JP2012202951A - Infrared spectral analysis apparatus and utilization thereof - Google Patents

Infrared spectral analysis apparatus and utilization thereof Download PDF

Info

Publication number
JP2012202951A
JP2012202951A JP2011070566A JP2011070566A JP2012202951A JP 2012202951 A JP2012202951 A JP 2012202951A JP 2011070566 A JP2011070566 A JP 2011070566A JP 2011070566 A JP2011070566 A JP 2011070566A JP 2012202951 A JP2012202951 A JP 2012202951A
Authority
JP
Japan
Prior art keywords
prism
metal oxide
oxide film
working electrode
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011070566A
Other languages
Japanese (ja)
Inventor
Tomoko Nagao
友子 長尾
Kiyoshi Kanemura
聖志 金村
Yuichi Munakata
裕一 棟方
Yasuhiro Akita
康宏 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Tokyo Metropolitan Public University Corp
Original Assignee
Toyota Motor Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Tokyo Metropolitan Public University Corp filed Critical Toyota Motor Corp
Priority to JP2011070566A priority Critical patent/JP2012202951A/en
Publication of JP2012202951A publication Critical patent/JP2012202951A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an infrared spectral analysis apparatus which is available appropriately to infrared spectral measurement of a non-aqueous electrolyte secondary battery containing a fluorine compound in an electrolyte, an analysis method and a prism for analysis.SOLUTION: An infrared spectral analysis apparatus 1 comprises a prism 10 for full reflection including a prism substrate (germanium crystal or the like) 12 and a metal oxide film (alumina film or the like) 14 provided on a bottom face 12a of the substrate, an active electrode 32 disposed on a surface of the metal oxide film 14, a counter electrode 36 and a reference electrode 38. Furthermore, an optical system is provided which makes infrared rays incident to an interface (a bottom face of the prism substrate 12) 12a between the prism substrate 12 and the metal oxide film 14, for collecting reflection rays of the infrared rays reflected on the interface 12a. Moreover, an infrared spectroscope is provided for obtaining spectrum of the reflection rays.

Description

本発明は、全反射(Attenuated−Total−Reflection;ATR)法による赤外分光分析技術に関する。   The present invention relates to an infrared spectroscopic analysis technique based on an attenuated-total-reflection (ATR) method.

電極表面のその場(in−situ)測定は、電極反応機構の解明や電極反応の副反応の解明の実現、さらには電極構造の最適化を可能とする情報を提供するものであり、電気化学の発展に大きく貢献する技術である。分子結合状態や官能基、配向状態等、分子レベルでの表面構造解析を可能とする手法として、赤外分光測定がある。赤外分光測定は、電極表面における電極反応機構の解明や電極反応の副反応の解明等に大きく貢献する手法として期待されている。電極表面のin−situ赤外分光測定に関する技術文献として特許文献1が挙げられる。特許文献2は、赤外分光分析を蓄電池の電気容量の計測に利用する技術に関する文献である。   In-situ measurement of the electrode surface provides information that enables the elucidation of the electrode reaction mechanism, the elucidation of side reactions of the electrode reaction, and the optimization of the electrode structure. This technology greatly contributes to the development of As a technique that enables surface structure analysis at the molecular level, such as molecular bonding state, functional group, and orientation state, there is infrared spectroscopy measurement. Infrared spectroscopic measurement is expected as a technique that greatly contributes to elucidation of electrode reaction mechanisms on electrode surfaces, elucidation of side reactions of electrode reactions, and the like. Patent Document 1 is cited as a technical document related to in-situ infrared spectroscopic measurement of the electrode surface. Patent document 2 is a document regarding the technique which utilizes infrared spectroscopy for the measurement of the electrical capacity of a storage battery.

特開2008−128652号公報JP 2008-128652 A 特開2004−134409号公報JP 2004-134409 A

さて、リチウムイオン二次電池その他の非水電解液二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源(例えば、ハイブリッド自動車や電気自動車の駆動動力源)として好ましく用いられるものとして期待されている。リチウムイオン二次電池用の非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート等のカーボネート類を主成分とする溶媒(カーボネート系溶媒)に、支持塩(支持電解質)としてフッ素化合物(典型的には、LiPF等のリチウム塩)を溶解させたものが広く用いられている。 Now, lithium ion secondary batteries and other non-aqueous electrolyte secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is expected to be preferably used as a vehicle-mounted high-output power source (for example, a driving power source for a hybrid vehicle or an electric vehicle). Non-aqueous electrolytes for lithium ion secondary batteries include solvents (carbonate solvents) containing carbonates such as ethylene carbonate, propylene carbonate, and diethyl carbonate as main components, and fluorine compounds (typically as support salts). Specifically, those in which a lithium salt such as LiPF 6 is dissolved are widely used.

このような非水電解液二次電池は、水の電気分解電圧を超える高い電圧を実現し得る一方、その高い電圧のため電解液の分解が起こりやすい。かかる電解液の分解は、二次電池の高性能化(出力向上、長寿命化等)を妨げる一要因となっている。in−situ赤外分光測定を通じて非水電解液二次電池における化学反応(電極表面における電解液の化学反応等)の機構を解明し、例えば充放電の繰り返しに伴う電解液の分解反応機構や電解液の長期間の安定性等についての情報が得られれば、二次電池の性能向上に役立ち得る。   Such a non-aqueous electrolyte secondary battery can realize a high voltage exceeding the electrolysis voltage of water, but the electrolyte is easily decomposed due to the high voltage. Such decomposition of the electrolytic solution is one factor that hinders high performance (e.g., improved output, extended life) of the secondary battery. Through in-situ infrared spectroscopic measurement, the mechanism of chemical reactions in non-aqueous electrolyte secondary batteries (such as the chemical reaction of the electrolyte on the electrode surface) is elucidated. For example, the decomposition reaction mechanism and electrolysis of the electrolyte accompanying repeated charge and discharge If information on the long-term stability of the liquid can be obtained, it can be useful for improving the performance of the secondary battery.

しかし、充放電時における電極表面のin−situ赤外分光分析を行うために、LiPF等のフッ素化合物を含む電解液(フッ素化合物含有電解液)にATR用プリズム(ゲルマニウム結晶等)を接触させて測定を行うと、該電解液が化学反応を起こして上記フッ素化合物に由来するフッ化水素(HF)が生成し得る。HFは腐食性の高い酸であり、上記プリズム(窓材)を腐食させることがある。プリズムが腐食すると、例えば図7に示すように、ベースラインの歪みやノイズの増加等により赤外分光測定の精度が低下してしまう。プリズムの腐食による測定精度の低下は、リチウムイオン二次電池の電極表面のin−situ赤外分光測定に限らず、腐食性の酸(例えばHF)を含む液体または測定中に該酸が発生し得る液体にプリズムを直接接触させる測定態様(例えば、金属の腐食電位測定等)に共通して生じ得る問題である。 However, in order to perform in-situ infrared spectroscopic analysis of the electrode surface during charge and discharge, an ATR prism (germanium crystal or the like) is brought into contact with an electrolyte solution (fluorine compound-containing electrolyte solution) containing a fluorine compound such as LiPF 6. When the measurement is performed, the electrolytic solution may cause a chemical reaction to generate hydrogen fluoride (HF) derived from the fluorine compound. HF is a highly corrosive acid and may corrode the prism (window material). When the prism corrodes, for example, as shown in FIG. 7, the accuracy of the infrared spectroscopic measurement is lowered due to the distortion of the baseline, the increase of noise, or the like. The reduction in measurement accuracy due to prism corrosion is not limited to in-situ infrared spectroscopic measurement of the electrode surface of a lithium ion secondary battery, and the acid is generated during a liquid containing a corrosive acid (for example, HF) or during measurement. This is a problem that may occur in common with measurement modes in which the prism is brought into direct contact with the liquid to be obtained (for example, measurement of the corrosion potential of metals).

そこで本発明は、ATR法による赤外分光分析技術に関し、電解液中にフッ素化合物を含む非水電解液二次電池の赤外分光測定(例えば、電極表面のin−situ赤外分光測定)にも好ましく用いることのできる赤外分光分析装置、赤外分光分析方法、および該赤外分光分析に好適なATR用プリズムを提供することを目的とする。   Therefore, the present invention relates to an infrared spectroscopic analysis technique based on the ATR method, for infrared spectroscopic measurement (for example, in-situ infrared spectroscopic measurement of an electrode surface) of a non-aqueous electrolyte secondary battery containing a fluorine compound in the electrolytic solution. It is another object of the present invention to provide an infrared spectroscopic analysis apparatus, an infrared spectroscopic analysis method, and an ATR prism suitable for the infrared spectroscopic analysis.

この明細書によると、ATR法を用いた赤外分光分析装置が提供される。その赤外分光分析装置は、ATR用(ATR測定用)プリズムと、作用極と、該作用極と対をなす対極とを含み、さらに前記作用極の電位を規定する参照極を含み得る。前記ATR用プリズムは、プリズム基材(例えば、ゲルマニウム結晶)と、該基材の底面に設けられた金属酸化物膜とを備える。その金属酸化物膜の表面上に前記作用極が配置される。上記装置は、また、前記プリズムを通して前記基材と前記金属酸化物膜との界面に赤外線を入射し、該赤外線が前記界面で反射して前記プリズムから出射する反射光を採光する光学系を含む。さらに、前記反射光のスペクトルを得るための赤外分光器を含み得る。   According to this specification, an infrared spectroscopic analyzer using the ATR method is provided. The infrared spectroscopic analysis apparatus may include an ATR (ATR measurement) prism, a working electrode, a counter electrode that is paired with the working electrode, and a reference electrode that defines a potential of the working electrode. The ATR prism includes a prism base (for example, germanium crystal) and a metal oxide film provided on the bottom surface of the base. The working electrode is disposed on the surface of the metal oxide film. The apparatus also includes an optical system that receives infrared light through the prism at the interface between the base material and the metal oxide film, and reflects the reflected light emitted from the prism after the infrared light is reflected at the interface. . Furthermore, an infrared spectrometer for obtaining a spectrum of the reflected light may be included.

かかる構成を有する赤外分光分析装置によると、プリズム基材と作用極との間に金属酸化物膜が介在されているので、例えば、フッ素化合物含有電解液を含浸させた作用極の電位を変化させて該電極表面のin−situ赤外分析を行う場合等に、フッ素化合物含有電解液が分解してHF等の腐食性物質が生成しても(あるいは、上記電解液に最初からHF等の腐食性物質が含まれていても)、該腐食性物質とプリズム基材との直接接触を阻止することができる。これにより、プリズム基材の腐食が防止されるので、赤外分光分析の精度を向上させることができる。   According to the infrared spectroscopic analyzer having such a configuration, since the metal oxide film is interposed between the prism base material and the working electrode, for example, the potential of the working electrode impregnated with the fluorine compound-containing electrolyte is changed. When an in-situ infrared analysis of the electrode surface is performed, even if the fluorine compound-containing electrolyte is decomposed to generate a corrosive substance such as HF (or HF or the like is added to the electrolyte from the beginning). Even if a corrosive substance is included, direct contact between the corrosive substance and the prism substrate can be prevented. Thereby, since corrosion of the prism base material is prevented, the accuracy of infrared spectroscopic analysis can be improved.

