JP2012204581A - PRODUCTION METHOD OF SURFACE MODIFIED R-Fe-B BASED SINTERED MAGNET - Google Patents

PRODUCTION METHOD OF SURFACE MODIFIED R-Fe-B BASED SINTERED MAGNET Download PDF

Info

Publication number
JP2012204581A
JP2012204581A JP2011067522A JP2011067522A JP2012204581A JP 2012204581 A JP2012204581 A JP 2012204581A JP 2011067522 A JP2011067522 A JP 2011067522A JP 2011067522 A JP2011067522 A JP 2011067522A JP 2012204581 A JP2012204581 A JP 2012204581A
Authority
JP
Japan
Prior art keywords
magnet
partial pressure
oxygen
heat treatment
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011067522A
Other languages
Japanese (ja)
Other versions
JP5914974B2 (en
Inventor
masahide Fujiwara
真秀 藤原
Masayuki Yoshimura
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2011067522A priority Critical patent/JP5914974B2/en
Publication of JP2012204581A publication Critical patent/JP2012204581A/en
Application granted granted Critical
Publication of JP5914974B2 publication Critical patent/JP5914974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a surface modified R-Fe-B based sintered magnet having excellent corrosion resistance and excellent magnetic characteristics.SOLUTION: An atmosphere where the oxygen partial pressure is 1×10to 1×10Pa, the partial water vapor pressure is lower than 1000 Pa, and the ratio of the oxygen partial pressure and the partial water vapor pressure (oxygen partial pressure/partial water vapor pressure)is 1 to 20000 (where, excepting 1) is formed so that a positive pressure state is brought in the processing chamber by performing introduction of the atmospheric gas per 1 mof the volume in the processing chamber on conditions of 0.028 m/min or more as the oxygen flow rate, and 3 m/min or less as the total flow rate. Subsequently, an R-Fe-B based sintered magnet having an oxygen content of 0.1 mass% or less is heat treated at 230 to 260°C.

Description

本発明は、優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石の製造方法に関する。   The present invention relates to a method for producing a surface-modified R—Fe—B based sintered magnet having excellent corrosion resistance and excellent magnetic properties.

Nd−Fe−B系焼結磁石に代表されるR−Fe−B系焼結磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから今日様々な分野で使用されているが、反応性の高い希土類元素:Rを含むため、大気中で酸化腐食されやすいという特質を有する。従って、R−Fe−B系焼結磁石は、通常、その表面に金属被膜や樹脂被膜などの耐食性被膜を形成して実用に供されるが、ハイブリッド自動車や電気自動車の駆動モータとして使用されたり、空調機のコンプレッサーなどに組み込まれたりするIPM(Interior Permanent Magnet)モータなどのように、磁石が部品に埋め込まれて使用される態様の場合には、必ずしもこのような耐食性被膜を磁石の表面に形成することは必要とされない。しかしながら、磁石が製造されてから部品に埋め込まれるまでの期間における磁石の耐食性の確保は当然に必要である。
上記の通り、R−Fe−B系焼結磁石に対して耐食性を付与する方法としては、その表面に金属被膜や樹脂被膜などの耐食性被膜を形成する方法が代表的であるが、近年、酸化性雰囲気下での熱処理(酸化熱処理)を磁石に対して行うことによって磁石の表面を改質する方法が簡易耐食性向上技術として注目されている。例えば、特許文献1や特許文献2には、酸素を利用して酸化性雰囲気を形成して熱処理する方法が記載され、特許文献3〜特許文献6には、水蒸気を単独で利用して、或いは、水蒸気に酸素を組み合わせて酸化性雰囲気を形成して熱処理する方法が記載されている。しかしながら、これらの方法で磁石に対して表面改質を行っても、温度や湿度の管理がされていない輸送環境や保管環境などのような、温度や湿度が変動することで磁石の表面に微細な結露を繰り返し生じさせてしまう環境では必ずしも十分な耐食性が得られないこと、特許文献3〜特許文献6においては、水蒸気分圧は10hPa(1000Pa)以上が好適とされているが、このような水蒸気分圧が高い雰囲気下で熱処理を行うと、磁石の表面で起こる酸化反応によって水素が副産物として大量に生成し、磁石が生成した水素を吸蔵して脆化することで磁気特性が低下してしまうことが本発明者らの検討によって明らかになった。そこで本発明者らは、R−Fe−B系焼結磁石に対するより優れた表面改質方法として、酸素分圧と、特許文献3〜特許文献6において不適とされている10hPa未満の水蒸気分圧を適切に制御した酸化性雰囲気下での熱処理方法、具体的には、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が0.1Pa〜1000Pa(但し1000Paを除く)の雰囲気下、200℃〜600℃で熱処理を行う方法を特許文献7において提案した。
さらに、本発明者らは、特許文献7において提案したR−Fe−B系焼結磁石の表面改質方法を基礎として、磁石の酸素含有量に応じて適正な温度管理の下に熱処理を行う表面改質方法を特許文献8において提案した。特許文献8において本発明者らが提案した表面改質方法では、酸素含有量が0.3質量%未満の磁石に対する適正な熱処理温度を400℃〜600℃としている。これは熱処理温度が400℃未満の場合には磁気特性の劣化が認められることを理由とし(とりわけ350℃付近において顕著である)、このことは特許文献8の実施例において酸素含有量が0.13質量%の磁石と0.24質量%の磁石で確認している。
R-Fe-B-based sintered magnets represented by Nd-Fe-B-based sintered magnets are widely used today because they use resource-rich and inexpensive materials and have high magnetic properties. Although it is used in various fields, since it contains a highly reactive rare earth element: R, it has the property of being easily oxidized and corroded in the atmosphere. Therefore, the R—Fe—B based sintered magnet is usually used for practical use by forming a corrosion-resistant coating such as a metal coating or a resin coating on the surface thereof. However, it can be used as a drive motor for a hybrid vehicle or an electric vehicle. In the case where the magnet is embedded in a part, such as an IPM (Interior Permanent Magnet) motor incorporated in a compressor of an air conditioner, etc., such a corrosion-resistant coating is not necessarily provided on the surface of the magnet. It is not required to form. However, it is of course necessary to ensure the corrosion resistance of the magnet during the period from when the magnet is manufactured to when it is embedded in the part.
As described above, as a method of imparting corrosion resistance to the R—Fe—B based sintered magnet, a method of forming a corrosion resistant coating such as a metal coating or a resin coating on the surface is representative, but in recent years, oxidation A method of modifying the surface of a magnet by performing heat treatment (oxidation heat treatment) on the magnet in a neutral atmosphere has attracted attention as a simple technique for improving corrosion resistance. For example, Patent Document 1 and Patent Document 2 describe a method of forming an oxidizing atmosphere using oxygen and performing a heat treatment, and Patent Documents 3 to 6 use water vapor alone, or A method is described in which oxygen is combined with water vapor to form an oxidizing atmosphere and heat treatment is performed. However, even if surface modification is performed on the magnet by these methods, the surface of the magnet is finely affected by fluctuations in temperature and humidity, such as in transportation and storage environments where temperature and humidity are not controlled. In an environment where repeated condensation occurs repeatedly, sufficient corrosion resistance is not necessarily obtained. In Patent Documents 3 to 6, the water vapor partial pressure is preferably 10 hPa (1000 Pa) or more. When heat treatment is performed in an atmosphere with a high water vapor partial pressure, a large amount of hydrogen is generated as a by-product due to an oxidation reaction that occurs on the surface of the magnet, and the magnetic properties are reduced by occlusion and embrittlement of the hydrogen generated by the magnet. This has been clarified by the study of the present inventors. Therefore, the present inventors, as a better surface modification method for R-Fe-B based sintered magnets, oxygen partial pressure and water vapor partial pressure of less than 10 hPa, which is inappropriate in Patent Documents 3 to 6. Is a heat treatment method in an oxidizing atmosphere appropriately controlled, specifically, an oxygen partial pressure of 1 × 10 2 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 0.1 Pa to 1000 Pa (excluding 1000 Pa) Patent Document 7 proposed a method of performing heat treatment at 200 ° C. to 600 ° C. in the atmosphere described above.
Furthermore, the present inventors perform heat treatment under appropriate temperature control according to the oxygen content of the magnet based on the surface modification method of the R—Fe—B based sintered magnet proposed in Patent Document 7. A surface modification method was proposed in Patent Document 8. In the surface modification method proposed by the present inventors in Patent Document 8, an appropriate heat treatment temperature for a magnet having an oxygen content of less than 0.3% by mass is set to 400 ° C. to 600 ° C. This is because when the heat treatment temperature is less than 400 ° C., deterioration of the magnetic properties is observed (particularly in the vicinity of 350 ° C.). It is confirmed with a 13 mass% magnet and a 0.24 mass% magnet.

