of the reactance component of the series resonance circuit 3 and the parallel capacitance component of the internal impedance of the amplification element 1 expected when the input side is viewed from the output end of the amplification element 1. Can be set to a value that resonates with the fundamental wave and the third harmonic (claim 6).

【0015】このとき、増幅素子1を電界効果トランジ
スタ(FET)で構成した場合は、直列共振回路3のイ
ンピーダンス値を、増幅素子1の内部ドレインインダク
タンスを含めて第2高調波で共振する値に設定するとと
もに、並列共振回路4のインピーダンス値を、直列共振
回路3のリアクタンス成分と増幅素子1の内部ドレイン
ソースキャパシタと内部ドレインインダクタンスとを含
めて基本波及び第3高調波で共振する値に設定する(請
求項7)。
At this time, when the amplifying element 1 is composed of a field effect transistor (FET), the impedance value of the series resonance circuit 3 is set to a value that resonates at the second harmonic including the internal drain inductance of the amplifying element 1. The impedance value of the parallel resonance circuit 4 is set to a value that resonates at the fundamental wave and the third harmonic, including the reactance component of the series resonance circuit 3, the internal drain source capacitor of the amplification element 1, and the internal drain inductance. (Claim 7).

【0016】また、並列共振回路4を構成する誘導素子
が容量素子を介して高周波的に接地されるとともに、こ
の誘導素子と容量素子との接続点に電源が接続されるよ
うにしてもよい(請求項8)。さらに、直列共振回路3
を構成する誘導素子と容量素子の接続点に、電源が接続
されるようにしてもよい(請求項9)。
Further, the inductive element forming the parallel resonant circuit 4 may be grounded in a high frequency manner via the capacitive element, and the power source may be connected to the connection point between the inductive element and the capacitive element ( Claim 8). Furthermore, the series resonance circuit 3
A power source may be connected to the connection point between the inductive element and the capacitive element that compose the above (claim 9).

【0017】なお、基本波整合回路2中の誘導素子2A
と並列に、第3高調波に共振する容量素子を接続しても
よい(請求項10)。
The inductive element 2A in the fundamental wave matching circuit 2
A capacitor element that resonates with the third harmonic may be connected in parallel with (claim 10).

【0018】[0018]

【作用】上述の本発明の高周波増幅器では、増幅素子1
に直列に接続された基本波整合回路2を介して負荷に電
力を供給するが、まず、基本波整合回路2の誘導素子2
Aによって、基本波よりも高い周波数で高インピーダン
スを実現する。また、直列共振回路3が第2高調波に共
振し、並列共振回路4が直列共振回路3と共に基本波及
び第3高調波に共振して、第2高調波では短絡負荷、第
3高調波では開放負荷を実現する。
In the high frequency amplifier of the present invention described above, the amplifying element 1
Power is supplied to the load via the fundamental wave matching circuit 2 connected in series with the inductive element 2 of the fundamental wave matching circuit 2.
With A, high impedance is realized at a frequency higher than the fundamental wave. Further, the series resonant circuit 3 resonates with the second harmonic, the parallel resonant circuit 4 resonates with the series resonant circuit 3 with the fundamental wave and the third harmonic, and in the second harmonic, a short-circuit load and in the third harmonic, Achieve an open load.

【0019】このとき、直列共振回路3のインピーダン
ス値は、増幅素子1の内部インピーダンスの直列誘導成
分を含めて第2高調波で共振する値に設定したり、増幅
素子1の内部ドレインインダクタンスの値を含めて第2
高調波で共振する値に設定され、並列共振回路4のイン
ピーダンス値は、直列共振回路3のリアクタンス成分と
増幅素子1の内部インピーダンスの並列容量成分とを含
めて基本波及び第3高調波で共振する値に設定したり、
直列共振回路3のリアクタンス成分と増幅素子1の内部
ドレインソースキャパシタと内部ドレインインダクタン
スとを含めて基本波及び第3高調波で共振する値に設定
される。
At this time, the impedance value of the series resonance circuit 3 is set to a value that resonates at the second harmonic including the series induction component of the internal impedance of the amplification element 1, or the value of the internal drain inductance of the amplification element 1. Second including
The impedance value of the parallel resonance circuit 4 is set to a value that resonates with the harmonic, and the impedance value of the parallel resonance circuit 4 including the reactance component of the series resonance circuit 3 and the parallel capacitance component of the internal impedance of the amplification element 1 resonates with the fundamental wave and the third harmonic. To set the value to
The value including the reactance component of the series resonance circuit 3, the internal drain source capacitor and the internal drain inductance of the amplification element 1 is set to a value that resonates with the fundamental wave and the third harmonic.

【0020】また、並列共振回路4を構成する誘導素子
を容量素子を介して高周波的に接地するとともに、この
誘導素子と容量素子との接続点に電源を接続したり、直
列共振回路3を構成する誘導素子と容量素子の接続点
に、電源を接続したりすれば、共振回路を通じて電源を
供給することができる。なお、基本波整合回路2中の誘
導素子2Aと並列に容量素子を接続して、第3高調波に
共振されるようにすることもできる。
Further, the inductive element constituting the parallel resonant circuit 4 is grounded in a high frequency manner via the capacitive element, and a power source is connected to the connection point between the inductive element and the capacitive element, or the series resonant circuit 3 is constructed. If a power supply is connected to the connection point between the inductive element and the capacitive element, the power can be supplied through the resonance circuit. It is also possible to connect a capacitive element in parallel with the inductive element 2A in the fundamental wave matching circuit 2 so as to resonate with the third harmonic.

【0021】[0021]

【実施例】以下、図面を参照して本発明の実施例を説明
する。 (a)第1実施例の説明 図2は本発明の一実施例を示す電気回路図であるが、こ
の図2に示す高周波増幅器は、増幅素子としての電界効
果トランジスタ(FET)1に直列に接続された基本波
整合回路2を介して負荷に電力を供給するもので、更に
は基本整合回路2に影響を与えない第2高調波,第3高
調波処理回路を実現するものである。
Embodiments of the present invention will be described below with reference to the drawings. (A) Description of First Embodiment FIG. 2 is an electric circuit diagram showing an embodiment of the present invention. The high frequency amplifier shown in FIG. 2 is connected in series with a field effect transistor (FET) 1 as an amplification element. The electric power is supplied to the load through the connected fundamental wave matching circuit 2, and the second and third harmonic wave processing circuits which do not affect the fundamental matching circuit 2 are realized.

【0022】このために、まず、高周波増幅器における
基本波整合回路2には、FET1と直列に接続された誘
導素子(インダクタ)2Aが設けられている。なお、2
Bはその他の基本波整合回路部分であり、例えば一端を
接地されたキャパシタやこのキャパシタに加えてライン
に直列に挿入されたキャパシタあるいはラインに直列に
挿入されたインダクタを有する回路として構成される。
For this reason, first, the fundamental wave matching circuit 2 in the high frequency amplifier is provided with an inductive element (inductor) 2A connected in series with the FET1. In addition, 2
Reference numeral B denotes another fundamental wave matching circuit portion, which is configured as a circuit having, for example, a capacitor whose one end is grounded, a capacitor which is serially inserted in a line in addition to this capacitor, or an inductor which is serially inserted in a line.