ここに開示される赤外分光分析装置は、典型的には、前記作用極と前記対極と前記参照極とをフッ素化合物含有電解液に接触させ、前記作用極において電気化学反応を進行させると同時に(進行させつつ)前記赤外線を前記プリズム基材と前記金属酸化物膜との界面で反射させることにより、前記作用極の表面をin−situ赤外分光測定し得るように構成されている。かかる構成によると、プリズム基材と作用極との間に介在された金属酸化物膜によって上記プリズム基材の腐食が防止されるので、上記in−situ赤外分光測定をより精度よく行うことができる。   The infrared spectroscopic analysis device disclosed herein typically brings the working electrode, the counter electrode, and the reference electrode into contact with a fluorine compound-containing electrolyte, and simultaneously proceeds an electrochemical reaction at the working electrode. The surface of the working electrode is configured to be able to perform in-situ infrared spectroscopic measurement by reflecting the infrared ray at the interface between the prism base material and the metal oxide film (while proceeding). According to this configuration, the prism base material is prevented from being corroded by the metal oxide film interposed between the prism base material and the working electrode, so that the in-situ infrared spectroscopic measurement can be performed with higher accuracy. it can.

前記金属酸化物膜の好適例として、アルミナ(Al)膜およびジルコニア(ZrO)膜が挙げられる。アルミナ膜およびジルコニア膜は、いずれも化学的安定性が高く、プリズム基材を化学的損傷(腐食等)から保護する性能に優れる。また、いずれも還元電位が低いので、非水二次電池の負極表面で生じ得る電気化学反応の解析等、作用極の電位が低い測定条件での使用にも適している。さらに、いずれもリチウム(Li)と合金化しないので、作用極の電位がLi金属と同等またはそれよりも低くなり得る測定条件で使用されても、Li合金の形成による変質を起こす懸念がなく好ましい。 Preferable examples of the metal oxide film include an alumina (Al 2 O 3 ) film and a zirconia (ZrO 2 ) film. Both the alumina film and the zirconia film have high chemical stability and excellent performance in protecting the prism base material from chemical damage (corrosion, etc.). In addition, since the reduction potential is low, it is also suitable for use under measurement conditions where the potential of the working electrode is low, such as analysis of an electrochemical reaction that can occur on the negative electrode surface of a nonaqueous secondary battery. Furthermore, since none of them is alloyed with lithium (Li), there is no fear of causing alteration due to the formation of a Li alloy, even if it is used under measurement conditions in which the potential of the working electrode can be equal to or lower than that of Li metal. .

前記金属酸化物膜の厚さは、プリズム基材の光学特性(少なくとも、測定波数域の赤外線に対する光学特性)を大きく損なわない厚さとすることが好ましい。通常は、プリズム基材と金属酸化物膜との界面で全反射する赤外線から生じるエバネッセント波が上記金属酸化物膜の厚み方向に染み込んで該金属酸化物膜上に配置された作用極に到達し得るように、上記金属酸化物膜の厚みを、測定波数域のうち最も小さい波数に対応する赤外線波長の1/4以下に設定するとよい。例えば、400cm−1〜4000cm−1の測定波数域で使用し得る赤外分光分析装置では、上記金属酸化物膜の厚みを凡そ600nm以下(典型的には凡そ20nm〜600nm)とすることが適当である。 The thickness of the metal oxide film is preferably set to a thickness that does not significantly impair the optical characteristics of the prism base material (at least the optical characteristics with respect to infrared rays in the measurement wavenumber region). Normally, evanescent waves generated from infrared rays totally reflected at the interface between the prism base material and the metal oxide film penetrate into the thickness direction of the metal oxide film and reach the working electrode disposed on the metal oxide film. In order to obtain, it is good to set the thickness of the said metal oxide film to 1/4 or less of the infrared wavelength corresponding to the smallest wave number among measurement wave number ranges. For example, 400 cm in infrared spectroscopic analysis device that may be used in the measurement wavenumber region of -1 ~4000cm -1, approximately 600nm or less the thickness of the metal oxide film appropriate to the (typically about 20nm~600nm in) It is.

ここに開示される赤外分光分析装置の好ましい用途の一例として、電解液中にフッ素化合物を含む非水電解液二次電池の赤外分光測定(特に、in−situ赤外分光測定)が挙げられる。例えば、電解液中に六フッ化リン酸リチウム(LiPF)を含むリチウムイオン二次電池のin−situ赤外分光測定に好適である。 As an example of a preferable application of the infrared spectroscopic analyzer disclosed herein, infrared spectroscopic measurement (particularly, in-situ infrared spectroscopic measurement) of a non-aqueous electrolyte secondary battery containing a fluorine compound in the electrolytic solution can be given. It is done. For example, it is suitable for in-situ infrared spectroscopic measurement of a lithium ion secondary battery containing lithium hexafluorophosphate (LiPF 6 ) in the electrolytic solution.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウム二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「非水二次電池」とは、非水電解質(典型的には、非水溶媒中に支持塩(支持電解質)を含む電解質)を備えた電池をいう。また、「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。一般にリチウムイオン二次電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。   In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium secondary battery and a power storage element such as an electric double layer capacitor. The “non-aqueous secondary battery” refers to a battery provided with a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent). The “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between the positive and negative electrodes. A secondary battery generally referred to as a lithium ion secondary battery is a typical example included in the lithium secondary battery in this specification.

この明細書によると、また、電解液中にフッ素化合物を含む非水電解液二次電池を分析する方法が提供される。その方法は、前記フッ素化合物を含有する試験液(前記電解液でもよい。)を、プリズム基材と該基材の底面に設けられた金属酸化物膜とを備えるATR用プリズムと、該金属酸化物膜の表面上に配置された作用極と、該作用極の対極と参照極とに接触させ、前記作用極において電気化学反応を進行させることを含む。また、前記電気化学反応を進行させながら、前記プリズム基材を通して該基材と前記金属酸化物膜との界面に赤外線を入射し、該赤外線が前記界面で反射して前記プリズムから出射する反射光を採光することを包含する。そして、前記反射光を用いて前記作用極の表面をin−situ赤外分光測定する。   According to this specification, a method for analyzing a non-aqueous electrolyte secondary battery containing a fluorine compound in the electrolyte is also provided. In the method, a test solution containing the fluorine compound (or the electrolytic solution may be used) is prepared by using an ATR prism including a prism base material and a metal oxide film provided on the bottom surface of the base material, and the metal oxide. And contacting a working electrode disposed on the surface of the material film, a counter electrode of the working electrode and a reference electrode, and causing an electrochemical reaction to proceed at the working electrode. In addition, while proceeding with the electrochemical reaction, infrared light is incident on the interface between the base material and the metal oxide film through the prism base material, and the infrared light is reflected at the interface and emitted from the prism. Including daylighting. Then, in-situ infrared spectroscopic measurement is performed on the surface of the working electrode using the reflected light.

かかる分析方法によると、例えば、フッ素化合物含有電解液を有する非水電解液二次電池(例えばリチウムイオン二次電池)の電極表面における電解液の化学反応(例えば、電解液の還元分解)等の機構に関する情報を、より精度よく得ることができる。このような情報は、例えば、より高性能な非水電解液二次電池の開発に役立ち得る。   According to such an analysis method, for example, the chemical reaction of the electrolytic solution (for example, reductive decomposition of the electrolytic solution) on the electrode surface of the nonaqueous electrolytic solution secondary battery (for example, lithium ion secondary battery) having the fluorine compound-containing electrolytic solution, etc. Information about the mechanism can be obtained more accurately. Such information can be useful, for example, in the development of higher performance non-aqueous electrolyte secondary batteries.

ここに開示される技術において、上記フッ素化合物は、例えばリチウム塩(すなわち、フッ素を構成原子として有するアニオンとリチウムイオン(Li)との塩;以下、フッ素含有リチウム塩ともいう。)であり得る。かかるフッ素含有リチウム塩の具体例としては、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiN(CSO,LiC(CFSO等が挙げられる。 In the technique disclosed herein, the fluorine compound may be, for example, a lithium salt (that is, a salt of an anion having fluorine as a constituent atom and lithium ion (Li + ); hereinafter also referred to as a fluorine-containing lithium salt). . Specific examples of the fluorine-containing lithium salt include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , LiC (CF 3 SO 2 ) 3 and the like.

ここに開示される技術の好ましい一態様において、前記作用極は、リチウムイオンを可逆的に挿入および脱離可能な炭素材料を有する。このような炭素材料(典型的には、少なくとも一部にグラファイト構造を有する炭素材料)は、非水電解液二次電池の電極活物質(例えば、リチウムイオン二次電池の負極活物質)として有用である。かかる炭素材料を備えた作用極表面で生じる事象の赤外分光測定をより精度よく行うことができれば、より高性能な非水電解液二次電池が効率よく開発され得る。   In a preferred aspect of the technology disclosed herein, the working electrode includes a carbon material capable of reversibly inserting and removing lithium ions. Such a carbon material (typically, a carbon material having a graphite structure at least partially) is useful as an electrode active material of a non-aqueous electrolyte secondary battery (for example, a negative electrode active material of a lithium ion secondary battery). It is. If infrared spectroscopic measurement of an event occurring on the surface of the working electrode provided with such a carbon material can be performed with higher accuracy, a higher-performance nonaqueous electrolyte secondary battery can be efficiently developed.

この明細書によると、さらに、ATR法による赤外分光分析に用いられるプリズムが提供される。そのATR用プリズムは、プリズム基材と、該基材の底面に設けられた金属酸化物膜とを備える。上記ATR用プリズムは、該プリズムを通して前記基材と前記金属酸化物膜との界面に赤外線を入射させ、該界面においてエバネッセント波を発生させ、前記界面で反射して前記プリズムから出射する反射光を利用して、前記金属酸化物膜上に配置された測定試料を赤外分光測定可能に構成されている。   According to this specification, a prism used for infrared spectroscopic analysis by the ATR method is further provided. The ATR prism includes a prism base material and a metal oxide film provided on the bottom surface of the base material. The ATR prism causes infrared light to enter the interface between the base material and the metal oxide film through the prism, generates an evanescent wave at the interface, and reflects the reflected light emitted from the prism after being reflected at the interface. The measurement sample disposed on the metal oxide film is configured to be capable of infrared spectroscopic measurement.

かかる構成のATR用プリズムは、プリズム基材の底面に金属酸化物膜が設けられているので、該底面がHF等の腐食性化合物に曝されても、プリズム基材の腐食を高度に防止することができる。このことによって、該プリズムを用いた赤外分光分析の精度を向上させることができる。上記ATR用プリズムは、例えば、ここに開示されるいずれかの赤外分光分析装置または方法に用いられるプリズムとして好適である。   Since the ATR prism having such a structure is provided with a metal oxide film on the bottom surface of the prism base material, even if the bottom surface is exposed to a corrosive compound such as HF, the prism base material is highly prevented from corroding. be able to. As a result, the accuracy of infrared spectroscopic analysis using the prism can be improved. The ATR prism is suitable, for example, as a prism used in any of the infrared spectroscopic analysis apparatuses or methods disclosed herein.

