JP2012203081A - Light deflecting element and surface light source device using the same - Google Patents

Light deflecting element and surface light source device using the same Download PDF

Info

Publication number
JP2012203081A
JP2012203081A JP2011065714A JP2011065714A JP2012203081A JP 2012203081 A JP2012203081 A JP 2012203081A JP 2011065714 A JP2011065714 A JP 2011065714A JP 2011065714 A JP2011065714 A JP 2011065714A JP 2012203081 A JP2012203081 A JP 2012203081A
Authority
JP
Japan
Prior art keywords
light
prism
light source
degrees
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011065714A
Other languages
Japanese (ja)
Inventor
Masae Ono
雅江 小野
Takahito Oba
隆人 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011065714A priority Critical patent/JP2012203081A/en
Publication of JP2012203081A publication Critical patent/JP2012203081A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface light source device balanced between a viewing angle and brightness and a light deflecting element for use in the same.SOLUTION: The surface light source device includes a primary light source 1, a light guide 3, and a light deflecting element 4. The light deflecting element 4 has a light incident surface and a light emission surface located on the side opposite to the light incident surface, and a plurality of prism arrays each of which comprises a pair of prism surfaces are arranged in parallel on the light incident surface. The prism surface farther from the primary light source 1, out of the pair of prism surfaces of each prism array, comprises two or more planes of which the inclination angles with respect to a normal direction of the light emission surface in a cross section orthogonal to an extension direction of the prism array are different from each other. The inclination angle of a plane nearest to the front end part of the prism array is within a range from 35° to 42°, and the inclination angle of a plane nearest to a valley part of the prism array is within a range from 25° to 30°. When a length in a prism array arrangement direction of the prism surface farther from the primary light source 1 is denoted as 1, a length of the plane nearest to the valley part of the prism array is within a range from 0.45 to 0.85.

Description

本発明は、携帯情報端末、ノートパソコン、モニター、テレビ等において表示部として使用される液晶表示装置等を構成するエッジライト方式の面光源装置およびそれに使用される光偏向素子に関するものである。   The present invention relates to an edge light type surface light source device that constitutes a liquid crystal display device used as a display unit in a portable information terminal, a notebook computer, a monitor, a television, and the like, and a light deflection element used therefor.

近年、カラー液晶表示装置は、携帯型ノートパソコン、パソコン等のモニターとして、あるいは液晶テレビ等の表示部として、種々の分野で広く使用されている。また、情報処理量の増大化、ニーズの多様化、マルチメディア対応等に伴って、液晶表示装置の大画面化、高精細化が盛んに進められている。   In recent years, color liquid crystal display devices have been widely used in various fields as monitors for portable notebook computers, personal computers, etc., or as display units for liquid crystal televisions. In addition, with the increase in the amount of information processing, diversification of needs, compatibility with multimedia, and the like, liquid crystal display devices have been increased in screen size and definition.

液晶表示装置は、基本的にバックライト部と液晶表示素子部とから構成されている。バックライト部としては、液晶表示素子部の直下に光源を配置した直下方式のものや導光体の側端面に対向するように光源を配置したエッジライト方式のものがあり、液晶表示装置のコンパクト化の観点からエッジライト方式のものが多用されている。   The liquid crystal display device basically includes a backlight unit and a liquid crystal display element unit. As the backlight unit, there are a direct type with a light source arranged directly under the liquid crystal display element unit and an edge light type with a light source arranged so as to face the side end face of the light guide. From the viewpoint of making it easier, an edge light type is widely used.

近年、消費電力の低減の観点から、エッジライト方式のバックライト部として、一次光源から発せられる光量を有効に利用するために、発光面から出射する光束の広がり角度をできるだけ小さくして所要の角度範囲に集中して光を出射させるものが利用されている。例えば、特許第4323189号公報(特許文献1)及び特開2004−233938号公報(特許文献2)に開示されている光偏向素子を用いることで高輝度な面光源装置を実現できる。   In recent years, from the viewpoint of reducing power consumption, in order to effectively use the amount of light emitted from the primary light source as an edge light type backlight unit, the spread angle of the light beam emitted from the light emitting surface is made as small as possible to obtain the required angle. Those that emit light in a concentrated manner are used. For example, a high-luminance surface light source device can be realized by using a light deflection element disclosed in Japanese Patent No. 4323189 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-233938 (Patent Document 2).

特許第4323189号公報Japanese Patent No. 4323189 特開2004−233938号公報Japanese Patent Laid-Open No. 2004-233938

ところで、モニターやテレビ等の表示部においては、適度の視野角の確保が必要であり、光があまりに狭い角度範囲に集中してしまうと特定の角度範囲でしか見ることが出来なくなり、不都合である。   By the way, in a display unit such as a monitor or a television, it is necessary to secure an appropriate viewing angle. If the light is concentrated in a narrow angle range, it can be seen only in a specific angle range, which is inconvenient. .

しかるに、特許文献1及び特許文献2に記載されている光偏向素子を用いた面光源装置では、所要の角度範囲に集中して光を出射させ、発光面から出射する光束の広がり角度をできるだけ小さくすることで、一次光源から発せられる光量を有効に利用して高輝度を実現するので、輝度を適度に維持しつつ視野角を拡げることは困難である。   However, in the surface light source device using the light deflecting element described in Patent Document 1 and Patent Document 2, light is concentrated in a required angle range, and the spread angle of the light beam emitted from the light emitting surface is made as small as possible. Thus, since the high luminance is realized by effectively using the light amount emitted from the primary light source, it is difficult to widen the viewing angle while maintaining the luminance appropriately.

そこで、本発明の目的は、視野角が広く且つ適度の輝度が維持された即ち視野角と輝度とのバランスが取れた面光源装置及びそれに使用される光偏向素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a surface light source device having a wide viewing angle and maintaining appropriate luminance, that is, a balanced viewing angle and luminance, and an optical deflection element used therefor.

上記の目的を達成する本発明の光偏向素子は、
光が入射する入光面とその反対側に位置し入射した光が出射する出光面とを有しており、前記入光面には一対のプリズム面から構成されるプリズム列が並列に複数配列されている光偏向素子であって、
前記一対のプリズム面のうちの一方のプリズム面は、前記プリズム列の延在方向と直交する断面における前記出光面の法線方向に対する傾斜角度が互いに異なる2つ以上の平面からなり、
前記断面における前記プリズム列の先端部に最も近い前記平面の前記傾斜角度は35度から42度までの範囲内にあり、
前記断面における前記プリズム列の谷部に最も近い前記平面の前記傾斜角度は25度から30度までの範囲内にあり、
前記一方のプリズム面の前記プリズム列の配列方向の長さを1として、前記断面における前記プリズム列の谷部に最も近い前記平面の長さが0.45から0.85までの範囲内にある、
ことを特徴とする。
The optical deflecting element of the present invention that achieves the above object is
It has a light incident surface on which light is incident and a light output surface on the opposite side from which incident light is emitted, and the light incident surface has a plurality of prism rows arranged in parallel in a pair of prism surfaces. An optical deflection element,
One prism surface of the pair of prism surfaces is composed of two or more planes having different inclination angles with respect to the normal direction of the light exit surface in a cross section orthogonal to the extending direction of the prism row,
The inclination angle of the plane closest to the tip of the prism row in the cross section is in the range of 35 to 42 degrees;
The inclination angle of the plane closest to the valley of the prism row in the cross section is in the range of 25 degrees to 30 degrees;
The length of the one prism surface in the arrangement direction of the prism rows is 1, and the length of the plane closest to the valley of the prism rows in the cross section is in the range of 0.45 to 0.85. ,
It is characterized by that.