【0023】また、FET1の出力側に発生する信号の
高調波のうちの第2高調波に共振すべく、相互に直列に
接続されたインダクタ3Aとキャパシタ3Bとからなる
直列共振回路3が、FET1の出力端に一端(インダク
タ3A側)を接続されるとともに他端(キャパシタ3B
側)を接地されることにより、FET1の出力端に対し
並列に接続されている。
Further, in order to resonate with the second harmonic of the harmonics of the signal generated at the output side of the FET1, the series resonant circuit 3 including the inductor 3A and the capacitor 3B connected in series to each other is the FET1. One end (inductor 3A side) is connected to the output end of
The output side of the FET1 is connected in parallel by grounding the side).

【0024】さらに、FET1の出力側に発生する信号
の基本波及び第3高調波に直列共振回路3と共に共振す
べく、相互に並列に接続されたインダクタ4Aとキャパ
シタ4Bとからなる並列共振回路4が、FET1の出力
端に一端を接続されるとともに他端を接地されることに
より、FET1の出力端及び直列共振回路3に対し並列
に接続されている。
Further, in order to resonate with the series resonance circuit 3 to the fundamental wave and the third harmonic of the signal generated at the output side of the FET 1, the parallel resonance circuit 4 including the inductor 4A and the capacitor 4B connected in parallel with each other. Is connected in parallel to the output end of the FET 1 and the series resonance circuit 3 by connecting one end to the output end of the FET 1 and grounding the other end.

【0025】なお、図2中の符号5はFET1の入力バ
イアス回路、6はFET1の出力バイアス回路、7は入
力バイアス回路5の電源端子(入力電源端子)、8は出
力バイアス回路6の電源端子(出力電源端子)である。
このように基本波よりも高い周波数で高インピーダンス
を実現するために、基本波整合回路2に、ラインに直列
に誘導素子(インダクタ)2Aが挿入されているが、第
3高調波は基本波に比較して周波数が高いので、インピ
ーダンス値の小さな誘導素子2Aでも十分実用的な高イ
ンピーダンスを実現することができる。
In FIG. 2, reference numeral 5 is an input bias circuit of the FET 1, 6 is an output bias circuit of the FET 1, 7 is a power supply terminal (input power supply terminal) of the input bias circuit 5, and 8 is a power supply terminal of the output bias circuit 6. (Output power supply terminal).
In order to realize a high impedance at a frequency higher than the fundamental wave, an inductive element (inductor) 2A is inserted in series with the fundamental wave matching circuit 2, but the third harmonic wave is changed to the fundamental wave. Since the frequency is high in comparison, a sufficiently practical high impedance can be realized even with the inductive element 2A having a small impedance value.

【0026】さらに、第2高調波の短絡条件は直列共振
回路3によって実現している。また、第2高調波直列共
振回路3のインピーダンスは基本波では容量性、3倍波
では誘導性になるので、直列共振回路3に、基本波と第
3高調波で直列共振回路3と共に並列共振する回路4を
接続することにより、これよりあとに接続された基本波
整合回路2に影響を与えないようにすることができる。
Further, the short circuit condition of the second harmonic is realized by the series resonance circuit 3. Further, since the impedance of the second harmonic series resonance circuit 3 becomes capacitive for the fundamental wave and inductive for the third harmonic wave, the series resonance circuit 3 causes parallel resonance with the series resonance circuit 3 at the fundamental wave and the third harmonic wave. It is possible to prevent the fundamental wave matching circuit 2 connected after that from being affected by connecting the circuit 4 for connecting.

【0027】またさらに、並列共振回路4のインピーダ
ンスは低い周波数では誘導性を示し、高い周波数では容
量性を示すので、直列共振回路3と並列にこの並列共振
回路4を接続して、並列共振回路4を構成する素子4
A,4Bの値を基本波と第3高調波に並列共振するよう
に設定することにより、基本波整合回路2に影響を与え
ない回路を実現することができるのである。
Furthermore, since the impedance of the parallel resonance circuit 4 is inductive at low frequencies and is capacitive at high frequencies, the parallel resonance circuit 4 is connected in parallel with the series resonance circuit 3 and the parallel resonance circuit 4 is connected. Element 4 constituting 4
By setting the values of A and 4B so as to resonate in parallel with the fundamental wave and the third harmonic, it is possible to realize a circuit that does not affect the fundamental wave matching circuit 2.

【0028】すなわち、基本波では、直列共振回路3が
容量性、並列共振回路4が誘導性となって、これらで基
本波に共振する並列共振回路を構成する一方、第3高調
波では、直列共振回路3が誘導性、並列共振回路4が容
量性となって、これらで第3高調波に共振する並列共振
回路を構成し、更に整合回路2中の直列誘導素子2Aに
よって、第3高調波のインピーダンスを大きく設定する
ことができるので、基本波整合回路2に影響を与えない
回路を実現することができるのである。
That is, in the fundamental wave, the series resonance circuit 3 becomes capacitive, and the parallel resonance circuit 4 becomes inductive, thereby forming a parallel resonance circuit that resonates with the fundamental wave. The resonance circuit 3 becomes inductive, and the parallel resonance circuit 4 becomes capacitive to form a parallel resonance circuit that resonates at the third harmonic, and the series induction element 2A in the matching circuit 2 further causes the third harmonic to be generated. Since the impedance can be set to a large value, a circuit that does not affect the fundamental wave matching circuit 2 can be realized.

【0029】このようにして、本高周波増幅器では、基
本波整合回路2に影響しない第2高調波短絡回路と第3
高調波開放回路を同時に実現することができ、これによ
り、設計の自由度の高い高効率な高周波増幅器を実現す
ることができ、更には基本波整合回路2に影響しないの
で、基本波整合回路2の調整も独立してすることがで
き、これにより特性の良い高周波増幅器を提供すること
ができる。
As described above, in the present high frequency amplifier, the second harmonic short circuit and the third harmonic short circuit which do not affect the fundamental wave matching circuit 2 are provided.
A harmonic open circuit can be realized at the same time, which makes it possible to realize a high-efficiency high-frequency amplifier with a high degree of freedom in design, and further, since it does not affect the fundamental wave matching circuit 2, the fundamental wave matching circuit 2 Can be adjusted independently, and a high-frequency amplifier with excellent characteristics can be provided.