一実施形態に係る赤外分光分析装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the infrared spectroscopy analyzer which concerns on one Embodiment. 図1の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of FIG. 一実施形態に係る赤外分光分析装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the infrared spectroscopy analyzer which concerns on one Embodiment. 例1に係るATR用プリズムを用いた電極表面のin−situ FT−IR測定により得られた、初回充電時の電位変化に伴う差スペクトルを示す特性図である。It is a characteristic view which shows the difference spectrum accompanying the electric potential change at the time of the first charge obtained by the in-situ FT-IR measurement of the electrode surface using the prism for ATR which concerns on Example 1. FIG. 例1に係るATR用プリズムを用いた電極表面のin−situ FT−IR測定により得られた、初回放電時の電位変化に伴う差スペクトルを示す特性図である。It is a characteristic view which shows the difference spectrum accompanying the electric potential change at the time of the first discharge obtained by the in-situ FT-IR measurement of the electrode surface using the prism for ATR which concerns on Example 1. FIG. 例2に係るATR用プリズムにより得られた赤外吸収スペクトルを示す特性図である。6 is a characteristic diagram showing an infrared absorption spectrum obtained by the ATR prism according to Example 2. FIG. ATR用プリズムの腐食が測定スペクトルに及ぼす影響を例示する特性図である。It is a characteristic view which illustrates the influence which corrosion of the prism for ATR has on a measurement spectrum.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚さ等)は、実際の寸法関係を反映するものではない。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. Moreover, in the following drawings, the same code | symbol is attached | subjected to the member and site | part which show | plays the same effect | action, and the overlapping description may be abbreviate | omitted or simplified. The dimensional relationship (length, width, thickness, etc.) in each figure does not reflect the actual dimensional relationship.

ここに開示される赤外分光分析装置は、典型的には、ATR用(ATR測定用)プリズムと、作用極と、該作用極と対をなす対極と、前記作用極の電位を規定する参照極と、前記ATR用プリズムに赤外線を入射させて該プリズムの内部で反射して該プリズムから出射する反射光を採光する光学系と、該反射光のスペクトルを得る赤外分光器とを備える。ここに開示される技術は、上記ATR用プリズムの構造において、プリズム基材の底面に金属酸化物膜を有することによって特徴づけられる。その金属酸化物膜の表面上に前記作用極が配置される。換言すれば、前記プリズム基材の底面には、該底面に設けられた前記金属酸化物膜を介して前記作用極が配置される。   The infrared spectroscopic analysis apparatus disclosed herein typically includes an ATR (ATR measurement) prism, a working electrode, a counter electrode paired with the working electrode, and a reference that defines the potential of the working electrode. A pole, an optical system for collecting infrared light incident on the ATR prism, reflected from the prism and emitted from the prism, and an infrared spectrometer for obtaining a spectrum of the reflected light. The technique disclosed herein is characterized by having a metal oxide film on the bottom surface of the prism base material in the structure of the prism for ATR. The working electrode is disposed on the surface of the metal oxide film. In other words, the working electrode is disposed on the bottom surface of the prism base material via the metal oxide film provided on the bottom surface.

かかる赤外分光分析装置の一形態例につき、図1〜図3を用いて説明する。図1は、本実施形態に係るフーリエ変換型(Fourier Transform Infrared Spectroscop赤外分光y;FT−IR)分析装置1に備えられる赤外分光セル20を模式的に示す部分断面図であり、図2はその一部を拡大して示す断面図である。図3は、上記FT−IR分析装置1の概略構成を示す模式図である。   An example of such an infrared spectroscopic analyzer will be described with reference to FIGS. FIG. 1 is a partial cross-sectional view schematically showing an infrared spectroscopic cell 20 provided in a Fourier Transform Infrared Spectroscopy Infrared Spectroscopy (FT-IR) analyzer 1 according to the present embodiment. FIG. 2 is an enlarged cross-sectional view showing a part thereof. FIG. 3 is a schematic diagram showing a schematic configuration of the FT-IR analyzer 1.

図1において、その底面がATR用プリズム10の底面10aよりなる赤外分光セル20内には、フッ素化合物を含む電解液22が注入されている。赤外分光セル20のうち電解液22が注入される空間は、円筒形の内周壁面を形成するケース24によってその外周が区画されている。プリズム10の底面10aとケース24の底面との間はOリング26によりシールされ、その外側に電解液22が染み出すことが防止されている。   In FIG. 1, an electrolyte solution 22 containing a fluorine compound is injected into an infrared spectroscopic cell 20 whose bottom surface is composed of the bottom surface 10 a of the ATR prism 10. The outer space of the infrared spectroscopic cell 20 into which the electrolyte solution 22 is injected is partitioned by a case 24 that forms a cylindrical inner peripheral wall surface. The space between the bottom surface 10a of the prism 10 and the bottom surface of the case 24 is sealed by an O-ring 26 to prevent the electrolyte solution 22 from exuding to the outside.

作用極32は、その表面32aがプリズム10の底面10aと対向するようにセル20内へ挿入され、プリズム10に押し付けられて接触している。電解液22の一部は作用極32の表面32aに染み込んでいる。この染み込んだ電解液22は、例えば、作用極32の表面32aが粉体材料を結着した構成を有する場合において該粉体材料の粒子間に充填した電解液、作用極32の表面32aに結着剤等のポリマーが存在する場合において該ポリマーに吸収された(該ポリマーを膨潤させた)電解液、等であり得る。   The working electrode 32 is inserted into the cell 20 so that the surface 32a of the working electrode 32 faces the bottom surface 10a of the prism 10, and is pressed against and contacts the prism 10. A part of the electrolytic solution 22 soaks into the surface 32 a of the working electrode 32. For example, when the surface 32a of the working electrode 32 has a configuration in which the powder material is bound, the soaked electrolytic solution 22 is bound to the surface of the working electrode 32 and the electrolyte 32 filled between the particles of the powder material. In the case where a polymer such as an adhesive is present, it may be an electrolyte solution absorbed by the polymer (swelling the polymer), or the like.

電解液22内には、作用極32の背面32bに配置された対極36と、作用極32の電位を規定する参照極38とが浸漬されている。作用極32、対極36、参照極38は、ポテンショスタット(外部電源)40に接続され、作用極32の電位を任意に制御し得るようになっている。この形態例において、ポテンショスタット40は、セル20の充放電ユニットとしても把握され得る。   A counter electrode 36 disposed on the back surface 32 b of the working electrode 32 and a reference electrode 38 that defines the potential of the working electrode 32 are immersed in the electrolytic solution 22. The working electrode 32, the counter electrode 36, and the reference electrode 38 are connected to a potentiostat (external power source) 40 so that the potential of the working electrode 32 can be arbitrarily controlled. In this embodiment, the potentiostat 40 can also be grasped as a charge / discharge unit of the cell 20.

対極36は、観察しようとする作用極32に電流を流すことができれば、材質、形状等は特に限定されず、一般的なものを用いることができる。参照極38は、使用する電解液22内において作用極32の電位の基準となる安定な電位を示すものであればよく、標準水素電極(SHEまたはNHE)や、飽和カロメル電極(SCE)、可逆水素電極(RHE)、銀−塩化銀電極(Ag/AgCl)、水銀/硫化水銀電極等のような一般的な参照極のほか、リチウム金属、銀線、白金線等を擬似参照極として用いることができる。   The counter electrode 36 is not particularly limited in material and shape as long as a current can be passed through the working electrode 32 to be observed, and a common electrode can be used. The reference electrode 38 only needs to exhibit a stable potential that serves as a reference for the potential of the working electrode 32 in the electrolytic solution 22 to be used, and is a standard hydrogen electrode (SHE or NHE), a saturated calomel electrode (SCE), a reversible. In addition to general reference electrodes such as hydrogen electrode (RHE), silver-silver chloride electrode (Ag / AgCl), mercury / mercury sulfide electrode, etc., use lithium metal, silver wire, platinum wire, etc. as pseudo reference electrode Can do.

ATR用プリズム10は、プリズム基材12と、その底面12aに形成された金属酸化物膜14とを有する。プリズム基材12の形状(外形)は特に限定されず、赤外分光において用いられている一般的なものを用いることができる。例えば、半球状、半円柱状(かまぼこ状)、ピラミッド状、台形状、三角柱状等が挙げられる。赤外顕微鏡を用いる場合は、赤外光のスポット径を焦点をぼかさずに微小領域に絞り込めるという観点から、半球状のプリズム基材12の使用が好ましい。赤外顕微鏡を用いない場合には、三角柱状または台形状が好ましい。プリズム基材12の寸法は特に限定されず、測定波数域や設ける作用極の数、大きさ等を考慮して適宜決定すればよい。通常は、一般的に電気化学赤外分光装置に用いられている大きさのプリズムを好ましく用いることができる。   The ATR prism 10 includes a prism base 12 and a metal oxide film 14 formed on the bottom surface 12a. The shape (outer shape) of the prism substrate 12 is not particularly limited, and a general material used in infrared spectroscopy can be used. For example, a hemispherical shape, a semi-cylindrical shape (kamaboko shape), a pyramid shape, a trapezoidal shape, a triangular prism shape, and the like can be given. In the case of using an infrared microscope, it is preferable to use a hemispherical prism base material 12 from the viewpoint that the spot diameter of infrared light can be narrowed down to a minute region without defocusing. When an infrared microscope is not used, a triangular prism shape or a trapezoidal shape is preferable. The dimensions of the prism base 12 are not particularly limited, and may be appropriately determined in consideration of the measurement wave number range, the number and size of working electrodes to be provided, and the like. Usually, a prism having a size generally used in an electrochemical infrared spectrometer can be preferably used.

プリズム基材12の材質は、測定領域(波数域)における赤外吸収が小さく、屈折率が大きなもの(典型的には、後述する金属酸化物膜の屈折率よりも大きなもの)であればよく、特に限定されない。従来の一般的な赤外分光分析用プリズムに用いられているもの、例えば、ゲルマニウム(Ge;屈折率4)、セレン化亜鉛(ZnSe;屈折率2.4)、KRS−5(臭沃化タリウム;屈折率2.73)、シリコン(Si;屈折率3.4)、硫化亜鉛(ZnS;屈折率2.2)、KRS−6(臭塩化タリウム;屈折率2.17)等を、ここに開示される技術におけるプリズム基材12の構成材料として採用することができる。   The material of the prism substrate 12 may be any material that has a small infrared absorption in the measurement region (wave number region) and a large refractive index (typically a material that is larger than the refractive index of a metal oxide film described later). There is no particular limitation. For example, germanium (Ge; refractive index 4), zinc selenide (ZnSe; refractive index 2.4), KRS-5 (thallium bromoiodide) used in conventional general infrared spectroscopic prisms Refractive index 2.73), silicon (Si; refractive index 3.4), zinc sulfide (ZnS; refractive index 2.2), KRS-6 (thallium bromochloride; refractive index 2.17), etc. It can employ | adopt as a constituent material of the prism base material 12 in the technique disclosed.

なかでもゲルマニウムは、屈折率が高く、かつ1000cm−1以下のような低波数領域における赤外吸収が小さく、600cm−1まで赤外光を透過させることができるため、低波数領域の感度が高く、優れた光学特性を示す。一方、ゲルマニウムは化学的安定性が比較的低く、上述した腐蝕性物質(HF等)により腐蝕したり、Liと合金化したりしやすい。したがって、プリズム基材12の構成材質がゲルマニウムである態様(典型的には、プリズム基材としてゲルマニウム結晶(好ましくは単結晶)を用いる態様)では、ここに開示される技術を適用してプリズム基材12の変質(腐食、合金化等)を防止することが特に有意義であり、これにより赤外分光分析の精度を効果的に向上させることができる。 Among them, germanium has a high refractive index and low infrared absorption in a low wavenumber region such as 1000 cm −1 or less, and can transmit infrared light up to 600 cm −1 . Therefore, the sensitivity in the low wavenumber region is high. Show excellent optical properties. On the other hand, germanium has a relatively low chemical stability and is easily corroded by the above-mentioned corrosive substances (HF or the like) or alloyed with Li. Therefore, in an embodiment in which the constituent material of the prism base 12 is germanium (typically an embodiment using germanium crystals (preferably a single crystal) as the prism base), the technique disclosed herein is applied to form a prism base. It is particularly meaningful to prevent the material 12 from being altered (corrosion, alloying, etc.), and this can effectively improve the accuracy of infrared spectroscopic analysis.