上記の目的を達成する本発明の面光源装置は、
一次光源と、該一次光源から発せられた光が入射する光入射端面を有し且つ入射した光を導光し且つ導光された光の少なくとも一部が出射する光出射面を有する導光体と、該導光体の前記光出射面に隣接配置された上記の光偏向素子とを備えており、
前記光偏向素子は、前記入光面が前記導光体の前記光出射面に対向するようにし、更に前記プリズム列が前記一方のプリズム面を前記一次光源から遠い側とし且つ他方のプリズム面を前記一次光源に近い側として、配置されていることを特徴とする。
The surface light source device of the present invention that achieves the above object is as follows.
A light guide having a primary light source, a light incident end surface on which light emitted from the primary light source is incident, a light emitting surface that guides the incident light and emits at least part of the guided light And the light deflection element disposed adjacent to the light exit surface of the light guide,
The light deflecting element is configured such that the light incident surface faces the light emitting surface of the light guide, and the prism array has the one prism surface far from the primary light source and the other prism surface. It is arranged on the side close to the primary light source.

本発明によれば、視野角が広く且つ適度の輝度が維持された即ち視野角と輝度とのバランスが取れた面光源装置及びそれに使用される光偏向素子を提供することができる。   According to the present invention, it is possible to provide a surface light source device having a wide viewing angle and maintaining appropriate luminance, that is, a balanced viewing angle and luminance, and an optical deflection element used therefor.

本発明による面光源装置の実施形態を示す模式的斜視図である。It is a typical perspective view which shows embodiment of the surface light source device by this invention. 本発明による光偏向素子の実施形態におけるプリズム列の断面形状の説明図である。It is explanatory drawing of the cross-sectional shape of the prism row | line | column in embodiment of the optical deflection | deviation element by this invention. 本発明による面光源装置における導光体の出射角依存の出射光光度分布の一例を示す図である。It is a figure which shows an example of the outgoing light luminous intensity distribution of the light guide in the surface light source device by this invention dependent on the outgoing angle. 本発明の実施例1における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection | deviation element in Example 1 of this invention. 本発明の実施例2における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the optical deflection | deviation element in Example 2 of this invention. 本発明の実施例3における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the optical deflection | deviation element in Example 3 of this invention. 本発明の実施例4における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the optical deflection | deviation element in Example 4 of this invention. 比較例2における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection element in the comparative example 2. 比較例3における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection element in the comparative example 3. 比較例4における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection element in the comparative example 4. 比較例5における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection element in the comparative example 5. 比較例6における光偏向素子のプリズム列の断面形状を示す図である。It is a figure which shows the cross-sectional shape of the prism row | line | column of the light deflection element in the comparative example 6.

以下、図面を参照しながら、本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による面光源装置の一つの実施形態を示す模式的斜視図である。図1に示されているように、本実施形態の面光源装置は、一つの側端面を光入射端面31とし、これと略直交する一つの表面を光出射面33とする導光体3と、この導光体3の光入射端面31に対向して配置された一次光源1と、導光体3の光出射面33上に配置された光偏向素子4および光拡散素子6と、導光体3の光出射面33と反対の側の裏面34に対向して配置された光反射素子5とを含んで構成される。   FIG. 1 is a schematic perspective view showing one embodiment of a surface light source device according to the present invention. As shown in FIG. 1, the surface light source device of this embodiment includes a light guide 3 having a light incident end surface 31 as one side end surface and a light exit surface 33 as one surface substantially orthogonal thereto. The primary light source 1 disposed facing the light incident end surface 31 of the light guide 3, the light deflecting element 4 and the light diffusing element 6 disposed on the light emitting surface 33 of the light guide 3, and the light guide The light reflecting element 5 is disposed so as to face the back surface 34 on the side opposite to the light emitting surface 33 of the body 3.

導光体3は、XY面と平行に配置されており、全体として矩形板状をなしている。導光体3は4つの側端面を有しており、そのうちのYZ面と平行な1対の側端面のうち、一つの側端面を光入射面31とする。光入射端面31は一次光源1と対向して配置されており、一次光源1から発せられた光は光入射端面31に入射し導光体3内へと導入される。   The light guide 3 is arranged in parallel with the XY plane and has a rectangular plate shape as a whole. The light guide 3 has four side end surfaces, and one side end surface of the pair of side end surfaces parallel to the YZ plane is defined as a light incident surface 31. The light incident end face 31 is disposed to face the primary light source 1, and the light emitted from the primary light source 1 enters the light incident end face 31 and is introduced into the light guide 3.

導光体3の光入射端面31に略直交した2つの主面は、それぞれXY面と略平行に位置しており、いずれか一方の面(図では上面)が光出射面33となる。この光出射面33及びそれと反対の側に位置する裏面34のうちの少なくとも一方の面に粗面からなる指向性光出射機能部や、プリズム列、レンチキュラーレンズ列、V字状溝等の多数のレンズ列を並列形成したレンズ面からなる指向性光出射機能部を付与することによって、光入射端面31に入射した光を導光体3中を導光させながら、光出射面33から光入射端面31および光出射面33の双方に直交する面(XZ面)内の出射光分布において指向性のある光を出射させる。このXZ面内における出射光分布のピークの方向が光出射面33となす角度をaとすると、この角度aは10〜40度とすることが好ましく、出射光分布の半値全幅は10〜40度とすることが好ましい。   Two main surfaces that are substantially orthogonal to the light incident end surface 31 of the light guide 3 are respectively positioned substantially parallel to the XY plane, and one of the surfaces (the upper surface in the drawing) serves as the light emitting surface 33. At least one of the light emitting surface 33 and the back surface 34 located on the opposite side thereof has a directional light emitting function portion formed of a rough surface, a prism array, a lenticular lens array, a V-shaped groove, and the like. By providing a directional light emitting function unit composed of lens surfaces in which lens rows are formed in parallel, the light incident on the light incident end surface 31 is guided through the light guide 3 while the light incident end surface 31 is exposed to the light incident end surface. In the outgoing light distribution in the plane (XZ plane) orthogonal to both 31 and the light emitting surface 33, light having directivity is emitted. When the angle formed by the peak direction of the outgoing light distribution in the XZ plane and the light outgoing surface 33 is a, this angle a is preferably 10 to 40 degrees, and the full width at half maximum of the outgoing light distribution is 10 to 40 degrees. It is preferable that

なお、本発明では、上記のような光出射面33またはその裏面34に光出射機能部を形成する代わりにあるいはこれと併用して、導光体内部に光拡散性微粒子を混入分散することで指向性光出射機能を付与したものでもよい。また、導光体3としては、図1に示したような大略平行平板状(即ちXZ断面形状が長方形)のものに限定されるものではなく、少なくとも光入射端面に隣接する部分において光入射端面から離れるに従い次第に厚みが減少するくさび形状のもの、或いは、船型状等の種々のXZ断面形状を持つものが使用できる。   In the present invention, light diffusing fine particles are mixed and dispersed in the light guide instead of or in combination with the light emitting surface 33 or the back surface 34 as described above. What provided the directional light emission function may be used. Further, the light guide 3 is not limited to a substantially parallel plate shape (that is, the XZ cross-sectional shape is rectangular) as shown in FIG. 1, but at least in a portion adjacent to the light incident end surface. Those having a wedge shape in which the thickness gradually decreases as the distance from the head is increased, or those having various XZ cross-sectional shapes such as a hull shape can be used.