【0030】ところで、より高い効率の高周波増幅器を
実現するためには、実際の増幅素子(FET)1の内部
インピーダンスを考慮して、外部に接続する高調波処理
回路を実現する必要がある。このための例が、図3に示
すものであるが、この高周波増幅器は特に第2高調波の
ためのものである。さて、増幅素子1を等価な電流源1
Cと考えた場合、増幅素子1の出力リードや出力ワイヤ
等の誘導成分が等価直列誘導成分1Aとなる。従って、
直列共振回路3のインピーダンス値を、この等価直列誘
導成分1Aを含めて第2高調波に共振するような値に設
定すれば、正確なインピーダンス設定が可能となり、よ
り高い効率の高周波増幅器を実現することができる。な
お、図3中の1Bは増幅素子1の内部サセプタンス(内
部容量成分)である。
In order to realize a high efficiency high frequency amplifier, it is necessary to realize a harmonic processing circuit connected to the outside in consideration of the actual internal impedance of the amplifying element (FET) 1. An example for this is shown in FIG. 3, this high frequency amplifier being specifically for the second harmonic. Now, the amplification element 1 is equivalent to the current source 1
When considered as C, the inductive component such as the output lead and the output wire of the amplifying element 1 becomes the equivalent series inductive component 1A. Therefore,
If the impedance value of the series resonance circuit 3 is set to a value that resonates with the second harmonic including the equivalent series induction component 1A, accurate impedance setting becomes possible and a high efficiency high frequency amplifier is realized. be able to. In addition, 1B in FIG. 3 is an internal susceptance (internal capacitance component) of the amplification element 1.

【0031】また、本実施例のように、増幅素子1がF
ETの場合は、増幅素子の等価回路を図4のように表す
ことができるが、この図4からもわかるように、増幅素
子内部の直列誘導成分はドレインインダクタンス1aと
して表現できるので、そのインピーダンス値を実験や理
論計算などによって求めて、その値を含めて直列共振回
路3を第2高調波に共振するような値に設定すれば、や
はり正確なインピーダンス設定が可能となり、これによ
り、より高い効率の高周波増幅器を実現できる。なお、
図4中の1bは増幅素子1のドレインソースキャパシタ
であり、1cは電流源である。
Further, as in this embodiment, the amplifying element 1 is F
In the case of ET, the equivalent circuit of the amplifying element can be represented as shown in FIG. 4, but as can be seen from FIG. 4, the series inductive component inside the amplifying element can be represented as the drain inductance 1a, so its impedance value Is obtained by experiment or theoretical calculation, and if the value including the value is set so as to resonate the series resonant circuit 3 with the second harmonic, accurate impedance setting becomes possible, which results in higher efficiency. The high frequency amplifier can be realized. In addition,
In FIG. 4, 1b is a drain-source capacitor of the amplification element 1, and 1c is a current source.

【0032】さらに、より高い効率の高周波増幅器を実
現するためには、図5に示すように、増幅素子1の内部
インピーダンスを考慮して直列共振回路3に並列接続さ
れる並列共振回路4のインピーダンス値を決定する必要
がある。すなわち、増幅素子1を等価な電流源1Cと考
えた場合、内部容量成分1Bと直列誘導成分1Aを考慮
して、並列共振回路4のインピーダンス値を決定するの
である。このようにすれば、より高い効率の高周波増幅
器を実現することができる。
Further, in order to realize a high efficiency high frequency amplifier, as shown in FIG. 5, the impedance of the parallel resonance circuit 4 connected in parallel with the series resonance circuit 3 is taken into consideration in consideration of the internal impedance of the amplification element 1. You need to determine the value. That is, when the amplifier element 1 is considered as the equivalent current source 1C, the impedance value of the parallel resonant circuit 4 is determined in consideration of the internal capacitance component 1B and the series induction component 1A. By doing so, it is possible to realize a high efficiency high frequency amplifier.

【0033】また、本実施例のように、増幅素子1がF
ETの場合は、図6に示すうよに、内部容量成分はドレ
インソースキャパシタ1bとして、増幅素子内部の直列
誘導成分はドレインインダクタンス1aとして表現でき
るので、その値も含めて直列共振回路3に並列接続され
る並列共振回路4のインピーダンス値を決定する。な
お、図6中の1cは電流源である。このようにしても、
より高い効率の高周波増幅器を実現することができる。
Further, as in this embodiment, the amplifying element 1 is F
In the case of ET, as shown in FIG. 6, the internal capacitance component can be expressed as the drain-source capacitor 1b, and the series induction component inside the amplification element can be expressed as the drain inductance 1a. The impedance value of the connected parallel resonance circuit 4 is determined. In addition, 1c in FIG. 6 is a current source. Even with this,
A high efficiency high frequency amplifier can be realized.

【0034】もちろん、直列共振回路3と内部インピー
ダンスとの関係と並列共振回路4と内部インピーダンス
との関係との両方を一般の増幅素子1について考慮する
こともできる。この場合は、図7のようになるが、直列
共振回路3のインピーダンス値は、等価直列誘導成分1
Aを含めて第2高調波に共振するような値に設定し、基
本波及び第3高調波については内部容量成分1Bと直列
誘導成分1Aと直列共振回路3のリアクタンス成分とを
考慮して、直列共振回路3に並列接続される並列共振回
路4のインピーダンス値を決定するのである。なお、図
7中の1Cは電流源である。このようにすれば、更に高
い効率な高周波増幅器を実現することができる。
Of course, both the relationship between the series resonant circuit 3 and the internal impedance and the relationship between the parallel resonant circuit 4 and the internal impedance can be considered for the general amplifying element 1. In this case, as shown in FIG. 7, the impedance value of the series resonance circuit 3 is equal to the equivalent series induction component 1
A value including A is set to resonate with the second harmonic, and regarding the fundamental wave and the third harmonic, the internal capacitance component 1B, the series induction component 1A, and the reactance component of the series resonance circuit 3 are taken into consideration, The impedance value of the parallel resonance circuit 4 connected in parallel to the series resonance circuit 3 is determined. In addition, 1C in FIG. 7 is a current source. By doing so, it is possible to realize a high-efficiency high-frequency amplifier.

【0035】また、本実施例のように、増幅素子1がF
ETの場合について、直列共振回路3と内部インピーダ
ンスとの関係と並列共振回路4と内部インピーダンスと
の関係との両方を考慮する場合は、図8に示すように、
直列共振回路3のインピーダンス値をドレインインダク
タンス1aと共に第2高調波に共振するような値に設定
し、直列共振回路3と共に働く並列共振回路4の値は、
直列共振回路3のリアクタンス成分とドレインソースキ
ャパシタ1bとドレインインダクタンス1aの値も含め
て決定する。なお、図8中の1cは電流源である。この
ようにしても、更に高い効率の高周波増幅器を実現する
ことができる。
Further, as in this embodiment, the amplifying element 1 is F
In the case of ET, when considering both the relationship between the series resonant circuit 3 and the internal impedance and the relationship between the parallel resonant circuit 4 and the internal impedance, as shown in FIG.
The impedance value of the series resonance circuit 3 is set to a value that resonates with the drain inductance 1a at the second harmonic, and the value of the parallel resonance circuit 4 that works together with the series resonance circuit 3 is
The reactance component of the series resonance circuit 3 and the values of the drain source capacitor 1b and the drain inductance 1a are also determined. In addition, 1c in FIG. 8 is a current source. Even in this case, a high efficiency high frequency amplifier can be realized.