特許第2844269号公報Japanese Patent No. 2844269 特開2002−57052号公報JP 2002-57052 A 特開2006−156853号公報JP 2006-156853 A 特開2006−210864号公報JP 2006-210864 A 特開2007−103523号公報JP 2007-103523 A 特開2007−207936号公報JP 2007-207936 A 国際公開第2009/041639号International Publication No. 2009/041639 特開2010−232357号公報JP 2010-232357 A

近年のR−Fe−B系焼結磁石の技術開発の進展に伴い、酸素含有量が0.1質量%以下の磁石の製造技術が確立されるに至っている。本発明者らは、こうした酸素含有量が極めて少ない磁石に対する表面改質を特許文献8において推奨される400℃以上の熱処理温度で行ったところ、とりわけ350℃付近において熱処理を行った場合に顕著な磁気特性の劣化を期待通り回避することはできたものの、意外にも磁気特性がわずかではあるが劣化することが判明した。
そこで本発明は、優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石の製造方法を提供することを目的とする。
With the recent development of R-Fe-B sintered magnet technology, a technology for producing a magnet having an oxygen content of 0.1% by mass or less has been established. The inventors of the present invention performed surface modification on a magnet having such an extremely low oxygen content at a heat treatment temperature of 400 ° C. or higher recommended in Patent Document 8, and particularly when the heat treatment is performed at around 350 ° C. Although it was possible to avoid the deterioration of the magnetic properties as expected, it was unexpectedly found that the magnetic properties were slightly deteriorated.
Therefore, an object of the present invention is to provide a method for producing a surface-modified R—Fe—B sintered magnet having excellent corrosion resistance and excellent magnetic properties.

本発明者らは、上記の点に鑑みて鋭意検討を重ねた結果、酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石に対しては、所定の酸化性雰囲気の形成を適正に行った上で、300℃を下回る特定の温度範囲で熱処理を行うことが、磁気特性の劣化を引き起こすことなく、所望する改質層をその表面に効率的に形成するために有効であることを見出した。   As a result of intensive studies in view of the above points, the present inventors have determined that an R-Fe-B sintered magnet having an oxygen content of 0.1% by mass or less has a predetermined oxidizing atmosphere. Performing heat treatment in a specific temperature range below 300 ° C with proper formation is effective for efficiently forming the desired modified layer on the surface without causing deterioration of magnetic properties. I found out.

上記の知見に基づいて完成された本発明の表面改質されたR−Fe−B系焼結磁石の製造方法は、請求項1記載の通り、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石に対し、230℃〜260℃で熱処理を行うことを特徴とする。
また、本発明の表面改質されたR−Fe−B系焼結磁石は、請求項2記載の通り、請求項1記載の製造方法によって製造されてなることを特徴とする。
The manufacturing method of the surface-modified R—Fe—B sintered magnet of the present invention completed based on the above findings has an oxygen partial pressure of 1 × 10 3 Pa to 1 × as described in claim 1. An atmosphere having a water vapor partial pressure of less than 1000 Pa at 10 5 Pa and an oxygen partial pressure to water vapor partial pressure ratio (oxygen partial pressure / water vapor partial pressure) of 1 to 20000 (excluding 1) is 0.028 m 3 / min or more the introduction of the atmospheric gas per volume 1 m 3 as an oxygen flow, and formed as the processing by making the entire flow 3m 3 / min under the following conditions chamber is a positive pressure state The heat treatment is performed at 230 ° C. to 260 ° C. for an R—Fe—B based sintered magnet having an oxygen content of 0.1% by mass or less.
Moreover, the surface-modified R—Fe—B based sintered magnet of the present invention is manufactured by the manufacturing method according to claim 1 as described in claim 2.

本発明によれば、優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while having the outstanding corrosion resistance, the manufacturing method of the surface-modified R-Fe-B type sintered magnet which has the outstanding magnetic characteristic can be provided.

本発明の表面改質されたR−Fe−B系焼結磁石の製造方法に好適に採用することができる連続処理炉の一例の概略図(側面図)である。It is the schematic (side view) of an example of the continuous processing furnace which can be suitably employ | adopted for the manufacturing method of the surface-modified R-Fe-B type sintered magnet of this invention. 参考例1における酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石の固有保磁力に対して熱処理が及ぼす影響を示すグラフである。It is a graph which shows the influence which heat processing has on the intrinsic coercive force of the R-Fe-B system sintered magnet whose oxygen content in reference example 1 is 0.1 mass% or less.

本発明の表面改質されたR−Fe−B系焼結磁石の製造方法は、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石に対し、230℃〜260℃で熱処理を行うことを特徴とするものである。所定の酸化性雰囲気を処理室内が陽圧状態となるように所定の条件で雰囲気ガスを導入することで形成し、かつ、熱処理温度を適正に制御することで、磁気特性の劣化を引き起こすことなく、また、処理に時間がかかりすぎることなく、酸素含有量が0.1質量%以下の磁石に対して所望する表面改質を行うことができる。 The method for producing a surface-modified R—Fe—B sintered magnet of the present invention has an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa, a water vapor partial pressure of less than 1000 Pa, and oxygen An atmosphere having a ratio of partial pressure to water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) of 1 to 20000 (excluding 1) is 0.028 m with the introduction of atmospheric gas per volume of 1 m 3 in the processing chamber as an oxygen flow rate. R-Fe- having an oxygen content of 0.1% by mass or less, formed so as to be in a positive pressure state in the processing chamber by performing under conditions of 3 / min or more and a total flow rate of 3m 3 / min or less. A heat treatment is performed at 230 ° C. to 260 ° C. for the B-based sintered magnet. A predetermined oxidizing atmosphere is formed by introducing atmospheric gas under predetermined conditions so that the processing chamber is in a positive pressure state, and the heat treatment temperature is appropriately controlled without causing deterioration of magnetic characteristics. Moreover, the desired surface modification can be performed on a magnet having an oxygen content of 0.1% by mass or less without taking too much time for the treatment.

熱処理を行う工程における酸素分圧を1×10Pa〜1×10Paと規定するのは、酸素分圧が1×10Paよりも小さいと、雰囲気中の酸素量が少なすぎることで、磁石の表面改質に時間がかかりすぎたり、磁石を保持部材上に配置して熱処理を行う場合、磁石のその保持部材と接する部分の表面改質が十分に行われないことにより、当該部分に十分な耐食性や安定性が付与されなかったり当該部分に保持部材との接点跡が残ってしまったりする恐れがあるからである。一方、酸素分圧を1×10Paより大きくしても、酸素分圧を大きくすることによる磁石の表面改質効果の向上はさほど認められず、コストアップを招来するだけになってしまう恐れがあるからである。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、酸素分圧は1×10Pa〜5×10Paが望ましく、1×10Pa〜3×10Paがより望ましい。水蒸気分圧を1000Pa未満と規定するのは、水蒸気分圧が1000Pa以上であると、雰囲気中の水蒸気量が多すぎることで、磁石の表面を優れた耐食性を発揮する安定なものに改質することができない恐れがあるからである。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、水蒸気分圧は700Pa以下が望ましく、45Pa以下がより望ましい。なお、水蒸気分圧の下限は特段制限されるものではないが、通常、1Paが望ましい。酸素分圧と水蒸気分圧の比率を1〜20000(但し1を除く)と規定するのは、当該比率が1以下であると、雰囲気中の酸素量に対する水蒸気量が多すぎることで、磁石の表面を優れた耐食性を発揮する安定なものに改質することができない恐れがあるからである。一方、当該比率が20000よりも大きい雰囲気は特殊環境といえ、実用的でないからである。磁石の表面に対して所望する改質をより効果的かつ低コストに行うためには、当該比率は10〜10000が望ましく、300〜5000がより望ましく、450〜4000がさらに望ましい。 By to define the oxygen partial pressure in the step of performing a heat treatment with 1 × 10 3 Pa~1 × 10 5 Pa is the oxygen partial pressure is less than 1 × 10 3 Pa, the oxygen content in the atmosphere is too low When the surface modification of the magnet takes too much time or when the magnet is disposed on the holding member and heat treatment is performed, the portion of the magnet that is in contact with the holding member is not sufficiently surface modified, This is because there is a risk that sufficient corrosion resistance and stability will not be imparted, or that contact marks with the holding member may remain in the portion. On the other hand, even if the oxygen partial pressure is made higher than 1 × 10 5 Pa, the improvement of the surface modification effect of the magnet by increasing the oxygen partial pressure is not recognized so much, which may only increase the cost. Because there is. In order to perform the desired modification on the surface of the magnet more effectively and at low cost, the oxygen partial pressure is preferably 1 × 10 3 Pa to 5 × 10 4 Pa, and 1 × 10 4 Pa to 3 × 10. 4 Pa is more desirable. The water vapor partial pressure is defined as less than 1000 Pa. If the water vapor partial pressure is 1000 Pa or more, the amount of water vapor in the atmosphere is excessive, and the surface of the magnet is modified to a stable one that exhibits excellent corrosion resistance. Because there is a fear that it cannot be done. In order to perform the desired modification on the surface of the magnet more effectively and at low cost, the water vapor partial pressure is desirably 700 Pa or less, and more desirably 45 Pa or less. The lower limit of the water vapor partial pressure is not particularly limited, but is usually 1 Pa. The ratio between the oxygen partial pressure and the water vapor partial pressure is defined as 1 to 20000 (excluding 1) because when the ratio is 1 or less, the amount of water vapor with respect to the amount of oxygen in the atmosphere is too large. This is because the surface may not be modified to a stable one that exhibits excellent corrosion resistance. On the other hand, an atmosphere in which the ratio is greater than 20000 is a special environment and is not practical. In order to perform the desired modification on the surface of the magnet more effectively and at a low cost, the ratio is preferably 10 to 10,000, more preferably 300 to 5000, and further preferably 450 to 4000.