本発明の導光体3は、光透過率の高い合成樹脂から構成することができる。このような合成樹脂としては、メタクリル樹脂、アクリル樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂が例示できる。特に、メタクリル樹脂が、光透過率の高さ、耐熱性、力学的特性、成形加工性に優れており、最適である。このようなメタクリル樹脂としては、メタクリル酸メチルを主成分とする樹脂であり、メタクリル酸メチルが80重量%以上であるものが好ましい。導光体3の粗面等の表面構造を形成するに際しては、透明合成樹脂板を所望の表面構造を有する型部材を用いて熱プレスすることで形成してもよいし、スクリーン印刷、押出成形や射出成形等によって成形と同時に形状付与してもよい。また、熱あるいは光硬化性樹脂等を用いて構造面を形成することもできる。更に、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、塩化ビニル系樹脂、ポリメタクリルイミド系樹脂等からなる透明フィルムあるいはシート等の透明基材上に、活性エネルギー線硬化型樹脂からなる粗面構造を表面に形成してもよいし、このようなシートを接着、融着等の方法によって別個の透明基材上に接合一体化させてもよい。活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリル化合物、ビニル化合物、(メタ)アクリル酸エステル類、アリル化合物、(メタ)アクリル酸の金属塩等を使用することができる。   The light guide 3 of the present invention can be composed of a synthetic resin having a high light transmittance. Examples of such synthetic resins include methacrylic resins, acrylic resins, polycarbonate resins, polyester resins, and vinyl chloride resins. In particular, methacrylic resins are optimal because of their high light transmittance, heat resistance, mechanical properties, and molding processability. Such a methacrylic resin is a resin mainly composed of methyl methacrylate, and preferably has a methyl methacrylate content of 80% by weight or more. When the surface structure such as the rough surface of the light guide 3 is formed, the transparent synthetic resin plate may be formed by hot pressing using a mold member having a desired surface structure, screen printing, extrusion molding. Alternatively, the shape may be imparted simultaneously with molding by injection molding or the like. The structural surface can also be formed using heat or a photocurable resin. Furthermore, on a transparent substrate such as a polyester film, acrylic resin, polycarbonate resin, vinyl chloride resin, polymethacrylamide resin, or other transparent substrate or rough surface structure made of an active energy ray curable resin. May be formed on the surface, or such a sheet may be bonded and integrated on a separate transparent substrate by a method such as adhesion or fusion. As the active energy ray-curable resin, polyfunctional (meth) acrylic compounds, vinyl compounds, (meth) acrylic acid esters, allyl compounds, (meth) acrylic acid metal salts, and the like can be used.

図2は、光偏向素子4のプリズム列延在方向と直交する断面の形状の説明図である。図2は、図1におけるXZ断面に相当する。光偏向素子4は主表面の一方を入光面41とし他方の面を出光面42とする。入光面41には多数のプリズム列が並列に配列されており、各プリズム列は一次光源1に近い側に位置する第1のプリズム面44と一次光源1から遠い側に位置する第2のプリズム面45との2つのプリズム面(一対のプリズム面)から構成されている。   FIG. 2 is an explanatory diagram of a cross-sectional shape orthogonal to the prism array extending direction of the light deflection element 4. FIG. 2 corresponds to the XZ section in FIG. One of the main surfaces of the light deflection element 4 is a light incident surface 41 and the other surface is a light output surface 42. A large number of prism rows are arranged in parallel on the light incident surface 41, and each prism row is a first prism surface 44 positioned on the side closer to the primary light source 1 and a second prism positioned on the side farther from the primary light source 1. It consists of two prism surfaces (a pair of prism surfaces) with the prism surface 45.

第2のプリズム面45は複数の平面より構成されている。これらの複数の平面は、プリズム列の延在方向(Y方向)と直交する断面(XZ断面)における、出光面42の法線方向(Z方向)に対する傾斜角度が互いに異なる。XZ断面におけるプリズム列の先端部(プリズム列の頂部に対応する)に最も近い平面の傾斜角度は、35度から42度まで、好ましくは35度から40度まで、の範囲内にある。また、XZ断面におけるプリズム列の谷部(隣接プリズム列との境界の近くに位置するプリズム底部に対応する)に最も近い平面の傾斜角度は25度から30度まで、好ましくは27度から29度まで、の範囲内にある。   The second prism surface 45 is composed of a plurality of planes. The plurality of planes have different inclination angles with respect to the normal direction (Z direction) of the light exit surface 42 in a cross section (XZ cross section) orthogonal to the extending direction (Y direction) of the prism rows. The inclination angle of the plane closest to the tip of the prism row (corresponding to the top of the prism row) in the XZ cross section is in the range of 35 to 42 degrees, preferably 35 to 40 degrees. Further, the inclination angle of the plane closest to the valley of the prism row (corresponding to the prism bottom located near the boundary with the adjacent prism row) in the XZ section is 25 degrees to 30 degrees, preferably 27 degrees to 29 degrees. Is in the range of up to.

光偏向素子4の出光面42の法線方向を角度0度とし、一次光源1に近い側を負の角度、一次光源1から遠い側を正の角度とすると、図2に示すように、プリズム列先端部に近い平面で全反射した光の出射方向のピークは正側に傾いている。一方、プリズム列谷部に近い平面で全反射した光の出射方向のピークは負側に傾いている。プリズム列先端部に最も近い平面の傾斜角度が出光面42の法線方向に対して35度から42度までの範囲内にあり、かつプリズム列谷部に最も近い平面の傾斜角度が出光面42の法線方向に対して25度から30度までの範囲内にあるものとすることで、視野角が広く且つ適度の輝度が維持された即ち視野角と輝度とのバランスが取れた面光源装置を実現することが可能になる。   Assuming that the normal direction of the light exit surface 42 of the light deflecting element 4 is 0 degree, the side closer to the primary light source 1 is a negative angle, and the side far from the primary light source 1 is a positive angle, as shown in FIG. The peak in the emission direction of the light totally reflected by the plane close to the column tip is inclined to the positive side. On the other hand, the peak in the emission direction of light totally reflected by a plane close to the prism row valley is inclined to the negative side. The inclination angle of the plane closest to the prism array tip is in the range of 35 to 42 degrees with respect to the normal direction of the light output surface 42, and the inclination angle of the plane closest to the prism array valley is the output surface 42. A surface light source device in which the viewing angle is wide and the appropriate brightness is maintained, that is, the viewing angle and the brightness are balanced by being within a range from 25 degrees to 30 degrees with respect to the normal direction Can be realized.