ここに開示される技術におけるATR用プリズム10は、プリズム基材12の底面12aに金属酸化物膜14を有する。その金属酸化物膜14の上に作用極32が配置される。金属酸化物膜14は、プリズム基材12を腐食等の損傷から保護する機能を果たす。したがって、金属酸化物膜14を構成する材質としては、化学的安定性が高く、耐腐食性(特に、HF等の酸に対する耐腐食性)に優れた材質が好適である。また、目的とする測定波数域(通常は、有機物の結合や官能基の変化をみるのに適した凡そ400cm−1〜4000cm−1の波数域)の赤外線に対して、分析の妨げとなるような強い吸収ピークを示さない材質が好ましい。 The ATR prism 10 in the technology disclosed herein has a metal oxide film 14 on the bottom surface 12 a of the prism base 12. A working electrode 32 is disposed on the metal oxide film 14. The metal oxide film 14 functions to protect the prism base 12 from damage such as corrosion. Therefore, the material constituting the metal oxide film 14 is preferably a material having high chemical stability and excellent corrosion resistance (particularly corrosion resistance against acids such as HF). Further, (usually wavenumber range of approximately 400cm -1 ~4000cm -1 suitable for viewing the change in binding or functional groups of the organic substance) measuring wavenumber range of interest so that the relative infrared, hinder analysis A material that does not exhibit a strong absorption peak is preferable.

図2によく示されるように、かかる構成のプリズム10において、プリズム基材12の内部から(つまりプリズム基材12を通して)プリズム基材12と金属酸化物膜14との界面(プリズム基材12の底面12a)に赤外光を、臨界角よりも大きい入射角で入射させると、該赤外光は界面12aにおいて全反射される。このとき、界面12aから金属酸化物膜14を経てその上に配置された作用極(測定試料)32へとエバネッセント波が染み込み、反射の際に、金属酸化物膜14と作用極32との接触表面近傍に存在する化学種による吸収を受ける。したがって、図3に示すように、プリズム基材12と金属酸化物膜14との界面12aで反射してプリズム10から出射する反射光を採光窓56から赤外分光器58に導入して吸収スペクトルを解析することによって、電極の表面(ここでは、作用極32の表面32a)付近に存在する化学種の検出や同定が可能となる。   As shown well in FIG. 2, in the prism 10 having such a configuration, the interface between the prism substrate 12 and the metal oxide film 14 (from the prism substrate 12) (from the prism substrate 12) (from the prism substrate 12). When infrared light is incident on the bottom surface 12a) at an incident angle larger than the critical angle, the infrared light is totally reflected at the interface 12a. At this time, an evanescent wave penetrates from the interface 12a through the metal oxide film 14 to the working electrode (measurement sample) 32 disposed thereon, and the metal oxide film 14 and the working electrode 32 are contacted at the time of reflection. It is absorbed by chemical species present near the surface. Therefore, as shown in FIG. 3, the reflected light reflected from the interface 12a between the prism base 12 and the metal oxide film 14 and emitted from the prism 10 is introduced into the infrared spectrometer 58 from the daylighting window 56 and absorbed. By analyzing the above, it becomes possible to detect and identify chemical species present near the surface of the electrode (here, the surface 32a of the working electrode 32).

ここで、電極表面の化学種とは、電極表面に吸着した化学種の他、電極表面に吸着することなく作用極32と電解液22との界面近傍に浮遊しているものも含まれ、電極反応における反応生成物や反応中間体、反応副生成物等が挙げられる。   Here, the chemical species on the electrode surface include chemical species adsorbed on the electrode surface and those floating near the interface between the working electrode 32 and the electrolytic solution 22 without adsorbing on the electrode surface. Examples include reaction products, reaction intermediates, and reaction by-products in the reaction.

ここに開示される技術によると、作用極の電位変化や電流変化に伴う電極表面の化学種の変化を測定することができる。すなわち、本発明によれば、電解液に含有される溶媒や溶質の反応、電極を構成する材料の反応等、電極において進行する主反応の他、副反応について、電極の電位や電流値等の電気的条件の評価と共に観察することができる。ゆえに、本発明によれば、例えば、従来、リチウムイオン電池の長寿命化を阻む問題の一つである電解液の溶媒の分解について、その機構を解明することも可能となる。   According to the technique disclosed herein, it is possible to measure a change in chemical species on the electrode surface accompanying a change in potential of the working electrode or a change in current. That is, according to the present invention, in addition to the main reaction that proceeds in the electrode, such as the reaction of the solvent and solute contained in the electrolytic solution, the reaction of the material constituting the electrode, the potential of the electrode, the current value, etc. It can be observed together with the evaluation of electrical conditions. Therefore, according to the present invention, for example, the mechanism of the decomposition of the solvent of the electrolytic solution, which is one of the problems that hinder the long life of the lithium ion battery, can be clarified.

ここに開示される技術において、金属酸化物膜14の厚さは、プリズム基材12と接する面とは反対側の面(すなわち作用極32の表面32a)までエバネッセント波が十分に染み込むことができる程度の薄さとすることが適当である。これにより、プリズム基材12の内側から入射して界面12aで反射する赤外光を通じて、作用極32aの表面をより精度よく分析することが可能となる。具体的には、金属酸化物膜14の厚みを、測定波数域のうち最も大きい波数に対応する赤外線波長の1/4以下に設定するとよい。例えば、400cm−1〜4000cm−1の測定波数域で使用し得る赤外分光分析装置では、上記金属酸化物膜の厚みを凡そ600nm以下(典型的には凡そ20nm〜600nm)とすることが適当である。 In the technique disclosed herein, the thickness of the metal oxide film 14 can sufficiently penetrate the evanescent wave to the surface opposite to the surface in contact with the prism base 12 (that is, the surface 32a of the working electrode 32). It is appropriate to make it thin. Accordingly, it is possible to analyze the surface of the working electrode 32a with higher accuracy through infrared light that is incident from the inside of the prism base 12 and is reflected by the interface 12a. Specifically, the thickness of the metal oxide film 14 may be set to ¼ or less of the infrared wavelength corresponding to the largest wave number in the measurement wave number region. For example, 400 cm in infrared spectroscopic analysis device that may be used in the measurement wavenumber region of -1 ~4000cm -1, approximately 600nm or less the thickness of the metal oxide film appropriate to the (typically about 20nm~600nm in) It is.

金属酸化物膜14の厚さは、走査電子顕微鏡(SEM)、走査型トンネル顕微鏡(STM)、走査型原子間力顕微鏡(AFM)等によって測定することができる。また、水晶微量天秤による質量測定から換算して膜厚を求めてもよい。あるいは、金属酸化物膜の作製条件と得られる金属酸化物について予め検量線を求め、その検量線に基づいて、所定の条件で作製した金属酸化物膜の厚さを見積もってもよい。   The thickness of the metal oxide film 14 can be measured by a scanning electron microscope (SEM), a scanning tunneling microscope (STM), a scanning atomic force microscope (AFM), or the like. Further, the film thickness may be obtained by conversion from mass measurement using a quartz crystal microbalance. Alternatively, a calibration curve may be obtained in advance for the metal oxide film fabrication conditions and the obtained metal oxide, and the thickness of the metal oxide film fabricated under predetermined conditions may be estimated based on the calibration curve.

金属酸化物膜14の構成材質としては、プリズム基材12よりも屈折率の小さいものを好ましく採用し得る。このことによって界面12aにおいて赤外線を適切に全反射させることができる。プリズム基材12と金属酸化物膜14との屈折率の差が大きいほど、界面12aから金属酸化物膜14側へのエバネッセント波の染み込み(染み出し)深さは大きくなる。このことは、金属酸化物膜14を経て作用極32に染み込むエバネッセント波の染み込み深さが大きくなり、作用極32表面の化学種による吸収強度が大きくなることを意味する。したがって、できるだけ屈折率の大きなプリズム基材12を用いることにより、上記化学種の検出感度を向上させることができる。また、表面32aから作用極32の内側へ、より広い範囲に存在する化学種の観察が可能となる。界面12aから金属酸化物膜14側へのエバネッセント波の染み込み深さが大きくなることは、また、金属酸化物膜14の厚さを設定する際に選択し得る範囲が広くなり得る(例えば、より厚くし得る)という観点からも好ましい。   As a constituent material of the metal oxide film 14, a material having a refractive index smaller than that of the prism base 12 can be preferably used. As a result, the infrared rays can be appropriately totally reflected at the interface 12a. The greater the difference in refractive index between the prism substrate 12 and the metal oxide film 14, the greater the depth of penetration of the evanescent wave from the interface 12a to the metal oxide film 14 side. This means that the penetration depth of the evanescent wave that penetrates the working electrode 32 through the metal oxide film 14 is increased, and the absorption intensity due to the chemical species on the surface of the working electrode 32 is increased. Therefore, the detection sensitivity of the chemical species can be improved by using the prism base 12 having a refractive index as large as possible. Further, it is possible to observe chemical species existing in a wider range from the surface 32 a to the inside of the working electrode 32. Increasing the penetration depth of the evanescent wave from the interface 12a to the metal oxide film 14 side can also increase the range that can be selected when setting the thickness of the metal oxide film 14 (for example, more It is also preferable from the viewpoint of being able to be thickened.

なお、エバネッセント波の染み込み深さは、プリズム基材12の材質(屈折率)の他、赤外光の入射角および波長や、作用極32の材質等によっても異なり得る。赤外線の入射角は、臨界角よりも大きく、プリズム基材12と金属酸化物膜14との界面12aにおいて全反射が起きる角度であればよく、具体的な角度は限定されない。通常は、上記入射角を45°〜60°程度とすることが適当である。   The penetration depth of the evanescent wave may vary depending on the incident angle and wavelength of infrared light, the material of the working electrode 32, and the like in addition to the material (refractive index) of the prism base 12. The incident angle of infrared rays is larger than the critical angle, and may be an angle at which total reflection occurs at the interface 12a between the prism base 12 and the metal oxide film 14, and the specific angle is not limited. Usually, it is appropriate to set the incident angle to about 45 ° to 60 °.

金属酸化物膜14の材質を選定するにあたり、必要に応じて考慮することが好ましい他の事項としては、プリズム基材12上に緻密な薄膜を形成しやすいこと、プリズム基材12との密着性のよい膜を形成しやすいこと、電気化学的安定性が高いこと(例えば、少なくとも還元電位が低いこと)、Liとの合金を形成し難いこと、等が挙げられる。これらの任意考慮事項のうち少なくとも一つを満たす材質を好ましく採用し得る。特に好ましい材質として、AlおよびZrOが例示される。すなわち、ここに開示される技術における金属酸化物膜14の一好適例としてAl膜が挙げられる。他の一好適例としてZrO膜が挙げられる。 In selecting the material of the metal oxide film 14, other matters that should be considered as necessary include that it is easy to form a dense thin film on the prism base 12, and adhesion to the prism base 12. Such as being easy to form a good film, having high electrochemical stability (for example, at least a low reduction potential), and being difficult to form an alloy with Li. A material satisfying at least one of these optional considerations can be preferably employed. Particularly preferred materials include Al 2 O 3 and ZrO 2 . That is, a preferred example of the metal oxide film 14 in the technique disclosed herein is an Al 2 O 3 film. Another preferred example is a ZrO 2 film.