処理室内の雰囲気は、雰囲気ガスとして、酸素や水蒸気を所定の分圧となるように個別に導入することによって形成してもよいし、これらが所定の分圧で含まれる露点を有する大気を導入することによって形成してもよいが、いずれの場合であっても、本発明においては、処理室内の雰囲気は、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成する(雰囲気ガスとして酸素や水蒸気が所定の分圧で含まれる露点を有する大気を用いる場合には大気流量を全体流量として制御すれば酸素流量は自ずと制御される)。このようにして処理室内の雰囲気形成を行うことで、熱処理温度が230℃〜260℃という比較的低温であっても処理に時間がかかりすぎることなく、効率的に磁石の表面に改質層を形成することができる。処理室内に導入する酸素流量が少なすぎると処理に時間がかかりすぎる恐れがある一方、全体流量が多すぎると処理室内の温度分布にばらつきが生じてしまうことで処理室内の全ての磁石に均一な表面改質を行うことができない恐れがある。なお、処理室内には、窒素ガスやアルゴンガスなどの不活性ガスを共存させてもよい。 The atmosphere in the processing chamber may be formed by individually introducing oxygen or water vapor as an atmospheric gas so as to have a predetermined partial pressure, or an atmosphere having a dew point that includes these at a predetermined partial pressure is introduced. However, in any case, in the present invention, the atmosphere in the processing chamber is 0.028 m 3 / introduction of atmospheric gas per volume of 1 m 3 in the processing chamber. It is formed so as to be in a positive pressure state in the processing chamber by performing it under the condition of not less than 3 minutes and not more than 3 m 3 / minute as a whole flow rate (having a dew point in which oxygen or water vapor is contained at a predetermined partial pressure as atmospheric gas) When the atmosphere is used, the oxygen flow rate is naturally controlled if the atmospheric flow rate is controlled as the total flow rate). By forming the atmosphere in the processing chamber in this way, even if the heat treatment temperature is as low as 230 ° C. to 260 ° C., the processing layer does not take too much time, and the modified layer is efficiently formed on the surface of the magnet. Can be formed. If the flow rate of oxygen introduced into the processing chamber is too small, it may take too much time for processing, whereas if the total flow rate is too high, the temperature distribution in the processing chamber will vary, resulting in a uniform distribution of all magnets in the processing chamber. There is a possibility that surface modification cannot be performed. Note that an inert gas such as nitrogen gas or argon gas may coexist in the processing chamber.

熱処理の温度を230℃〜260℃と規定するのは、230℃よりも低いと十分な厚みの改質層を磁石の表面に形成することができないことで無視できない磁粉の脱粒を引き起こす恐れがある一方、260℃よりも高いと磁気特性の劣化を引き起こす恐れがあるからである。熱処理の時間は1分間〜3時間が望ましく、15分間〜2.5時間がより望ましい。時間が短すぎると磁石の表面に対して所望する改質を行い難くなる恐れがある一方、時間を必要以上に長くしてもエネルギーを消費してコストアップを招くだけである。   The temperature of the heat treatment is defined as 230 ° C. to 260 ° C. If the temperature is lower than 230 ° C., there is a risk of causing a non-negligible magnetic particle detachment because a modified layer having a sufficient thickness cannot be formed on the surface of the magnet. On the other hand, if the temperature is higher than 260 ° C., the magnetic characteristics may be deteriorated. The heat treatment time is preferably 1 minute to 3 hours, more preferably 15 minutes to 2.5 hours. If the time is too short, it may be difficult to perform the desired modification on the surface of the magnet. On the other hand, even if the time is longer than necessary, energy is consumed and the cost is increased.

なお、磁石を常温から熱処理を行う温度まで昇温する工程は、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1Pa〜100Paの雰囲気下で行うことが望ましい。このような雰囲気下で昇温することにより、磁石の表面に少なからず自然吸着している水分を早期に脱離させることで、磁石の表面に存在する水分が昇温の際に磁石に対して悪影響を与えることを極力回避することができる。平均昇温速度は、例えば100℃/時間〜2000℃/時間とすればよい。なお、本発明において「常温」とは、表面改質が行われるR−Fe−B系焼結磁石が昇温を開始する時点で置かれている環境の温度(例えば室温)を指し、例示的には、日本工業規格のJIS Z 8703において5℃〜35℃と規定されている温度を意味する。 In addition, it is desirable to perform the process of raising the temperature of the magnet from room temperature to the temperature at which heat treatment is performed in an atmosphere having an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 Pa to 100 Pa. By raising the temperature in such an atmosphere, moisture that is naturally adsorbed on the surface of the magnet is desorbed at an early stage, so that the moisture present on the surface of the magnet is It is possible to avoid adverse effects as much as possible. The average heating rate may be, for example, 100 ° C./hour to 2000 ° C./hour. In the present invention, “normal temperature” refers to the temperature (for example, room temperature) of the environment in which the R—Fe—B sintered magnet subjected to surface modification is placed at the start of temperature rise, and is illustrative. Means a temperature defined as 5 ° C. to 35 ° C. in JIS Z 8703 of the Japanese Industrial Standard.

また、熱処理を行った後の磁石を降温する工程も、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1Pa〜100Paの雰囲気下で行うことが望ましい。このような雰囲気下で降温することにより、工程中に磁石の表面が結露して腐食の原因となることを防ぐことができる。 The step of lowering the temperature of the magnet after the heat treatment is also preferably performed in an atmosphere having an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa and a water vapor partial pressure of 1 Pa to 100 Pa. By lowering the temperature in such an atmosphere, it is possible to prevent the surface of the magnet from condensing and causing corrosion during the process.

磁石に対する昇温工程、熱処理工程、降温工程は、例えば、内部に雰囲気ガスを流通させることでその雰囲気の制御が可能なSUS,Ti,Mo,Nbなどの材質からなる耐熱性容器に磁石を収容し、磁石を収容した耐熱性容器をバッチ式の熱処理炉の処理室に収容して耐熱性容器の内部の雰囲気を制御しながら行うことができる。また、磁石が収容された処理室内の環境を順次それぞれの工程を行うための環境に変化させることができるバッチ式の熱処理炉を用いて行うこともできる。さらに、処理室内をそれぞれの工程に適した環境に制御した領域に分割し、各領域に磁石を順次移動させることで行うこともできる。   In the temperature raising process, heat treatment process, and temperature lowering process for the magnet, for example, the magnet is housed in a heat resistant container made of a material such as SUS, Ti, Mo, Nb, etc., which can control the atmosphere by circulating an atmosphere gas inside. In addition, the heat-resistant container containing the magnet can be accommodated in a processing chamber of a batch-type heat treatment furnace while controlling the atmosphere inside the heat-resistant container. Moreover, it can also carry out using the batch-type heat processing furnace which can change the environment in the process chamber in which the magnet was accommodated into the environment for performing each process sequentially. Furthermore, the processing chamber can be divided into regions controlled to an environment suitable for each process, and magnets can be moved sequentially to the respective regions.