さらに、プリズム列谷部に最も近い平面のプリズム列配列方向[プリズム列ピッチ方向](X方向)の長さは、第2のプリズム面45のプリズム列配列方向の長さの0.45倍以上0.85倍以下、好ましくは0.55倍以上0.8倍以下、である。即ち、第2のプリズム面45のプリズム列配列方向の長さを1として、XZ断面におけるプリズム列谷部に最も近い平面の長さが0.45から0.85まで、好ましくは0.55から0.8まで、の範囲内にある。これは、単位面積に当たる光量がプリズム列先端部に比べプリズム列谷部のほうが少ないため、プリズム列谷部に最も近い平面に一定以上のX方向長さがないと、このプリズム列谷部に最も近い面で全反射される光すなわち負側に出射する光の量が少なくなってしまうからである。逆に、プリズム列先端部に近い平面があまりに短いとプリズム列先端部に近い平面で全反射した光の光量が少なくなってしまい、その結果出射光量が負側に偏ってしまうからである。   Further, the length in the prism row arrangement direction [prism row pitch direction] (X direction) of the plane closest to the prism row valley is 0.45 times or more the length of the second prism surface 45 in the prism row arrangement direction. 0.85 times or less, preferably 0.55 times or more and 0.8 times or less. That is, assuming that the length of the second prism surface 45 in the prism array arrangement direction is 1, the length of the plane closest to the prism array valley in the XZ section is from 0.45 to 0.85, preferably from 0.55. Within the range of up to 0.8. This is because the amount of light per unit area is less in the prism row valley than in the prism row tip, and if there is no length in the X direction above a certain level in the plane closest to the prism row valley, This is because the amount of light totally reflected on the near surface, that is, light emitted to the negative side is reduced. On the other hand, if the plane close to the prism row tip is too short, the amount of light totally reflected by the plane near the prism row tip is reduced, and as a result, the emitted light is biased to the negative side.

図2に示した実施形態において、第1のプリズム面44は1つの平面で構成されており、第2のプリズム面45は2つの平面で構成されている。第2のプリズム面45は、構成する平面の数が多くなれば光偏向素子4から出射する光の配光制御が容易になるが、光偏向素子4の作製とくにプリズム列形成面である入光面41を転写形成するための転写用型部材の作製は困難となる。従って、第2のプリズム面45は、2〜3多くとも4つの平面で構成されるのが適切である。   In the embodiment shown in FIG. 2, the first prism surface 44 is composed of one plane, and the second prism surface 45 is composed of two planes. The second prism surface 45 can easily control the light distribution of the light emitted from the light deflection element 4 if the number of planes constituting the second prism surface 45 is increased. It is difficult to produce a transfer mold member for transferring and forming the surface 41. Therefore, it is appropriate that the second prism surface 45 is composed of at most four or two planes.

図2に示した実施形態において、第1のプリズム面44は、出光面42の法線方向に対してなす角度が5度から40度であるのが好ましい。この角度が5度より小さくなると、光偏向素子4の作製とくにプリズム列形成面である入光面41を転写形成するための転写用型部材の作製は困難となる。一方、この角度が40度より大きくなると、第2のプリズム面45に当たる光の量が減り、充分な輝度を得ることができなくなる。   In the embodiment shown in FIG. 2, the first prism surface 44 preferably has an angle of 5 degrees to 40 degrees with respect to the normal direction of the light exit surface 42. When this angle is smaller than 5 degrees, it becomes difficult to manufacture the light deflection element 4, particularly the transfer mold member for transferring and forming the light incident surface 41 which is the prism array forming surface. On the other hand, when the angle is larger than 40 degrees, the amount of light hitting the second prism surface 45 is reduced, and sufficient luminance cannot be obtained.

なお、プリズム列の配列ピッチPは、特に制限されないが、10〜100μm程度が好ましい。但し、液晶パネル(液晶表示素子)とのモアレを回避できる値を選ぶとよい。   The arrangement pitch P of the prism rows is not particularly limited, but is preferably about 10 to 100 μm. However, a value that can avoid moiré with the liquid crystal panel (liquid crystal display element) may be selected.

一次光源1としては例えばLED光源、ハロゲンランプ、メタルハライドランプ等のような点状光源や蛍光ランプや冷陰極管などのY方向に延在する線状光源を用いることができる。複数の点状光源をY方向に配列してもよい。必要に応じて、一次光源1を取り囲むように光源リフレクタを設置しても良い。光源リフレクタは、一次光源1から出射した光のうち導光体3の光入射端面31に入射できなかった光を光入射端面31に向けて反射させる。光源リフレクタの材質としては、例えば表面に金属蒸着反射層を有するプラスチックフィルムを用いることができる。このような光源リフレクタと同様な反射部材を、導光体3の光入射端面とされる側端面31以外の側端面に付することも可能である。   As the primary light source 1, for example, a point light source such as an LED light source, a halogen lamp, or a metal halide lamp, or a linear light source extending in the Y direction such as a fluorescent lamp or a cold cathode tube can be used. A plurality of point light sources may be arranged in the Y direction. If necessary, a light source reflector may be installed so as to surround the primary light source 1. The light source reflector reflects light that has not been incident on the light incident end surface 31 of the light guide 3 out of the light emitted from the primary light source 1 toward the light incident end surface 31. As a material of the light source reflector, for example, a plastic film having a metal vapor deposition reflecting layer on the surface can be used. A reflection member similar to such a light source reflector may be attached to a side end face other than the side end face 31 that is the light incident end face of the light guide 3.

光反射素子5は導光体3の光出射面33と反対の側の裏面34に対向して配置される。光反射素子5としては、例えば表面に金属蒸着反射層を有するプラスチックシートを用いることができる。本発明においては、光反射素子5として、反射シートに代えて、導光体3の裏面34に金属蒸着等により形成された光反射層等を用いることも可能である。これにより導光体3より漏れた光を再度導光体内に戻してやることが出来、一次光源1から発せられる光量を有効に利用することができる。   The light reflecting element 5 is disposed so as to face the back surface 34 on the side opposite to the light emitting surface 33 of the light guide 3. As the light reflecting element 5, for example, a plastic sheet having a metal vapor deposition reflecting layer on the surface can be used. In the present invention, it is also possible to use a light reflecting layer or the like formed on the back surface 34 of the light guide 3 by metal vapor deposition or the like, instead of the reflecting sheet, as the light reflecting element 5. Thereby, the light leaked from the light guide 3 can be returned again into the light guide, and the amount of light emitted from the primary light source 1 can be used effectively.