【0036】なお、図4〜8中、図2と同じ符号は同様
の部分を示す。 (b)第2実施例の説明 この第2実施例は、出力バイアスを並列共振回路4を通
じて供給する場合についての実施例である。即ち、図9
に示すように、並列共振回路4の誘導成分4Aを利用し
て、一端を直接接地するのではなく、比較的大きな容量
素子4C(この容量素子4Cは高周波短絡用であり、そ
の容量値は例えば2.5Gz帯域で10pF程度のもの
が使用される)を介して高周波的に接地しており、これ
により、他に出力バイアス回路を設けなくても、並列共
振回路4の誘導成分4Aと容量素子4Cの接続点に設け
られた出力電源端子8′から電源電圧を供給することが
可能となるのである。このようにすれば、並列共振回路
4とは別個に設けていた出力バイアス回路を並列共振回
路4で兼用できるので、回路の簡素化におおいに寄与す
る。
4 to 8, the same symbols as those in FIG. 2 indicate the same parts. (B) Description of Second Embodiment This second embodiment is an embodiment of the case where the output bias is supplied through the parallel resonant circuit 4. That is, FIG.
As shown in FIG. 4, the inductive component 4A of the parallel resonant circuit 4 is used, and one end is not directly grounded, but a relatively large capacitance element 4C (this capacitance element 4C is for high frequency short circuit, and its capacitance value is, for example, It is grounded in a high frequency through (in the 2.5 Gz band, about 10 pF is used), so that the inductive component 4A of the parallel resonant circuit 4 and the capacitive element can be provided without providing another output bias circuit. The power supply voltage can be supplied from the output power supply terminal 8'provided at the connection point of 4C. In this way, the parallel resonant circuit 4 can also serve as the output bias circuit provided separately from the parallel resonant circuit 4, which greatly contributes to simplification of the circuit.

【0037】また、出力バイアスを供給する場合、図9
の例以外でも、直列共振回路3の容量成分3Bがこの容
量成分3Bと誘導成分3Aとの接続点に何かを接続して
も影響が無い程度に大きければ、並列共振回路4の側で
はなく、図10に示すように、直列共振回路3の誘導成
分3Aと容量成分3Bとの接続点に出力電源端子8′を
設けて、この出力電源端子8′から電源電圧を供給する
ことができる。このようにすれば、直列共振回路3とは
別個に設けていた出力バイアス回路を直列共振回路3で
兼用できるので、やはり回路の簡素化におおいに寄与す
る。
Further, when the output bias is supplied, FIG.
Other than the above example, if the capacitance component 3B of the series resonance circuit 3 is large enough to have no effect even if something is connected to the connection point between the capacitance component 3B and the inductive component 3A, it is not on the parallel resonance circuit 4 side. As shown in FIG. 10, an output power supply terminal 8'can be provided at a connection point between the inductive component 3A and the capacitive component 3B of the series resonance circuit 3 and a power supply voltage can be supplied from the output power supply terminal 8 '. By doing so, the output bias circuit provided separately from the series resonance circuit 3 can also be used as the series resonance circuit 3, which also greatly contributes to simplification of the circuit.

【0038】なお、図9,10中、図2と同じ符号は同
様の部分を示す。 (c)第3実施例の説明 一般に第3高調波は周波数が高いので、整合回路2中の
インダクタは数nHの大きさであれば十分に実用になる
が、より大きな開放負荷を実現するためには、図11に
示すように、インダクタンス2Aに並列に第3高調波に
共振するキャパシタ2Cを接続して、インピーダンスを
大きくすればよい。この場合は、基本波整合回路2の設
計の自由度は下がってしまうが、本発明によらない従来
の場合に比較すると、設計自由度は大きくなるという利
点がある。また、第3高調波に対するインピーダンスを
実現できるので、より高効率を達成することができる。
In FIGS. 9 and 10, the same symbols as those in FIG. 2 indicate the same parts. (C) Description of Third Embodiment In general, the third harmonic has a high frequency, and therefore the inductor in the matching circuit 2 is sufficiently practical if it has a size of several nH, but in order to realize a larger open load. As shown in FIG. 11, a capacitor 2C that resonates with the third harmonic may be connected in parallel to the inductance 2A to increase the impedance. In this case, the degree of freedom in designing the fundamental wave matching circuit 2 is lowered, but there is an advantage that the degree of freedom in design is increased as compared with the conventional case not according to the present invention. Further, since impedance for the third harmonic can be realized, higher efficiency can be achieved.

【0039】なお、図11中、図2と同じ符号は同様の
部分を示す。
In FIG. 11, the same symbols as those in FIG. 2 indicate the same parts.

【0040】[0040]

【発明の効果】以上詳述したように、本発明の高周波増
幅器によれば、基本波整合回路に、増幅素子と直列に接
続された誘導素子が設けられるとともに、第2高調波に
共振する直列共振回路と、直列共振回路と共に基本波及
び第3高調波に共振する並列共振回路とが設けられてい
るので、基本波整合回路に影響しない第2高調波短絡回
路と第3高調波開放回路が同時に実現可能となり、これ
により、設計の自由度の高い高効率な増幅器を得ること
ができ、また、基本波整合回路の調整も独立してできる
ようになるため、特性の良い増幅器が実現可能となる利
点がある。
As described in detail above, according to the high frequency amplifier of the present invention, the fundamental wave matching circuit is provided with the inductive element connected in series with the amplifying element, and is connected in series with the second harmonic. Since the resonant circuit and the parallel resonant circuit that resonates with the fundamental wave and the third harmonic together with the series resonant circuit are provided, the second harmonic short circuit and the third harmonic open circuit that do not affect the fundamental matching circuit are provided. At the same time, it is possible to obtain a highly efficient amplifier with a high degree of freedom in design, and because the fundamental wave matching circuit can be adjusted independently, an amplifier with good characteristics can be realized. There are advantages.

【0041】また、直列共振回路のインピーダンス値
を、増幅素子の内部インピーダンスの直列誘導成分を含
めて第2高調波で共振する値に設定したり、増幅素子の
内部ドレインインダクタンスの値を含めて第2高調波で
共振する値に設定したり、並列共振回路のインピーダン
ス値を、直列共振回路のリアクタンス成分と増幅素子の
内部インピーダンスの並列容量成分とを含めて基本波及
び第3高調波で共振する値に設定したり、直列共振回路
のリアクタンス成分と増幅素子の内部ドレインソースキ
ャパシタと内部ドレインインダクタンスとを含めて基本
波及び第3高調波で共振する値に設定したりすることに
より、より高い効率の高周波増幅器を実現できる利点が
ある。
Further, the impedance value of the series resonance circuit is set to a value that resonates at the second harmonic including the series induction component of the internal impedance of the amplification element, or the impedance value of the internal drain inductance of the amplification element is included. Set to a value that resonates with two harmonics, or resonate the impedance value of the parallel resonant circuit with the fundamental wave and the third harmonic, including the reactance component of the series resonant circuit and the parallel capacitance component of the internal impedance of the amplification element. Higher efficiency can be achieved by setting a value or a value that causes resonance with the fundamental wave and the third harmonic including the reactance component of the series resonance circuit, the internal drain source capacitor of the amplification element, and the internal drain inductance. There is an advantage that the high frequency amplifier can be realized.