図1は、磁石に対する昇温工程、熱処理工程、降温工程を、内部がそれぞれの工程に適した環境に制御された領域に分割され、各領域に磁石を順次移動させることで行うことができる連続処理炉の一例の概略図(側面図)である。図1に示す連続処理炉においては、ベルトコンベアなどの移動手段によって磁石を図の左から右に移動させながら各処理を施す。矢印は図略の給気手段と排気手段によって形成される各領域における雰囲気ガスの流れである。昇温領域の入口および降温領域の出口は、例えばエアカーテンで区画され、昇温領域と熱処理領域の境界および熱処理領域と降温領域の境界は、例えば矢印の雰囲気ガスの流れにより区画される(これらの区画は機械的にシャッターで行われてもよい)。このような連続処理炉を用いれば、大量の磁石に対して安定した品質の表面改質を連続的に行うことができる。   FIG. 1 shows a continuous process in which a temperature raising process, a heat treatment process, and a temperature lowering process for a magnet are divided into areas whose interiors are controlled in an environment suitable for each process, and the magnet is sequentially moved to each area. It is the schematic (side view) of an example of a processing furnace. In the continuous processing furnace shown in FIG. 1, each processing is performed while moving the magnet from the left to the right in the drawing by moving means such as a belt conveyor. Arrows indicate the flow of the atmospheric gas in each region formed by an unillustrated air supply means and exhaust means. The inlet of the temperature rising region and the outlet of the temperature falling region are partitioned by, for example, an air curtain, and the boundary between the temperature rising region and the heat treatment region and the boundary between the heat treatment region and the temperature lowering region are partitioned by, for example, the flow of the atmospheric gas indicated by the arrows (these This may be done mechanically with a shutter). If such a continuous processing furnace is used, surface modification with stable quality can be continuously performed for a large number of magnets.

上記の工程によってR−Fe−B系焼結磁石の表面に形成される改質層は、厚みが1μm以下(ナノメートルオーダー)の非常に薄いものであっても十分な耐食性を発揮する。   Even if the modified layer formed on the surface of the R—Fe—B based sintered magnet by the above process is very thin with a thickness of 1 μm or less (nanometer order), sufficient corrosion resistance is exhibited.

本発明が適用されるR−Fe−B系焼結磁石としては、例えば、下記の製造方法によって製造されたものが挙げられる。
25質量%〜40質量%の希土類元素Rと、0.6質量%〜1.6質量%のB(硼素)と、残部Feおよび不可避不純物とを包含する合金を用意する。ここで、Rは重希土類元素RHを含んでいてもよい。また、Bの一部はC(炭素)によって置換されていてもよいし、Feの一部(50質量%以下)は、他の遷移金属元素(例えば、CoまたはNi)によって置換されていてもよい。この合金は、種々の目的により、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種の添加元素Mを0.01質量%〜1.0質量%程度含有していてもよい。
上記の合金は、原料合金の溶湯を例えばストリップキャスト法によって急冷して好適に作製され得る。以下、ストリップキャスト法による急冷凝固合金の作製を説明する。
まず、上記組成を有する原料合金をアルゴン雰囲気中において高周波溶解によって溶解し、原料合金の溶湯を形成する。次に、この溶湯を1350℃程度に保持した後、単ロール法によって急冷し、例えば厚さ約0.3mmのフレーク状合金鋳塊を得る。こうして作製した合金鋳片を、次の水素粉砕処理前に例えば1〜10mmのフレーク状に粉砕する。なお、ストリップキャスト法による原料合金の製造方法は、例えば、米国特許第5、383、978号明細書に開示されている。
[粗粉砕工程]
上記のフレーク状に粗く粉砕された合金鋳片を水素炉の内部へ収容する。次に、水素炉の内部で水素脆化処理(以下、「水素粉砕処理」や単に「水素処理」と称する場合がある)工程を行う。水素粉砕処理後の粗粉砕粉を水素炉から取り出す際、粗粉砕粉が大気と接触しないように、不活性雰囲気下で取り出し動作を実行することが好ましい。そうすれば、粗粉砕粉が酸化・発熱することが防止され、磁石の磁気特性の低下が抑制できるからである。
水素粉砕処理によって、希土類合金は0.1mm〜数mm程度の大きさに粉砕され、その平均粒径は500μm以下となる。水素粉砕処理後、脆化した原料合金をより細かく解砕するとともに冷却することが好ましい。比較的高い温度状態のまま原料を取り出す場合は、冷却処理の時間を相対的に長くすればよい。
[微粉砕工程]
次に、粗粉砕粉に対してジェットミル粉砕装置を用いて微粉砕を実行する。本実施形態で使用するジェットミル粉砕装置にはサイクロン分級機が接続されている。ジェットミル粉砕装置は、粗粉砕工程で粗く粉砕された希土類合金(粗粉砕粉)の供給を受け、粉砕機内で粉砕する。粉砕機内で粉砕された粉末はサイクロン分級機を経て回収タンクに集められる。こうして、0.1〜20μm程度の微粉末を得ることができる。このような微粉砕に用いる粉砕装置は、ジェットミルに限定されず、アトライタやボールミルであってもよい。粉砕に際して、ステアリン酸亜鉛などの潤滑剤を粉砕助剤として用いてもよい。
[プレス成形]
本実施形態では、上記方法で作製された微粉砕粉末に対し、例えばロッキングミキサー内で潤滑剤を例えば0.3質量%添加・混合し、潤滑剤で微粉砕粉末粒子の表面を被覆する。次に、上述の方法で作製した微粉砕粉末を公知のプレス装置を用いて配向磁界中で成形する。印加する磁界の強度は、例えば1.0〜1.7テスラ(T)である。また、成形圧力は、成形体のグリーン密度が例えば4〜4.5g/cm程度になるように設定される。
[焼結工程]
上記の粉末成形体に対して、例えば、1000〜1200℃の範囲内の温度で10〜240分間行う。650〜1000℃の範囲内の温度で10〜240分間保持する工程と、その後、上記の保持温度よりも高い温度(例えば、1000〜1200℃)で焼結を更に進める工程とを順次行ってもよい。焼結時、特に液相が生成されるとき(温度が650〜1000℃の範囲内にあるとき)、粒界相中のRリッチ相が融け始め、液相が形成される。その後、焼結が進行し、焼結磁石体が形成される。焼結工程の後、時効処理(400℃〜700℃)や寸法調整のための研削を行ってもよい。
Examples of the R—Fe—B based sintered magnet to which the present invention is applied include those manufactured by the following manufacturing method.
An alloy including 25% by mass to 40% by mass of rare earth element R, 0.6% by mass to 1.6% by mass of B (boron), and the balance Fe and inevitable impurities is prepared. Here, R may contain a heavy rare earth element RH. Further, a part of B may be substituted by C (carbon), and a part of Fe (50% by mass or less) may be substituted by another transition metal element (for example, Co or Ni). Good. This alloy is suitable for a variety of purposes, including Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and About 0.01% by mass to 1.0% by mass of at least one additive element M selected from the group consisting of Bi may be contained.
The above-mentioned alloy can be suitably produced by rapidly cooling a molten raw material alloy by, for example, a strip casting method. Hereinafter, preparation of a rapidly solidified alloy by a strip casting method will be described.
First, a raw material alloy having the above composition is melted by high-frequency melting in an argon atmosphere to form a molten raw material alloy. Next, after holding this molten metal at about 1350 ° C., it is rapidly cooled by a single roll method to obtain, for example, a flake-shaped alloy ingot having a thickness of about 0.3 mm. The alloy slab thus produced is pulverized into, for example, 1 to 10 mm flakes before the next hydrogen pulverization treatment. In addition, the manufacturing method of the raw material alloy by a strip cast method is disclosed by US Patent 5,383,978 specification, for example.
[Coarse grinding process]
The alloy slab coarsely crushed into flakes is accommodated in the hydrogen furnace. Next, a hydrogen embrittlement treatment process (hereinafter sometimes referred to as “hydrogen pulverization treatment” or simply “hydrogen treatment”) is performed inside the hydrogen furnace. When the coarsely pulverized powder after the hydrogen pulverization treatment is taken out from the hydrogen furnace, the takeout operation is preferably performed in an inert atmosphere so that the coarsely pulverized powder does not come into contact with the atmosphere. By doing so, it is possible to prevent the coarsely pulverized powder from oxidizing and generating heat, and to suppress the deterioration of the magnetic properties of the magnet.
By the hydrogen pulverization treatment, the rare earth alloy is pulverized to a size of about 0.1 mm to several mm, and the average particle size becomes 500 μm or less. After the hydrogen pulverization treatment, the embrittled raw material alloy is preferably crushed more finely and cooled. When the raw material is taken out in a relatively high temperature state, the cooling process time may be relatively long.
[Fine grinding process]
Next, the coarsely pulverized powder is finely pulverized using a jet mill pulverizer. A cyclone classifier is connected to the jet mill crusher used in the present embodiment. The jet mill pulverizer is supplied with the rare earth alloy (coarse pulverized powder) coarsely pulverized in the coarse pulverization step, and pulverizes in the pulverizer. The powder pulverized in the pulverizer is collected in a collection tank through a cyclone classifier. Thus, a fine powder of about 0.1 to 20 μm can be obtained. The pulverizer used for such fine pulverization is not limited to a jet mill, and may be an attritor or a ball mill. In grinding, a lubricant such as zinc stearate may be used as a grinding aid.
[Press molding]
In the present embodiment, for example, 0.3% by mass of a lubricant is added to and mixed with the finely pulverized powder produced by the above method in a rocking mixer, and the surface of the finely pulverized powder particles is coated with the lubricant. Next, the finely pulverized powder produced by the above-described method is molded in an orientation magnetic field using a known press apparatus. The intensity of the applied magnetic field is, for example, 1.0 to 1.7 Tesla (T). The molding pressure is set so that the green density of the molded body is, for example, about 4 to 4.5 g / cm 3 .
[Sintering process]
It carries out for 10 to 240 minutes with respect to said powder molded object at the temperature within the range of 1000-1200 degreeC, for example. Even if the step of holding at a temperature in the range of 650 to 1000 ° C. for 10 to 240 minutes and the step of further promoting the sintering at a temperature higher than the above holding temperature (for example, 1000 to 1200 ° C.) are sequentially performed. Good. During sintering, particularly when a liquid phase is generated (when the temperature is in the range of 650 to 1000 ° C.), the R-rich phase in the grain boundary phase begins to melt and a liquid phase is formed. Then, sintering progresses and a sintered magnet body is formed. After the sintering step, aging treatment (400 ° C. to 700 ° C.) and grinding for dimension adjustment may be performed.