光拡散素子6は、光偏向素子4の出光面側にて光偏向素子4と一体化させてもよいし、光拡散素子6を個別に光偏向素子4の出光面上に載置しても良い。個別に光拡散素子6を載置する場合には、光拡散素子6の光偏向素子4に隣接する側の面即ち入射面には、光偏向素子4とのスティッキングを防止するため、凹凸構造を付与することが好ましい。同様に、光拡散素子6の出射面においても、その上に配置される液晶表示素子との間でのスティッキングを考慮する必要があり、光出射面にも凹凸構造を付与することが好ましい。この凹凸構造は、スティッキング防止の目的のみに付与する場合には、上記特許文献1の明細書の段落[0018]ないし[0019]に記載されているISO4287/1−1984による平均傾斜角が、0.7度以上となるような構造とすることが好ましく、さらに好ましくは1度以上であり、より好ましくは1.5度以上である。   The light diffusing element 6 may be integrated with the light deflecting element 4 on the light exiting surface side of the light deflecting element 4, or the light diffusing element 6 may be individually placed on the light exiting surface of the light deflecting element 4. good. When the light diffusing element 6 is individually mounted, the surface adjacent to the light deflecting element 4 of the light diffusing element 6, that is, the incident surface is provided with an uneven structure to prevent sticking with the light deflecting element 4. It is preferable to give. Similarly, it is necessary to consider sticking between the light diffusing element 6 and the liquid crystal display element disposed thereon, and it is preferable to provide a concavo-convex structure on the light emitting surface. When this concavo-convex structure is provided only for the purpose of preventing sticking, the average inclination angle according to ISO 4287 / 1-1984 described in paragraphs [0018] to [0019] of the specification of Patent Document 1 is 0. It is preferable to have a structure of 7 degrees or more, more preferably 1 degree or more, and more preferably 1.5 degrees or more.

尚、光拡散素子6は省略してもよい。   The light diffusing element 6 may be omitted.

以上のような面光源装置の発光面上に、液晶表示素子を配置することにより液晶表示装置が構成される。液晶表示装置は、図1における上方から液晶表示素子を通して観察者により観察される。   A liquid crystal display device is configured by disposing a liquid crystal display element on the light emitting surface of the surface light source device as described above. The liquid crystal display device is observed by an observer through the liquid crystal display element from above in FIG.

以下、実施例及び比較例によって本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

なお、以下の実施例及び比較例において使用した導光体の作製方法および各物性の測定方法を下記に示す。   In addition, the preparation method of the light guide used in the following examples and comparative examples and the measurement method of each physical property are shown below.

[導光体の作製]
鏡面仕上げをした有効面積195mm(X方向寸法)×307mm(Y方向寸法)、厚さ3mmのステンレススチール板を型素材として用い、ガラスビーズ(ポッターズバロティーニ社製J220)を用いて、ステンレススチール板からブラストノズルまでの距離を32cmとして、ブラスト処理を行った。これにより、第1の成型用型部材を得た。
[Production of light guide]
A stainless steel plate with an effective area of 195 mm (dimension in the X direction) x 307 mm (dimension in the Y direction) and a thickness of 3 mm is used as the mold material, and stainless steel using glass beads (J220 manufactured by Potters Valotini). Blasting was performed with the distance from the plate to the blast nozzle being 32 cm. As a result, a first mold member was obtained.

一方、鏡面仕上げをした有効面積195mm(X方向寸法)×307mm(Y方向寸法)、厚さ3mmのニッケル−リンメッキ板を型素材として用い、その表面に、レンズ列形成面からなる導光体裏面を転写により形成するための形状転写面を切削加工により形成した。これにより、第2の成型用型部材を得た。レンズ列形成面のレンズ列は、頂部先端曲率半径135μm、配列ピッチ100μm、アスペクト比10であった。また、レンズ列の延びる方向は、上記ステンレス板の長辺と垂直の方向(X方向)になるようにした。   On the other hand, a mirror-finished effective area of 195 mm (dimension in the X direction) x 307 mm (dimension in the Y direction) and a 3 mm thick nickel-phosphorus plated plate is used as the mold material, and the back surface of the light guide consisting of the lens array forming surface is used. The shape transfer surface for forming the film by transfer was formed by cutting. As a result, a second mold member was obtained. The lens array on the lens array forming surface had a top tip radius of curvature of 135 μm, an array pitch of 100 μm, and an aspect ratio of 10. Further, the extending direction of the lens array was set to be a direction (X direction) perpendicular to the long side of the stainless steel plate.

上記2つの成型用型部材を用いて、透明アクリル樹脂組成物を射出成形することにより、短辺195mm、長辺307mmの長方形で、厚みが0.8mmと一定で、一方の面(光出射面33)が粗面からなり、他方の面(裏面34)がレンズ列形成面からなる透明アクリル樹脂製の導光体3を得た。   A transparent acrylic resin composition is injection-molded by using the above two molding mold members, and has a rectangular shape with a short side of 195 mm and a long side of 307 mm, a constant thickness of 0.8 mm, and one surface (light emitting surface) A light guide 3 made of a transparent acrylic resin having a rough surface 33) and a lens array forming surface on the other surface (back surface 34) was obtained.

[導光体の光度分布の測定]
導光体の長辺側端面(光入射端面31)に対向するようにして、該長辺に沿って等間隔で54個のLED(豊田合成社製E1S62−YWOS7−07)を一次光源1として配置し、更に光源リフレクタを配置した。また、導光体3の裏面34に対向するようにして光反射素子5として光散乱反射シート(東レ社製E6SP)を配置した。
[Measurement of luminous intensity distribution of light guide]
54 LEDs (E1S62-YWOS7-07 manufactured by Toyoda Gosei Co., Ltd.) at equal intervals along the long side as the primary light source 1 so as to face the long side end surface (light incident end surface 31) of the light guide. And a light source reflector. Further, a light scattering reflection sheet (E6SP manufactured by Toray Industries, Inc.) was disposed as the light reflecting element 5 so as to face the back surface 34 of the light guide 3.

以上のようにして得られた、図1に示される構成から光偏向素子4及び光拡散素子6を除去したものにおいて、一次光源1を点灯させ、導光体3の光出射面33に3mmφのピンホールを有する黒色の紙をピンホールが光出射面33の中央に位置するように固定した。光出射面33の法線方向即ちZ方向を角度0°として、XZ面内で+85°〜−85°の範囲内で1°間隔で傾けながら、輝度計で出射光の光度分布を測定した。角度は一次光源1に近い側を負とし、その反対側を正とした。この導光体の光度分布の測定結果を図3に示す(光度は相対値で示す)。導光体3の光出射面33からの出射光は、光入射端面31及び光出射面33の双方に直交する面内において、分布ピークの方向と光出射面33とのなす角度が20度であり、分布の半値全幅は26度であった。   In the structure obtained by removing the light deflecting element 4 and the light diffusing element 6 from the configuration shown in FIG. 1, the primary light source 1 is turned on, and the light emitting surface 33 of the light guide 3 has a 3 mmφ diameter. A black paper having a pinhole was fixed so that the pinhole was positioned at the center of the light emitting surface 33. The luminous intensity distribution of the emitted light was measured with a luminance meter while tilting at an interval of 1 ° within the range of + 85 ° to −85 ° in the XZ plane with the normal direction of the light emitting surface 33, that is, the Z direction as 0 °. The angle was negative on the side close to the primary light source 1 and positive on the opposite side. The measurement result of the luminous intensity distribution of this light guide is shown in FIG. 3 (luminous intensity is shown as a relative value). The light emitted from the light exit surface 33 of the light guide 3 is 20 degrees in the angle between the direction of the distribution peak and the light exit surface 33 in a plane orthogonal to both the light incident end surface 31 and the light exit surface 33. Yes, the full width at half maximum of the distribution was 26 degrees.