【0042】さらに、直列共振回路のインピーダンス値
を、増幅素子の内部インピーダンスの直列誘導成分を含
めて第2高調波で共振する値に設定するともに、並列共
振回路のインピーダンス値を、直列共振回路のリアクタ
ンス成分と増幅素子の内部インピーダンスの並列容量成
分とを含めて基本波及び第3高調波で共振する値に設定
したり、更には直列共振回路のインピーダンス値を、増
幅素子の内部ドレインインダクタンスを含めて第2高調
波で共振する値に設定するとともに、並列共振回路のイ
ンピーダンス値を、直列共振回路のリアクタンス成分と
増幅素子の内部ドレインソースキャパシタと内部ドレイ
ンインダクタンスとを含めて基本波及び第3高調波で共
振する値に設定することにより、更に高い効率の高周波
増幅器を実現できる利点がある。
Furthermore, the impedance value of the series resonance circuit is set to a value that resonates at the second harmonic including the series induction component of the internal impedance of the amplification element, and the impedance value of the parallel resonance circuit is set to that of the series resonance circuit. The reactance component and the parallel capacitance component of the internal impedance of the amplification element are set to a value that resonates at the fundamental wave and the third harmonic, and the impedance value of the series resonance circuit is set to include the internal drain inductance of the amplification element. Is set to a value that resonates at the second harmonic, and the impedance value of the parallel resonant circuit is adjusted to include the reactance component of the series resonant circuit, the internal drain source capacitor and the internal drain inductance of the amplifying element, and the third harmonic. By setting the value to resonate with the wave, a high efficiency high frequency amplifier can be realized. There is an advantage.

【0043】また、並列共振回路を構成する誘導素子が
容量素子を介して高周波的に接地されるとともに、誘導
素子と容量素子との接続点に電源を接続したり、直列共
振回路を構成する誘導素子と容量素子の接続点に、電源
を接続したりすることにより、回路の簡素化を図れる利
点がある。さらに、基本波整合回路中の該誘導素子と並
列に、第3高調波に共振する容量素子を接続することに
より、更に第3高調波に対するインピーダンスを実現で
きるので、より高効率を達成することができ、また、設
計自由度が大きくなるという利点がある。
In addition, the inductive element forming the parallel resonant circuit is grounded in high frequency through the capacitive element, and a power source is connected to the connection point between the inductive element and the capacitive element, or an inductive element forming the series resonant circuit. There is an advantage that the circuit can be simplified by connecting a power source to the connection point between the element and the capacitive element. Furthermore, by connecting a capacitive element that resonates with the third harmonic in parallel with the inductive element in the fundamental wave matching circuit, an impedance with respect to the third harmonic can be realized, so that higher efficiency can be achieved. There is an advantage that it is possible and the degree of freedom of design is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する電気回路図である。FIG. 1 is an electric circuit diagram illustrating the principle of the present invention.

【図2】本発明の第1実施例を示す電気回路図である。FIG. 2 is an electric circuit diagram showing a first embodiment of the present invention.

【図3】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 3 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図4】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 4 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図5】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 5 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図6】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 6 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図7】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 7 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図8】本発明の第1実施例の変形例を示す電気回路図
である。
FIG. 8 is an electric circuit diagram showing a modification of the first embodiment of the present invention.

【図9】本発明の第2実施例を示す電気回路図である。FIG. 9 is an electric circuit diagram showing a second embodiment of the present invention.

【図10】本発明の第2実施例の変形例を示す電気回路
図である。
FIG. 10 is an electric circuit diagram showing a modification of the second embodiment of the present invention.

【図11】本発明の第3実施例を示す電気回路図であ
る。
FIG. 11 is an electric circuit diagram showing a third embodiment of the present invention.

【図12】第1従来例を示す電気回路図である。FIG. 12 is an electric circuit diagram showing a first conventional example.

【図13】第2従来例を示す電気回路図である。FIG. 13 is an electric circuit diagram showing a second conventional example.

【図14】第3従来例を示す電気回路図である。FIG. 14 is an electric circuit diagram showing a third conventional example.

【符号の説明】[Explanation of symbols]

1 増幅素子としての電界効果トランジスタ(FET) 1A 直列誘導成分 1B 内部容量成分 1a ドレインインダクタンス 1b ドレインソースキャパシタ 2 基本波整合回路 2A 誘導素子(インダクタ) 2B その他の基本波整合回路部分 1C,1c 電流源 2C キャパシタ 3 直列共振回路 3A インダクタ 3B キャパシタ 4 並列共振回路 4A インダクタ 4B キャパシタ 4C 高周波短絡用容量素子 5 入力バイアス回路 6 出力バイアス回路 7 入力電源端子 8,8′ 出力電源端子 101 増幅素子(電界効果トランジスタ(FET)) 102 伝送線路 103 基本波整合回路 104 並列共振回路 105 入力バイアス回路 106 出力バイアス回路 107 入力電源端子 108 出力電源端子 109 並列共振回路 109a 誘導素子 110 直列共振回路 111,112 伝送線路 113,114 直列共振回路 1 Field Effect Transistor (FET) as Amplifier Element 1A Series Induction Component 1B Internal Capacitance Component 1a Drain Inductance 1b Drain Source Capacitor 2 Fundamental Wave Matching Circuit 2A Inductive Element (Inductor) 2B Other Fundamental Wave Matching Circuit Part 1C, 1c Current Source 2C capacitor 3 series resonance circuit 3A inductor 3B capacitor 4 parallel resonance circuit 4A inductor 4B capacitor 4C high frequency short circuit capacitance element 5 input bias circuit 6 output bias circuit 7 input power supply terminal 8, 8'output power supply terminal 101 amplification element (field effect transistor (FET) 102 transmission line 103 fundamental wave matching circuit 104 parallel resonance circuit 105 input bias circuit 106 output bias circuit 107 input power supply terminal 108 output power supply terminal 109 parallel resonance circuit 109a inductor Child 110 Series resonance circuit 111,112 Transmission line 113,114 Series resonance circuit