本発明の製造方法によって製造される表面改質されたR−Fe−B系焼結磁石は、優れた耐食性が酸化熱処理によって付与されているとともに、熱処理後の降温時における保磁力低下が抑制されているので、例えば、ハイブリッド自動車や電気自動車の駆動モータとして使用されたり、空調機のコンプレッサーなどに組み込まれたりするIPMモータでの使用に適したものである。なお、本発明の製造方法によって製造される表面改質されたR−Fe−B系焼結磁石を用いてIPMモータを製造する場合、ロータの内部に磁石を埋め込む工程を経て行えばよい。   The surface-modified R—Fe—B sintered magnet produced by the production method of the present invention has excellent corrosion resistance imparted by an oxidation heat treatment, and a decrease in coercive force when the temperature is lowered after the heat treatment is suppressed. Therefore, for example, it is suitable for use in an IPM motor that is used as a drive motor for a hybrid vehicle or an electric vehicle, or incorporated in a compressor of an air conditioner. In addition, what is necessary is just to pass through the process of embedding a magnet in the inside of a rotor, when manufacturing an IPM motor using the surface-modified R-Fe-B system sintered magnet manufactured by the manufacturing method of this invention.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted.

(製造例1)
Nd:18.6、Pr:5.5、Dy:7.1、B:0.98、Co:0.9、Cu:0.1、Al:0.2、Ga:0.1、残部:Fe(単位は質量%)の組成を有する厚さ0.2mm〜0.3mmの合金薄片をストリップキャスト法により作製した。
次に、この合金薄片を容器に充填し、水素処理装置内に収容した。そして、水素処理装置内を圧力500kPaの水素ガスで満たすことにより、室温で合金薄片に水素吸蔵させた後、放出させた。このような水素処理を行うことにより、合金薄片を脆化し、大きさ約0.15mm〜0.2mmの粗粉砕粉末を作製した。
上記の水素処理により作製した粗粉砕粉末に対し粉砕助剤として0.04質量%のステアリン酸亜鉛を添加し混合した後、ジェットミル装置による粉砕工程を行うことにより、粉末粒径が約3μmの微粉末を作製した。
こうして作製した微粉末をプレス装置により成形し、粉末成形体を作製した。具体的には、印加磁界中で粉末粒子を磁界配向した状態で圧縮し、プレス成形を行った。その後、成形体をプレス装置から抜き出し、真空炉により1050℃で4時間の焼結工程を行い、焼結体ブロックを得た。この焼結体ブロックの酸素含有量を酸素・窒素分析装置(EMGA−620W:HORIBA社製)で測定したところ、0.08質量%であった(熱処理を行うまでこの酸素含有量を維持)。
得られた焼結体ブロックを真空中にて490℃で2.5時間の時効処理を行った後、その表面に対し研削加工を行って寸法調整し、厚さ6mm×縦7mm×横7mmのR−Fe−B系焼結磁石(以下「磁石体試験片1」と称する)を得た。
(Production Example 1)
Nd: 18.6, Pr: 5.5, Dy: 7.1, B: 0.98, Co: 0.9, Cu: 0.1, Al: 0.2, Ga: 0.1, balance: An alloy flake having a composition of Fe (unit: mass%) and having a thickness of 0.2 mm to 0.3 mm was prepared by strip casting.
Next, this alloy flake was filled in a container and accommodated in a hydrogen treatment apparatus. Then, the hydrogen treatment apparatus was filled with hydrogen gas at a pressure of 500 kPa, so that hydrogen was occluded in the alloy flakes at room temperature and then released. By performing such hydrogen treatment, the alloy flakes were embrittled and coarsely pulverized powder having a size of about 0.15 mm to 0.2 mm was produced.
After adding 0.04% by mass of zinc stearate as a grinding aid to the coarsely pulverized powder produced by the hydrogen treatment described above, the powder particle size is about 3 μm by performing a pulverization step with a jet mill device. A fine powder was prepared.
The fine powder thus produced was molded by a press apparatus to produce a powder compact. Specifically, the powder particles were compressed in a magnetic field-oriented state in an applied magnetic field and pressed. Thereafter, the molded body was extracted from the press apparatus, and a sintering process was performed at 1050 ° C. for 4 hours in a vacuum furnace to obtain a sintered body block. It was 0.08 mass% when the oxygen content of this sintered compact block was measured with the oxygen and nitrogen analyzer (EMGA-620W: product made by HORIBA) (this oxygen content is maintained until it heat-processes).
The obtained sintered body block was subjected to an aging treatment at 490 ° C. for 2.5 hours in a vacuum, and then the surface was ground to adjust the dimensions, and the thickness was 6 mm × length 7 mm × width 7 mm. An R—Fe—B sintered magnet (hereinafter referred to as “magnet test piece 1”) was obtained.

(製造例2)
Nd:16.2、Pr:4.5、Dy:9.1、B:0.93、Co:2.0、Cu:0.1、Al:0.15、Ga:0.07、残部:Fe(単位は質量%)の組成を有する厚さ0.2mm〜0.3mmの合金薄片をストリップキャスト法により作製し、製造例1と同様にして焼結体ブロックを得た。この焼結体ブロックの酸素含有量は0.06質量%であった(熱処理を行うまでこの酸素含有量を維持)。得られた焼結体ブロックから製造例1と同様にして厚さ6mm×縦7mm×横7mmのR−Fe−B系焼結磁石(以下「磁石体試験片2」と称する)を得た。
(Production Example 2)
Nd: 16.2, Pr: 4.5, Dy: 9.1, B: 0.93, Co: 2.0, Cu: 0.1, Al: 0.15, Ga: 0.07, balance: An alloy flake having a composition of Fe (unit: mass%) having a thickness of 0.2 mm to 0.3 mm was produced by strip casting, and a sintered body block was obtained in the same manner as in Production Example 1. The oxygen content of the sintered body block was 0.06% by mass (this oxygen content was maintained until heat treatment was performed). An R—Fe—B sintered magnet (hereinafter referred to as “magnet body test piece 2”) having a thickness of 6 mm × length of 7 mm × width of 7 mm was obtained in the same manner as in Production Example 1 from the obtained sintered body block.