かかる金属酸化物膜14は、プリズム基材12の底面12aのうち、少なくとも作用極32が配置される範囲(領域)を覆うように設けられている。すなわち、少なくとも作用極32が配置される範囲では、作用極32およびこれに含浸した電解液22とプリズム基材12との間に金属酸化物膜14が介在し、これらの直接接触が防止されている。上述した腐食性物質(HF等)の発生は主として作用極32の表面32a付近で起こり、したがってこの表面32a付近では腐食性物質の濃度が最も高くなる傾向にあることから、作用極32が配置される範囲ではプリズム基材12を保護する必要性が特に高いためである。   The metal oxide film 14 is provided so as to cover at least a range (region) in which the working electrode 32 is disposed on the bottom surface 12 a of the prism base 12. That is, at least in the range where the working electrode 32 is disposed, the metal oxide film 14 is interposed between the working electrode 32 and the electrolytic solution 22 impregnated therein and the prism base material 12 to prevent direct contact thereof. Yes. The generation of the corrosive substance (HF or the like) described above mainly occurs near the surface 32a of the working electrode 32. Therefore, the concentration of the corrosive substance tends to be highest near the surface 32a. This is because the necessity of protecting the prism base 12 is particularly high within a range.

好ましい一態様では、金属酸化物膜14を、作用極32が配置される範囲のみならず、電解液22とプリズム基材12との直接接触を防止できる範囲(図1に示す例では、底面10aのうちOリング26よりも内側の範囲、典型的にはOリング26が当接する位置およびそれより内側の範囲)を含むように設ける。かかる態様によると、プリズム基材12を腐食から、より確実に保護することができる。図1に示す例のように、底面10aの全範囲に金属酸化物膜14を設けてもよい。   In a preferred embodiment, the metal oxide film 14 is not limited to the range in which the working electrode 32 is disposed, but in the range in which direct contact between the electrolytic solution 22 and the prism base 12 can be prevented (in the example shown in FIG. 1, the bottom surface 10a). And a range inside the O-ring 26, typically a position where the O-ring 26 abuts and a range inside thereof). According to this aspect, the prism base 12 can be more reliably protected from corrosion. As in the example shown in FIG. 1, the metal oxide film 14 may be provided over the entire range of the bottom surface 10a.

金属酸化物膜14の作製方法は特に限定されず、例えば、真空蒸着法、スパッタ法、ゾルゲル法等の公知の方法を、単独で、あるいは適宜組み合わせて用いることができる。金属酸化物膜14は、結晶質であってもよく、非晶質であってもよい。ここに開示される技術の一態様では、金属酸化物膜14(例えばAl膜)が非晶質であっても、プリズム基材12の腐食を適切に防止して赤外分光分析測定の精度を向上させる効果が得られる。このように非晶質の金属酸化物膜14を使用し得ることは、例えば、プリズム基材12の底面12aに金属酸化物膜14を形成する際に、プリズム基材12に与えるダメージ(例えば、熱によるダメージ)を少なくし得るという観点から好ましい。 The method for forming the metal oxide film 14 is not particularly limited, and for example, known methods such as a vacuum deposition method, a sputtering method, and a sol-gel method can be used alone or in appropriate combination. The metal oxide film 14 may be crystalline or amorphous. In one aspect of the technology disclosed herein, even if the metal oxide film 14 (for example, an Al 2 O 3 film) is amorphous, corrosion of the prism base 12 is appropriately prevented and infrared spectroscopic analysis measurement is performed. The effect of improving the accuracy of the is obtained. The amorphous metal oxide film 14 can be used in this way, for example, when the metal oxide film 14 is formed on the bottom surface 12a of the prism base material 12, damage to the prism base material 12 (for example, This is preferable from the viewpoint of reducing damage caused by heat.

赤外光を作用極の電極表面と前記電解液との界面に入射し、該界面において反射して窓材から出射する反射光を採光する光学系は、赤外光の光源(IR光源)、反射光のスペクトルを得る赤外分光器(検出器)、上記IR光源からの放射光の進路(例えば、プリズムへの入射角)を調節したり、該放射光から平行光や収束光を生成、抽出したりするためのレンズやミラー、スリット等を、適宜の組み合わせで含み得る。反射光のスペクトルを得る分光器(検出器)としては、MCT検出器、TGS検出器、InGaAs検出器、PbSe検出器等が例示される。図3に示す形態例に係る赤外分光分析装置1では、IR光源52から放射される赤外線をミラー54a、54bに反射させて所定の入射角でプリズム10に入射させ、プリズム10から出射する反射光をミラー54c、54dに反射させて採光窓56から赤外分光器58に導入し得るように光学系50が構成されている。   An optical system that injects infrared light into the interface between the electrode surface of the working electrode and the electrolytic solution and collects reflected light that is reflected at the interface and emitted from the window material is an infrared light source (IR light source), Infrared spectrometer (detector) for obtaining the spectrum of reflected light, adjusting the path of the emitted light from the IR light source (for example, the incident angle to the prism), or generating parallel light and convergent light from the emitted light, A lens, a mirror, a slit, and the like for extraction can be included in an appropriate combination. Examples of the spectrometer (detector) for obtaining the spectrum of reflected light include an MCT detector, a TGS detector, an InGaAs detector, a PbSe detector, and the like. In the infrared spectroscopic analysis apparatus 1 according to the embodiment shown in FIG. 3, the infrared rays emitted from the IR light source 52 are reflected by the mirrors 54 a and 54 b, are incident on the prism 10 at a predetermined incident angle, and are reflected from the prism 10. The optical system 50 is configured so that light can be reflected by the mirrors 54 c and 54 d and introduced into the infrared spectroscope 58 from the daylighting window 56.

ここに開示される技術は、例えば、非水電解液中にフッ素化合物を含むリチウムイオン二次電池の充放電時に電極表面で起こる事象の把握(分析、観察、解析等)に好ましく適用され得る。例えば、作用極32としては、上記電極表面と同様の材質および構造を有するものを使用することができる。また、上記電極表面の任意の特徴に重点をおいて単純化した材質または構造を有する作用極32を使用してもよい。電解液22としては、上記非水電解液と同様の組成を有するものを使用することができる。あるいは、上記非水電解液の任意の特徴に重点をおいて単純化した組成や、該特徴を強調した組成(例えば、フッ素化合物の濃度を高めた組成、非水溶媒の組成を単純化した組成、フッ素化合物のほかに添加剤を含む組成の電解液において、該添加剤の一部または全部を省いた組成等)の電解液(試験液)22を使用してもよい。   The technique disclosed here can be preferably applied to grasping (analysis, observation, analysis, etc.) of events occurring on the electrode surface during charge / discharge of a lithium ion secondary battery containing a fluorine compound in a nonaqueous electrolyte solution, for example. For example, as the working electrode 32, one having the same material and structure as the electrode surface can be used. Further, a working electrode 32 having a simplified material or structure with an emphasis on an arbitrary feature of the electrode surface may be used. As the electrolytic solution 22, one having the same composition as the non-aqueous electrolytic solution can be used. Alternatively, a simplified composition with an emphasis on any characteristic of the non-aqueous electrolyte, a composition that emphasizes the characteristic (for example, a composition with an increased concentration of a fluorine compound, or a simplified composition of a non-aqueous solvent) In addition, an electrolytic solution (test solution) 22 having a composition containing an additive in addition to the fluorine compound may be used.

ここに開示される技術において、赤外分光測定に用いられる電解液(試験液)22は、少なくともフッ素化合物を含む。該フッ素化合物は、リチウムイオン二次電池の支持塩として利用し得るリチウム塩であり得る。具体例としては、LiPF,LiBF,LiAsF,LiCFSO,LiCSO,LiN(CFSO,LiN(CSO,LiC(CFSO等の、リチウムイオン二次電池の支持塩として機能し得ることが知られている各種のリチウム塩が挙げられる。なかでも好ましいフッ素化合物として、リチウムイオン二次電池の支持塩として広く用いられているLiPFが例示される。電解液22は、フッ素化合物以外の支持塩(例えば、LiClO,LiB[(OCO)等の、フッ素原子を有しないリチウム化合物)をさらに含んでもよい。 In the technology disclosed herein, the electrolytic solution (test solution) 22 used for infrared spectroscopy includes at least a fluorine compound. The fluorine compound may be a lithium salt that can be used as a supporting salt for a lithium ion secondary battery. Specific examples include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 Various lithium salts known to be capable of functioning as a supporting salt for lithium ion secondary batteries, such as SO 2 ) 3 , can be mentioned. Among them, a preferred fluorine compound is LiPF 6 which is widely used as a supporting salt for lithium ion secondary batteries. The electrolytic solution 22 may further include a supporting salt other than the fluorine compound (for example, a lithium compound having no fluorine atom, such as LiClO 4 or LiB [(OCO) 2 ] 2 ).

電解液22は、典型的には、上記フッ素化合物が非水溶媒に溶解した形態を有する。かかる非水溶媒としては、一般に非水電解液の溶媒として使用し得ることが知られている各種の非プロトン性溶媒を用いることができる。例えば、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の各種の非プロトン性溶媒を、単独で、あるいは二種以上を適宜組み合わせて用いることができる。具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン、1,3−ジオキソラン、ジエチレングリコールジメチルエーテル、エチレングリコールジメチルエーテル、アセトニトリル、プロピオニトリル、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ−ブチロラクトン等が挙げられる。   The electrolytic solution 22 typically has a form in which the fluorine compound is dissolved in a non-aqueous solvent. As such a non-aqueous solvent, various aprotic solvents that are generally known to be usable as solvents for non-aqueous electrolytes can be used. For example, various aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be used alone or in appropriate combination of two or more. Specific examples include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), 1,2-dimethoxyethane, 1,2-diethoxyethane. , Tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, diethylene glycol dimethyl ether, ethylene glycol dimethyl ether, acetonitrile, propionitrile, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, sulfolane, γ-butyrolactone, etc. .

電解液22の一好適例として、上記非水溶媒が一種または二種以上のカーボネート類を含み、それらカーボネート類の合計体積が非水溶媒全体の体積の50体積%以上を占める非水溶媒(カーボネート系溶媒)である電解液が挙げられる。例えば、カーボネート類の合計体積が非水溶媒全体の体積の75体積%以上(より好ましくは85体積%以上であり、実質的に100体積%であってもよい。)を占める電解液22が好ましい。電解液22における上記フッ素化合物の濃度は特に制限されず、例えば一般的なリチウムイオン二次電池の電解液と同程度(例えば凡そ0.8mol/L〜1.5mol/L)、とすることができる。あるいは、上記フッ素化合物の濃度を一般的なリチウムイオンの電解液よりも高濃度(例えば凡そ2mol/L〜3mol/L)としてもよい。   As a preferred example of the electrolytic solution 22, the non-aqueous solvent contains one or more carbonates, and the total volume of the carbonates accounts for 50% by volume or more of the total volume of the non-aqueous solvent (carbonates). Electrolytes which are system solvents). For example, the electrolytic solution 22 in which the total volume of carbonates accounts for 75% by volume or more (more preferably 85% by volume or more, or substantially 100% by volume) of the total volume of the nonaqueous solvent is preferable. . The concentration of the fluorine compound in the electrolytic solution 22 is not particularly limited, and may be, for example, approximately the same as the electrolytic solution of a general lithium ion secondary battery (for example, approximately 0.8 mol / L to 1.5 mol / L). it can. Alternatively, the concentration of the fluorine compound may be higher than that of a general lithium ion electrolyte (for example, approximately 2 mol / L to 3 mol / L).