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 増幅素子に直列に接続された基本波整合
回路を介して負荷に電力を供給する高周波増幅器におい
て、 該基本波整合回路に、該増幅素子と直列に接続された誘
導素子が設けられるとともに、 該増幅素子の出力端に一端を接続されるとともに他端を
接地されることにより、該増幅素子の出力端に対し並列
に接続されて、該増幅素子の出力側に発生する信号の第
2高調波に共振する直列共振回路と、 該増幅素子の出力端に一端を接続されるとともに他端を
接地されることにより、該増幅素子の出力端及び該直列
共振回路に対し並列に接続されて、該直列共振回路と共
に該増幅素子の出力側に発生する信号の基本波及び第3
高調波に共振する並列共振回路とが設けられたことを特
徴とする、高周波増幅器。
1. A high frequency amplifier for supplying electric power to a load through a fundamental wave matching circuit connected in series to an amplifying element, wherein the fundamental wave matching circuit is provided with an inductive element connected in series with the amplifying element. The output terminal of the amplification element is connected to the output terminal of the amplification element by connecting one end to the output terminal of the amplification element and grounding the other end. A series resonance circuit that resonates with the second harmonic, and one end of which is connected to the output end of the amplification element and the other end of which is connected to the output end of the amplification element and the series resonance circuit in parallel. And the fundamental wave of the signal generated at the output side of the amplification element together with the series resonance circuit and the third
A high-frequency amplifier, comprising: a parallel resonance circuit that resonates with harmonics.
【請求項2】 該直列共振回路のインピーダンス値が、
該増幅素子の出力端から入力側を見たときに見込まれる
該増幅素子の内部インピーダンスの直列誘導成分を含め
て該第2高調波で共振する値に設定されていることを特
徴とする、請求項1記載の高周波増幅器。
2. The impedance value of the series resonant circuit is
It is set to a value that resonates at the second harmonic, including a series induction component of the internal impedance of the amplification element that is expected when the input side is viewed from the output end of the amplification element. The high frequency amplifier according to item 1.
【請求項3】 該増幅素子が電界効果トランジスタで構
成されるとともに、 該直列共振回路のインピーダンス値が、該増幅素子の内
部ドレインインダクタンスの値を含めて該第2高調波で
共振する値に設定されていることを特徴とする、請求項
1記載の高周波増幅器。
3. The amplification element is composed of a field effect transistor, and the impedance value of the series resonance circuit is set to a value that resonates at the second harmonic including the value of the internal drain inductance of the amplification element. The high frequency amplifier according to claim 1, wherein the high frequency amplifier is provided.
【請求項4】 該並列共振回路のインピーダンス値が、
該直列共振回路のリアクタンス成分と該増幅素子の出力
端から入力側を見たときに見込まれる該増幅素子の内部
インピーダンスの並列容量成分とを含めて該基本波及び
該第3高調波で共振する値に設定されていることを特徴
とする、請求項1記載の高周波増幅器。
4. The impedance value of the parallel resonant circuit is
Resonance occurs in the fundamental wave and the third harmonic, including the reactance component of the series resonance circuit and the parallel capacitance component of the internal impedance of the amplification element that is expected when the input side is viewed from the output end of the amplification element. The high frequency amplifier according to claim 1, wherein the high frequency amplifier is set to a value.
【請求項5】 該増幅素子が電界効果トランジスタで構
成されるとともに、 該並列共振回路のインピーダンス値が、該直列共振回路
のリアクタンス成分と該増幅素子の内部ドレインソース
キャパシタと内部ドレインインダクタンスとを含めて該
基本波及び該第3高調波で共振する値に設定されている
ことを特徴とする、請求項1記載の高周波増幅器。
5. The amplification element is composed of a field effect transistor, and the impedance value of the parallel resonance circuit includes a reactance component of the series resonance circuit, an internal drain source capacitor and an internal drain inductance of the amplification element. 2. The high frequency amplifier according to claim 1, wherein the high frequency amplifier is set to a value that resonates with the fundamental wave and the third harmonic.
【請求項6】 該直列共振回路のインピーダンス値が、
該増幅素子の出力端から入力側を見たときに見込まれる
該増幅素子の内部インピーダンスの直列誘導成分を含め
て該第2高調波で共振する値に設定されるともに、 該並列共振回路のインピーダンス値が、該直列共振回路
のリアクタンス成分と該増幅素子の出力端から入力側を
見たときに見込まれる該増幅素子の内部インピーダンス
の並列容量成分とを含めて該基本波及び該第3高調波で
共振する値に設定されていることを特徴とする、請求項
1記載の高周波増幅器。
6. The impedance value of the series resonant circuit is
The impedance of the parallel resonant circuit is set to a value that resonates at the second harmonic, including the series induction component of the internal impedance of the amplifier that is expected when the input side is viewed from the output end of the amplifier. The value including the reactance component of the series resonance circuit and the parallel capacitance component of the internal impedance of the amplification element that is expected when the input side is viewed from the output end of the amplification element, the fundamental wave and the third harmonic wave. 2. The high frequency amplifier according to claim 1, wherein the high frequency amplifier is set to a value that resonates with.
【請求項7】 該増幅素子が電界効果トランジスタで構
成され、 且つ、 該直列共振回路のインピーダンス値が、該増幅素子の内
部ドレインインダクタンスを含めて該第2高調波で共振
する値に設定されるとともに、 該並列共振回路のインピーダンス値が、該直列共振回路
のリアクタンス成分と該増幅素子の内部ドレインソース
キャパシタと内部ドレインインダクタンスとを含めて該
基本波及び該第3高調波で共振する値に設定されている
ことを特徴とする、請求項1記載の高周波増幅器。
7. The amplification element is composed of a field effect transistor, and the impedance value of the series resonance circuit is set to a value that resonates at the second harmonic including the internal drain inductance of the amplification element. At the same time, the impedance value of the parallel resonant circuit is set to a value that resonates at the fundamental wave and the third harmonic, including the reactance component of the series resonant circuit, the internal drain source capacitor and the internal drain inductance of the amplification element. The high frequency amplifier according to claim 1, wherein the high frequency amplifier is provided.
【請求項8】 該並列共振回路を構成する誘導素子が容
量素子を介して高周波的に接地されるとともに、該誘導
素子と該容量素子との接続点に電源が接続されているこ
とを特徴とする、請求項1〜請求項7のいずれかに記載
の高周波増幅器。
8. An inductive element forming the parallel resonant circuit is grounded in a high frequency manner via a capacitive element, and a power source is connected to a connection point between the inductive element and the capacitive element. The high frequency amplifier according to any one of claims 1 to 7.
【請求項9】 該直列共振回路を構成する誘導素子と容
量素子の接続点に、電源が接続されていることを特徴と
する、請求項1〜請求項7のいずれかに記載の高周波増
幅器。
9. The high-frequency amplifier according to claim 1, wherein a power source is connected to a connection point between the inductive element and the capacitive element that form the series resonant circuit.
【請求項10】 該基本波整合回路中の該誘導素子と並
列に、第3高調波に共振する容量素子が接続されている
ことを特徴とする、請求項1〜請求項9のいずれかに記
載の高周波増幅器。
10. A capacitive element that resonates with a third harmonic is connected in parallel with the inductive element in the fundamental wave matching circuit, according to any one of claims 1 to 9. The described high-frequency amplifier.
JP28559394A 1994-11-18 1994-11-18 High frequency amplifier Withdrawn JPH08148949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28559394A JPH08148949A (en) 1994-11-18 1994-11-18 High frequency amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28559394A JPH08148949A (en) 1994-11-18 1994-11-18 High frequency amplifier

Publications (1)

Publication Number Publication Date
JPH08148949A true JPH08148949A (en) 1996-06-07

Family

ID=17693565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28559394A Withdrawn JPH08148949A (en) 1994-11-18 1994-11-18 High frequency amplifier

Country Status (1)