[面光源装置のピーク輝度及び輝度分布の半値全幅の測定]
図1に示される構成において、一次光源1を点灯させ、輝度計の視野角度を1度にし、面光源装置の中央に測定位置がくるよう調整した。光偏向素子4の出光面42の法線方向即ちZ方向を角度0°として、+45°〜−45°の範囲内で1°間隔で傾けながら、輝度計で出射光の輝度分布を測定し、ピーク輝度及び輝度分布の半値全幅(ピーク輝度値の1/2以上の輝度値の分布の広がり角)を求めた。角度は一次光源1に近い側を負とし、その反対側を正とした。
[Measurement of peak luminance and full width at half maximum of luminance distribution of surface light source device]
In the configuration shown in FIG. 1, the primary light source 1 was turned on, the viewing angle of the luminance meter was set to 1 degree, and the measurement position was adjusted to be in the center of the surface light source device. The luminance distribution of the emitted light is measured with a luminance meter while tilting at an interval of 1 ° within the range of + 45 ° to −45 °, with the normal direction of the light exit surface 42 of the light deflecting element 4, that is, the Z direction being 0 °, The full width at half maximum of the peak brightness and the brightness distribution (the spread angle of the brightness value distribution that is 1/2 or more of the peak brightness value) was determined. The angle was negative on the side close to the primary light source 1 and positive on the opposite side.

実施例1:
図1及び図2の実施形態に属する面光源装置を、以下のようにして作製した。
Example 1:
The surface light source device belonging to the embodiment of FIGS. 1 and 2 was produced as follows.

先ず、図3に示される出射光光度分布(光度は相対値で示す)をもつ導光体3を作製した。この導光体3の光出射面33上に、屈折率1.506のアクリル系紫外線硬化性樹脂を用いて作製した光偏向素子4を載置した。光偏向素子4は、入光面41に多数のプリズム列が形成されたプリズムシートであり、各プリズム列の断面形状(プリズム列の延在方向と直交する断面の形状)は図4のとおりであった。   First, the light guide 3 having the emitted light luminous intensity distribution (luminous intensity is shown as a relative value) shown in FIG. 3 was produced. On the light emitting surface 33 of the light guide 3, the light deflection element 4 manufactured using an acrylic ultraviolet curable resin having a refractive index of 1.506 was placed. The light deflection element 4 is a prism sheet in which a large number of prism rows are formed on the light incident surface 41, and the cross-sectional shape of each prism row (the cross-sectional shape perpendicular to the extending direction of the prism rows) is as shown in FIG. there were.

図4には、プリズム列の各部分の寸法値及び角度値が示されている。図4において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が27度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる3つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が39.06度であり、プリズム列配列方向の長さが5.60μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が27度であり、プリズム列配列方向の長さが15.68μmである。これら2つの平面の中間に位置する平面は、出光面法線に対する傾斜角度が34.85度であり、プリズム列配列方向の長さが5.50μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.59である。プリズム列の配列ピッチPは50.00μmである。   FIG. 4 shows the dimension value and angle value of each part of the prism row. In FIG. 4, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 27 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of three planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 39.06 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 5.60 μm. The plane closest to the valley of the prism row has an inclination angle of 27 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 15.68 μm. A plane located between these two planes has an inclination angle of 34.85 degrees with respect to the light exit surface normal, and a length in the prism array arrangement direction of 5.50 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.59. The arrangement pitch P of the prism rows is 50.00 μm.

このプリズムシートを、そのプリズム列形成面からなる入光面41が導光体3の光出射面33に向くように載置した。更に、一次光源1及び光反射素子5を配置し、面光源装置を得た。   This prism sheet was placed so that the light incident surface 41 formed of the prism row forming surface faces the light emitting surface 33 of the light guide 3. Further, the primary light source 1 and the light reflecting element 5 were arranged to obtain a surface light source device.

この面光源装置の出射光輝度分布を測定し、後述の比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値(単位は度[°;deg])を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device is measured, and the value of the peak luminance ratio and the value of the full width at half maximum of the luminance distribution (in units of degrees [°; deg]) are obtained based on Comparative Example 1 described later. The results are shown in Table 1.

実施例2:
各プリズム列の形状が図5のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Example 2:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of each prism row was as shown in FIG.

図5には、プリズム列の各部分の寸法値及び角度値が示されている。図5において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が27度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が37.03度であり、プリズム列配列方向の長さが5.56μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が29度であり、プリズム列配列方向の長さが21.20μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.79である。プリズム列の配列ピッチPは50.00μmである。   FIG. 5 shows the dimension value and angle value of each part of the prism row. In FIG. 5, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 27 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 37.03 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 5.56 μm. The plane closest to the valley of the prism row has an inclination angle of 29 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 21.20 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.79. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、後述の比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The luminance distribution of the emitted light of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution were obtained with reference to Comparative Example 1 described later. The results are shown in Table 1.

実施例3:
各プリズム列の形状が図6のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Example 3:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of each prism row was as shown in FIG.

図6には、プリズム列の各部分の寸法値及び角度値が示されている。図6において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が27度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が36.50度であり、プリズム列配列方向の長さが10.00μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が28.50度であり、プリズム列配列方向の長さが17.08μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.63である。プリズム列の配列ピッチPは50.00μmである。   FIG. 6 shows the dimension value and angle value of each part of the prism row. In FIG. 6, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 27 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism array has an inclination angle of 36.50 degrees with respect to the light exit surface normal, and the length in the prism array arrangement direction is 10.00 μm. The plane closest to the valley of the prism row has an inclination angle of 28.50 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 17.08 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.63. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、後述の比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The luminance distribution of the emitted light of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution were obtained with reference to Comparative Example 1 described later. The results are shown in Table 1.

実施例4:
各プリズム列の形状が図7のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Example 4:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of each prism row was as shown in FIG.

図7には、プリズム列の各部分の寸法値及び角度値が示されている。図7において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が38度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる3つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が40.0度であり、プリズム列配列方向の長さが4.00μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が27.0度であり、プリズム列配列方向の長さが12.09μmである。これら2つの平面の中間に位置する平面は、出光面法線に対する傾斜角度が35度であり、プリズム列配列方向の長さが5.5μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.56である。プリズム列の配列ピッチPは50.00μmである。   FIG. 7 shows the dimension value and angle value of each part of the prism row. In FIG. 7, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 38 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of three planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 40.0 degrees with respect to the light exit surface normal and a length in the prism row arrangement direction of 4.00 μm. The plane closest to the valley of the prism row has an inclination angle of 27.0 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 12.09 μm. The plane located in the middle of these two planes has an inclination angle of 35 degrees with respect to the light exit surface normal, and the length in the prism array direction is 5.5 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.56. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、後述の比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The luminance distribution of the emitted light of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution were obtained with reference to Comparative Example 1 described later. The results are shown in Table 1.