(実施例1)
製造例1で得た磁石体試験片1を超音波水洗した後、図1に示した構成を有する連続処理炉を用いて表面改質を行った。熱処理工程は、露点0℃の大気(酸素分圧20000Pa,水蒸気分圧600Pa,酸素分圧/水蒸気分圧=33.3)の雰囲気下、240℃で120分間行った。熱処理領域(本発明における処理室に相当:容積0.64m)内の雰囲気形成は、0.12m/分の流量で露点0℃の大気を熱処理領域内に導入することで熱処理領域内が陽圧状態になるようにして行った(容積1mあたりの酸素流量は0.037m/分で全体流量は0.188m/分。酸素流量は全体流量である大気流量の1/5として換算。大気流量は面積式流量計で制御。以下同じ)。なお、磁石体試験片1の常温(本実施例においては25℃を意味する。以下同じ)から熱処理を行う温度(240℃)までの昇温工程、熱処理工程を行った後の降温工程は、露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧19Pa,酸素分圧/水蒸気分圧=1052)の雰囲気下で行った。磁石体試験片1の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。なお、改質層の厚みは、表面改質された磁石体試験片1を樹脂埋め研磨後、イオンビーム断面加工装置(SM09010:日本電子社製)を用いて試料作製し、電界放出型走査電子顕微鏡(S−4300:日立ハイテクノロジー社製)を用いて断面観察を行うことによって測定した(以下同じ)。
Example 1
After magnet body test piece 1 obtained in Production Example 1 was ultrasonically washed, surface modification was performed using a continuous processing furnace having the configuration shown in FIG. The heat treatment step was performed at 240 ° C. for 120 minutes in an atmosphere having an dew point of 0 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 600 Pa, oxygen partial pressure / water vapor partial pressure = 33.3). The formation of the atmosphere in the heat treatment region (corresponding to the treatment chamber in the present invention: volume 0.64 m 3 ) is achieved by introducing air with a dew point of 0 ° C. into the heat treatment region at a flow rate of 0.12 m 3 / min. (The oxygen flow rate per volume of 1 m 3 is 0.037 m 3 / min and the total flow rate is 0.188 m 3 / min. The oxygen flow rate is 1/5 of the atmospheric flow rate that is the total flow rate. Conversion: Atmospheric flow rate is controlled by an area-type flow meter. In addition, the temperature increasing step from the normal temperature of the magnet body test piece 1 (meaning 25 ° C. in the present embodiment; the same applies hereinafter) to the temperature (240 ° C.) for performing the heat treatment, and the temperature lowering step after performing the heat treatment step, It was performed in an atmosphere of dew point −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 19 Pa, oxygen partial pressure / water vapor partial pressure = 1052). The thickness of the modified layer formed on the surface of the magnet body test piece 1 was on the order of nanometers (less than 1 μm). The thickness of the modified layer is such that after the surface-modified magnet body test piece 1 is resin-filled and polished, a sample is prepared using an ion beam cross-section processing apparatus (SM09010: manufactured by JEOL Ltd.), and field emission scanning electrons are used. It measured by observing a cross section using a microscope (S-4300: Hitachi High-Technology Co., Ltd.) (hereinafter the same).

(実施例2)
熱処理工程を露点−40℃の大気(酸素分圧20000Pa,水蒸気分圧19Pa,酸素分圧/水蒸気分圧=1052)の雰囲気下で行ったこと以外は実施例1と同じ方法で磁石体試験片1の表面改質を行った。磁石体試験片1の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Example 2)
Magnet body test piece in the same manner as in Example 1 except that the heat treatment step was performed in an atmosphere with a dew point of −40 ° C. (oxygen partial pressure 20000 Pa, water vapor partial pressure 19 Pa, oxygen partial pressure / water vapor partial pressure = 1052). 1 surface modification was performed. The thickness of the modified layer formed on the surface of the magnet body test piece 1 was on the order of nanometers (less than 1 μm).

(実施例3)
製造例2で得た磁石体試験片2を用いたこと以外は実施例2と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Example 3)
Surface modification of the magnet test piece 2 was performed in the same manner as in Example 2 except that the magnet test piece 2 obtained in Production Example 2 was used. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(実施例4)
処理室内の容積が0.0034mのバッチ式の熱処理炉を用い、処理室内の雰囲気形成を0.003m/分の流量で露点−40℃の大気を処理室内に導入することで処理室内が陽圧状態になるようにして行ったことと(容積1mあたりの酸素流量は0.176m/分で全体流量は0.882m/分)、熱処理工程を260℃で60分間行ったこと以外は実施例3と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
Example 4
Using a batch-type heat treatment furnace having a volume of 0.0034 m 3 in the processing chamber, the atmosphere in the processing chamber is formed by introducing air with a dew point of −40 ° C. into the processing chamber at a flow rate of 0.003 m 3 / min. It was performed in a positive pressure state (the oxygen flow rate per volume of 1 m 3 was 0.176 m 3 / min and the total flow rate was 0.882 m 3 / min), and the heat treatment step was performed at 260 ° C. for 60 minutes. Except for the above, surface modification of the magnet body test piece 2 was performed in the same manner as in Example 3. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(実施例5)
露点0℃の大気を用いたこと以外は実施例4と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Example 5)
The surface modification of the magnet body test piece 2 was performed in the same manner as in Example 4 except that air having a dew point of 0 ° C. was used. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(実施例6)
処理室内の雰囲気形成を0.01m/分の流量で露点0℃の大気を処理室内に導入することで処理室内が陽圧状態になるようにして行ったことと(容積1mあたりの酸素流量は0.588m/分で全体流量は2.94m/分)、熱処理工程を230℃で180分間行ったこと以外は実施例5と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Example 6)
The atmosphere in the processing chamber was formed by introducing an atmosphere having a dew point of 0 ° C. at a flow rate of 0.01 m 3 / min into the processing chamber so that the processing chamber was in a positive pressure state (oxygen per 1 m 3 of volume). The flow rate was 0.588 m 3 / min and the total flow rate was 2.94 m 3 / min), and the surface modification of the magnet specimen 2 was performed in the same manner as in Example 5 except that the heat treatment process was performed at 230 ° C. for 180 minutes. went. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(比較例1)
熱処理領域内の雰囲気形成を0.07m/分の流量で露点0℃の大気を熱処理領域内に導入することで熱処理領域内が陽圧状態になるようにして行ったことと(容積1mあたりの酸素流量は0.022m/分で全体流量は0.109m/分)、熱処理工程を400℃で20分間行ったこと以外は実施例1と同じ方法で磁石体試験片1の表面改質を行った。磁石体試験片1の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 1)
The atmosphere was formed in the heat treatment region by introducing an atmosphere with a dew point of 0 ° C. at a flow rate of 0.07 m 3 / min into the heat treatment region so that the heat treatment region was in a positive pressure state (volume 1 m 3). The oxygen flow rate per unit is 0.022 m 3 / min and the total flow rate is 0.109 m 3 / min), and the surface of the magnet specimen 1 is the same as in Example 1 except that the heat treatment process is performed at 400 ° C. for 20 minutes. Modification was performed. The thickness of the modified layer formed on the surface of the magnet body test piece 1 was on the order of nanometers (less than 1 μm).

(比較例2)
熱処理工程を400℃で20分間行ったこと以外は実施例1と同じ方法で磁石体試験片1の表面改質を行った。磁石体試験片1の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 2)
The surface modification of the magnet body test piece 1 was performed in the same manner as in Example 1 except that the heat treatment step was performed at 400 ° C. for 20 minutes. The thickness of the modified layer formed on the surface of the magnet body test piece 1 was on the order of nanometers (less than 1 μm).

(比較例3)
熱処理工程を265℃で60分間行ったこと以外は実施例5と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 3)
Surface modification of the magnet body test piece 2 was performed in the same manner as in Example 5 except that the heat treatment step was performed at 265 ° C. for 60 minutes. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(比較例4)
熱処理工程を220℃で240分間行ったこと以外は実施例3と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 4)
The surface modification of the magnet body test piece 2 was performed in the same manner as in Example 3 except that the heat treatment step was performed at 220 ° C. for 240 minutes. The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(比較例5)
処理室内の雰囲気形成を0.015m/分の流量で露点0℃の大気を処理室内に導入することで処理室内が陽圧状態になるようにして行ったこと(容積1mあたりの酸素流量は0.882m/分で全体流量は4.41m/分)以外は実施例6と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 5)
The atmosphere in the processing chamber was formed by introducing an atmosphere having a dew point of 0 ° C. at a flow rate of 0.015 m 3 / min into the processing chamber so that the processing chamber was in a positive pressure state (oxygen flow rate per volume of 1 m 3 Was modified by the same method as in Example 6 except that 0.882 m 3 / min and the total flow rate was 4.41 m 3 / min). The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(比較例6)
処理室内の雰囲気形成を0.0004m/分の流量で露点0℃の大気を処理室内に導入することで処理室内が陽圧状態になるようにして行ったこと(容積1mあたりの酸素流量は0.023m/分で全体流量は0.118m/分)以外は実施例6と同じ方法で磁石体試験片2の表面改質を行った。磁石体試験片2の表面に形成された改質層の厚みはナノメートルオーダー(1μm未満)であった。
(Comparative Example 6)
The atmosphere in the processing chamber was formed by introducing an atmosphere having a dew point of 0 ° C. at a flow rate of 0.0004 m 3 / min into the processing chamber so that the processing chamber was in a positive pressure state (oxygen flow rate per 1 m 3 of volume) Was modified by the same method as in Example 6 except that 0.023 m 3 / min and the overall flow rate was 0.118 m 3 / min). The thickness of the modified layer formed on the surface of the magnet test piece 2 was on the order of nanometers (less than 1 μm).