Country Link
JP (1) JPH08148949A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504745A (en) * 2004-06-23 2008-02-14 ペレグリン セミコンダクター コーポレーション RF front-end integrated circuit
WO2008018338A1 (en) * 2006-08-08 2008-02-14 National University Corporation The University Of Electro-Communications Harmonic processing circuit and amplifying circuit using the same
JP2009302748A (en) * 2008-06-11 2009-12-24 Toshiba Corp Amplifier and amplifier module
US7860499B2 (en) 2001-10-10 2010-12-28 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
JP2011041315A (en) * 2004-06-23 2011-02-24 Peregrine Semiconductor Corp Rf front end integrated circuit
JP2011101408A (en) * 2000-10-10 2011-05-19 California Inst Of Technology Class e/f switching power amplifier
US8019306B2 (en) 2003-12-10 2011-09-13 Sony Corporation Amplifier and communication apparatus
US8729952B2 (en) 2012-08-16 2014-05-20 Triquint Semiconductor, Inc. Switching device with non-negative biasing
US8829967B2 (en) 2012-06-27 2014-09-09 Triquint Semiconductor, Inc. Body-contacted partially depleted silicon on insulator transistor
US8847672B2 (en) 2013-01-15 2014-09-30 Triquint Semiconductor, Inc. Switching device with resistive divider
WO2014178141A1 (en) * 2013-05-02 2014-11-06 三菱電機株式会社 Switching output mode power amplifier
US8923782B1 (en) 2013-02-20 2014-12-30 Triquint Semiconductor, Inc. Switching device with diode-biased field-effect transistor (FET)
US8947166B2 (en) 2011-06-28 2015-02-03 Panasonic Intellectual Property Management Co., Ltd. Radio frequency power amplifier
US8977217B1 (en) 2013-02-20 2015-03-10 Triquint Semiconductor, Inc. Switching device with negative bias circuit
US8994452B2 (en) 2008-07-18 2015-03-31 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9190902B2 (en) 2003-09-08 2015-11-17 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
US9203396B1 (en) 2013-02-22 2015-12-01 Triquint Semiconductor, Inc. Radio frequency switch device with source-follower
US9214932B2 (en) 2013-02-11 2015-12-15 Triquint Semiconductor, Inc. Body-biased switching device
US9264053B2 (en) 2011-01-18 2016-02-16 Peregrine Semiconductor Corporation Variable frequency charge pump
US9354654B2 (en) 2011-05-11 2016-05-31 Peregrine Semiconductor Corporation High voltage ring pump with inverter stages and voltage boosting stages
US9379698B2 (en) 2014-02-04 2016-06-28 Triquint Semiconductor, Inc. Field effect transistor switching circuit
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
JP2016533688A (en) * 2013-09-12 2016-10-27 ドックオン エージー A logarithmic sense amplifier system for use as a sensitive selective receiver without frequency conversion.
EP3059859A3 (en) * 2012-02-29 2016-11-02 Fujitsu Limited Amplifier
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9660590B2 (en) 2008-07-18 2017-05-23 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US10622990B2 (en) 2005-07-11 2020-04-14 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
EP3534537A4 (en) * 2016-10-31 2020-07-01 Vanchip (Tianjin) Technology Co., Ltd. Radio frequency power amplifier for inhibiting harmonic wave and stray, chip and communication terminal
JP2020123919A (en) * 2019-01-31 2020-08-13 富士通株式会社 Amplifier circuit and amplifier
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US10951210B2 (en) 2007-04-26 2021-03-16 Psemi Corporation Tuning capacitance to enhance FET stack voltage withstand
US11082014B2 (en) 2013-09-12 2021-08-03 Dockon Ag Advanced amplifier system for ultra-wide band RF communication
US11183974B2 (en) 2013-09-12 2021-11-23 Dockon Ag Logarithmic detector amplifier system in open-loop configuration for use as high sensitivity selective receiver without frequency conversion
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101408A (en) * 2000-10-10 2011-05-19 California Inst Of Technology Class e/f switching power amplifier
US10797694B2 (en) 2001-10-10 2020-10-06 Psemi Corporation Switch circuit and method of switching radio frequency signals
US9225378B2 (en) 2001-10-10 2015-12-29 Peregrine Semiconductor Corpopration Switch circuit and method of switching radio frequency signals
US10812068B2 (en) 2001-10-10 2020-10-20 Psemi Corporation Switch circuit and method of switching radio frequency signals
US7860499B2 (en) 2001-10-10 2010-12-28 Peregrine Semiconductor Corporation Switch circuit and method of switching radio frequency signals
US10622993B2 (en) 2001-10-10 2020-04-14 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10790820B2 (en) 2001-10-10 2020-09-29 Psemi Corporation Switch circuit and method of switching radio frequency signals
US10965276B2 (en) 2003-09-08 2021-03-30 Psemi Corporation Low noise charge pump method and apparatus
US9190902B2 (en) 2003-09-08 2015-11-17 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
US8019306B2 (en) 2003-12-10 2011-09-13 Sony Corporation Amplifier and communication apparatus
JP2008504745A (en) * 2004-06-23 2008-02-14 ペレグリン セミコンダクター コーポレーション RF front-end integrated circuit
JP2011041315A (en) * 2004-06-23 2011-02-24 Peregrine Semiconductor Corp Rf front end integrated circuit
US10715200B2 (en) 2004-06-23 2020-07-14 Psemi Corporation Integrated RF front end with stacked transistor switch
US9369087B2 (en) 2004-06-23 2016-06-14 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US11070244B2 (en) 2004-06-23 2021-07-20 Psemi Corporation Integrated RF front end with stacked transistor switch
US9680416B2 (en) 2004-06-23 2017-06-13 Peregrine Semiconductor Corporation Integrated RF front end with stacked transistor switch
US11588513B2 (en) 2004-06-23 2023-02-21 Psemi Corporation Integrated RF front end with stacked transistor switch
JP4659826B2 (en) * 2004-06-23 2011-03-30 ペレグリン セミコンダクター コーポレーション RF front-end integrated circuit
US10790390B2 (en) 2005-07-11 2020-09-29 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10797172B2 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
US10818796B2 (en) 2005-07-11 2020-10-27 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US9608619B2 (en) 2005-07-11 2017-03-28 Peregrine Semiconductor Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US10797691B1 (en) 2005-07-11 2020-10-06 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10622990B2 (en) 2005-07-11 2020-04-14 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10680600B2 (en) 2005-07-11 2020-06-09 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
USRE48944E1 (en) 2005-07-11 2022-02-22 Psemi Corporation Method and apparatus for use in improving linearity of MOSFETS using an accumulated charge sink
US10804892B2 (en) 2005-07-11 2020-10-13 Psemi Corporation Circuit and method for controlling charge injection in radio frequency switches
USRE48965E1 (en) 2005-07-11 2022-03-08 Psemi Corporation Method and apparatus improving gate oxide reliability by controlling accumulated charge
US8164396B2 (en) 2006-08-08 2012-04-24 National University Corporation, The University Of Electro-Communications Harmonic processing circuit and amplifying circuit using the same
WO2008018338A1 (en) * 2006-08-08 2008-02-14 National University Corporation The University Of Electro-Communications Harmonic processing circuit and amplifying circuit using the same
JPWO2008018338A1 (en) * 2006-08-08 2009-12-24 国立大学法人電気通信大学 Harmonic processing circuit and amplifier circuit using the same
JP5177675B2 (en) * 2006-08-08 2013-04-03 国立大学法人電気通信大学 Harmonic processing circuit and amplifier circuit using the same
US10951210B2 (en) 2007-04-26 2021-03-16 Psemi Corporation Tuning capacitance to enhance FET stack voltage withstand
JP2009302748A (en) * 2008-06-11 2009-12-24 Toshiba Corp Amplifier and amplifier module
US8994452B2 (en) 2008-07-18 2015-03-31 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9660590B2 (en) 2008-07-18 2017-05-23 Peregrine Semiconductor Corporation Low-noise high efficiency bias generation circuits and method
US9413362B2 (en) 2011-01-18 2016-08-09 Peregrine Semiconductor Corporation Differential charge pump
US9264053B2 (en) 2011-01-18 2016-02-16 Peregrine Semiconductor Corporation Variable frequency charge pump
US9354654B2 (en) 2011-05-11 2016-05-31 Peregrine Semiconductor Corporation High voltage ring pump with inverter stages and voltage boosting stages
US8947166B2 (en) 2011-06-28 2015-02-03 Panasonic Intellectual Property Management Co., Ltd. Radio frequency power amplifier
EP2634918B1 (en) * 2012-02-29 2017-08-30 Fujitsu Limited Amplifier
EP3059859A3 (en) * 2012-02-29 2016-11-02 Fujitsu Limited Amplifier
US8829967B2 (en) 2012-06-27 2014-09-09 Triquint Semiconductor, Inc. Body-contacted partially depleted silicon on insulator transistor
US8729952B2 (en) 2012-08-16 2014-05-20 Triquint Semiconductor, Inc. Switching device with non-negative biasing
US8847672B2 (en) 2013-01-15 2014-09-30 Triquint Semiconductor, Inc. Switching device with resistive divider
US9214932B2 (en) 2013-02-11 2015-12-15 Triquint Semiconductor, Inc. Body-biased switching device
US8923782B1 (en) 2013-02-20 2014-12-30 Triquint Semiconductor, Inc. Switching device with diode-biased field-effect transistor (FET)
US8977217B1 (en) 2013-02-20 2015-03-10 Triquint Semiconductor, Inc. Switching device with negative bias circuit
US9203396B1 (en) 2013-02-22 2015-12-01 Triquint Semiconductor, Inc. Radio frequency switch device with source-follower
US9419565B2 (en) 2013-03-14 2016-08-16 Peregrine Semiconductor Corporation Hot carrier injection compensation
WO2014178141A1 (en) * 2013-05-02 2014-11-06 三菱電機株式会社 Switching output mode power amplifier
US11050393B2 (en) 2013-09-12 2021-06-29 Dockon Ag Amplifier system for use as high sensitivity selective receiver without frequency conversion
US11082014B2 (en) 2013-09-12 2021-08-03 Dockon Ag Advanced amplifier system for ultra-wide band RF communication
JP2016533688A (en) * 2013-09-12 2016-10-27 ドックオン エージー A logarithmic sense amplifier system for use as a sensitive selective receiver without frequency conversion.
US10333475B2 (en) 2013-09-12 2019-06-25 QuantalRF AG Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
KR20180088921A (en) * 2013-09-12 2018-08-07 도콘 아게 Logarithmic detector amplifier system for use as high sensitivity selective receiver without frequency conversion
US11183974B2 (en) 2013-09-12 2021-11-23 Dockon Ag Logarithmic detector amplifier system in open-loop configuration for use as high sensitivity selective receiver without frequency conversion
US11095255B2 (en) 2013-09-12 2021-08-17 Dockon Ag Amplifier system for use as high sensitivity selective receiver without frequency conversion
US9379698B2 (en) 2014-02-04 2016-06-28 Triquint Semiconductor, Inc. Field effect transistor switching circuit
US9831857B2 (en) 2015-03-11 2017-11-28 Peregrine Semiconductor Corporation Power splitter with programmable output phase shift
US9948281B2 (en) 2016-09-02 2018-04-17 Peregrine Semiconductor Corporation Positive logic digitally tunable capacitor
US10879850B2 (en) 2016-10-31 2020-12-29 Vanchip (Tianjin) Technology Co., Ltd. Radio frequency power amplifier for inhibiting harmonic wave and stray, chip and communication terminal
EP3534537A4 (en) * 2016-10-31 2020-07-01 Vanchip (Tianjin) Technology Co., Ltd. Radio frequency power amplifier for inhibiting harmonic wave and stray, chip and communication terminal
US10505530B2 (en) 2018-03-28 2019-12-10 Psemi Corporation Positive logic switch with selectable DC blocking circuit
US11018662B2 (en) 2018-03-28 2021-05-25 Psemi Corporation AC coupling modules for bias ladders
US10886911B2 (en) 2018-03-28 2021-01-05 Psemi Corporation Stacked FET switch bias ladders
US10236872B1 (en) 2018-03-28 2019-03-19 Psemi Corporation AC coupling modules for bias ladders
US11418183B2 (en) 2018-03-28 2022-08-16 Psemi Corporation AC coupling modules for bias ladders
US10862473B2 (en) 2018-03-28 2020-12-08 Psemi Corporation Positive logic switch with selectable DC blocking circuit
JP2020123919A (en) * 2019-01-31 2020-08-13 富士通株式会社 Amplifier circuit and amplifier
US11476849B2 (en) 2020-01-06 2022-10-18 Psemi Corporation High power positive logic switch