作用極32としては、例えば、リチウムイオン二次電池の負極を想定して、リチウムイオンを可逆的に挿入および脱離可能な負極活物質を有するものを用いることができる。負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好ましい一態様では、上記負極活物質が粉体材料である。例えば、かかる粉体材料が結着剤(バインダ)で結着した多孔質構造の表面32aを有する作用極32であり得る。かかる構造の作用極32は、その表面32a(粉体材料を構成する粒子の隙間等)に電解液22を保持しやすいので、電極表面における電解液の挙動を観察するのに適している。   As the working electrode 32, for example, a negative electrode active material capable of reversibly inserting and removing lithium ions can be used assuming a negative electrode of a lithium ion secondary battery. As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. In a preferred embodiment, the negative electrode active material is a powder material. For example, the working electrode 32 may have a surface 32a having a porous structure in which the powder material is bound with a binder. The working electrode 32 having such a structure is suitable for observing the behavior of the electrolytic solution on the electrode surface because the electrolytic solution 22 is easily held on the surface 32a (such as a gap between particles constituting the powder material).

上記負極活物質の好適例として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用され得る。なかでも特に、天然黒鉛等の黒鉛粒子を好ましく使用することができる。上記結着剤としては、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVDF)等が挙げられる。   As a suitable example of the negative electrode active material, a particulate carbon material (carbon particles) including a graphite structure (layered structure) at least in part can be given. Any carbon material of a so-called graphitic material (graphite), non-graphitizable carbon material (hard carbon), easily graphitized carbon material (soft carbon), or a combination of these materials is preferably used. obtain. Among these, graphite particles such as natural graphite can be preferably used. Examples of the binder include carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and polyvinylidene fluoride (PVDF).

また、リチウムイオン二次電池の正極を想定して、リチウムイオンを可逆的に挿入および脱離可能な正極活物質を有する作用極32を用いてもよい。正極活物質としては、従来からリチウムイオン二次電池に用いられる物質(例えば層状構造の酸化物やスピネル構造の酸化物)の一種または二種以上を特に限定なく使用することができる。好適例として、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物等のリチウム含有複合酸化物が挙げられる。正極活物質として使用し得る材料の他の好適例として、オリビン型リン酸リチウムその他のポリアニオン系材料が挙げられる。上記オリビン酸リチウムは、例えば、一般式LiMPO(Mは、Co、Ni、Mn、Feのうちの少なくとも一種以上の元素)で表記されるオリビン型リン酸リチウム(LiFePO、LiMnPO等)であり得る。正極活物質が粉体材料であることが好ましい点、該粉体材料が結着剤で結着した多孔質構造の表面32aを有する作用極32が好ましい点や、該結着剤の好適例等は、負極活物質を有する作用極32の場合と同様である。 In addition, assuming a positive electrode of a lithium ion secondary battery, a working electrode 32 having a positive electrode active material capable of reversibly inserting and removing lithium ions may be used. As the positive electrode active material, one kind or two or more kinds of substances conventionally used for lithium ion secondary batteries (for example, an oxide having a layered structure or an oxide having a spinel structure) can be used without any particular limitation. Preferable examples include lithium-containing composite oxides such as lithium nickel composite oxides, lithium cobalt composite oxides, and lithium manganese composite oxides. Other suitable examples of the material that can be used as the positive electrode active material include olivine type lithium phosphate and other polyanion materials. The lithium olivine is, for example, an olivine-type lithium phosphate (LiFePO 4 , LiMnPO 4, etc.) represented by a general formula LiMPO 4 (M is at least one element of Co, Ni, Mn, and Fe). possible. The positive electrode active material is preferably a powder material, the working electrode 32 having a porous surface 32a in which the powder material is bound with a binder, the preferred example of the binder, etc. Is the same as in the case of the working electrode 32 having a negative electrode active material.

ここに開示される技術によると、金属酸化物膜14によってプリズム基材12の腐食が防止されているので、作用極の電位が低い(あるいは、測定中に低くなり得る)条件においても精度よく赤外分光分析を行うことができる。例えば、少なくとも測定中の一時期において作用極の電位(対Li/Li)が1V以下(典型的には0.5V以下、より好ましくは0.3V以下、さらには0.1V以下)となり得る測定条件において特に有用である。かかる特長から、ここに開示される技術は、例えば、電解液中にフッ素化合物を含む非水電解液二次電池(典型的にはリチウムイオン二次電池)の負極表面において起こる事象の把握(分析、観察、解析等)に好ましく利用されて、より高性能な電池の開発に役立ち得る。 According to the technology disclosed herein, the prism base material 12 is prevented from being corroded by the metal oxide film 14, so that the red color can be accurately obtained even under conditions where the potential of the working electrode is low (or can be lowered during measurement). External spectroscopic analysis can be performed. For example, the potential at which the working electrode potential (vs. Li / Li + ) can be 1 V or less (typically 0.5 V or less, more preferably 0.3 V or less, and even 0.1 V or less) at least at one time during measurement. Particularly useful in conditions. Because of this feature, the technology disclosed herein can grasp (analyze) events that occur on the negative electrode surface of a non-aqueous electrolyte secondary battery (typically a lithium ion secondary battery) containing a fluorine compound in the electrolyte, for example. , Observation, analysis, etc.) and can be useful for the development of higher performance batteries.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定する意図ではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

<例1:Al膜を有するATR用プリズムの作製および評価>
図1〜図3で表される概略構成の赤外分光分析装置を用い、LiPFを含む電解液を作用極に含浸させて、該電極表面のin−situ FT−IR測定を行った。
<Example 1: Production and evaluation of prism for ATR having Al 2 O 3 film>
Using an infrared spectroscopic analyzer having a schematic configuration shown in FIGS. 1 to 3, the working electrode was impregnated with an electrolytic solution containing LiPF 6 and in-situ FT-IR measurement was performed on the electrode surface.

プリズム基材12としては、半球形のGe結晶(サイズ:直径15mm)を使用した。このプリズム基材(Ge窓材)12の温度を300℃に調整し、Alをターゲットとして、出力150W、Ar雰囲気下5×10−3Torrの条件でスパッタを行った。これによりプリズム基材12の底面10aの全範囲にAl膜(金属酸化物膜)14を作製して、本例に係るATR用プリズム(Al膜付きGe窓材)10を得た。Al膜14の厚さを走査型電子顕微鏡(SEM)により測定したところ、1μm以下の薄膜であることが確認された。 As the prism substrate 12, a hemispherical Ge crystal (size: diameter 15 mm) was used. The temperature of this prism base material (Ge window material) 12 was adjusted to 300 ° C., and sputtering was performed under the conditions of an output of 150 W and an Ar atmosphere of 5 × 10 −3 Torr using Al 2 O 3 as a target. As a result, an Al 2 O 3 film (metal oxide film) 14 is produced over the entire area of the bottom surface 10 a of the prism base 12, and the ATR prism (Ge window material with Al 2 O 3 film) 10 according to this example is prepared. Obtained. When the thickness of the Al 2 O 3 film 14 was measured with a scanning electron microscope (SEM), it was confirmed to be a thin film of 1 μm or less.

上記ATR用プリズム10をケース24の底面に取り付けて、円筒状の赤外分光セル20を構築した。作用極32としては、電極活物質としての黒鉛粒子(平均粒径約20μm)にバインダを5〜10質量%混合し、直径0.5cm、厚さ0.15mmの円板状に成形してなるコンポジット電極を使用した。バインダとしてはPVDFを使用した。対極36および参照極38としてはLi金属を使用した。セル20に電解液22を満たし、作用極32に含浸させるとともに、対極36および参照極38に接触させた。電解液22としては、ECとDECとの1:1(体積比)混合溶媒中に1.0モル/リットルの濃度でLiPFを含む非水電解液を使用した。ATR用プリズム10に赤外線を入射させて、FT−IRにより作用極表面32aのATRスペクトルRを測定した。 The ATR prism 10 was attached to the bottom surface of the case 24 to construct a cylindrical infrared spectroscopic cell 20. The working electrode 32 is formed by mixing graphite particles (average particle size of about 20 μm) as an electrode active material with a binder of 5 to 10% by mass and forming a disk shape having a diameter of 0.5 cm and a thickness of 0.15 mm. A composite electrode was used. PVDF was used as the binder. Li metal was used as the counter electrode 36 and the reference electrode 38. The cell 20 was filled with the electrolytic solution 22 and impregnated in the working electrode 32 and brought into contact with the counter electrode 36 and the reference electrode 38. As the electrolytic solution 22, a nonaqueous electrolytic solution containing LiPF 6 at a concentration of 1.0 mol / liter in a 1: 1 (volume ratio) mixed solvent of EC and DEC was used. Infrared light was incident on the ATR prism 10, and the ATR spectrum R i of the working electrode surface 32a was measured by FT-IR.

次いで、作用極32をリチウムイオン二次電池の負極に用いることを想定し、該電池の充電時および放電時における負極表面のスペクトル変化を観察するため、作用極32の電位(対Li/Li)を初期状態(R測定時の電位、すなわち1.22V)から変化させてATRスペクトルを測定した。サイクリックボルタンメトリー法により電極電位を制御し、掃引速度は10mV/minとした。初期電位におけるスペクトルRと、作用極の電位が1.22Vから0.92Vまで低下したときのスペクトルRとを以下の式に代入して、差スペクトル(Subtractively Normalized Interfacial FTIR;SNIFTIR)を求めた。
ΔR/R=(R−R)/R (1)
Next, assuming that the working electrode 32 is used as a negative electrode of a lithium ion secondary battery, the potential of the working electrode 32 (vs. Li / Li +) is observed in order to observe the spectral change of the negative electrode surface during charging and discharging of the battery. ) potential in the initial state (R i measured, i.e. by changing from 1.22V) was measured ATR spectrum. The electrode potential was controlled by a cyclic voltammetry method, and the sweep rate was 10 mV / min. By substituting the spectrum R i at the initial potential and the spectrum R 1 when the potential of the working electrode decreases from 1.22 V to 0.92 V into the following equation, a difference spectrum (Subtractively Normalized FTIR; SNIFTIR) is obtained. It was.
ΔR / R = (R 1 −R i ) / R i (1)

同様に、作用極32の電位が0.92Vから0.62V、0.32V、0.02Vと順次低下したときのスペクトルR、R、R、および、作用極32の電位が0.02V(反転電位)から0.32V、0.62V、0.92V、1.22Vと順次上昇したときのスペクトルR、R、R、Rをそれぞれ測定し、以下の式により電位変化の前後における差スペクトルを求めた。
ΔR/R=(Rn+1−R)/R (2)
Similarly, the potential of the spectrum R 2 , R 3 , R 4 and the potential of the working electrode 32 when the potential of the working electrode 32 sequentially decreases from 0.92 V to 0.62 V, 0.32 V, and 0.02 V, and the potential of the working electrode 32 is 0. Spectra R 5 , R 6 , R 7 , and R 8 were measured from 0.2V (reversal potential) to 0.32V, 0.62V, 0.92V, and 1.22V, respectively. The difference spectrum before and after was obtained.
ΔR / R = (R n + 1 −R n ) / R n (2)

かかるin−situ FI−IR測定から求めた初回充電時(作用極32に含まれる電極活物質へのLiイオン挿入時)の差スペクトルを図4に、初回放電時(上記電極活物質からのLiイオン脱離時)の差スペクトルを図5に示す。各差スペクトルの上に示された数字は、作用極の電位(カッコ内は参照電位)(対Li/Li)を表している。これらの差スペクトルにおいて、上向きのピークは該吸収に対応する化学種が減少したことを示し、下向きのピークは該吸収に対応する化学種が増加したことを表す。図4および図5の下段には、電解液単独での特性吸収を示すATRスペクトルを点線で示している。これらの情報に基づいて界面挙動を解析した。 FIG. 4 shows a difference spectrum at the time of initial charge (when Li ions are inserted into the electrode active material included in the working electrode 32) obtained from the in-situ FI-IR measurement. FIG. 5 shows a difference spectrum during ion desorption. The number shown above each difference spectrum represents the potential of the working electrode (reference potential in parentheses) (vs. Li / Li + ). In these difference spectra, the upward peak indicates that the chemical species corresponding to the absorption is decreased, and the downward peak indicates that the chemical species corresponding to the absorption is increased. In the lower part of FIG. 4 and FIG. 5, the ATR spectrum indicating the characteristic absorption of the electrolytic solution alone is indicated by a dotted line. Based on this information, the interface behavior was analyzed.