(磁気特性評価)
実施例1〜実施例6、比較例1〜比較例6のそれぞれにおいて表面改質を行った磁石体試験片の固有保磁力を、表面改質を行う前の磁石体試験片の固有保磁力と比較し、下記の数式で固有保磁力劣化率を算出した。実施例1〜実施例6、比較例1〜比較例6のそれぞれの熱処理条件を表1に、算出した固有保磁力劣化率を表2に示す。なお、固有保磁力の測定は、磁気測定装置(SK−130:メトロン技研社製)を用いて行った。
固有保磁力劣化率(%)=((A−B)/A)×100
A:表面改質前の磁石体試験片の固有保磁力(20個の平均値)
B:表面改質後の磁石体試験片の固有保磁力(20個の平均値)
(Evaluation of magnetic properties)
The intrinsic coercivity of the magnet body test piece subjected to the surface modification in each of Examples 1 to 6 and Comparative Examples 1 to 6 is the intrinsic coercivity of the magnet body test piece before the surface modification. In comparison, the intrinsic coercivity deterioration rate was calculated by the following formula. Table 1 shows the heat treatment conditions of Examples 1 to 6 and Comparative Examples 1 to 6, and Table 2 shows the calculated intrinsic coercivity deterioration rates. The intrinsic coercive force was measured using a magnetometer (SK-130: manufactured by Metron Giken).
Inherent coercive force deterioration rate (%) = ((A−B) / A) × 100
A: Intrinsic coercivity of the magnet specimen before surface modification (average value of 20)
B: Intrinsic coercive force (average value of 20 pieces) of the magnet specimen after surface modification

(耐食性評価)
実施例1〜実施例6、比較例1〜比較例6のそれぞれにおいて表面改質を行った磁石体試験片に対し、温度:60℃×相対湿度:90%の高温高湿条件下での耐食性試験を24時間行い、試験後の表面発錆の有無を外観観察により調べた。試験に供した各30個の磁石体試験片のうち表面発錆が認められた磁石体試験片の個数を表2に示す。また、温度:125℃×相対湿度:85%×圧力:2atmの条件下でのプレッシャークッカーテストを96時間行った後、テープにより脱粒している磁粉を取り除き、テスト前後の磁石体試験片の重量を測定することで磁粉の脱粒による重量減少量を表2に示す(試験に供した10個の平均値)。なお、表2には、磁石体試験片1に対して同様にして行った耐食性評価の結果をあわせて示す。
(Corrosion resistance evaluation)
Corrosion resistance under high-temperature and high-humidity conditions of temperature: 60 ° C. × relative humidity: 90% for the magnet body test pieces subjected to surface modification in each of Examples 1 to 6 and Comparative Examples 1 to 6. The test was conducted for 24 hours, and the presence or absence of surface rusting after the test was examined by appearance observation. Table 2 shows the number of magnet body test pieces in which surface rusting was recognized among the 30 magnet body test pieces used in the test. Further, after performing a pressure cooker test under the conditions of temperature: 125 ° C. × relative humidity: 85% × pressure: 2 atm for 96 hours, the magnetic particles that have been shed by the tape are removed, and the weight of the magnet specimen before and after the test. Is shown in Table 2 (average value of 10 samples subjected to the test). Table 2 also shows the results of the corrosion resistance evaluation performed on the magnet test piece 1 in the same manner.

(まとめ)
表1から明らかなように、処理室内を所定の酸化性雰囲気とする際、導入する雰囲気ガスとして用いる大気の流量を適正に調整することにより(本実施例において大気流量は本発明の全体流量に相当し酸素流量は自ずと定まる)、処理室内が適正な陽圧状態になるようにすることで、230℃〜260℃での熱処理で、磁気特性の劣化を引き起こすことなく、優れた耐食性を有する改質層を磁石体試験片の表面に効率的に形成することができた(実施例1〜実施例6)。これに対し、400℃での熱処理では、熱処理温度が高すぎることで3%を超える磁気特性の劣化が認められた(比較例1)。また、処理室内に導入する大気流量を適切に調整することで酸素流量を適切に調整しても結果は同じであった(比較例2)。処理室内に導入する大気流量を適正に調整しても、熱処理温度が265℃では1%の磁気特性の劣化が認められ(比較例3)、熱処理温度が220℃では無視できない磁粉の脱粒が認められた(比較例4)。熱処理温度を適正に調整しても、処理室内に導入する大気流量が多すぎると処理室内の温度分布のばらつきに起因して処理室内の全ての磁石に均一な表面改質を行うことができず、一部の磁石に無視できない磁粉の脱粒が認められ、その結果として重量減少量の増加を招いた(比較例5)。また、処理室内に導入する大気流量が少なすぎることで酸素流量が少なすぎても結果は同じであった(比較例6)。
(Summary)
As is apparent from Table 1, when the processing chamber has a predetermined oxidizing atmosphere, by appropriately adjusting the flow rate of the atmosphere used as the introduced atmosphere gas (in this embodiment, the atmospheric flow rate is the total flow rate of the present invention). The oxygen flow rate is naturally determined), and by making the inside of the processing chamber an appropriate positive pressure state, the heat treatment at 230 ° C. to 260 ° C. has improved the corrosion resistance without causing deterioration of the magnetic properties. The quality layer could be efficiently formed on the surface of the magnet specimen (Example 1 to Example 6). On the other hand, in the heat treatment at 400 ° C., the deterioration of the magnetic characteristics exceeding 3% was observed because the heat treatment temperature was too high (Comparative Example 1). Further, even if the oxygen flow rate was appropriately adjusted by appropriately adjusting the atmospheric flow rate introduced into the processing chamber, the result was the same (Comparative Example 2). Even if the air flow rate introduced into the processing chamber is properly adjusted, 1% deterioration in magnetic properties is observed at a heat treatment temperature of 265 ° C. (Comparative Example 3), and magnetic particle degranulation is observed at a heat treatment temperature of 220 ° C. (Comparative Example 4). Even if the heat treatment temperature is adjusted appropriately, if too much air flow is introduced into the processing chamber, uniform surface modification cannot be performed on all magnets in the processing chamber due to variations in temperature distribution in the processing chamber. In some magnets, non-negligible magnetic particle shedding was observed, resulting in an increase in weight loss (Comparative Example 5). Moreover, the result was the same even if there was too little oxygen flow rate because there was too little atmospheric flow rate introduce | transduced in a processing chamber (comparative example 6).

(参考例1)
製造例1で得た磁石体試験片1と製造例2で得た磁石体試験片2のそれぞれについて、240℃〜440℃の範囲の温度において真空中で2時間の熱処理を行った後の固有保磁力を磁気測定装置(TPM−2−10:東英工業社製)を用いて測定し、熱処理を行う前の固有保磁力と比較することで、酸素含有量が0.1質量%以下の磁石の固有保磁力に対して熱処理が及ぼす影響を調べた。結果を図2に示す。なお、図2の縦軸は固有保磁力の劣化率であり、下記の数式で求めたものである。
固有保磁力劣化率(%)=((A−B)/A)×100
A:熱処理前の固有保磁力,B:熱処理後の固有保磁力
図2から明らかなように、磁石体試験片1と磁石体試験片2とも、とりわけ350℃付近において熱処理を行った場合に顕著な固有保磁力の劣化が認められることは酸素含有量が0.3質量%未満の磁石に見られる現象として特許文献8に記載の通りであるが、酸素含有量が0.1質量%以下の磁石に対して特許文献8において推奨される400℃以上での熱処理を行うと2%〜3%の固有保磁力の劣化が認められた。従って、酸素含有量が0.1質量%以下の磁石に対しては400℃以上での熱処理は採用すべきでないことが裏付けられた。
(Reference Example 1)
Each of the magnet body test piece 1 obtained in Production Example 1 and the magnet body test piece 2 obtained in Production Example 2 was subjected to heat treatment for 2 hours in vacuum at a temperature in the range of 240 ° C. to 440 ° C. The coercive force is measured using a magnetometer (TPM-2-10: manufactured by Toei Kogyo Co., Ltd.), and compared with the intrinsic coercive force before heat treatment, the oxygen content is 0.1% by mass or less. The effect of heat treatment on the intrinsic coercivity of the magnet was investigated. The results are shown in FIG. Note that the vertical axis in FIG. 2 represents the deterioration rate of the intrinsic coercive force, which is obtained by the following mathematical formula.
Inherent coercive force deterioration rate (%) = ((A−B) / A) × 100
A: Intrinsic coercive force before heat treatment, B: Intrinsic coercivity after heat treatment As is clear from FIG. 2, both the magnet specimen 1 and the magnet specimen 2 are particularly prominent when heat treatment is performed at around 350 ° C. The deterioration of the intrinsic coercive force is recognized as described in Patent Document 8 as a phenomenon observed in a magnet having an oxygen content of less than 0.3% by mass, but the oxygen content is 0.1% by mass or less. When the magnet was subjected to a heat treatment at 400 ° C. or higher recommended in Patent Document 8, deterioration of the intrinsic coercive force of 2% to 3% was recognized. Therefore, it was confirmed that heat treatment at 400 ° C. or higher should not be adopted for magnets having an oxygen content of 0.1 mass% or less.