比較例1:
X−Z断面形状において、プリズム列の頂点の座標を(X[μm],Z[μm])=(0,0)としたとき、各プリズム列の形状が(X,Z)=(−25,38.94)と頂点と(X,Z)=(25,38.94)とを結んだ二等辺三角形状となるようにした以外は、実施例1と同様にして面光源装置を得た。ここで、一次光源1に近い側に位置する第1のプリズム面44及び一次光源1から遠い側に位置する第2のプリズム面45は、いずれも出光面法線に対する傾斜角度が32.7度である。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、1.0である。
Comparative Example 1:
In the XZ cross-sectional shape, when the coordinates of the vertices of the prism rows are (X [μm], Z [μm]) = (0, 0), the shape of each prism row is (X, Z) = (− 25 , 38.94) and the vertex and (X, Z) = (25, 38.94), except that the shape is an isosceles triangle, a surface light source device was obtained in the same manner as in Example 1. . Here, both the first prism surface 44 located on the side closer to the primary light source 1 and the second prism surface 45 located on the side far from the primary light source 1 have an inclination angle of 32.7 degrees with respect to the light emitting surface normal. It is. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 1.0.

この面光源装置の出射光輝度分布を測定し、ピーク輝度を1.000とし、輝度分布の半値全幅の値を得、その結果を表1に示した。   The emitted light luminance distribution of this surface light source device was measured, the peak luminance was set to 1.000, the value of the full width at half maximum of the luminance distribution was obtained, and the results are shown in Table 1.

比較例2:
プリズム列の形状が図8のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 2:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of the prism row was as shown in FIG.

図8には、プリズム列の各部分の寸法値及び角度値が示されている。図8において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が27度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が45度であり、プリズム列配列方向の長さが8.00μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が29度であり、プリズム列配列方向の長さが19.76μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.71である。プリズム列の配列ピッチPは50.00μmである。   FIG. 8 shows the dimension value and angle value of each part of the prism row. In FIG. 8, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 27 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 45 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 8.00 μm. The plane closest to the valley of the prism array has an inclination angle of 29 degrees with respect to the light exit surface normal, and the length in the prism array arrangement direction is 19.76 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.71. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution when Comparative Example 1 was used as a reference were obtained. The results are shown in Table 1.

比較例3:
プリズム列の形状が図9のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 3:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of the prism row was as shown in FIG.

図9には、プリズム列の各部分の寸法値及び角度値が示されている。図9において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が10度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が39度であり、プリズム列配列方向の長さが19.51μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が31度であり、プリズム列配列方向の長さが20.29μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.51である。プリズム列の配列ピッチPは50.00μmである。   FIG. 9 shows the dimension value and angle value of each part of the prism row. In FIG. 9, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 10 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 39 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 19.51 μm. The plane closest to the valley of the prism array has an inclination angle of 31 degrees with respect to the light exit surface normal, and the length in the prism array arrangement direction is 20.29 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.51. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution when Comparative Example 1 was used as a reference were obtained. The results are shown in Table 1.

比較例4:
プリズム列の形状が図10のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 4:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of the prism row was as shown in FIG.

図10には、プリズム列の各部分の寸法値及び角度値が示されている。図10において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が10度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる3つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が39度であり、プリズム列配列方向の長さが12.53μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が28度であり、プリズム列配列方向の長さが12.25μmである。これら2つの平面の中間に位置する平面は、出光面法線に対する傾斜角度が34度であり、プリズム列配列方向の長さが14.61μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.31である。プリズム列の配列ピッチPは50.00μmである。   FIG. 10 shows the dimension values and angle values of each part of the prism row. In FIG. 10, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 10 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of three planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 39 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 12.53 μm. The plane closest to the valleys of the prism rows has an inclination angle of 28 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 12.25 μm. The plane located between these two planes has an inclination angle of 34 degrees with respect to the light exit surface normal and a length in the prism array direction of 14.61 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.31. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution when Comparative Example 1 was used as a reference were obtained. The results are shown in Table 1.

比較例5:
プリズム列の形状が図11のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 5:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of the prism row was as shown in FIG.

図11には、プリズム列の各部分の寸法値及び角度値が示されている。図11において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が27度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が35度であり、プリズム列配列方向の長さが3.00μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が30度であり、プリズム列配列方向の長さが23.81μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.89である。プリズム列の配列ピッチPは50.00μmである。   FIG. 11 shows the dimension value and angle value of each part of the prism row. In FIG. 11, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 27 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 35 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 3.00 μm. The plane closest to the valley of the prism array has an inclination angle of 30 degrees with respect to the light exit surface normal, and the length in the prism array arrangement direction is 23.81 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.89. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution when Comparative Example 1 was used as a reference were obtained. The results are shown in Table 1.

比較例6:
プリズム列の形状が図12のとおりであった以外は、実施例1と同様にして面光源装置を得た。
Comparative Example 6:
A surface light source device was obtained in the same manner as in Example 1 except that the shape of the prism row was as shown in FIG.

図12には、プリズム列の各部分の寸法値及び角度値が示されている。図12において、上下方向が出光面42の法線方向即ちZ方向に相当する。出光面42の法線が一点鎖線で示されており、該出光面法線に対する傾斜角度の値(単位は度[°;deg])が示されている。一次光源1に近い側に位置する第1のプリズム面44は、出光面法線に対する傾斜角度が45度である。一次光源1から遠い側に位置する第2のプリズム面45は、出光面法線方向に対する傾斜角度が互いに異なる2つの平面からなる。プリズム列の先端部に最も近い平面は、出光面法線に対する傾斜角度が40度であり、プリズム列配列方向の長さが8.00μmである。プリズム列の谷部に最も近い平面は、出光面法線に対する傾斜角度が29度であり、プリズム列配列方向の長さが11.58μmである。従って、「第2のプリズム面45のプリズム列配列方向の長さ」に対する「プリズム列谷部に最も近い平面のプリズム列配列方向の長さ」の割合、即ち第2のプリズム面45のプリズム列配列方向の長さを1とした場合のプリズム列谷部に最も近い平面の長さは、0.59である。プリズム列の配列ピッチPは50.00μmである。   FIG. 12 shows the dimension values and angle values of each part of the prism row. In FIG. 12, the vertical direction corresponds to the normal direction of the light exit surface 42, that is, the Z direction. A normal line of the light exit surface 42 is indicated by a one-dot chain line, and a value of an inclination angle (unit: degrees [°; deg]) with respect to the light exit surface normal is indicated. The first prism surface 44 located on the side closer to the primary light source 1 has an inclination angle of 45 degrees with respect to the light exit surface normal. The second prism surface 45 located on the side far from the primary light source 1 is composed of two planes having different inclination angles with respect to the light exit surface normal direction. The plane closest to the tip of the prism row has an inclination angle of 40 degrees with respect to the light exit surface normal, and the length in the prism row arrangement direction is 8.00 μm. The plane closest to the valley of the prism array has an inclination angle of 29 degrees with respect to the light exit surface normal, and the length in the prism array arrangement direction is 11.58 μm. Accordingly, the ratio of the “length in the prism array arrangement direction of the plane closest to the prism array valley” to the “length of the second prism surface 45 in the prism array arrangement direction”, that is, the prism array of the second prism surface 45. When the length in the arrangement direction is 1, the length of the plane closest to the prism row valley is 0.59. The arrangement pitch P of the prism rows is 50.00 μm.