図4に示す充電過程では、0.02V(対Li/Li)において最も大きな変化が観察され、電解液22の分解およびLiイオンの脱溶媒和を示唆する挙動が認められた。一方、図5に示す放電過程では、0.02Vから0.32Vの電位範囲において大きなピークが認められ、Liイオンが溶媒和される挙動が観察された。充放電の両過程において、プリズム基材(Ge窓材)12の腐食を示唆するベースラインの著しい変化は認められず、Ge窓材12上のAl膜14が保護膜として効果的に働いていることが確認された。さらに、Al膜14の形成によるスペクトル強度の低下は、測定上特に問題とはならない程度であることも確認された。 In the charging process shown in FIG. 4, the largest change was observed at 0.02 V (vs. Li / Li + ), and a behavior suggesting decomposition of the electrolytic solution 22 and desolvation of Li ions was observed. On the other hand, in the discharge process shown in FIG. 5, a large peak was observed in the potential range of 0.02 V to 0.32 V, and a behavior in which Li ions were solvated was observed. In both the charge and discharge processes, no significant change in the baseline suggesting corrosion of the prism base material (Ge window material) 12 was observed, and the Al 2 O 3 film 14 on the Ge window material 12 was effectively used as a protective film. Confirmed to work. Furthermore, it was also confirmed that the decrease in spectral intensity due to the formation of the Al 2 O 3 film 14 is not particularly problematic in measurement.

塩の腐食による電解液中のHFの増加を模して、通常の10倍〜100倍量のHFを含む耐腐食性試験用HF溶液を調製した。本例に係るATR用プリズムと同様の膜を付着したテストピース(ゲルマニウム結晶からなるテストピースを使用した。例2〜4において同じ。)を用い、該テストピースを上記HF溶液に浸漬して、室温で一日以上放置した。その後、テストピースを取り出し、SEM観察およびX線光電子分光法により評価したところ、Al膜の変色、剥がれ、母材(ゲルマニウム)の露出等は認められなかった。 A HF solution for a corrosion resistance test containing HF in an amount of 10 to 100 times the normal amount was prepared by simulating an increase in HF in the electrolytic solution due to salt corrosion. Using a test piece (using a test piece made of germanium crystals, which is the same in Examples 2 to 4) to which a film similar to the ATR prism according to this example is attached, the test piece is immersed in the HF solution, Left at room temperature for more than a day. Thereafter, the test piece was taken out and evaluated by SEM observation and X-ray photoelectron spectroscopy. As a result, discoloration and peeling of the Al 2 O 3 film, exposure of the base material (germanium), and the like were not recognized.

本例で作製したAl膜の結晶性を把握するため、XRD(X線回折)測定を行った。得られたXRDスペクトルにおいて、Al結晶に対応するピークは認められず、このAl膜が非晶質であることが確認された。この結果は、プリズム基材12上に設ける金属酸化物膜14は結晶質のものに限られず、非晶質の金属酸化物膜14によっても十分な保護機能が発揮され得ることを支持している。 In order to grasp the crystallinity of the Al 2 O 3 film produced in this example, XRD (X-ray diffraction) measurement was performed. In the obtained XRD spectrum, no peak corresponding to the Al 2 O 3 crystal was observed, and it was confirmed that the Al 2 O 3 film was amorphous. This result supports that the metal oxide film 14 provided on the prism substrate 12 is not limited to a crystalline one, and the amorphous metal oxide film 14 can provide a sufficient protective function. .

<例2:有機膜を有するATR用プリズムの作製および評価>
例1と同じプリズム基材(Ge窓材)の底面に、ポリイミド前駆体を含むコーティング液を塗布し、乾燥および硬化させた。これにより、上記プリズム基材の底面に厚さ0.15μmのポリイミド樹脂膜を有するATR用プリズム(ポリイミド樹脂膜付きGe窓材)を得た。
このATR用プリズムと同様の膜を付着したテストピースを、例1で用いたものと同じ耐腐食性試験用HF溶液に浸漬し、室温で一日以上放置した。その後、テストピースを取り出し、SEM観察およびX線光電子分光法により評価したところ、ポリイミド樹脂膜の変色、剥がれ、母材の露出等は認められなかった。
<Example 2: Production and evaluation of ATR prism having organic film>
A coating solution containing a polyimide precursor was applied to the bottom surface of the same prism base material (Ge window material) as in Example 1, dried and cured. As a result, an ATR prism (Ge window material with a polyimide resin film) having a polyimide resin film with a thickness of 0.15 μm on the bottom surface of the prism base material was obtained.
A test piece having the same film as that of the ATR prism was immersed in the same corrosion resistance test HF solution used in Example 1 and allowed to stand at room temperature for more than a day. Thereafter, the test piece was taken out and evaluated by SEM observation and X-ray photoelectron spectroscopy. As a result, discoloration, peeling, and exposure of the base material were not recognized.

例1に係るATR用プリズムに代えて本例に係るATR用プリズムを用い、その他の点については例1と同様にして、FT−IRにより作用極表面のATRスペクトルRを測定した。その後、例1と同様にして作用極の電位を1.22V〜0.02V(対Li/Li)の間で変化させた。その後、セルからATR用プリズムを取り外し、目視により外観を評価したところ、ポリイミド樹脂膜の変色や剥がれは認められなかった。しかし、本例に係るATR用プリズムでは、図6に示すように、主要なIR観察範囲(本例では凡そ980〜1530cm−1および1650〜1800cm−1)にポリイミド樹脂に由来する吸収ピークが現れ、またポリイミド樹脂膜が電解液で膨潤する事象が認められた。これらの事情から、本例に係るATR用プリズム(ポリイミド樹脂膜付きGe窓材)は、電解液の分解挙動のin−situ観察および解析には不向きであると判断した。 The ATR prism according to this example was used in place of the ATR prism according to Example 1, and the ATR spectrum R i on the working electrode surface was measured by FT-IR in the same manner as in Example 1 for other points. Thereafter, in the same manner as in Example 1, the potential of the working electrode was changed between 1.22 V and 0.02 V (vs. Li / Li + ). Then, when the prism for ATR was removed from the cell and the appearance was visually evaluated, no discoloration or peeling of the polyimide resin film was observed. However, in the ATR prism of the present embodiment, as shown in FIG. 6, appeared the absorption peak derived from polyimide resin (approximately 980~1530Cm -1 and 1650~1800Cm -1 in this example) Major IR observation range In addition, the phenomenon that the polyimide resin film swells with the electrolytic solution was observed. From these circumstances, it was determined that the ATR prism (Ge window material with polyimide resin film) according to this example is not suitable for in-situ observation and analysis of the decomposition behavior of the electrolytic solution.

<例3:DLC膜を有するATR用プリズムの作製および評価>
例1と同じプリズム基材(Ge窓材)の底面に、蒸着温度200℃でPVD法によりダイヤモンドライクカーボン(DLC)膜を作製した。蒸着時間を変更することにより、DLC膜の厚さがそれぞれ20nm、75nm、150nmである3種類のATR用プリズム(DLC膜付きGe窓材)を作製した。
これらのATR用プリズムと同様の膜をそれぞれ付着したテストピースを、例1で用いたものと同じ耐腐食性試験用HF溶液に浸漬し、室温で一日以上放置した。その後、テストピースを取り出し、SEM観察およびX線光電子分光法により評価したところ、いずれも、DLC膜の変色、剥がれ、母材の露出等は認められなかった。
<Example 3: Production and evaluation of prism for ATR having DLC film>
A diamond-like carbon (DLC) film was produced on the bottom surface of the same prism base material (Ge window material) as in Example 1 at a deposition temperature of 200 ° C. by the PVD method. By changing the deposition time, three types of ATR prisms (Ge window materials with a DLC film) having DLC film thicknesses of 20 nm, 75 nm, and 150 nm, respectively, were produced.
The test pieces with the same films as those of the ATR prisms were respectively immersed in the same corrosion resistance test HF solution used in Example 1 and allowed to stand at room temperature for one day or more. Thereafter, the test piece was taken out and evaluated by SEM observation and X-ray photoelectron spectroscopy. As a result, none of the DLC film was discolored, peeled off, or exposed from the base material.

例1に係るATR用プリズムに代えて本例に係る3種類のATR用プリズムをそれぞれ使用し、その他の点については例1と同様にして、FT−IRにより作用極表面のATRスペクトルRを測定した。その後、例1と同様にして作用極の電位を1.22V〜0.02V(対Li/Li)の間で変化させたところ、途中で異常電流の発生が確認された。セルからATR用プリズムを取り外し、走査型電子顕微鏡(SEM)によりプリズムの表面を観察したところ、DLC膜が中心部(Oリング内)で剥がれており、その付近においてGe窓材に腐食が認められた。 Instead of the ATR prism according to Example 1, the three types of ATR prisms according to this example were used, respectively. For other points, the ATR spectrum R i of the working electrode surface was obtained by FT-IR in the same manner as in Example 1. It was measured. Thereafter, in the same manner as in Example 1, when the potential of the working electrode was changed between 1.22 V and 0.02 V (vs. Li / Li + ), generation of abnormal current was confirmed on the way. When the prism of ATR was removed from the cell and the surface of the prism was observed with a scanning electron microscope (SEM), the DLC film was peeled off at the center (inside the O-ring), and the Ge window material was corroded in the vicinity. It was.

<例4:Al蒸着膜の検討>
真空蒸着法により厚さ0.01〜0.1μmのアルミニウム(Al)蒸着膜を形成してなるテストピースを、例1で用いたものと同じ耐腐食性試験用HF溶液に浸漬し、室温で一日以上放置した。その後、テストピースを取り出し、SEM観察およびX線光電子分光法により評価したところ、Al蒸着膜の大部分が母材から剥がれてしまっていた。
<Example 4: Examination of Al vapor deposition film>
A test piece formed by depositing an aluminum (Al) deposited film having a thickness of 0.01 to 0.1 μm by a vacuum deposition method is immersed in the same HF solution for corrosion resistance test as that used in Example 1, and at room temperature. Left for more than a day. Then, when the test piece was taken out and evaluated by SEM observation and X-ray photoelectron spectroscopy, most of the Al deposited film was peeled off from the base material.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここで開示される発明には上述した具体例を様々に変形、変更したものが含まれる。また、以上の説明ではここに開示される技術をフッ素含有電解液を備えた非水電解液二次電池の分析に適用する場合に重点をおいたが、ここに開示される技術思想は、腐食性の酸(例えばHF)を含む液体または測定中に該酸が発生し得る液体にATR用プリズムを直接接触させることを特徴とする各種の測定(例えば、金属の腐食電位測定等)に広く適用され得る。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and changed various the specific example mentioned above is included in the invention disclosed here. In the above description, the technique disclosed herein has been focused on the application to the analysis of a non-aqueous electrolyte secondary battery equipped with a fluorine-containing electrolyte. Widely applicable to various measurements (for example, measurement of corrosion potential of metals, etc.) characterized in that the ATR prism is brought into direct contact with a liquid containing an acidic acid (for example, HF) or a liquid that can generate an acid during the measurement. Can be done.