本発明は、優れた耐食性を有するとともに、優れた磁気特性を有する表面改質されたR−Fe−B系焼結磁石の製造方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for producing a surface-modified R-Fe-B sintered magnet having excellent corrosion resistance and excellent magnetic properties. .

Claims (2)

表面改質されたR−Fe−B系焼結磁石の製造方法であって、酸素分圧が1×10Pa〜1×10Paで水蒸気分圧が1000Pa未満であり、かつ、酸素分圧と水蒸気分圧の比率(酸素分圧/水蒸気分圧)が1〜20000(但し1を除く)の雰囲気を、処理室内の容積1mあたりの雰囲気ガスの導入を酸素流量として0.028m/分以上、かつ、全体流量として3m/分以下の条件で行うことで処理室内が陽圧状態になるようにして形成し、酸素含有量が0.1質量%以下のR−Fe−B系焼結磁石に対し、230℃〜260℃で熱処理を行うことを特徴とする製造方法。 A method for producing a surface-modified R—Fe—B sintered magnet having an oxygen partial pressure of 1 × 10 3 Pa to 1 × 10 5 Pa, a water vapor partial pressure of less than 1000 Pa, and an oxygen content 0.028m atmosphere of the ratio of pressure and water vapor partial pressure (oxygen partial pressure / water vapor partial pressure) is 1 to 20,000 (excluding proviso 1), the introduction of the atmospheric gas per volume 1 m 3 of the processing chamber as the oxygen flow rate 3 R-Fe-B having an oxygen content of 0.1% by mass or less and an oxygen content of 0.1% by mass or less and an overall flow rate of 3 m 3 / min or less. A manufacturing method characterized by performing heat treatment on a sintered system magnet at 230 ° C. to 260 ° C. 請求項1記載の製造方法によって製造されてなることを特徴とする表面改質されたR−Fe−B系焼結磁石。   A surface-modified R-Fe-B sintered magnet produced by the production method according to claim 1.
JP2011067522A 2011-03-25 2011-03-25 Method for producing surface-modified R-Fe-B sintered magnet Active JP5914974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067522A JP5914974B2 (en) 2011-03-25 2011-03-25 Method for producing surface-modified R-Fe-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067522A JP5914974B2 (en) 2011-03-25 2011-03-25 Method for producing surface-modified R-Fe-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2012204581A true JP2012204581A (en) 2012-10-22
JP5914974B2 JP5914974B2 (en) 2016-05-11

Family

ID=47185236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067522A Active JP5914974B2 (en) 2011-03-25 2011-03-25 Method for producing surface-modified R-Fe-B sintered magnet

Country Status (1)

Country Link
JP (1) JP5914974B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
WO2022134662A1 (en) * 2020-12-22 2022-06-30 天津三环乐喜新材料有限公司 Sintered neodymium-iron-boron magnet and anti-corrosion treatment method therefor
CN114743783A (en) * 2022-04-11 2022-07-12 安徽省瀚海新材料股份有限公司 Method for reducing oxygen content of sintered neodymium-iron-boron magnet
CN114743783B (en) * 2022-04-11 2024-05-10 安徽省瀚海新材料股份有限公司 Method for reducing oxygen content of sintered NdFeB magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297062A (en) * 1994-04-22 1995-11-10 Citizen Watch Co Ltd Manufacture of anisotropic rare earth magnet and magnet manufactured by the same
JPH08316076A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Production of neodymium based bond magnet
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
US20020033205A1 (en) * 2000-05-31 2002-03-21 Shin-Etsu Chemical Co., Ltd Preparation of rare earth permanent magnets
US6383297B1 (en) * 1997-08-22 2002-05-07 Messer Griesheim Gmbh Method and device for joint oxydation and heat treatment of workpieces
JP2010232346A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Method of manufacturing surface-modified rare earth based sintered magnet
JP2010232357A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Method of manufacturing surface-modified rare earth based sintered magnet
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET
JP2012204486A (en) * 2011-03-24 2012-10-22 Hitachi Metals Ltd SURFACE-MODIFIED R-Fe-B BASED SINTERED MAGNET AND PRODUCTION METHOD THEREFOR

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297062A (en) * 1994-04-22 1995-11-10 Citizen Watch Co Ltd Manufacture of anisotropic rare earth magnet and magnet manufactured by the same
JPH08316076A (en) * 1995-05-18 1996-11-29 Matsushita Electric Ind Co Ltd Production of neodymium based bond magnet
US6383297B1 (en) * 1997-08-22 2002-05-07 Messer Griesheim Gmbh Method and device for joint oxydation and heat treatment of workpieces
JP2002057052A (en) * 2000-05-31 2002-02-22 Shin Etsu Chem Co Ltd Method for manufacturing rare-earth permanent magnet
US20020033205A1 (en) * 2000-05-31 2002-03-21 Shin-Etsu Chemical Co., Ltd Preparation of rare earth permanent magnets
JP2010232346A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Method of manufacturing surface-modified rare earth based sintered magnet
JP2010232357A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Method of manufacturing surface-modified rare earth based sintered magnet
JP2012142400A (en) * 2010-12-28 2012-07-26 Hitachi Metals Ltd METHOD OF MANUFACTURING ANTICORROSIVE R-Fe-B-BASED SINTERED MAGNET
JP2012204486A (en) * 2011-03-24 2012-10-22 Hitachi Metals Ltd SURFACE-MODIFIED R-Fe-B BASED SINTERED MAGNET AND PRODUCTION METHOD THEREFOR

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
WO2022134662A1 (en) * 2020-12-22 2022-06-30 天津三环乐喜新材料有限公司 Sintered neodymium-iron-boron magnet and anti-corrosion treatment method therefor
CN114743783A (en) * 2022-04-11 2022-07-12 安徽省瀚海新材料股份有限公司 Method for reducing oxygen content of sintered neodymium-iron-boron magnet
CN114743783B (en) * 2022-04-11 2024-05-10 安徽省瀚海新材料股份有限公司 Method for reducing oxygen content of sintered NdFeB magnet

Also Published As

Publication number Publication date
JP5914974B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP4636207B2 (en) Method for producing surface-modified rare earth sintered magnet and surface modified rare earth sintered magnet
US11024448B2 (en) Alloy for R-T-B-based rare earth sintered magnet, process of producing alloy for R-T-B-based rare earth sintered magnet, alloy material for R-T-B-based rare earth sintered magnet, R-T-B-based rare earth sintered magnet, process of producing R-T-B-based rare earth sintered magnet, and motor
WO2005105343A1 (en) Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
WO2006112403A1 (en) Rare earth sintered magnet and process for producing the same
WO2007102391A1 (en) R-Fe-B RARE EARTH SINTERED MAGNET AND METHOD FOR PRODUCING SAME
JP5900335B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5760400B2 (en) Method for producing R-Fe-B sintered magnet
JP5691515B2 (en) Method for producing corrosion-resistant R—Fe—B sintered magnet
JP5786398B2 (en) Surface-modified R-Fe-B based sintered magnet and method for producing the same
JP2005150503A (en) Method for manufacturing sintered magnet
JP5613856B1 (en) R-T-B system rare earth sintered magnet alloy, R-T-B system rare earth sintered magnet alloy manufacturing method, R-T-B system rare earth sintered magnet alloy material, R-T-B system rare earth Sintered magnet, method for producing RTB-based rare earth sintered magnet, and motor
JP2019208013A (en) R-t-b based permanent magnet and method of producing the same
JP5914974B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP5262903B2 (en) Method for producing surface-modified rare earth sintered magnet
JP2018174314A (en) R-T-B based sintered magnet
JP6037213B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP5326746B2 (en) Method for producing surface-modified R-Fe-B sintered magnet
JP5326747B2 (en) Method for preventing degranulation of R-Fe-B sintered magnet
JP5609209B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5262902B2 (en) Method for producing surface-modified rare earth sintered magnet
JP5445125B2 (en) Method for producing surface-modified R-Fe-B sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160321

R150 Certificate of patent or registration of utility model

Ref document number: 5914974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350