Similar Documents

Publication Publication Date Title
JPH08148949A (en) High frequency amplifier
KR930001293B1 (en) High frequency power amp
US5406224A (en) Circuit for stabilizing RF amplifier
US4783638A (en) Frequency doubling oscillator working at ultra-high frequencies
US8773224B2 (en) Frequency multiplier
WO2001003290A1 (en) Microwave amplifier
JPH05243873A (en) High efficiency amplifier
JP6095787B2 (en) High frequency power amplifier
US8031016B2 (en) Multiplying oscillator and wireless apparatus in which the same is installed
JPH05191176A (en) High frequency power amplifier
JP3504598B2 (en) Balanced frequency multiplier for microwave or millimeter wave
CN111819788B (en) Amplifier
JPH08130424A (en) High-efficiency power amplifier circuit
JPH0918255A (en) Semiconductor device
JP2000077957A (en) High output amplifier
JP7251660B2 (en) high frequency amplifier
JP2001237647A (en) High frequency power amplifier
JP2001237658A (en) High frequency amplifier
JPH0613806A (en) Power amplifier
RU2207706C2 (en) High-frequency key-pulse generator
JPH11220343A (en) High frequency power amplifier
CN115498968A (en) Harmonic processing circuit and amplifying device
JPS6241444Y2 (en)
JPWO2023090250A5 (en)
JPH10322145A (en) Power amplifier for high frequency

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205