1 FT−IR分析装置(赤外分光分析装置)
10 ATR用プリズム
10a 底面
12 プリズム基材
12a 底面(プリズム基材と金属酸化物膜との界面)
14 金属酸化物膜
20 赤外分光セル
22 電解液(試験液)
24 ケース
26 Oリング
32 作用極
32a 表面
32b 背面
36 対極
38 参照極
40 ポテンショスタット(充放電ユニット)
50 光学系
52 IR光源
54a、54b、54c、54d ミラー
56 採光窓
58 赤外分光器
1 FT-IR analyzer (infrared spectrometer)
10 ATR prism 10a bottom surface 12 prism base material 12a bottom surface (interface between prism base material and metal oxide film)
14 Metal oxide film 20 Infrared spectroscopic cell 22 Electrolytic solution (test solution)
24 Case 26 O-ring 32 Working electrode 32a Front surface 32b Rear surface 36 Counter electrode 38 Reference electrode 40 Potentiostat (charge / discharge unit)
50 Optical System 52 IR Light Sources 54a, 54b, 54c, 54d Mirror 56 Lighting Window 58 Infrared Spectrometer

Claims (10)

全反射(Attenuated−Total−Reflection;ATR)法による赤外分光分析装置であって:
プリズム基材と該基材の底面に設けられた金属酸化物膜とを備える全反射用プリズム;
前記金属酸化物膜の表面上に配置される作用極;
前記作用極と対をなす対極;
前記作用極の電位を規定する参照極;
前記プリズム基材を通して該基材と前記金属酸化物膜との界面に赤外線を入射し、該赤外線が前記界面で反射して前記プリズムから出射する反射光を採光する光学系;および、
前記反射光のスペクトルを得るための赤外分光器;
を包含する、赤外分光分析装置。
An infrared spectroscopic analysis apparatus using an attenuated-total-reflection (ATR) method:
A total reflection prism comprising a prism substrate and a metal oxide film provided on the bottom surface of the substrate;
A working electrode disposed on the surface of the metal oxide film;
A counter electrode paired with the working electrode;
A reference electrode defining the potential of the working electrode;
An optical system that injects infrared light into the interface between the base material and the metal oxide film through the prism base material, and reflects the reflected light emitted from the prism after the infrared light is reflected at the interface; and
An infrared spectrometer for obtaining a spectrum of the reflected light;
An infrared spectroscopic analyzer.
前記作用極と前記対極と前記参照極とをフッ素化合物を含む電解液に接触させ、前記作用極において電気化学反応を進行させつつ前記赤外線を前記プリズム基材と前記金属酸化物膜との界面で反射させることにより、前記作用極の表面をin−situ赤外分光測定し得るように構成されている、請求項1に記載の装置。   The working electrode, the counter electrode, and the reference electrode are brought into contact with an electrolyte solution containing a fluorine compound, and the infrared ray is transmitted at the interface between the prism base material and the metal oxide film while an electrochemical reaction proceeds in the working electrode. The apparatus according to claim 1, wherein the apparatus is configured to be able to perform in-situ infrared spectroscopic measurement of the surface of the working electrode by reflection. 前記金属酸化物膜はアルミナ膜またはジルコニア膜である、請求項1または2に記載の装置。   The apparatus according to claim 1, wherein the metal oxide film is an alumina film or a zirconia film. 前記金属酸化物膜の厚さは20nm〜600nmである、請求項1から3のいずれか一項に記載の装置。   The apparatus according to claim 1, wherein the metal oxide film has a thickness of 20 nm to 600 nm. 前記プリズム基材はゲルマニウム結晶である、請求項1から4のいずれか一項に記載の装置。   The apparatus according to claim 1, wherein the prism base material is a germanium crystal. 電解液中にフッ素化合物を含む非水電解液二次電池のin−situ赤外分光測定に用いられる、請求項1から5のいずれか一項に記載の装置。   The apparatus as described in any one of Claim 1 to 5 used for the in-situ infrared spectroscopy measurement of the nonaqueous electrolyte secondary battery which contains a fluorine compound in electrolyte solution. 電解液中にフッ素化合物を含む非水電解液二次電池を分析する方法であって:
前記フッ素化合物を含有する試験液を、プリズム基材および該基材の底面に設けられた金属酸化物膜を備える全反射用プリズムと、該金属酸化物膜の表面上に配置された作用極と、該作用極の対極と参照極とに接触させ、前記作用極において電気化学反応を進行させること;および、
前記電気化学反応を進行させながら、前記プリズム基材を通して該基材と前記金属酸化物膜との界面に赤外線を入射し、該赤外線が前記界面で反射して前記プリズムから出射する反射光を採光すること;
を包含し、前記反射光を用いて前記作用極の表面をin−situ赤外分光測定する、非水電解液二次電池分析方法。
A method for analyzing a non-aqueous electrolyte secondary battery that includes a fluorine compound in an electrolyte solution:
A test liquid containing the fluorine compound, a prism base material and a total reflection prism including a metal oxide film provided on the bottom surface of the base material; and a working electrode disposed on the surface of the metal oxide film; Contacting the counter electrode of the working electrode with a reference electrode to allow an electrochemical reaction to proceed at the working electrode; and
While proceeding with the electrochemical reaction, infrared light is incident on the interface between the base material and the metal oxide film through the prism base material, and the reflected light is reflected from the interface and emitted from the prism. To do;
And the surface of the working electrode is subjected to in-situ infrared spectroscopic measurement using the reflected light.
前記フッ素化合物はリチウム塩である、請求項7に記載の方法。   The method according to claim 7, wherein the fluorine compound is a lithium salt. 前記作用極は、リチウムイオンを可逆的に挿入および脱離可能な炭素材料を有する、請求項7または8に記載の方法。   The method according to claim 7 or 8, wherein the working electrode has a carbon material capable of reversibly inserting and removing lithium ions. 全反射法による赤外分光分析に用いられるプリズムであって、
プリズム基材と、該基材の底面に設けられた金属酸化物膜と、を備え、
前記プリズム基材を通して該基材と前記金属酸化物膜との界面に赤外線を入射させ、該界面においてエバネッセント波を発生させ、前記界面で反射して前記プリズムから出射する反射光を利用して、前記金属酸化物膜上に配置された測定試料を赤外分光測定可能に構成されている、全反射用プリズム。
A prism used for infrared spectroscopic analysis by a total reflection method,
A prism base material, and a metal oxide film provided on the bottom surface of the base material,
Infrared light is incident on the interface between the base material and the metal oxide film through the prism base material, an evanescent wave is generated at the interface, and the reflected light that is reflected at the interface and emitted from the prism is used. A total reflection prism configured to be capable of infrared spectroscopic measurement of a measurement sample disposed on the metal oxide film.
JP2011070566A 2011-03-28 2011-03-28 Infrared spectral analysis apparatus and utilization thereof Withdrawn JP2012202951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070566A JP2012202951A (en) 2011-03-28 2011-03-28 Infrared spectral analysis apparatus and utilization thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070566A JP2012202951A (en) 2011-03-28 2011-03-28 Infrared spectral analysis apparatus and utilization thereof

Publications (1)

Publication Number Publication Date
JP2012202951A true JP2012202951A (en) 2012-10-22

Family

ID=47184097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070566A Withdrawn JP2012202951A (en) 2011-03-28 2011-03-28 Infrared spectral analysis apparatus and utilization thereof

Country Status (1)

Country Link
JP (1) JP2012202951A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124862A (en) * 2011-12-13 2013-06-24 Ube Scientific Analysis Laboratory Inc Infrared spectroscopic device and method
CN106908533A (en) * 2016-12-14 2017-06-30 宁海德宝立新材料有限公司 A kind of application of metal oxide
JP2021157950A (en) * 2020-03-27 2021-10-07 ユウラシア真空技術株式会社 Battery management system and battery management method
WO2022201862A1 (en) * 2021-03-26 2022-09-29 浜松ホトニクス株式会社 Attenuated total reflectance spectroscopy apparatus, and attenuated total reflectance spectroscopy method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124862A (en) * 2011-12-13 2013-06-24 Ube Scientific Analysis Laboratory Inc Infrared spectroscopic device and method
CN106908533A (en) * 2016-12-14 2017-06-30 宁海德宝立新材料有限公司 A kind of application of metal oxide
CN106908533B (en) * 2016-12-14 2019-11-12 宁海德宝立新材料有限公司 A kind of application of metal oxide
JP2021157950A (en) * 2020-03-27 2021-10-07 ユウラシア真空技術株式会社 Battery management system and battery management method
JP7300181B2 (en) 2020-03-27 2023-06-29 ユウラシア真空技術株式会社 BATTERY MANAGEMENT SYSTEM AND BATTERY MANAGEMENT METHOD
WO2022201862A1 (en) * 2021-03-26 2022-09-29 浜松ホトニクス株式会社 Attenuated total reflectance spectroscopy apparatus, and attenuated total reflectance spectroscopy method
GB2619247A (en) * 2021-03-26 2023-11-29 Hamamatsu Photonics Kk Attenuated total reflectance spectroscopy apparatus, and attenuated total reflectance spectroscopy method

Similar Documents

Publication Publication Date Title
Chu et al. Advanced characterizations of solid electrolyte interphases in lithium-ion batteries
Gabryelczyk et al. Corrosion of aluminium current collector in lithium-ion batteries: A review
He et al. In situ gas analysis of Li4Ti5O12 based electrodes at elevated temperatures
Niehoff et al. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy
Steinhauer et al. In situ studies of solid electrolyte interphase (SEI) formation on crystalline carbon surfaces by neutron reflectometry and atomic force microscopy
Owejan et al. Solid electrolyte interphase in Li-ion batteries: evolving structures measured in situ by neutron reflectometry
Nowak et al. The role of cations on the performance of lithium ion batteries: a quantitative analytical approach
McArthur et al. In situ investigations of SEI layer growth on electrode materials for lithium-ion batteries using spectroscopic ellipsometry
Gajan et al. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy
Cao et al. Toward unraveling the origin of lithium fluoride in the solid electrolyte interphase
JP4784939B2 (en) Electrochemical infrared spectroscopic apparatus and electrochemical infrared spectroscopic measurement method
Yang et al. Phosphorus enrichment as a new composition in the solid electrolyte interphase of high-voltage cathodes and its effects on battery cycling
Ha et al. Effect of water concentration in LiPF6-based electrolytes on the formation, evolution, and properties of the solid electrolyte interphase on Si anodes
McShane et al. Quantifying graphite solid-Electrolyte interphase chemistry and its impact on fast charging
JP6487205B2 (en) Non-aqueous electrolyte secondary battery for X-ray diffraction measurement and X-ray diffraction measurement method
JP2012202951A (en) Infrared spectral analysis apparatus and utilization thereof
Weiling et al. Vibrational Spectroscopy Insight into the Electrode| electrolyte Interface/Interphase in Lithium Batteries
JP2012109176A (en) Battery degradation analysis method
JP2017062997A (en) Method for evaluating positive electrode material for nonaqueous electrolyte secondary battery
Kuwata et al. Ion dynamics of the LixMn2O4 cathode in thin-film solid-state batteries revealed by in situ Raman spectroscopy
Giacco et al. Noticeable Role of TFSI–Anion in the Carbon Cathode Degradation of Li–O2 Cells
JP6323873B2 (en) Electrode for measuring secondary battery operand using soft X-ray
JP2009250820A (en) Infrared spectrometer
Ronneburg et al. Solid electrolyte interphase layer formation during lithiation of single-crystal silicon electrodes with a protective aluminum oxide coating
WO2016121687A1 (en) Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603