この面光源装置の出射光輝度分布を測定し、比較例1を基準とした場合のピーク輝度比率の値及び輝度分布の半値全幅の値を得、その結果を表1に示した。   The emission light luminance distribution of this surface light source device was measured, and the peak luminance ratio value and the full width at half maximum of the luminance distribution when Comparative Example 1 was used as a reference were obtained. The results are shown in Table 1.

1 一次光源
3 導光体
31 光入射端面
33 光出射面
34 裏面
4 光偏向素子
41 入光面
42 出光面
44 第1のプリズム面
45 第2のプリズム面
5 光反射素子
6 光拡散素子
1 Primary light source 3 Light guide 31 Light incident end face
33 Light exit surface 34 Back surface 4 Light deflection element 41 Light incident surface 42 Light exit surface 44 First prism surface 45 Second prism surface 5 Light reflection element 6 Light diffusion element

Claims (4)

光が入射する入光面とその反対側に位置し入射した光が出射する出光面とを有しており、前記入光面には一対のプリズム面から構成されるプリズム列が並列に複数配列されている光偏向素子であって、
前記一対のプリズム面のうちの一方のプリズム面は、前記プリズム列の延在方向と直交する断面における前記出光面の法線方向に対する傾斜角度が互いに異なる2つ以上の平面からなり、
前記断面における前記プリズム列の先端部に最も近い前記平面の前記傾斜角度は35度から42度までの範囲内にあり、
前記断面における前記プリズム列の谷部に最も近い前記平面の前記傾斜角度は25度から30度までの範囲内にあり、
前記一方のプリズム面の前記プリズム列の配列方向の長さを1として、前記断面における前記プリズム列の谷部に最も近い前記平面の長さが0.45から0.85までの範囲内にある、
ことを特徴とする面光源装置用光偏向素子。
It has a light incident surface on which light is incident and a light output surface on the opposite side from which incident light is emitted, and the light incident surface has a plurality of prism rows arranged in parallel in a pair of prism surfaces. An optical deflection element,
One prism surface of the pair of prism surfaces is composed of two or more planes having different inclination angles with respect to the normal direction of the light exit surface in a cross section orthogonal to the extending direction of the prism row,
The inclination angle of the plane closest to the tip of the prism row in the cross section is in the range of 35 to 42 degrees;
The inclination angle of the plane closest to the valley of the prism row in the cross section is in the range of 25 degrees to 30 degrees;
The length of the one prism surface in the arrangement direction of the prism rows is 1, and the length of the plane closest to the valley of the prism rows in the cross section is in the range of 0.45 to 0.85. ,
An optical deflection element for a surface light source device.
前記一対のプリズム面のうちの他方のプリズム面は、前記プリズム列の延在方向と直交する断面における前記出光面の法線方向に対する傾斜角度が5度から40度までの範囲内にあることを特徴とする、請求項1に記載の面光源装置用光偏向素子。   The other prism surface of the pair of prism surfaces has an inclination angle with respect to the normal direction of the light exit surface in a cross section orthogonal to the extending direction of the prism row in a range of 5 degrees to 40 degrees. The light deflection element for a surface light source device according to claim 1, wherein 一次光源と、該一次光源から発せられた光が入射する光入射端面を有し且つ入射した光を導光し且つ導光された光の少なくとも一部が出射する光出射面を有する導光体と、該導光体の前記光出射面に隣接配置された請求項1又は2に記載の光偏向素子とを備えており、
前記光偏向素子は、前記入光面が前記導光体の前記光出射面に対向するようにし、更に前記プリズム列が前記一方のプリズム面を前記一次光源から遠い側とし且つ他方のプリズム面を前記一次光源に近い側として、配置されていることを特徴とする面光源装置。
A light guide having a primary light source, a light incident end surface on which light emitted from the primary light source is incident, a light emitting surface that guides the incident light and emits at least part of the guided light And the light deflection element according to claim 1 or 2 disposed adjacent to the light exit surface of the light guide.
The light deflecting element is configured such that the light incident surface faces the light emitting surface of the light guide, and the prism array has the one prism surface far from the primary light source and the other prism surface. A surface light source device arranged on a side closer to the primary light source.
前記導光体の前記光出射面からの出射光は、前記光入射端面及び前記光出射面の双方に直交する面内における分布において、分布ピークの方向と前記光出射面とのなす角度が10度から40度までの範囲内にあり、分布の半値全幅が角度10度から40度までの範囲内にあることを特徴とする、請求項3に記載の面光源装置。   In the distribution in the plane orthogonal to both the light incident end face and the light exit surface, the angle between the direction of the distribution peak and the light exit surface is 10 for the light emitted from the light exit surface of the light guide. 4. The surface light source device according to claim 3, wherein the surface light source device is in a range from 40 degrees to 40 degrees, and a full width at half maximum of the distribution is in a range from 10 degrees to 40 degrees.
JP2011065714A 2011-03-24 2011-03-24 Light deflecting element and surface light source device using the same Withdrawn JP2012203081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065714A JP2012203081A (en) 2011-03-24 2011-03-24 Light deflecting element and surface light source device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065714A JP2012203081A (en) 2011-03-24 2011-03-24 Light deflecting element and surface light source device using the same

Publications (1)

Publication Number Publication Date
JP2012203081A true JP2012203081A (en) 2012-10-22

Family

ID=47184188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065714A Withdrawn JP2012203081A (en) 2011-03-24 2011-03-24 Light deflecting element and surface light source device using the same

Country Status (1)

Country Link
JP (1) JP2012203081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205414A (en) * 2017-05-31 2018-12-27 大日本印刷株式会社 Optical structure and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018205414A (en) * 2017-05-31 2018-12-27 大日本印刷株式会社 Optical structure and display device

Similar Documents

Publication Publication Date Title
JP4454020B2 (en) Light source device and light deflection element
JP4677019B2 (en) Light source device
JP2008209928A (en) Light source device and light deflector for use therein
US20080144336A1 (en) Optical deflector element and light source device
WO2003098100A1 (en) Planar light source and light guide for use therein
JP2004046076A (en) Optical deflecting element and surface light source unit
JP5424901B2 (en) Surface light source device and light guide used therefor
JP2008218418A (en) Surface light source and light guide used for same
JP2004111352A (en) Surface light source device and light guide used therefor
JP2002245824A (en) Light source device and light polarization element used for it
JP2010044921A (en) Plane light source element and light control member used for this as well as image display using this
JP4400845B2 (en) Light diffusing sheet, video display element using the same, and surface light source device
JP2004006245A (en) Light source device
JP4400867B2 (en) Light deflection element and light source device
JP2012042502A (en) Optical deflection element and surface light source device
JP5371125B2 (en) Surface light source device and light guide used therefor
JP2012203081A (en) Light deflecting element and surface light source device using the same
JP2009158468A (en) Backlight
JP4210053B2 (en) Light source device
JP4730873B2 (en) Optical deflection element and surface light source device using the same
JP5495585B2 (en) Light deflection element and light source device
JP4160297B2 (en) Optical deflection element
JP4960327B2 (en) Light deflection element and light source device
JP2003132720A (en) Surface lightsource device
JP4485416B2 (en) Light deflection element and light source device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603